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ABSTRACT. The paper investigates the realization problem for a class of analytic nonlinear hy-
brid systems without autonomous switching. Similarly to the classical nonlinear realization
theory the realization problem for hybrid systems is translated to a formal realization problem
of a class of abstract systems defined on rings of formal power series. Necessary conditions are
presented for existence of a realization by such an abstract system and thus by a hybrid system.
A notion analogous to the Lie-rank of nonlinear input-output maps is defined and the presented
necessary condition involves a requirement that this generalised Lie-rank should be finite. We
will also introduce the notion of strong Lie-rank and we will show that finiteness of the strong
Lie-rank implies existence of a realization which is very close to the required hybrid system re-
alization. Thus, finiteness of the strong Lie-rank can be seen as an "almost" sufficient condition.
In the special case of nonlinear analytic systems both the finite Lie-rank and the finite strong
Lie-rank condition presented in the paper reduces to the well-known finite Lie-rank condition.
We will use theory of Sweedler-type coalgebras for studying the formal realization problem.
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1. Introduction

Realization problem is one of the central problems of systems theory. Its aim is
to find conditions under which an input-output map can be represented as’ an input-
output map of a certain system.

The aim of the paper is to investigate the realization problem for a class of hybrid
systems which will be called hybrid systems without guards. That is, discrete events
play the role of discrete inputs and a discrete event can be sent to the system at any
time. Thus, one can trigger at any time a discrete state transition associated with a
chosen discrete event.

In this paper we will address the following question. Consider an input-output map
and formulate conditions for existence of a realization by a nonlinear hybrid system
without guards.

The problem as it is stated above is quite difficult, therefore we will adopt a number
of simplifications. First of all we will restrict ourselves to analytic hybrid systems , i.e.
hybrid systems such that the underlying continuous control systems are analytic and
the reset maps are analytic. To simplify the problem further, we will look only at local
and formal realization. That is, we will try to find conditions with respect to which
the input-output map coincides with the input-output map of a hybrid system locally,
i.e. for small times. To facilitate the transition from global to the local problem we
will introduce the concept of the hybrid Fliess-series expansion. Roughly speaking,
an input-output map admits a hybrid Fliess-series expansion if its continuous-valued
part can be represented as an infinite series of iterated integrals of the continuous
inputs. The coefficients of these iterated integrals form a sequence which completely
determines the input-output map locally. We will refer to this sequence as the hybrid
generating series associated with the input-output map. Existence of a hybrid Fliess-
series expansion is a necessary condition for existence of a local realization by an
analytic hybrid system. The associated hybrid generating series can be thought of
as a collection of high-order derivatives of the input-output map. It turns out that a
necessary condition for existence of a hybrid system realization for an input-output
map is that the corresponding generating series admits a representation of a particular
form.

To be more precise, since the hybrid systems considered are analytic, we can as-
sociate with each underlying continuous system a formal power series ring, a finite
family of continuous derivations and a formal power series. The formal power series
ring corresponds to the ring of Taylor-series expansions of analytic functions around
a point, the derivations are just the Taylor-series expansion of the vector fields of the
system and the formal power series is just the Taylor series expansion of the readout
map of the system. In the context of the transformation described above the analytic
reset maps become continuous homomorphisms on formal power series rings, by tak-
ing the Taylor series expansion of each reset map around a suitably chosen point.

In this manner we get a construct which we will call a formal hybrid system.
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The concept of formal hybrid system allows us to reformulate the necessary con-
dition for existence of a hybrid system realization mentioned above. Namely, it turns
out that existence of a realization by an analytic hybrid system implies that the gener-
ating series associated with the hybrid Fliess-series expansion of the input-output map
has a realization by a formal hybrid system. Conversely, if we have a formal hybrid
system such that the vector fields, reset maps and readout maps are in fact convergent
formal power series, it will immediately yield us a hybrid system.

In fact, most of the paper is devoted to the realization problem for formal hybrid
systems. That is, consider a map mapping sequences of discrete and continuous inputs
symbols to discrete and continuous outputs. We would like to find necessary and
sufficient conditions for existence of a formal hybrid system realizing this map. We
will be able to present some necessary conditions and some results which indicate that
these necessary conditions are very close to being sufficient ones.

The approach to realization theory of analytic hybrid systems sketched above is
very similar to the classical approach to local realization theory of analytic nonlinear
systems, [JAK 86, FLI 80].

In this paper we will use the theory of Sweedler-type coalgebras. Note that Sweedler-
type coalgebras are not identical to coalgebras used by Jan Rutten ([RUT ]). Although
Sweedler-type coalgebra are a special case of the category theoretical coalgebras, they
have much more structure. Roughly speaking a Sweedler-type coalgebra is a vector
space on which a so called comultiplication and counit are defined. We will show
that existence of a formal hybrid system realization is equivalent to existence of a
realization by an abstract system of a certain type, which we will call CCPI hybrid
coalgebra systems. Roughly speaking such a system is a system, state space of which
is a coalgebra satisfying certain properties. Our efforts will be directed towards finding
conditions for existence of such a hybrid coalgebra realization.

This paper is not the first attempt to use coalgebras for hybrid system. Already the
paper by [GRO 95] advocated an approach based on coalgebras, and this paper uses
similar ideas. Although the stated goal of the paper by Grossman and Larson was to
use coalgebra theory for developing realization theory for hybrid systems, it just pre-
sented some reformulation of the already known results for finite-state automata and
nonlinear control systems. It did not contain any new results for hybrid systems. The
main contribution of the current paper when compared to the paper by Grossman and
Larson is that it does present conditions for existence of a realization by hybrid sys-
tems. Moreover, the class of hybrid systems studied in this paper is more general and
closer to what is generally understood as hybrid systems than the one in Grossman’s
and Larson’s paper.

The approach to realization theory adopted in this paper bears resemblance to
[GRU 94].

Realization of hybrid systems was addressed in a number of papers [PET 05b,
PET , PET 05a]. In particular, [PET 05a] dealt with realization of bilinear and linear
hybrid systems, i.e. hybrid systems without guards such that the continuous control
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systems are linear or bilinear and the reset maps are linear. In [PET 05a] necessary
and sufficient conditions were derived. Note that linear and bilinear hybrid systems
are special cases of analytic hybrid systems studied in this chapter. The conditions for
existence of a linear (bilinear) hybrid system realization imply the conditions derived
in this chapter, thus the results of the current chapter are consistent with the previous
ones.

Let us present an informal summary of the main results of the paper.

– An input-output map has a realization by a hybrid system if and only if it has
a hybrid Fliess-series expansion and the corresponding convergent generating series
has a realization by a formal hybrid system such that all the readout maps and vector
fields are convergent.
– A convergent generating series is a map, which maps sequences of discrete

events and input symbols to continuous and discrete outputs. Such a map has a real-
ization by a formal hybrid system, if it has a realization by a hybrid coalgebra system
of a certain type ( CCPI hybrid coalgebra system ).
– We define the Lie-rank and strong Lie-rank of the input-output map. We will

prove that if a map has a CCPI hybrid coalgebra system realization ( equivalently it
has a formal hybrid system realization ), then its Lie-rank is finite. If its strong Lie-
rank is finite, then it has a hybrid coalgebra realization which is very similar to a CCPI
hybrid coalgebra realization We will prove that an input-output map cannot have a
CCPI hybrid coalgebra realization ( formal hybrid system realization ), dimension of
which is smaller than the Lie-rank of the map. We will also present a hybrid system,
which can not be realized by a system, dimension of which equals the Lie-rank of the
input-output map.

The outline of the chapter is the following. Section 2 settles the notation and ter-
minology used in the paper. Section 3 presents the necessary results and terminology
on formal power series and coalgebras. The reader might postpone reading this sec-
tion until Section 7. Section 6 discusses the notion of hybrid Fliess-series expansion
and characterises the input-output maps of hybrid systems in terms of Fliess-series
expansion. Section 7 presents the relationship between local realization and formal
realization problem. Section 8 presents the conditions for existence of a formal hybrid
system realization.

A more detailed presentation of the results of this paper can be found in [PET 06].

2. Notation and terminology

For an interval A ⊆ R and for a suitable set X denote by PC(A,X) the set of
piecewise-continuous maps from A toX , i.e., maps which have at most finitely many
points of discontinuity on any bounded interval and at any point of discontinuity the
left-hand and the right-hand side limits exist and are finite. For a set Σ denote by Σ∗
the set of finite strings of elements of Σ. For w = a1a2 · · · ak ∈ Σ∗, a1, a2, . . . , ak ∈
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Σ the length of w is denoted by |w|, i.e. |w| = k. The empty sequence is denoted by
�. The length of � is zero: |�| = 0. Let Σ+ = Σ∗ \ {�}. The concatenation of two
strings v = v1 · · · vk, w = w1 · · ·wm ∈ Σ∗ is the string vw = v1 · · · vkw1 · · ·wm.
We denote by wk the string w · · ·w| {z }

k−times

. The word w0 is just the empty word �. Denote by

T the set [0, +∞) ⊆ R. Denote by N the set of natural numbers including 0. Denote
by F (A,B) the set of all functions from the set A to the set B. For any two sets A,B,
define the functions ΠA : A × B → A and ΠB : A × B → B by ΠA(a, b) = a and
ΠB(a, b) = b. By abuse of notation we will denote any constant function f : T → A
by its value. That is, if f(t) = a ∈ A for all t ∈ T , then f will be denoted by a. For
any function f the range of f will be denoted by Imf . If A, B are two sets, then the
set (A×B)∗ will be identified with the set {(u,w) ∈ A∗ ×B∗ | |u| = |w|}. For any
set A we will denote by card(A) the cardinality of A.

For a finite set Σ denote by R < Σ∗ > the set of all finite formal linear com-
binations of words over Σ. That is, a typical element of R < Σ∗ > is of the form
α1w1+α2w2+· · ·+αkwk, where α1, . . . ,αk ∈ R andw1, . . . , wk ∈ Σ∗. It is easy to
see thatR < Σ∗ > is a vector space. Moreover, we can define a linear associative mul-
tiplication on R < Σ∗ >, by (

PN
i=1 αiwi)(

PM
j=1 βjvj) =

PN
i=1

PM
j=1 αiβjwivj .

The element � which we will identify with 1 is the neutral element with respect to
multiplication. It is easy to see that R < Σ∗ > is an algebra with the multiplication
defined above.

3. Algebraic preliminaries

The goal of this section is to give a brief overview of the algebraic notions used in
this chapter and to fix the notation and terminology. The material presented in this sec-
tion is standard. The reader is strongly encouraged to consult the references provided
in the text for further details. Subsection 3.1 presents a summary on formal power
series in finitely many commuting variables. Subsection 3.2 presents the necessary
preliminaries on Sweedler-type coalgebras. In this chapter in general, and throughout
this section in particular we will assume that the reader is familiar with such basic
algebraic notions as ring, algebra, ideal, module etc. The reader is referred to any
textbook in this subject, for example [ZAR 75].

3.1. Preliminaries on Formal Power Series

The goal of this subsection is to present a very short overview of the main prop-
erties of formal power series in commuting variables. For a more detailed exposition
the reader should consult [ZAR 75].

Consider the setNn and define addition on this set as follows. If α = (α1, . . . , αn)
and β = (β1, . . . , βn), then let α + β = (α1 + β1,α2 + β2, . . . , αn + βn). The ring
of formal power series R[[X1, . . . ,Xn]] in commuting variables X1,X2, . . . , Xn is
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defined as the R vector space of formal infinite sums S =
P

α∈Nn SαXα, where
Xα = Xα1

1 Xα2
2 · · ·Xαn

n for α = (α1, . . . , αn). Addition, multiplication are defined
by (

P
α∈Nn SαXα)+(

P
α∈Nn TαXα) =

P
γ∈Nn(Sγ+Tγ)Xγ and (

P
α∈Nn SαXα)·

(
P

α∈Nn TαXα) =
P

γ∈Nn(
P

α+β=γ SαTβ)Xγ Multiplication by scalar is defined
as a(

P
α∈Nn SαXα) =

P
α∈Nn aSαXα. The neutral element for addition isP

α∈Nn SαXα, with Sα = 0 for all α ∈ Nn. The neutral element for multiplication
is

P
α∈Nn SαXα with S(0,0,...,0) = 1 and Sα = 0 for all other α ∈ N. The latter

element will be denoted simply by 1. It is easy to see that R[[X1, . . . , Xn]] forms an
algebra with the operations above. For each α ∈ Nn let deg(α) =

Pn
j=1 αi. For each

n ∈ N define the ideal In = {Pα∈Nn SαXα | Sα = 0 for all α ∈ Nn, deg(α) ≤ n}.
We define the Zariski topology on R[[X1, . . . , Xn]] as the topology generated by the
open sets f +In for f ∈ R[[X1, . . . , Xn]] and n ∈ N. A mapD : R[[X1, . . . , Xn]] →
R[[Y1, . . . , Ym]] is said to be continuous if it it continuous with respect to the Zariski
topology. AmapD : R[[X1, . . . ,Xn]] → R is said to be continuous, if it is continuous
as a map between topological spaces, where R[[X1, . . . ,Xn]] is considered with the
Zariski topology and R is considered with the discrete topology Recall that ifA,B are
two R algebras, then a linear map f : A → B is called a derivation, if the Leibniz-
rule holds. That is, f(ab) = af(b) + bf(a). If f(ab) = f(a)f(b), then we will call
f an algebra morphism. If f : A → B is a continuous algebra morphism, then it is
uniquely determined by the values f(Xi) ∈ B, i = 1, . . . , n.

Denote by A the ring A = R[[X1, . . . , Xn]]. Denote by Di, i = 1, . . . , n the

continuous derivationsDi : A → R such thatDi(Xj) =
Ω

1 if i = j
0 if i �= j

. Denote by

1∗A the map 1∗ : A → R such that 1∗A(
P

α∈Nn aαXα) = a(0,0,...,0). It is well-known
([ZAR 75]) that 1∗A is a continuous algebra morphism. Denote by d

dXi
, i = 1, . . . , n

the ith partial derivative of the ring A = R[[X1, . . . , Xn]]. That is, d
dXi

: A → A

is a continuous derivation such that d
dXi

(Xj) =
Ω

1 i = j
0 otherwise The set of all

continuous derivations A → A forms an A module and any continuous derivation
D : A → A can be written as D =

Pn
j=1 Si

d
dXi

, where Si ∈ A. Notice that for any
continuous derivation D : A → A the map 1∗A ◦ D : A → A defines a continuous
derivation toR. It is also well-known thatDi = 1∗A◦ d

dXi
for all i = 1, . . . , n. For each

k ∈ N denote by dk

dXk
i

the maps
d

dXi
◦ · · · ◦ d

dXi| {z }
k−times

: A → A, If k = 0 the we assume

that d
dXi

0(h) = h, i.e., d
dXi

0 is the identity map. For each α = (α1, . . . , αn) ∈ Nn

define the map d
dX

α as d
dX1

α1 ◦ d
dX2

α2 ◦ · · · ◦ d
dXn

αn : A → A.
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3.2. Preliminaries on Sweedler-type Coalgebras

The goal of this subsection is to give a very short introduction to the field of coal-
gebras, bialgebras. Readers for whom this is the first encounter with the field are
strongly encouraged to consult the book [SWE 69].

Let k be a field of characteristic 0, for our purposes the reader can assume that
k = R. Recall the notion of a tensor product of two vector spaces and recall that
the tensor product of A and B is denoted by A ⊗ B. A tuple (C, δ, �) is called a
coalgebra if C is a k-vector space, δ : C → C ⊗ C and � : C → k are k-linear maps
such that a number of properties hold. We require the following conditions to hold for
coalgebras. For each c ∈ C, if δ(c) =

Pm
i=1 ci,1 ⊗ ci,2, then

Pm
i=1 ci,1 ⊗ δ(ci,2) =Pm

i=1 δ(ci,1) ⊗ ci,2 ∈ C ⊗ C ⊗ C and c =
Pm

i=1 �(ci,1)ci,2 =
Pm

i=1 �(ci,2)ci,1.
The first condition is referred to as coasscociativity. The second condition says that
� has the counit property. If in addition, for each c ∈ C, δ(c) =

Pm
i=1 ci,1 ⊗ ci,2 =Pm

i=1 ci,2 ⊗ ci,1, then we will say that (C, δ, �) is cocommutative. The map δ will be
referred to as the comultiplication and the map � will be referred to as the counit. A
map T is said to be a coalgebra map from coalgebra (C, δ, �) to coalgebra (B, δ

�
, �

�
)

if T : C → B is a linear map such that �� = � ◦ T and (T ⊗ T ) ◦ δ = δ
� ◦ T , where

T ⊗T : C ⊗C � c1⊗ c2 �→ T (c1)⊗T (c2). In the sequel we will denote a coalgebra
(C, δ, �) simply by C and if T is a coalgebra map from (C, δ, �) to (B, δ, �) we will
write T : C → B and we will state that T is a coalgebra map.

Recall that a k-vector spaceA with k-linear mapsM : A⊗A → A and u : k → A
is called an algebra if M defines an associative multiplication and u(1) defines the
unit element. That is, for each a, b, c ∈ A, M(a, M(b, c)) = M(M(a, b), c) and
M(a, u(1)) = M(u(1), a) = a. If in addition M defines a commutative multipli-
cation, that is, M(a, b) = M(b, a) for all a, b ∈ A, then we will say that A is a
commutative algebra. As usual in mathematics, we will write ab instead of M(a, b)
and 1 instead of u(1) if the mapsM and u are clear from the context. All the notions
we are going to use for algebras such as ideals, maximal ideals, etc. are the standard
ones, the reader can consult [ZAR 75]. For any k-vector space V denote by V ∗ the lin-
ear dual of it, that is, V ∗ = {f : V → k | f is a linear map} It is easy to see that if C
is a coalgebra, then the vector space C∗ is an algebra with the multiplication and unit
defined as follows. For each c∗1, c

∗
2 ∈ C∗ let M(c∗1, c∗2)(c) =

Pm
i=1 c∗1(ci,1)c∗2(ci,2),

where δ(c) =
Pm

i=1 ci,1⊗ci,2. Going back to defining the algebra structure onC∗, we
will define the unit u as follows. For each s ∈ k let u(s)(c) = s�(c). It is not difficult
to see that u can be identified with �∗ andM = δ∗ ◦ i, where i : C∗⊗C∗ → (C⊗C)∗
is the natural inclusion defined by i(c∗1 ⊗ c∗2)(c) = c∗1(c)c∗2(c) for all c∗1, c

∗
2 ∈ C∗,

c ∈ C. If C is a cocommutative coalgebra, then C∗ is a commutative algebra. If
f : C → D is a coalgebra map, then f∗ : D∗ → C∗ is an algebra map, where
f∗(d∗)(c) = d∗(f(c)) for all d∗ ∈ D∗ and c ∈ C. That is, f∗ is the usual dual map
of f , as it is usually defined in linear algebra.

Notice that if (C, δC , �D) and (D, δD, �D) are coalgebras, thenC⊗D has a natural
coalgebra structure (C ⊗ D, δ

�
, �

�
), where δ

�
(c ⊗ d) =

Pm
i=1

Pn
j=1(ci,1 ⊗ dj,1) ⊗
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(ci,2⊗dj,2) ∈ (C⊗D)⊗ (C⊗D) and �
�
(c⊗d) = �C(c)�D(d). with the assumption

that c, d ∈ C, δC(c) =
Pm

i=1 ci,1 ⊗ ci,2 and δD(d) =
Pn

j=1 dj,1 ⊗ dj,2. Similarly,
if A is an algebra, then A⊗ A has a natural algebra structure (A⊗ A, M

�
, u

�
) where

M
�
((a ⊗ b), (a

� ⊗ b
�
) = (aa

� ⊗ bb
�
) and u

�
(1) = u(1) ⊗ u(1). It is easy to see that

the ground field k has a natural algebra and coalgebra structure.

We will say that (C, δ, �, M, u) is a bialgebra if (C, δ, �) is a coalgebra, (C, M, u)
is an algebra, δ, � are algebra morphisms and M, u are coalgebra morphisms. Here,
we assumed that C⊗C has the natural algebra and coalgebra structure inherited from
C, see the discussion above.

IfC is a coalgebra, then a subspace J ⊆ C is called coideal if δ(J) = J⊗C+C⊗
J and J ⊆ ker �. A subspaceD ⊆ C is called subcoalgebra if δ(D) ⊆ D⊗D. If J is
a coideal of C, the the quotient space C/J admits a natural coalgebra structure, such
that the canonical projection π : C � c �→ [c] ∈ C/J is a coalgebra map. Conversely,
if f : C → D is a coalgebra map, then ker f is a coideal and C/ ker f is isomorphic
to Imf as a coalgebra. Recall the duality between algebras and coalgebras. For any
coalgebra C and any subspace D ⊆ C, denote by D⊥ the annihilator D⊥ = {c∗ ∈
C∗ | ∀d ∈ D : c∗(d) = 0} ⊆ C∗. Conversely, for any subspace A ⊆ C∗ denote
by A⊥ = {c ∈ C | ∀a ∈ A : a(c) = 0}. Then it follows that for any subspace
D ⊆ C , (D⊥)⊥ = D. If D is a subcoalgebra of C, then D⊥ is an ideal in C∗. If
A ⊆ C∗, then A⊥ is a coideal in C. It is also easy to see that (C/A⊥)∗ is isomorphic
to A ⊆ (A⊥)⊥.

For a coalgebra C an element g ∈ C such that δ(g) = g ⊗ g and �(g) = 1 will
be called of group-like element of C. The set of all group-like elements of C will be
denoted byG(C). An element p ∈ C will be called primitive if δ(p) = g⊗p+p⊗g for
some group-like element g ∈ G(C) and �(p) = 0. The set of all primitive elements
will be denoted by P (C). A subcoalgebra D ⊆ C is called simple if D does not
contain any proper subcoalgebra, i.e. if S ⊆ D is a subcoalgebra, then either S = {0}
or S = D. The coalgebra C is called pointed if every simple coalgebra D of C is
of dimension one. That is, C is pointed if every simple subcoalgebra D of C is of
the form D = {αg | α ∈ k} for some group-like element g ∈ G(C). A coalgebra
C is called irreducible, if for every pair of subcoalgebras S, D ⊆ C, S ∩ D �= {0},
unless either S = {0} or D = {0}. If C is pointed irreducible, then it follows that
C has a unique group-like element g, i.e. G(C) = {g} and for any subcoalgebra
{0} �= D ⊆ C, g ∈ D. If C is cocommutative, then C =

L
i∈I Ci such that Ci

is an irreducible subcoalgebra of C and there is no irreducible subcoalgebra of C
properly containing Ci. Such Cis will be called irreducible components of C. Thus,
an irreducible component of a coalgebra C is a subcoalgebra D ⊆ C such that for
each irreducible subcoalgebra S ⊆ C, if D ⊆ S, then S = D. If f : C → D is a
algebra morphism, then f(G(C)) ⊆ G(D) and f(P (C)) ⊆ P (D). Moreover, if f is
surjective, then f(G(C)) = G(D). It also holds that if C is pointed irreducible, then
f(C) is pointed irreducible too.
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Let A,B be algebras and let C be a coalgebra and consider a linear map ψ :
C ⊗ A → B. We will say that ψ is a measuring , if for all c ∈ C, a, b ∈ A,
ψ(c⊗ ab) =

Pn
i=1 ψ(ci,1 ⊗ a)ψ(ci,2 ⊗ b) where δ(c) =

Pn
i=1 ci,1 ⊗ ci,2.

Let V be a k-vector space and define the cofree commutative pointed irreducible
coalgebra B(V ) as the cocommutative pointed irreducible coalgebra for which the
following holds.

– There exists a linear map π : B(V ) → V

– If C is a cocommutative pointed irreducible coalgebra, C+ = ker � and f :
C+ → V is a linear map, then there exists a unique coalgebra map F : C → B(V )
such that π ◦ F |C+ = f .

It is known that B(V ) exists for each vector space V and P (B(V )) = V . More-
over, for each cocommutative pointed irreducible coalgebra C there exists a unique
injective coalgebra π : C → B(P (C)) such that π|P (C) : P (C) → P (C) is the
identity map. It is also known that if k = R and dim V = n < +∞ then the dual
B(V )∗ of V is isomorphic to the algebra of formal power series R[[X1, . . . , Xn]] in
n commuting variables ( in fact, it holds for any field k of characteristic zero that
B(V )∗ ∼= k[[X1, . . . , Xn]]).

4. Moore-automata

In this section we will give a brief overview of realization theory of finite Moore-
automaton. The material is classical, see [G´ 72, EIL 74] for more on this topic. A
finite Moore-automaton is a tuple A = (Q, Γ, O, δ ,λ) where Q,Γ are finite sets,
δ : Q × Γ → Q, λ : Q → O. The set Q is called the state-space, O is called the
output space and Γ is called the input space. The function δ is the state-transition
map, λ is the readout map. Denote by card(A) the cardinality of the state-space Q of
A, i.e. card(A) = card(Q).

Define the functions eδ : Q×Γ∗ → Q and eλ : Q×Γ∗ → O as follows. Let eδ(q, �) =
q and eδ(q, wγ) = δ(eδ(q, w), γ), w ∈ Γ∗, γ ∈ Γ Let eλ(q, w) = λ(eδ(q, w)), w ∈ Γ∗.
By abuse of notation we will denote eδ and eλ simply by δ and λ respectively.

Let A = (Q, Γ, O, δ ,λ) and q0 ∈ Q. The pair (A, q0) is said to be an automaton
realization of φ : Γ∗ → O if λ(q0, w) = φ(w), ∀w ∈ Γ∗, j ∈ J An automaton
A is said to be a realization of φ if there exists a q0 ∈ Q such that (A, q0) is a
realization of φ. Let (A, q0) and (A�

, q
�

0) be two automaton realizations. Assume that
A = (Q, Γ, O, δ , λ) and A�

= (Q
�
, Γ, O, δ

�
,λ

�
). A map S : Q → Q

� is said to be an
automaton morphism from (A, q0) to (A�

, q
�

0), denoted by S : (A, q0) → (A�
, q

�

0)
if S(δ(q, γ)) = δ

�
(S(q), γ),∀q ∈ Q, γ ∈ Γ , λ(q) = λ

�
(S(q)),∀q ∈ Q, S(q0) =

q
�

0. An automaton realization (A, q0) of φ : Γ∗ → O is called minimal if for each
automaton realization (A�

, q
�

0) of φ card(A) ≤ card(A�
). Let φ : Γ∗ → O. For

every w ∈ Γ∗ define w ◦ φ : Γ∗ → O–the left shift of φ by w as w ◦ φ(v) = φ(wv).
Define the set Wφ ⊆ F (Γ∗, O) by Wφ = {w ◦ φ : Γ∗ → O | w ∈ Γ∗}. An
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automaton A = (Q, Γ, O, δ , λ) is called reachable from Q0 ⊆ Q, if ∀q ∈ Q :
∃w ∈ Γ∗, q0 ∈ Q0 : q = δ(q0, w). A realization (A, q0) is called reachable if
A is reachable from {q0}. A realization (A, q0) is called observable or reduced, if
∀q1, q2 ∈ Q : [∀w ∈ Γ∗ : λ(q1, w) = λ(q2, w)] =⇒ q1 = q2. The following result
is a simple reformulation of the well-known properties of realizations by automaton.
For references see [EIL 74].

Theorem 1. Let φ : Γ∗ → O. φ has a realization by a finite Moore-automaton if
and only if Wφ is finite. In this case a realization of φ is given by (Acan,φ) where
A = (Wφ, Γ, O, L, T ), and L(φ, γ) = γ ◦ φ, T (φ) = φ(�), φ ∈ WD, γ ∈ Γ. The
realization (Acan,φ) is reachable and observable. A finite Moore-automaton (A, q0)
is minimal if and only if it is reachable and observable. All minimal realizations of φ
are isomorphic

5. Nonlinear Hybrid Systems

In this subsection we will present the formal definition and some elementary prop-
erties of nicely analytic input-affine hybrid systems without guards.

Definition 1. A tuple

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

is called a nicely analytic input-affine hybrid system (abbreviated as NHS) if the fol-
lowing holds.

– A = (Q, Γ, O, δ , λ) – is a Moore-automaton
– Xq = Rnq for some nq ∈ N and Xq is viewed as a real analytic manifold.
– For each q ∈ Q, j = 1, . . . , m, the map gq,j : Xq → Rnq is a real analytic map.

With the usual identification of Rnq with the tangent space of Xq = Rnq at any point,
gq,j can be viewed as a vector field.

– For each q ∈ Q and i = 1, . . . , p the map hq,i : Xq → R is a real analytic map.
– For each q ∈ Q, γ ∈ Γ, the maps Rδ(q,γ),γ,q : Xq → Xδ(q,γ) are real analytic.
– There exists a collection {xq ∈ Xq | q ∈ Q} of continuous states, such that for

each q ∈ Q
∀γ ∈ Γ : Rδ(q,γ),γ,q(xq) = xδ(q,γ)

The set Q of states of A is called the set discrete modes, the input alphabet Γ of
A is called the set of discrete events. The space U = Rm will be viewed as the space
of continuous inputs and the space Y = Rp will be viewed as the space of continuous
outputs. The vector fields fq,j , j = 1, . . . , p give rise to the following vector field
fq : Xq × U → Rnq which depends on the continuous inputs from U = Rm. defined
by fq(x, u) = gq,0(x)+

Pm
j=1 gq,j(x)uj . Here u = (u1, . . . , um)T ∈ Rm. The maps

hq,i, i = 1, . . . , p yield a map hq : Xq � x �→ (hq,1(x), . . . , hq,p(x))T ∈ Y = Rp
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Thus, for each discrete state q ∈ Q the maps fq,j , j = 0, . . . , m and hq,i, i =
0, . . . p define the following analytic input-affine control system

d

dt
x(t) = fq(x(t), u(t)) = gq,0(x) +

mX

j=1

gq,j(x(t))uj(t), y(t) = hq(x(t))

That is, the tuple (Xq, fq, hq) can be viewed as the continuous input-affine control
system associated with the discrete state q ∈ Q. In order to avoid technicalities
concerning the existence and domain of definition of the solution of the differential
equation d

dtx(t) = fq(x(t), u(t). we will assume that fq , is globally Lipschitz. Thus,
the solution of the differential equation d

dtx(t) = fq(x(t), u(t)) is well-defined for all
t ∈ R and u piecewise-continuous functions, i.e., u ∈ PC(R,U). When it is clear
from the context, we will refer to nicely analytic input-affine hybrid systems simply
as hybrid systems.

Denote by HH =
S

q∈Q{q}× Xq the state space of the hybrid system H . Denote
by XH =

S
q∈Q Xq the set of continuous states of H and denote by AH = A the

Moore automaton of the hybrid system H . If it is clear from the context which hybrid
system we mean, then for the sake of simplicity we will omit the subscript and we will
write simplyH, X and A.
The inputs of the hybrid system H are functions from PC(T,U) and sequences

from (Γ×T )∗. The interpretation of a sequence (γ1, t1) · · · (γk, tk) ∈ (Γ×T )∗ is the
following. The event γi took place after the event γi−1 and ti−1 is the elapsed time
between the arrival of γi−1 and the arrival of γi. That is, ti is the difference of the
arrival times of γi and γi−1. Consequently, ti ≥ 0 but we allow ti = 0, that is, we
allow γi to arrive instantly after γi−1. If i = 1, then t1 is simply the time when the
event γ1 arrived.

The state trajectory of the system H is a map ξH : H× PC(T,U)× (Γ× T )∗ ×
T → H of the following form. For each u ∈ PC(T,U), w = (γ1, t1) · · · (γk, tk) ∈
(Γ× T )∗, tk+1 ∈ T , h0 = (q0, x0) ∈ H it holds that

ξH(h0, u, w, tk+1) = (δ(q0, γ1 · · · γk), xH(h0, u, w, tk+1))

where the map x : T � t �→ xH(h0, u, w, t) ∈ X is the solution of the differential
equation

d

dt
x(t) = fqk

(x(t), u(t +
kX

1

tj))

where qi = δ(q0, γ1 · · · γi), i = 1, . . . , k and

x(0) = xH(h0, u, w, 0) = Rqk,γk,qk−1(xH(x0, u, (γ1, t1) . . . (γk−1, tk−1), tk))

if k > 0 and x(0) = x0 if k = 0. Define the function υH : H×PC(T,U)×(Γ×T )∗×
T → O×Y by υH((q0, x0), u, (w, τ), t) = (λ(q0, w), hq(xH((q0, x0), u, (w, τ), t)))
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where q = δ(q0, w). For each h ∈ H the input-output map of the system H induced
by h is the function

υH(h, .) : PC(T,U)× (Γ× T )∗ × T �� (u, (w, τ), t) �→ υH(h, u, (w, τ), t) ∈ O × Y

We will denote the map (u, s, t) �→ ΠY ◦ υH(h, u, s, t) ∈ Y by yH(h, .) and we
will denote yH(h, .)(u, s, t) simply by yH(h, u, s, t).

LetH be a hybrid system and let q0 ∈ Q be a discrete state of the hybrid systemH .
We will call the pair (H, q0) a realization . The state q0 just specifies the initial state
(q0, xq0) of the system. An input-output map φ ∈ F (PC(T,U)× (Γ× T )∗ × T,Y)
is said to be realized by a hybrid realization (H, q0) if υH((q0, xq0), .) = φ. We will
say that H realizes φ if there exists an initial discrete state q0 ∈ Q such that (H, q0)
realizes q0. With slight abuse of terminology, sometimes we will call both H and
(H, q0) a realization of φ.

For a hybrid system H the dimension of H is defined as
dim H = (card(Q),

P
q∈Q dimXq) ∈ N × N. The first component of dim H is the

cardinality of the discrete state-space, the second component is the sum of dimensions
of the continuous state-spaces. For each (m, n), (p, q) ∈ N×N define the partial order
relation (m,n) ≤ (p, q), if m ≤ p and n ≤ q. A realization H of a map φ is called a
minimal realization of φ, if for any realization H

� of φ: dim H ≤ dim H
� .

Consider the set PC(T,U) × (Γ × T )∗ × T and define the topology generated
by the following collection of open sets {VK | K ∈ R, K > 0}, where VK =
{(u, (γ1, t1) · · · (γk, tk), tk+1) | (

Pk+1
j=1 tj) · ||u||Pk+1

j=1 tj ,∞ < K}. Notice that for
any open subset U in this topology it holds that (u, (γ1, 0) · · · (γk, 0), 0) ∈ U for
all γ1, . . . , γk ∈ Γ, k ≥ 0. In the rest of the chapter we will tacitly assume that all
topological statements about the set PC(T,U)× (Γ× T )∗ × T refer to the topology
defined above.

We will say that the hybrid system H is local realization of an input-output map
f ∈ F (PC(T,U) × (Γ × T )∗ × T,Y) if there exist an open set U ⊆ PC(T,U) ×
(Γ× T )∗ × T such that for some discrete state q ∈ Q,

∀(u,w, t) ∈ U : f(u,w, t) = υH((q, xq), u, w, t)

Similarly to the global case, we will say that (H, q) is a local realization of f .

6. Input-Output Maps of Hybrid Systems

Recall from classical nonlinear systems theory [ISI 89, WAN 89] that state and
output trajectories of nonlinear analytic input-affine control systems admit a repre-
sentation in terms of iterated integrals. A similar statement remains true for hybrid
systems too. In order to state the the existence of such a representation formally, we
will need to introduce some additional notation and terminology.
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We will start with defining the concept of hybrid convergent generating series and
hybrid Fliess-series expansions.

6.1. Hybrid Convergent Generating Series

We will start with defining the notion of iterated integrals, see [ISI 89, WAN 89].
For each u = (u1, . . . , uk) ∈ U = Rm denote dζj [u] = uj , j = 1, 2, . . . , m, dζ0[u] =
1. Denote the set {0, 1, . . . ,m} by Zm. For each j1 · · · jk ∈ Z∗m, j1, · · · , jk ∈ Zm,
k ≥ 0, t ∈ T , u ∈ PC(T,U) define Vj1···jk

[u](t) = 1 if k = 0 and for all k > 1,
let Vj1···jk

[u](t) =
R t
0 dζjk

[u(τ)]Vj1,...,jk−1 [u](τ)dτ . For each w1, . . . , wk ∈ Z∗m,
(t1, · · · , tk) ∈ T k, u ∈ PC(T,U) define

Vw1,...,wk
[u](t1, . . . , tk) = Vw1(t1)[u]Vw2(t2)[Shift1(u)] · · ·Vwk

[Shiftk−1(u)](tk)

where Shifti(u) = ShiftPi
1 ti

(u), i = 1, 2, . . . , k − 1.

Assume that Zm and Γ are disjoint sets. Denote by eΓ the set Γ∪Zm. Then anyw ∈
eΓ∗ is of the form w = w1γ1 · · ·wkγkwk+1, where γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈
Z∗m, k ≥ 0.

A map c : eΓ∗ → Y is called a hybrid generating convergent series on eΓ∗ if there
existsK,M > 0,K, M ∈ R such that for each w ∈ eΓ∗,

||c(w)|| < |w|!KM |w|

where ||.|| is some norm in Y = Rp. The notion of generating convergent series is
related to the notion of convergent power series from [ISI 89, WAN 89].

Let c : eΓ∗ → Y be a generating convergent series. For each u ∈ PC(T,U) and
s = (γ1, t1) · · · (γk, tk) ∈ (Γ× T )∗, tk+1 ∈ T define the series

Fc(u, s, tk+1) =
X

w1,...,wk+1∈Z∗m

c(w1γ1 · · · γkwk+1)Vw1,...,wk+1 [u](t1, . . . , tk+1)

It is easy to see that for small enough t1, . . . , tk+1 ∈ T , u the series above is absolutely
convergent. More precisely, let Ts =

Pk+1
j=1 tj and ||u||S,∞ = sup{||u(t)|| | t ∈

[0, S]} It can be shown, that if Ts · ||u||Ts,∞ < (2M(1 + m))−1, then Fc(u, s, tk+1)
is absolutely convergent. Define the set

dom(Fc) = {(u, s, t) ∈ PC(T,U)×(Γ×T )∗×T | s = (γ1, t1) · · · · · · (γk, tk) ∈
(Γ× T )∗, k ≥ 0, (t +

Pk
j=1 tj) · ||u||t+Pk

j=1 tj ,∞ < (2M(1 + m))−1}.
Then for each (u, s, t) ∈ dom(Fc) the series Fc(u, s, t) is absolutely convergent

and thus we can define the map Fc : dom(Fc) � (u, s, t) �→ Fc(u, s, t) Recall the
definition of the topology of PC(T,U)× (Γ× T )∗ × T from Section 2. It is easy to
see that for any hybrid convergent generating series c the set dom(Fc) is open in that
topology. It can be shown that c determines Fc locally uniquely. More precisely, if
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there exists a non-empty open subset of U ⊆ domFc ∩ domFd, such that ∀s ∈ U :
Fc(s) = Fd(s), i.e. Fc = Fd on the open set U , then c = d.

6.2. Input-output Maps of Nonlinear Hybrid Systems

Consider a hybrid system

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

For each q ∈ Q denote by Aq the algebra of real-valued real analytic functions of
Xq , i.e. Aq = Cω(Xq) = {f : Xq → R | f is real analytic }. It is well-known that
each vector field X ∈ TXq induces a map X : Aq → Aq , defined by X(f)(x) =Pnq

j=1 Xj(x) df
dxj

(x), where X is assume to be of the form X =
Pn

j=1 Xj
d

dxj
. In

particular, each vector field gq,j , j ∈ Zm induces a map gq,j : Aq → Aq . Assume that
w = j1 · · · jk ∈ Z∗m, j1, . . . , jk ∈ Zm, k ≥ 0. Then define the map gq,w : Aq → Aq

by gq,w = gq,j1 ◦ gq,j2 ◦ · · · ◦ gq,jk
.

Notice that each reset map Rδ(q,γ),γ,q induces a map R∗δ(q,γ),γ,q : Aδ(q,γ) → Aq

defined byR∗δ(q,γ),γ,q(f)(x) = f(Rδ(q,γ),γ,q(x)). Thus, for any s = w1γ1 · · · γkwk+1 ∈
eΓ∗, such that w1, . . . , wk ∈ Z∗m, γ1, . . . , γk ∈ Γ, we get that the map

GH,q,s = gq0,w1 ◦R∗q1,γ1,q0
gq1,w2 ◦ · · · ◦R∗qk+1,γk,qk

◦ gqk,wk+1 : Aqk
→ Aq (1)

is well-defined, where qi = δ(q, γ1 · · · γi), i = 0, . . . , k, q0 = q. In particular, if
h ∈ Aqk

, and x ∈ Xq , then GH,q,s(h)(x) ∈ R.

Define for any (q, x) ∈ H define the generating series cq,x : eΓ∗ → Y , as follows,
for each s ∈ eΓ∗, s = w1γ1 · · ·wkγkwk+1, w1, . . . , wk+1 ∈ Z∗m, γ1, . . . , γk ∈ Γ,
δ(q, γ1 · · · γk) = qk, let cq,x(s) = GH,q,s(hqk

)(x) It is easy to see that cq,x is a
generating convergent power series. Using arguments similar to the standard ones for
nonlinear state affine systems, one gets that for each
(u, (γ1, t1) · · · (γk, tk), tk+1) ∈ dom(Fcq,x),

yH((q, x), u, (γ1, t1) · · · (γk, tk), tk+1) = Fcq,x(u, (γ1, t1) · · · (γk, tk), tk+1) =

=
X

w1,...,wk+1∈Z∗m

cq,x(w1z1 · · ·wkzkwk+1)Vw1,...wk
[u](t1, . . . , tk+1) (2)

Let f ∈ F (PC(T,U)× (Γ× T )∗ × T,Y) be an input-output map. Denote by fD

the map ΠO ◦ f and denote by fC the map ΠY ◦ f . We will say that f admits a local
hybrid Fliess-series expansion, if and only if

– The map fD depends only on Γ∗, that is,

fD(u, (s, t), t) = fD(v, (s, τ), τ)

for all u, v ∈ PC(T,U), τ, t ∈ T , τ , t ∈ T , s ∈ Γ∗. Thus, the map fD can be viewed
as a map fD : Γ∗ → O.
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– There exists a generating convergent series cf : eΓ∗ → Y and an open subset
U ⊆ dom(Fcf

) such that

∀(u,w, t) ∈ U : fC(u,w, t) = Fcf
(u,w, t)

Theorem 2. Let

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

be a NHS and let f ∈ F (PC(T,U)× (Γ×T )∗×T,Y) be an input-output map. Then
H is a local realization of f if and only if f has a hybrid Fliess-series expansion and
there exists q ∈ Q such that

– ∀w ∈ Γ∗ : fD(w) = λ(q, w)

– For all s = w1γ1 · · · γkwk+1 ∈ eΓ∗, γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗m, k ≥ 0

cf (w1γ1w2 · · · γkwk+1) =

gq0,w1 ◦R∗q1,γ1,q0
◦ gq1,w2 · · · ◦R∗qk,γk,qk−1

◦ gqk,wk+1(hqk
)(xq)

(3)

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k.

7. Formal Realization Problem For Hybrid Systems

Recall from Section 3.1 the notion of formal power series in commuting variables.
As it was seen in the previous section, the local realization problem for nonlinear
hybrid systems is equivalent to finding a particular representation for the hybrid con-
vergent generating series corresponding to the input-output map. Notice that this rep-
resentation was formulated completely in terms of reset maps and vector fields around
a point and it is completely determined by the formal power series expansion of the
analytic maps and vector fields involved. More precisely, consider a hybrid system

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

For each q ∈ Q, j ∈ Zm consider the formal power series expansion of Rδ(q,γ),γ,q ,
gq,j and hq,i. That is for each q ∈ Q consider the ring of formal power series
Af

q = R[[X1, . . . , Xnq ]] in commuting variables X1, . . . ,Xnq . Then the formal
power series expansion of hq,i(x) =

P
α∈Nnq hq,i,α(x − xq)α for i = 1, . . . , p

around xq results in a formal power series hf
q,i ∈ R[[X1, . . . ,Xnq ]], defined by hf

q,i =
P

α∈Nnq hq,i,αXα1
1 Xα2

2 · · ·Xαnq
nq . Similarly, if gq,j =

Pnq

i=1 gq,j,i
d

dxi
, then take the

Taylor-series expansion of each gq,j,i around xq, i.e. gq,j,i(x) =
P

α∈N gq,j,i,α(x −
xq)α and define the following continuous derivation on R[[X1, . . . , Xnq ]], gf

q,j =Pnq

i=1 gq,j,i
d

dXi
where gq,j,i =

P
α∈Nnq gq,j,i,αXα. Finally, assume thatRδ(q,γ),γ,q−

xδ(q,γ) is of the form Rδ(q,γ),γ,q − xδ(q,γ) = (Rδ(q,γ),γ,q,1, . . . , Rδ(q,γ),γ,q,nδ(q,γ))
T

Each map Rδ(q,γ),γ,q,i, i = 1, . . . , nδ(q,n) is an analytic map with values in R and
thus around xq it admits a Taylor series expansion of the form Rδ(q,γ),γ,q,i(x) =



16 CTS-HYCON workshop .

P
α∈Nnq rδ(q,γ),γ,q,i,α(x − xq)α. Notice that Rδ(q,γ),γ,q(xq) − xδ(q,γ) = 0 and

thus rδ(q,γ),γ,q,i,(0,0,...,0) = Rδ(q,γ),γ,q,i(xq) = 0. Define the formal power series
Rf

δ(q,γ),γ,q,i =
P

α∈Nnq rδ(q,γ),γ,q,i,αXα Let r = δ(q, γ) andAr = R[[X1, . . . ,Xnr
]]

and define the continuous algebraic map Rf,∗
r,γ,q : Af

r → Af
q by Rf,∗

r,γ,q(Xi) = Rf
r,γ,q,i

for all i = 1, . . . , nr. It is easy to see that Rf,∗
r,γ,q is indeed an algebra morphism.

The discussion above motivates the following definition. A tuple

F = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

is called a formal hybrid system, where

– A = (Q, Γ, O, δ , λ) is a Moore-automaton and q0 ∈ Q is the initial state of A.
– For each q ∈ Q, Aq = R[[X1, . . . ,Xnq ]] is the ring of formal power series in

commuting variable Xq, . . . , Xnq

– For each q ∈ Q, j ∈ Zm,

gq,j : Aq → Aq

defines a continuous derivation on Aq , i.e. gq,j =
Pnq

i=1 gq,j,i
d

dXi
, where gq,j,i ∈ Aq ,

i = 1, . . . nq .
– For each q ∈ Q, i = 1, . . . , p, hq,i ∈ Aq

– For each q ∈ Q, γ ∈ Γ, Rδ(q,γ),γ,q : Aδ(q,γ) → Aq is a continuous algebra
morphism, i.e. it is uniquely defined by its values Rδ(q,γ),γ,q(Xi) ∈ Aq and the free
coefficient of Rδ(q,γ),γ,q(Xi) is zero, i.e. 1∗R[[X1,...,Xnq ]](Rδ(q,γ),γ,q(Xi,δ(q,γ))) = 0

Let q0 ∈ Q. The discussion preceding the definition above yields that F(H,q0)

defined as

F(H,q0) = (A, (Af
q , gf

q,j , h
f
q,i)q∈Q,j∈Zm,i=1,...,p, {Rf,∗

δ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

is a formal hybrid system. We will call FH the formal hybrid system associated with
(H, q0). Let F be a formal hybrid system. The dimension of the formal hybrid system
F is defined as dim F = (card(Q),

P
q∈Q nq).

Consider the formal hybrid system
F = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

from the definition above. For each q ∈ Q, w = j1j2 · · · jl, j1, . . . , jl ∈ Zm,l ≥ 0,
denote by gq,w the following map gq,w = gq,j1 ◦gq,j2 ◦· · ·◦gq,jk

: Aq → Aq . For each
q ∈ Q, v = w1γ1w2 · · · γkwk+1 ∈ eΓ∗, k ≥ 0, γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗m,
denote by GH,q,v the map

GF,q,v = gq0,w1 ◦Rq1,γ,q0 ◦ gq1,w2 ◦ · · · ◦Rqk,γk,qk−1 ◦ gqk,wk+1 : Aqk
→ Aq

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k.
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Consider the maps fc : eΓ∗ → Rp and fd : Γ∗ → O. We will say the the formal
hybrid system F is a realization of (fd, fc) , if for all s ∈ eΓ∗:

∀w ∈ Γ∗ : fd(w) = λ(q0, w)

∀v ∈ eΓ∗ : fc(v) = φq0 ◦GF,q0,v(hqe
)

(4)

where qe = δ(q0, γ1 · · · γk) such that v = w1γ1 · · · γkwk+1, γ1, . . . , γk ∈ Γ,
w1, . . . , wk+1 ∈ Z∗m, k ≥ 0.

Theorem 2 has the following easy consequence

Lemma 1. Let f ∈ F (PC(T,U)× (Γ×T )∗×T,Y) and assume that f has a hybrid
Fliess-series expansion. Then (H, q0) is a realization of f if and only if the formal
hybrid system FH,q0 is a realization of (fD, cf ).

Recall from Section 3 the notion of coalgebra. Recall that there exists a natural
duality between algebras and coalgebras. We will exploit this duality by looking at
formal hybrid systems defined on coalgebras. Recall from Section 3 that rings of
formal power series in commuting variables have a natural characterisation as duals
of certain coalgebras with very special property. This observation will enable us to
use coalgebra theory for finding necessary and sufficient conditions for existence of
a formal hybrid system realization. It will also enable us to place our results in the
wider context of nonlinear realization theory. Below we will start with the definition
of coalgebra systems and coalgebra hybrid systems. We will also discuss the relation-
ship between coalgebra hybrid systems, formal hybrid systems and nonlinear hybrid
systems.

Let H be a bialgebra, which will be referred to as the bialgebra of inputs.

A tuple Σ = (C, H,ψ, φ, J, µ) is called a control system on a coalgebra if

– C is a cocommutative coalgebra.
– J is an arbitrary set.
– ψ : C⊗H → C is a coalgebra map such that ψ(a⊗1H) = a and ψ(a⊗h1h2) =

ψ(ψ(a ⊗ h1) ⊗ h2) for all h1, h2 ∈ H , a ∈ C. Here 1H denotes the unit element of
H as an algebra.
– φ ∈ G(C), i.e. φ is a group-like element of C
– µ : J → C∗ is the family of readout maps.

We say that Σ realizes a family of maps Ψ = {yj : H → R | j ∈ J} if ∀h ∈ H, ∀j ∈
J : yj(h) = µ(j)(ψ(φ⊗ h)).

Recall the notation from Section 2. Consider the set eΓ = Γ ∪ Zm. The set H =
R < eΓ∗ > of all formal linear combinations words over eΓ has a natural bialgebra
structure defined by

δ(γ) = γ ⊗ γ for all γ ∈ Γ ∪ {1}
δ(x) = 1⊗ x + x⊗ 1 for all x ∈ Zm

(5)
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δ(w1w2 · · ·wk) = δ(w1)δ(w2) · · · δ(wk) for all w1, . . . , wk ∈ eΓ

�(x) =
Ω

1 if x ∈ Γ ∪ {1}
0 if x ∈ Zm

�(w1w2 · · ·wk) = �(w1)�(w2) · · · �(wk) for all w1, . . . , wk ∈ eΓ, k ≥ 0

(6)

AlthoughH is a bialgebra, it is not a Hopf-algebra. H as a coalgebra is cocommutative
pointed coalgebra, but it is not irreducible. It is also easy to see that G(H) = {γ ∈
Γ∪ {1}} is the set of group-like elements, and in factH =

L
w∈Γ∗ Hw, where for all

w = w1 · · ·wk, k ≥ 0, w1, . . . , wk ∈ Γ,

Hw = Span{s1w1s2 · · ·wksk+1 | s1, . . . , sk+1 ∈ Z∗m}
It is easy to see that for eachw ∈ Γ∗ the linear spaceHw is in fact a subcoalgebra ofH ,
moreover,Hw is pointed irreducible and cocommutative. It is also easy to see that the
map ψ : Hw⊗R < Z∗m >→ Hw, ψ(v⊗s) = vs, s ∈ Z∗m, v ∈ Hw is well-defined and
it is a coalgebra map. Similarly, for each γ ∈ Γ the map ψγ : Hw � s �→ sγ ∈ Hwγ

is a well-defined coalgebra map.

From now one, unless stated otherwise, the symbol H will always refer to R <
eΓ∗ > with the bialgebra structure defined above. Consider the pair of maps f =
(fD, fC), where fD : Γ∗ → O and fC : eΓ∗ → Rp. Consider the maps fC,i : eΓ∗ → R,
where fC(w) = (fC,1(w), fC,2(w), . . . , fC,p(w))T for eachw ∈ eΓ∗. Notice that each
map fC,i can be uniquely extended to a linear map efC,i : H → R. In the sequel we
will identify maps fC,i and linear maps efC,i and we will denote both of them by fC,i.
Define the family of input-output maps associated with f as the following indexed set
of maps Ψf = {fC,i : H → R | i = 1, . . . , p}.
A hybrid coalgebra system is a tuple HC = (A, Σ, q0), where

– A = (Q, Γ, O, δ , λ) is a Moore-automata, q0 ∈ Q,
– Σ = (C,H, ψ,φ, µ) is a coalgebra system, such that

- C =
L

q∈Q Cq , where Cq is a subcoalgebra of C for each q ∈ Q and Cq is
pointed irreducible.

- φ ∈ Cq0

- For each q ∈ Q, ∀w ∈ Z∗m,∀z ∈ Cq : ψ(z ⊗ w) ∈ Cq and ∀γ ∈ Γ,∀z ∈
Cq : ψ(z ⊗ γ) ∈ Cδ(q,γ)

Since for each q ∈ Q, the coalgebra Cq is pointed irreducible, it has a unique group
like element which we will denote by φq. It follows that φ = φq0 and for each w ∈ Γ,
q ∈ Q, φ(w ⊗ φq) = φδ(q,w). It also follows that Cq precisely coincides with the
irreducible component of φq in C. We know that C is a direct sum of its irreducible
components and it follows that C is pointed. Thus, it follows that there is a bijection
between irreducible components of C and the coalgebras Cq , q ∈ Q.

A pair of maps f = (fD, fC), where fD : Γ∗ → O and fC : eΓ∗ → Rp is said to
be realized by a hybrid coalgebra system HC = (A, Σ, q0) if (A, q0) is a realization
of fD and Σ is a realization of Ψf .
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Recall from Subsection 3.2 that the ring of formal power series R[[X1, . . . , Xn]]
is isomorphic to the dual of of the cofree pointed irreducible cocommutative coalgebra
B(V ), where V is any n-dimensional vector space. That is,B(V )∗ ∼= R[[X1, . . . ,Xn]].
Below we will choose a particular V . Denote by A the ring A = R[[X1, . . . , Xn]].
Recall from Subsection 3.1 the definition and properties of continuous derivations on
formal power series rings. Define the map Dα = 1A ◦ d

dX

α for all α ∈ Nn. Define
the set D∞A = Span{Dα | α ∈ Nn}. Notice that φ = D(0,0,...,0) = 1∗A ∈ D∞A .
Let DA = Span{Di | i = 1, . . . , n}. Define the linear maps � : D∞A → R and
δ : D∞A → D∞A ⊗ D∞A by �(φ) = 1 and �(Dα) = 0 if α ∈ Nn,α �= (0, 0, . . . , 0).
For each α = (α1, . . . , αn) ∈ Nn let δ(Dα) =

P
β,γ∈Nn,β+γ=α

α!
β!γ!Dβ ⊗Dγ where

β + γ = (β1 + γ1,β2 + γ2, . . . , βn + γn), β = (β1, . . . , βn), γ = (γ1, . . . , γn) and
α! = α1!α2! · · ·αn!, β! = β1! · · ·βn!, γ! = γ1! · · · γn!. Define the multiplication
M : D∞A ⊗D∞A → D∞A byM(Dα ⊗Dβ) = Dα+β . Define the map u : R → D∞A by
u(x) = xφ.

Lemma 2. The tuple (D∞A , δ, �, M, u) is a bialgebra, moreover D∞A is isomorphic
as a bialgebra to the cofree pointed irreducible cocommutative coalgebra B(DA)
generated by DA.

The lemma above implies that (D∞A )∗ is isomorphic to A. This algebra isomor-
phism is defined by ψA : (D∞A )∗ � S �→ P

α∈Nn S( 1
α1!

1
α2!

· · · 1
αn!Dα)Xα. The

following lemma relates measuring of A and coalgebra maps of D∞A .
Lemma 3. LetC be an coalgebra, letA = R[[X1, . . . , Xn]] andB = R[[Y1, . . . , Ym]].
Assume that ψ : C ⊗ A → B is a measuring such that for each c ∈ C, the map
ψc : A � a �→ ψ(c ⊗ a) ∈ B is a continuous map. Then ηψ : C ⊗ D∞B → D∞A is a
coalgebra map, where ηψ(c⊗Dα)(a) = Dα(ψc(a)) for all a ∈ A.

Conversely, assume that η : C ⊗ D∞B → D∞A is a coalgebra map. Consider the
map ψη : C ⊗ A → B, defined by ψ−1

B ◦ ψη(c ⊗ a)(D) = η(c ⊗ D)(ψ−1
A (a)),

for all a ∈ A, c ∈ C, D ∈ D∞B .Here ψ−1
A and ψ−1

B are the inverses of the algebra
isomorphisms ψA : (DA)∗ → A and ψB : (DB)∗ → B respectively. Then ψη is a
measuring such that for each c ∈ C the map ψη,c : A � a �→ ψη(c ⊗ a) ∈ B is a
continuous map.

In the sequel we will identify D∞A and B(DA) and we will identify their respec-
tive duals (D∞A )∗, B(DA)∗ with A. We will also identify (B(V ))∗ with AV =
R[[X1, . . . , Xn]] if dim V = n.

Using Lemma 2 and Lemma 3 we can associate with each formal hybrid system a
hybrid coalgebra system of a certain type and conversely, with each hybrid coalgebra
system of a suitable type we can associate a formal hybrid system. LetHF be formal
hybrid system of the form

HF = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

Define the hybrid coalgebra systemHCHF associated withHF as follows. HCHF =
(A, ΣHC , q0), where ΣHC = (C,H, eψ, eφ, {1, . . . , p}, eµ) such that
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– C =
L

q∈Q Cq , and for all q ∈ Q, Cq = B(DAq
).

– eψ : C ⊗ H → C, such that for all w ∈ eΓ∗, D ∈ Cq, q ∈ Q, eψ(D ⊗ w) =
D ◦ GF,q,w, where D is viewed as a map D : Aq → R and GF,q,w is viewed as a
map GF,q,w : Ar → Aq , w = s1γ1 · · · γksk+1, γ1, . . . , γk ∈ Γ, s1, . . . , sk+1 ∈ Z∗m,
r = δ(q, γ1 · · · γk).
– eφ = 1q0 where 1q0 is the unique group-like element of Cq . Notice that 1q0 =

1∗Aq0
viewed as a map Aq → R.

– For all j = 1, . . . p, eµ(j) ∈ C∗, such that for each q ∈ Q, D ∈ Cq , eµ(j)(D) =
D(hq,j) .

It is an easy consequence of Lemma 2 and Lemma 3 that HCHF is well-defined.

Conversely, let HC = (A,Σ, q0) be a hybrid coalgebra system such that Σ =
(C, H,ψ, φ, {1, . . . , p}, µ), C =

L
q∈Q Cq , A = (Q, Γ, O, δ ,λ) and Cq = B(Vq),

dim Vq = nq for all q ∈ Q. We will call such hybrid coalgebra systems CCPI hybrid
coalgebra systems ( CCPI stands for cofree cocommutative pointed irreducible ).
Then using Lemma 2 and Lemma 3 and the conventions discussed after Lemma 3 we
get that

HFHC = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈
Γ}, q0)

is a well-defined formal hybrid system, where for all q ∈ Q, Aq = C∗q , for all
j ∈ Zm, gq,j : Aq → Aq , such that gq,j(h)(D) = h(ψ(D ⊗ j)) for all D ∈ Cq ,h ∈
Aq , and hq,i ∈ Aq are such that hq,i(d) = µ(i)(d) for all d ∈ Cq, i = 1, . . . , p, and
Rδ(q,y),y,q , y ∈ Γ are such that Rδ(q,y),y,q(h)(D) = ψ(D ⊗ y)(h) for all D ∈ Cq ,
h ∈ Aq. It is also easy to see that HFHC is well-defined and HCHFHC

= HC.

It is also easy to see that HC is a realization of f if and only if HFHC is a
realizations of f . Conversely, HF is a realization of f if and only if HCHF is a
realization of f .

Combining the results above we arrive to the following important characterisation
of existence of a formal hybrid system realization of f .

Theorem 3. A pair of maps f = (fD, fC), fD : Γ∗ → O, fC : eΓ∗ → Rp has a
realization by a formal hybrid system if and only if it has a CCPI hybrid coalgebra
system realization.

In order to demonstrate the notions and results presented above, we will present
below a concrete hybrid system and the formal hybrid realization and the CCPI hybrid
coalgebra system associated with it.

Example 1. Consider the following hybrid system

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

where
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– p = 1, m = 1, Γ = {a, b},
– Q = {q1, q2}, O = {o}, A = ({q1, q2}, {a, b}, {o}, δ,λ)
δ(q1, b) = q2, δ(q1, a) = q1, δ(q2, b) = q2, δ(q2, a) = q1, λ(q1) = λ(q2) = o

– Xq1 = R2, gq1,0(x1, x2) = (1, 0)T , gq1,1(x1, x2) = (0, 0)T and hq1(x1, x2) =
ex1 .

– Xq2 = R2, gq2,0(x1, x2) = (0, 1)T , gq2,1(x1, x2) = (0, 0)T , hq2(x1, x2) = x2.
– Rq2,b,q1(x1, x2) = (x1, x1)T , Rq1,a,q2(x1, x2) = (x1 + x2, 0)T ,

Rq1,a,q1(x1, x2) = (x1, x2)T and Rq2,b,q2(x1, x2) = (x1, x2)T . for all x1, x2 ∈ R.
– xq1 = xq2 = (0, 0)T .

The formal realization associated with (H, q1) is of the following form

F(H,q0) = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

where

– Q,O,Γ, p, m, A are the same as above
– Aq1 = R[[X1,X2]], gq1,0 = d

dX1
, gq1,1 = 0, hq1 =

P∞
n=1

1
n!X

n
1 =P

(a1,a2)∈N2 β(a1,a2)X
a1
1 Xa2

2 where β(a1,a2) = 0 if a2 > 0.

– Aq2 = R[[X3,X4]], gq2,0 = d
dX4

, gq2,1 = 0. hq2 = X3.
– It is enough to define the values of the maps Rq2,b,q1 : Aq2 → Aq1 ,

Rq1,a,q2 : Aq1 → Aq1 for X3, X4 and X1,X2 respectively. Thus, Rq2,b,q1(X3) =
X1, Rq2,b,q1(X4) = X1 Rq1,a,q2(X1) = X3 + X4, Rq1,a,q2(X2) = 0 The maps
Rq1,a,q1 : Aq1 → Aq1 , Rq2,b,q2 : Aq2 → Aq2 are the identity maps.

The CCPI hybrid coalgebra representation associated with HF = FH,q0 is of the
following form, HCHF = (A, Σ), where A is the Moore-automaton defined above
and Σ = (C, H,ψ, φ, {1, . . . , p}, µ) where

– C = Cq1 ⊕ Cq2 , where Cq1 = D∞Aq1
= Span{D(α,β) | α, β ∈ N} and Cq2 =

D∞Aq2
= Span{D(α,β) | α, β ∈ N}. Denote the element D∞Aq1

� D(α,β) : Aq1 → R
by D(α,β)

Aq1
. Similarly, denote by D(α,β)

Aq2
the element D(α,β) : Aq2 → R of D∞Aq2

.
– The map ψ : C ⊗ H → C is of the following form. Notice that it is enough

to define ψ(c ⊗ x) for x ∈ {a, b, 0, 1} and that it is enough to define ψ(c ⊗ x) for
c = D(α,β)

Aq1
or c = D(α,β)

Aq2
. We define ψ(c ⊗ x) for the values of c and x above as

follows. ψ(D(α,β)
Aq1

⊗ 0) = D(α+1,β)
Aq1

, ψ(D(α,β)
Aq2

⊗ 0) = D(α,β+1)
Aq2

, ψ(D(α,β)
Aq1

⊗ a) =

D(α,β)
Aq1

, ψ(D(α,β)
Aq2

⊗a) = D(α+β,0)
Aq1

, ψ(D(α,β)
Aq1

⊗b) =

( Pα
j=1 D(j,α−j)

Aq2
if β = 0

0 if β > 0
,

ψ(D(α,β)
Aq2

⊗ b) = D(α,β)
Aq2

. Let ψ(c⊗ 1) = 0 for all c ∈ C.

– The map µ(1) : C → R is of the following form, µ(1)(D(α,β)
Aq1

=Ω
1 if β = 0
0 otherwise and µ(1)(D(α,β)

Aq2
) =

Ω
1 if β = 0 and α = 1
0 otherwise
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– The initial state is φ = 1∗Aq1
= D(0,0)

Let f = υH((q1, 0), .), then the Fliess-series of cf of f is of the form. For each
s1, . . . , sk+1 ∈ {0, 1}∗, γ1, . . . , γk ∈ Γ,

cf (s1γ1 · · · skγksk+1) =

8
>><

>>:

1 if si ∈ {0}∗ for all i = 1, . . . , k + 1, and γk = b
1 if si ∈ {0}∗ for all i = 1, . . . , k + 1 and γk = a andPk+1

i=1 |si| = 1
0 otherwise

The discrete valued part fD : {a, b}∗ → {o} of f is the functions fD(w) = o for all
w ∈ {a, b}∗.

8. Main Result

In this section we will discuss criteria for existence of a realization by a hybrid
coalgebra system, such that the coalgebras associated with each discrete state of the
automaton are cofree cocommutative pointed irreducible with finite dimensional space
of primitive elements. We will give a necessary condition and a condition which is
an "almost" sufficient one. More precisely, the "almost" sufficient condition implies
existence of a hybrid coalgebra system realization such that each coalgebra associated
with some discrete state is pointed cocommutative irreducible with finite dimensional
space of primitive elements. Such a hybrid coalgebra system is indeed very close to a
CCPI hybrid coalgebra system. In fact, we conjecture that any such hybrid coalgebra
system gives rise to a CCPI hybrid coalgebra system.

From Theorem 3 it follows that these criteria will give necessary and sufficient
conditions for existence of a formal hybrid realization.

Let Σ = (C,H, ψ,φ, J, µ) be a coalgebra system. Define the maps RΣ : H → C
by RΣ(h) = ψ(h⊗ φ) for all h ∈ H . It is easy to see that RΣ is a coalgebra map.

We will call C reachable if RΣ is surjective. For each h ∈ H, j ∈ J consider the
map Oh,j : C � c �→ µj ◦ ψ(c ⊗ h) ∈ R. Notice that Oh,j ∈ C∗. Define the set
LΣ = {Oh,j | j ∈ J, h ∈ H} ⊆ C∗ and let AΣ = Alg(LΣ) be the subalgebra of C∗

generated by LΣ (i.e., AΣ is the smallest subalgebra of C∗ which contains LΣ). We
will call LΣ the set of observables of Σ and AΣ the algebra of observables of Σ. Let
A⊥Σ = {c ∈ C | ∀f ∈ AΣ : f(c) = 0}. It follows that A⊥Σ is a coideal. We will call Σ
observable if A⊥Σ = {0}.
Let Σ1 = (C1,H, ψ1,φ1, J, µ1) and Σ2 = (C2,H,ψ2,φ2, J, µ2) be two coal-

gebra systems. A coalgebra map T : C1 → C2 is called coalgebra system mor-
phism from Σ1 to Σ2 and it is denoted by T : Σ1 → Σ2, if T (φ1) = φ2, for each
c ∈ C1, h ∈ H , T (ψ1(c ⊗ h)) = ψ2(T (c) ⊗ h) and for each j ∈ J , c ∈ C1,
µ1(j)(c) = µ2(j)(T (c)).
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We will call a coalgebra system Σm realizing Ψ a minimal realization if for any
reachable coalgebra system Σ realizing Ψ there exists a surjective coalgebra system
morphism T : Σ → Σm.

Denote byM the multiplication map onH . That is,M : H⊗H → H ,M(s⊗v) =
sv. SinceH is a bialgebra, the mapM is a coalgebra map, moreover,M(v, M(s, x)) =
M(v, sx). Let Ψ = {fj ∈ H∗ | j ∈ J} be an indexed set of elements of H∗. Define
the map µΨ : J → H∗ by µΨ(j) = fj . Define the coalgebra control system

ΣΨ = (H,H, M, 1, J, µΨ)

It is easy to see that ΣΨ is indeed a coalgebra system, moreover, ΣΨ is a realization
of Ψ, since fj(h) = fj(M(1 ⊗ h)) = µΨ(j) ◦M(1 ⊗ h) for all j ∈ J . We will call
ΣΨ the cofree realization of Ψ. We will denote the algebra of observables of ΣΨ by
AΨ. That is, AΣΨ = AΨ. Notice that AΨ ⊆ H∗. It is easy to see that for ΣΨ the
maps Oh,j are of the form Oh,j(v) = fj(vh) = Rhfj . If Σ = (C, H, ψ, φ, J, µ) is a
realization of Ψ, then it is easy to see that TΣ : H → C, TΣ(h) = ψ(φ⊗ h) defines a
coalgebra system morphism TΣ : Σ → ΣΨ. Notice that TΣ = RΣ, i.e., TΣ equals the
reachability map.

Below we will state and prove that any set of input/output maps Ψ admits a mini-
mal coalgebra realization.

Theorem 4.
Let Ψ = {fj ∈ H∗ | j ∈ J}. Then there always exists a minimal coalgebra system
realization of Ψ.

A coalgebra system realizingΨ is minimal if and only if it is reachable and observable.

Proof. We will sketch the (easy) proof of (1) in order to present some constructions,
which will be very useful later on. Take the cofree realization ΣΨ of Ψ. It is easy
to see that ΣΨ is reachable. Consider the system Σm = (H/A⊥Ψ,H, fM, [1], J, eµΨ)
where fM(h × [k]) = [hk] and eµΨ(j)([h]) = fj(h), and [h] denote the equivalence
class generated by h with respect to the relation [h] = [d] ⇐⇒ h − d ∈ A⊥Ψ. Then
Σm is reachable and observable. If Σ = (C, H,ψ, φ, J, µ) is reachable, then RΣ is
surjective and let S : C � c �→ [h] ∈ H/A⊥Ψ, where RΣ(h) = c. It is easy to see that
S is well-defined and it is a surjective coalgebra system morphism.

We will call the minimal realization Σm from the above proof canonical minimal
realization and we will denote it by ΣΨ,m.

Consider a pair of maps f = (fD, fC), with fD : Γ∗ → O and fC : eΓ∗ → Rp.
Recall the definition of the set Ψf = {fC,i : H → R | i = 1, . . . , p} such that
fC = (fC,1, . . . , fC,p)T . Recall that the maps fC,i are linear and thus belong to
the dual H∗ of H . Since Γ ⊆ H , we can define the map Lwg for all g ∈ H∗ by
Lwg(h) = g(wh). Define the map df : Γ∗ → O × (H∗)p as ∀w ∈ Γ∗ : df (w) =
(fD(w), (LwfC,i)i=1,...p). Denote by Ō the set Ō = O × (H∗)p.
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Assume that HC = (A,Σ, q0) is a hybrid coalgebra system and assume that Σ =
(C, H,ψ, φ, {1, . . . , p}, µ) and A = (Q, Γ, O, δ , λ). Define the automaton ĀHC =
(Q,Γ, Ō, δ, λ̄) as follows. Let λ̄(q) = (λ(q), (Tq,j)j=1,...p), where Tq,j ∈ H∗ and
Tq,j(h) = µ(j) ◦ ψ(φq ⊗ h). Here φq denotes the unique group like element of Cq .

We get the following theorem, which gives a necessary and sufficient condition for
HC to be a realization of f .

Theorem 5. The hybrid coalgebra system HC = (A, Σ, q0) is a realization of f if
and only if (ĀHC , q0) is a realization of df and Σ is a realization of Ψf .

We will call a coalgebra system Σ = (C,H, ψ, φ, {1, . . . , p}, µ) a CCPI coal-
gebra system if C =

L
i∈I Ci such that I is finite, and for all i ∈ I , Ci

∼= B(Vi),
dim Vi < +∞. Consequently, C is pointed and G(C) = {gi | i ∈ I}, where gi is the
unique group-like element of Ci.

It is easy to see that Theorem 5 implies the following.

Theorem 6. The pair f = (fD, fC) admits a CCPI hybrid coalgebra system re-
alization, only if df admits a Moore-automaton realization and Ψf admits a CCPI
coalgebra system realization.

We can also prove a result which is in some sense the converse of the theorem
above.

Let Σ = (C, H,ψ, φ, {1, . . . , p}, µ) be a coalgebra system such that C is pointed.
We will say that Σ is point-observable, if A⊥Σ ∩ C0 = {0}, that is, if for some
g, h ∈ G(C), g − h ∈ A⊥Σ , then g = h. That is, the states belonging to G(C)
are distinguishable (observable). In particular, if Σ is observable, then it is point-
observable.

Let Σ = (C, H, ψ,φ, {1, . . . , p}, µ) be a point-observable coalgebra realization of
Ψf , such that C is pointed. Let Ā = (Q,Γ, Ō, δ, λ̄) be a Moore-automaton such that
(Ā, q0) is a reachable realization of df . We can associate a hybrid coalgebra system
HCĀ,Σ,q0

with (Ā, q0) and Σ. The construction goes as follows.

HCĀ,Σ,q0
= (A, eΣ, q0)

where

– A = (Q,Γ, O, δ,λ) where λ(q) = o if λ̄(q) = (o, ō).
– eΣ = ( eC, H, eψ, eφ, {1, . . . , p}, eµ) where

- eC =
L

q∈Q Cq , where for each q ∈ Q, Cq is the irreducible component of
C with the unique group-like element φq defined by φq = ψ(w ⊗ φ), where w ∈ Γ∗
such that δ(q0, w) = q.

- With the notation above eφ = φq0
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- The map eψ : eC ⊗ H → eC is defined as follows. For each q ∈ Q,c ∈ Cq ,
x ∈ Zm, eψ(c ⊗ x) = ψ(c ⊗ x) ∈ Cq . For each q ∈ Q, c ∈ Cq, γ ∈ Γ, eψ(c ⊗ γ) =
ψ(c⊗ γ) ∈ Cδ(q,γ).

- For all j ∈ J , the map eµ(j) ∈ eC∗ is such that for all q ∈ Q, c ∈ Cq ,
eµ(j)(c) = µ(j)(c).

Lemma 4. With the notation and assumptions above HC = HCĀ,Σ,q0
is a well-

defined hybrid coalgebra system which realizes f . If Σ is a CCPI coalgebra system
then HC is a CCPI hybrid coalgebra system.

Thus, we get the following characterisation of existence of a realization by a CCPI
hybrid coalgebra system

Theorem 7. The pair f = (fD, fC) admits a CCPI hybrid coalgebra system realiza-
tion, if df admits a Moore-automaton realization and Ψf admits a point-observable
CCPI coalgebra system realization.

It follows from the standard theory of Moore-automata that df had a Moore-
automaton realization if and only if Wdf

= {w ◦ df | w ∈ Γ∗} is a finite set. Define
the setsDf = {w ◦ fD | w ∈ Γ∗} andKf = {(LwfC,j)j=1,...,p ∈ (H∗)p | w ∈ Γ∗}.
Lemma 5. With the notation above Wdf

is finite if and only if Kf is finite and Df

is finite. That is, df has a realization by a Moore-automaton if and only if fD has a
realization by a Moore-automaton and Kf is finite.

Assume that Kf is finite, more precisely, let Kf = {qi = (LwifC,j)j=1,...,p | i =
1, . . . N}. For each qi ∈ Kf define the set Hqi

=
L

w∈Γ∗,(LwfC,j)j=1,...,p=qi
Hw.

It is easy to see that H =
LN

i=1 Hqi
. Consider the cofree realization ΣΨf

and
the minimal coalgebra realization ΣΨf ,m = (D, H, ψ, φ, {1, . . . , p}, µ) of Ψf where
D = H/A⊥Ψf

. There exists a canonical morphism π : H → D which defines a coal-
gebra system morphism π : ΣΨf

→ ΣΨf ,m. Since π is surjective andH is pointed, it
follows that D is pointed. Moreover, it follows that ΣΨf ,m is observable. In fact, the
following holds.

Lemma 6. With the notation above D =
LN

i=1 π(Hqi), and π(Hqi) is pointed irre-
ducible.

That is, if (Ā, q0) is a minimal realization df and ΣΨf ,m is the canonical mini-
mal realization of Ψf , then HCĀ,ΣΨf ,m,q0

is a well-defined hybrid coalgebra system
realization.

That is, we can formulate the following theorem.

Theorem 8. The pair f = (fC , fD), fC : eΓ∗ → Rp and fD : Γ∗ → O has
a realization by a hybrid coalgebra system, if and only if card(Kf ) < +∞ and
card(Df ) < +∞. If (Ā, q0) is a minimal Moore-automaton realization of df and
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ΣΨ,m is the canonical minimal coalgebra system realization of Ψf , then HCf,m =
HCĀ,ΣΨf ,m,q0

is a hybrid coalgebra system realization of f .

Below we will formulate necessary conditions for existence of a realization by
a hybrid coalgebra systems. These conditions will involve finiteness requirements.
That is, they will require that a certain infinite matrix has a finite rank and that certain
sets are finite. Although such conditions are difficult to check, yet they are more
informative than requiring that there exists a realization by a coalgebra system of a
certain class. The obtained rank condition is similar to the classical Lie-rank condition
for existence of a realization by a nonlinear system [ISI 89, FLI 80, JAK 86].

Consider the set P (H) ⊆ H of primitive elements of H . It is easy to see that

P (H) = {wPv | w, v ∈ Γ∗, P ∈ Lie < Z∗m >}

where Lie < Z∗m > denotes the set of all Lie-polynomials over Zm. That is, Lie <
Z∗m > is the smallest subset of the set of all polynomials R < Z∗m > such that

– For all x ∈ Zm, x ∈ Lie < Z∗m >

– If P1, P2 ∈ Lie < Z∗m >, then P1P2 − P2P1 ∈ Lie < Z∗m >.

Define the Lie-rank of f as follows. Let eP (H) = Span{h ∈ H | h ∈ P (H)} and
let

rank Lf = dim eP (H)/(A⊥Ψf
∩ eP (H))

The notion of Lie-rank can be reformulated as follows. Consider the natural pro-
jection π : H � h �→ [h] ∈ D = H/A⊥Ψf

. Then it is easy to see that rank Lf =
dim(

P
w∈Γ∗ π(P (Hw)).

Let HC = (A,Σ, q0) be a CCPI hybrid coalgebra system, Assume that A =
(Q, Γ, O, δ , λ), Σ = (C, H, ψ, φ, {1, . . . , p}, µ) and C =

L
q∈Q Cq . Define the di-

mension of HC as dim HC = (card(Q),
P

q∈Q dim P (Cq)). It is easy to see that if
HF is a formal hybrid system realization of f , then dim HCHF = dim HF . Con-
versely, ifHFHC is the formal hybrid system associated withHC, then dim HFHC =
dim HC.

Using the notation and terminology above, we get the following necessary condi-
tion for existence of a CCPI hybrid coalgebra system realization

Theorem 9. The pair f = (fD, fC), fD : Γ∗ → O, fC : eΓ∗ → Rp has a realization
by a CCPI hybrid coalgebra system only if rank Lf < +∞, card(Kf ) < +∞ and
card(Df ) < +∞. For any CCPI hybrid coalgebra system realization HC of f ,
(card(Wdf

, rank Lf) ≤ dim HC. That is, if dim HC = (p, q), then card(Wdf
) ≤ p

and rank Lf ≤ q.

Sketch. Let Σ = (C, H,ψ, φ, {1, . . . , p}, µ) be a CCPI coalgebra realization of Ψf .
Assume that C =

L
i∈I B(Vi), where I is finite. Define the set eP (C) =

L
i∈I Vi.
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It is easy to see that eP (C) is finite dimensional. Consider the coalgebra map TΣ :
H → C. It is easy to see that TΣ( eP (H)) ⊆ eP (C) and thus eP (H)/ eP (H) ∩ kerTΣ

∼=
TΣ( eP (H)).

Recall that kerTΣ ⊆ A⊥Ψf
, where AΨf

is the algebra generated by Rhf , h ∈ H

and A⊥Ψf
= {h ∈ H | ∀g ∈ AΨf

, g(h) = 0}. Since eP (H) ∩ kerTΣ ⊆ A⊥Ψf
∩ eP (H)

we get that +∞ > dim eP (C) ≥ dim eP (H)/ eP (H) ∩ kerTΣ ≥ dim eP (H)/ eP (H) ∩
A⊥Ψf

Taking into account that f has a realization by a CCPI hybrid coalgebra system if
and only if it has a realization by a formal hybrid system we get the main result of the
chapter.

Theorem 10. The pair f = (fD, fC), fD : Γ∗ → O, fC : eΓ∗ → Rp has a real-
ization by a formal hybrid system only if rank Lf < +∞, card(Kf ) < +∞ and
card(Df ) < +∞. For any formal hybrid system realization HF of f ,
(card(Wdf

), rank Lf) ≤ dim HF .

That is, rank Lf gives a lower bound on the dimension of the continuous state
space ( number of variables ) for each formal hybrid realization of f .

Consider the canonical minimal coalgebra system ΣΨf ,m realization of f . Recall
that ΣΨf ,m = (D,H, ψ, φ, {1, . . . ,m}, µ) where D = H/A⊥Ψf

. Define the vector
space eP (D) = Span{d ∈ D | d ∈ P (D)}. Define the strong Lie-rank of f as

rank L,Sf = dim eP (D)

It is easy to see that rank L,Sf ≤ rank Lf . The difference between the Lie-rank and
strong Lie-rank is highlighted by the following theorem.

Theorem 11. With the notation above the following holds.

(a) If card(Kf ) < +∞, card(Df ) < +∞ and rank Lf < +∞, then there exists
a hybrid coalgebra system realization HC of f such that HC = (A, Σ, q0), Σ =
(C, H,ψ, φ, J, µ), C =

L
q∈Q Cq and for each q ∈ Q, Cq is pointed irreducible

and dim TΣ(P (H)) ∩ P (Cq) < +∞,where qi = Lwif ∈ Kf , δ(q0, wi) = q and
TΣ : H � h �→ ψ(φq0 ⊗ h) is the canonical map TΣ : ΣΨf

→ Σ.
(b) If card(Kf ) < +∞, card(Df ) < +∞ and rank L,Sf < +∞ then f

has a realization by a hybrid coalgebra system HC = (A, Σ, q0) such that Σ =
(C, H,ψ, φ, J, µ), C =

L
q∈Q Cq and for each q ∈ Q Cq is pointed irreducible and

dim P (Cq) < +∞.

Sketch. Assume that card(Kf ) < +∞ and card(Df ) < +∞. Consider the minimal
canonical coalgebra system realization
ΣΨf ,m = (D,H, ψ,φ, {1, . . . , p}, µ). Recall from Lemma 6 that D =

LN
i=1 π(Hqi)

where Hqi =
L

(LwfC,j)j=1,...,p=qi
Hw, Kf = {q1, . . . , qN} and π : H → D =
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H/A⊥Ψf
is the canonical projection π(x) = [x]. That is, each irreducible component

of D is of the form π(Hqi
) for some qi ∈ K.

Let (Ā, q0) be a minimal Moore-automaton realization of df . Recall the con-
struction of HCf,m = HCĀ,ΣΨ,m,q0

Recall that HCf,m = (A, eΣ, q0), such that
Ā = (Q,Γ, Ō, δ, λ̄), A = (Q, Γ, O, δ ,λ),

eΣ = ( eC, H, eψ, eφ, {1, . . . , p}, µ)

such that eC =
L

q∈Q
eCq and eCq = π(Hqi), for qi = Π(H∗)p(λ̄(q)). It is known that

HC is a hybrid coalgebra system realization of f .

Assume that rank Lf < +∞. Then for each q ∈ Q, such that δ(q0, w) = q,
the following holds. eCq = π(Hqi

), where Lwf = qi and TΣ( eP (H)) ∩ P (Cq) =
π( eP (H)) ∩ P (π(Hqi

)) = Span{h ∈ eCq | h ∈ π(P (Hqi
))}. Since π( eP (H)) =

eP (H)/A⊥Ψf
and rank Lf = dim π( eP (H)) < +∞, we get that dim TΣ( eP (H)) ∩

P (Cq) < +∞. Thus, by taking HC part (a) of the theorem is proven.

Assume that rank L,Sf < +∞. Consider the hybrid coalgebra systemHC. Then
for all q ∈ Q, eCq = π(Hqi), such that qi = Lwf and δ(q0, w) = f . Since eP (D) =
rank L,Sf < +∞ and P ( eCq) = P (π(Hq)) ⊆ eP (D), we get that dim P ( eCq)) <
rank L,Sf < +∞. Thus, part (b) of the theorem is proven.

Let us try to find interpretation of the results of the theorem above. Part (a) of
the theorem above says that the subspace of each Cq spanned by the elements of
Lie < Z∗m > and their translates by ψ(. ⊗ γ) : C � c �→ ψ(c ⊗ γ), γ ∈ Γ is finite
dimensional.

Part (b) implies that for each q ∈ Q, Cq is pointed, irreducible and
nq = dim P (Cq) < +∞. But this implies that for each q, there exists an injective
Sq : Cq → B(Vq), where Vq = P (Cq). That is, there exists an algebra map

S∗q : R[[X1, . . . , Xnq ]] → C∗q

such that (ImS∗q )⊥ = {0}, i.e. for all c ∈ Cq and g ∈ C∗q there exists some Z ∈
R[[X1, . . . , Xnq ]] such that S∗q (Z)(c) = g(c). That is, S∗q is "almost" surjective. Thus,
dim P (D) < +∞ implies existence of an "almost" formal hybrid system realization.

Thus, finiteness of rank L,Sf is a stronger requirement than finiteness of rank Lf .
As we have seen, if rank L,Sf < +∞, then there exists an "almost CCPI" realization
of f , i.e. f can be realized by a hybrid system with finite state space of some sort.

In fact, we can give the following necessary condition for finiteness of rank Lf .
Define the following space

HL,f = {(LP fC,i)i=1,...,p | P ∈ eP (H)}
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It is easy to see that dim HL,f ≤ rank Lf . Thus, if rank Lf < +∞, then dim HL,f <
+∞. Below we will present an example, which demonstrates that the Lie-rank might
simply be not enough to capture all the necessary dimensions.

Example 2. Consider the following hybrid system H =
(A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)
such that

– Γ = {γ}, A = ({q1, q2}, {γ}, {o}, δ,λ), where δ(q1, γ) = q2, δ(q2, γ) = q2,
λ(qi) = o, i = 1, 2.

– U = R, Y = R,
– Xq1 = Xq2 = R,
– gq1,0(x) = 0, gq1,1 = 1 hq1(x) = 0 and Rq2,γ,q2(x) = x2, for all x ∈ Xq1 , u ∈

U ,
– hq2(x) = x, qq2,0 = 0 = gq2,1 and Rq2,γ,q2(x) = x for all x ∈ Xq2 , u ∈ U .

Consider the input-output map f = υH((q1, 0), .). Consider the pair ef = (fD, cf ),
where cf is a generating convergent series such that Fcf

= fC . It is easy to see
that rank L

ef = 0. On the other hand, it can be shown that rank L,S
ef ≥ 1. It is

easy to see that card(K ef ) = 2 = card(Wd ef
), thus one needs at least two discrete

states to realize f . Hence, unless we allow for zero dimensional continuos spaces, no
realization can be of dimension smaller than (2, 2).

9. Conclusions

We have presented conditions for existence of a realization by a nonlinear hybrid
system. The presented conditions are only necessary but there is a strong indication
that the presented approach might lead to sufficient conditions as well. The presented
conditions are consistent with the earlier results on hybrid systems and classical non-
linear systems. The main tool for developing the obtained results was the theory of
coalgebras. Future research will be directed towards developing realization theory for
polynomial and rational hybrid systems without guards and towards finding sufficient
and necessary conditions for existence of a nonlinear hybrid system realization.

The first author would like to thank M.Hazewinkel for the use-
ful discussions on coalgebras.
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