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On the average control system

Alex Bombrun and Jean-Baptiste Pomet

Abstract— Considering a control system with fast and slow
variations, the purpose of this note is to propose a notion of
“average control system” that does not depend on how fast or
slow the controls will be. This differs from the more usual use
of averaging in control where the fast or slow variations of
the control have to be specified before performing averaging.

We also present an application to low thrust orbit transfer.

I. INTRODUCTION

A. Averaging for differential equations
Consider the differential equation

dx/dt = F (x, θ) , dθ/dt = ω(x)/ε , (1)

where x lives in Rn, θ in S1 = R/2πZ, and ε > 0 is a
small parameter; where we assume that ω does not vanish:

ω(x) ≥ 1 , ∀x , (2)

so that, when ε is small, θ is a fast variable (its derivative
is of the oreder of 1/ε) while x is “slow”, in the sense that
ẋ is bounded, irrespective of ε.

Note that a simple change of time (ds/dt = ω(x)) turns
the above into:

dx

ds
=
F

ω
(x, θ0 +

s

ε
) , x ∈ Rn ,

where F/ω is smooth and 2π-periodic with respect to its
last argument.

The well known and very powerful principle of aver-
aging says that, if ε is small enough, the x component
of a solution of equation (1) is close to a solution of the
average equation dx̄/dt = F (x̄) where F is the average
on one period of the right hand side of (1):

F (x) =
1

2π

∮
θ∈S1

F (x, θ) dθ (3)

(this does not depend on ω; it would if ω would depend
on θ)

Theorem 1 ([1]): If t 7→ x̄(t) is a solution of dx̄/dt =
F (x̄) defined on the time interval [0, 1], and that remains in
the interior of a compact set K, then there exists a constant
k such that the solution xε of (1) with xε(0) = x̄(0)
satisfies ‖xε(t) − x̄(t)‖ < kε, for ε small enough. The
constant k depends only on the map F on the compact K.

Averaging is used in many instance, for example when
dealing with small perturbations of integrable Hamiltonian
systems [2], or in nonlinear oscillations, see [10].
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B. Averaging in Control theory

This powerful tool was also used in control theory
because one encounters many systems, to be controlled,
that exhibit oscillations at a fast speed compared to the rest
of the dynamics, or it may be interesting to use a control
that has slow-varying and fast-varying components, even
if the original control system only displays one time scale.
Let us mention some contributions, with no claim to be
exhaustive.

In [8] the following optimal problem is considered{
ẋ = f(x, u(t), t, t/ε)
min

∫ T
0
L(x, u)dt ,

(4)

and it is shown, under some assumptions, that the solutions
of these problems (4) with fast variable are ε close in L∞

norm to the solution of the limit problem (5) defined as
follow {

ẋ = 1
ω

∫ ω
0
f(x, u(t, θ), t, θ)dθ

min
∫ T

0

(
1
ω

∫ ω
0
L(x, u(t, θ))dθ

)
dt

(5)

This was applied to low thrust orbital transfer in [9].
Using this approach, it is shown in [4], [5] that the
average equation of the Pontryagin maximum principle (for
minimizing energy) on the cotangent bundle is the geodesic
flow of some Riemannian metric

Also, in vibrational control [11], even for a control
system that does not present fast oscillation, one adds oscil-
latory components to the control, and then uses averaging
to analyze the resulting stability.

In all these approaches, the variation of the control, in
particular its fast or slow dependence, on time and/or on the
state (maybe an extended state, like when using Pontryagin
Maximum principle) is prescribed before performing any
average. Indeed, consider, instead of a differential equation
(1) (without control), a control system

dx/dt = F (x, θ, u)
dθ/dt = ω(x)/ε , (6)

where u ∈ Rm is a control, (x, θ) ∈ Rn × S1 is the state
and F is smooth. Considering θ in S1 means that F is
2π-periodic with respect to its last argument. One cannot
apply directly an averaging formula like (3) when u is not
prescribed: for instance, the average of u sin θ (u scalar)
is zero if u is constant or varies “slowly”, but it is 1

2 if
u = sin θ.

In the above mentioned papers in optimal control, one
applies first the maximum principle to obtains a a dif-
ferential equation on the cotangent bundle that no longer
contains any control and then uses averaging. In vibrational



control, one decides to take a feedback of a special form,
say (this is an extreme simplification) u1(x) +u2(x) sin θ,
and then again it is possible to use averaging, but the
obtained average system is valid only if u1 and u2 are
functions of x (or at least vary slowly).

The contribution of the present note is to define directly
an average control system for a control system like (6),
without prescribing in advance the slow or fast variations
of the control. We then illustrate it on an academic example
(section III) and apply it to give a partial answer to an open
question (section IV).

II. THE AVERAGE CONTROL SYSTEM

A. Control systems with fast oscillations

We consider a control system of the following special
form, where the state space is M × S1. M is a manifold
of dimension n and S1 = R/2πZ the circle (this is
to emphasize that everything is periodic with respect to
the variable θ). The control u = (u1, . . . , um) is m-
dimensional and is bound to stay in the unit closed ball
B1 of the Euclidean space Rm.

İ = G(I, θ)u ∆=
m∑
k=1

uk gk(I, θ)

θ̇ = 1/ε (7)
u ∈ B1 i.e. ‖u‖ ≤ 1 .

A more general class of systems is (still with u ∈ B1):

İ = F (I, θ)u + ε b(I, θ, u, ε)
θ̇ = ω(I, θ)/ε+ c(I, θ, u, ε) (8)

with smooth bounded b and c and the assumption that the
fast motion is indeed fast:

ω(I, θ) + ε c(I, θ, u, ε) ≥ 1 (9)

for all (I, θ, u, ε) ∈M × S1 ×B1 × [0, ε0] (ε0 > 0).
Via a change of time (ds/dt = ω(I, θ) + εc(I, θ, u, ε)),

it can be turned into

dI/ds = G(I, θ)u+ εh(I, θ, u, ε) , dθ/ds = 1/ε

Obviously, G = H/ω, and the expression of h follows.
This allows to treat (8) with the results established for (7):
that system was exactly the one above with ε h = 0, but
this term that uniformly goes to zero does not affect any
of the results obtained for (7).

B. Definition of the average system

For fixed I , consider the following subset of TIM :

E(I) = { 1
2π

∮
S1
G(I, θ)u(θ)dθ, u(.) ∈ L1(S1, B1)}, (10)

i.e. all the possible average values of İ (as given by (7))
for fixed I and for all possible variation of u.

We call average control system of (7) the following
differential inclusion on M :

İ ∈ E(I) . (11)

A parameterization of the set E(I) by independent vari-
ables (“controls”) would provide a control system strictly
speaking; we shall discuss this further when more proper-
ties of the set E(I) are established. For now, it is simpler
to just consider the differential inclusion.

A solution of (11) on the time-interval [0, 1] is an ab-
solutely continuous I : [0, 1]→M , where the measurable
map İ satisfies İ(t) ∈ E(I(t)) for almost all t. From (10),
this implies that, for almost all t, there exists a measurable
map ût : S1 → B1 such that

İ(t) =
1

2π

∮
S1
G(I, θ)ũt(θ)dθ .

The right-hand side is measurable w.r.t. t, but this does
not tell how ũt(θ) itself depends on t; in fact, joint mea-
surability with respect to t, θ may always be granted:

Lemma 2: A map I : [0, 1] → M is a solution of (11)
if and only if there exists û ∈ L1([0, 1]× S1) such that

I(t) = I(0)+
∫ t

0

(
1

2π

∮
S1
G(I(t), θ)û(t, θ)dθ

)
dτ (12)

for all t in [0, 1].
Proof: The minimum of the map

L1([0, 1]× S1)→ R defined by

u 7→
∫ 1

0

(∫ 2π

o

G(I(t), θ)(u(t, θ)− ũt(θ))dθ
)2

dt

must be zero.

C. The averaging result

Let us now state how this system is the “limit” control
system of (7) when ε goes to zero.

Theorem 3 (averaging): Fix (I0, θ0) ∈ M × S1. Let K
be1 a compact subset of M containing I such that any
solution t 7→ (I(t), θ(t)) of (7) (with the bound ‖u‖ ≤ 1
on the control) such that I(0) = I0 remains in the interior
of K × S1 for all time t ∈ [0, 1].

Let t 7→ I(t) be a solution of (11) defined for t ∈ [0, 1],
with I(0) = I0. Then there is a family of measurable
controls, namely uε(.) ∈ L1([0, 1], B1) for all positive ε
such that the solutions t 7→ Iε(t) of (7) with u = uε(t) and
(Iε(0), θ(0)) = (I(0), θ0) converges uniformly on [0, 1] to
I(.) as ε tends to zero. The distance is bounded by k ε for
some constant k, that depends only on K and the map G.

Conversely, let (εn)n∈N be a sequence of positive
numbers that tends to zero, and, for each n, un(.) ∈
L1([0, 1], B1) be a control and In(.) be the solution of
(7) with ε = εn, u = un(t) and (In(0), θ(0)) = (I0, θ0).
If In(.) converges uniformly on [0, 1] to a map t 7→ I?(t),
then I? is a solution of (11).

Proof: In this proof LipG stands for a Lipschitz
constant of G on K and supG for a bound of ‖G‖ on K.

1Existence of such a compact set has to do with forward completeness
of the vector fields: if M = Rn, it is sufficient that ‖gk‖ grows no more
than linearly at infinity.



If I : [0, 1] → M is a solution of (11), there exists,
according to lemma 2, some û ∈ L1([0, 1]× S1, B1) such
that (12) holds for all t. Then define, for ε > 0,

uε(t) =
1

2π

∫ 2π

0

û(t+ εψ, θ0 +
t

ε
) dψ . (13)

Recall that û is 2π-periodic with respect to its second
argument; by convention, and because values outside [0, 1]
appear in the above formula, it can can be prolonged
periodically with respect to the second argument as well:
û(t+ 1, θ) = û(t, θ) for all t and θ. Let Iε be the solution
of (7) with u = uε(t) and Iε(0) = I0. A computation
shows that sπ (Iε(t)− I0) can be written as∫ t

0

∫ 2π

0

G(Iε(τ), ϕ) û(τ, ϕ) dϕdτ + ∆ε(t)

with ‖∆ε(t)‖ ≤ k1ε and the constant k1 = π(2 +
LipG) supG depends only on the compact K. Since I
satisfies (12), one has

‖Iε(t)− I(t)‖ ≤ k1 ε+ LipG
∫ t

0

‖Iε(τ)− I(τ)‖ dτ

and finally, by Gronwall Lemma, this implies

‖Iε(t)− I(t)‖ ≤ k ε with k = k1

(
eLipG − 1

)
,

hence the first part of the theorem.
To prove the converse, assume that In(.) converges

uniformly on [0, 1]: for all t ∈ [0, 1],

‖In(t)− I?(t)‖ ≤ αn with lim
n→∞

αn = 0 . (14)

Define ûn ∈ L1([0, 1]× S1, B1) by

ûn(τ, ϕ) = un(
τ

εn
+ θ − θ0),

{
τ
εn

+ θ ≡ ϕ mod 2π ,
0 ≤ θ < 2π ,

Obviously, each ûn is also in L∞, and even in the unit
ball of L∞, hence there is a subsequence that converges
weakly to some û?; we still denoted the subsequence by
ûn to avoid double indexes.

We shall prove that

I?(t)− I0 =
∫ t

0

(
1

2π

∫
S1
G(I, θ)û?(t, θ)dθ

)
dτ . (15)

This implies that I? is a solution of (11) and will end the
proof of the theorem.

Writing 2π (In(t)− I0) as∫ 2π

0

∫ t−εnθ

−εnθ

G(In(τ + εnθ), θ0 +
τ

εn
+ θ)un(τ + εnθ) dτ dθ ,

it can be transformed into

In(t)−I0 =
1

2π

∫ t

0

∫ 2π

0

G(I?(τ), ϕ) ûn(τ, ϕ) dϕdτ + ∆n(t)

where ‖∆n(t)‖ ≤ k1εn + k2αn for some constants k1, k2.
This proves that ∆n(t) tends to zero; the left hand side
tends to I?(t) − I0 (uniformly) by assumption, and weak
convergence of the sequence (ûn) implies that the integral
in the right-hand side converges to the one in (15). This
does prove (15).

D. Properties of the average system

We have defined the average system as the differential
inclusion (11) with the set E(I) defined by (10). That
set enjoys the following properties (the proof is rather
elementary, and is skipped).

Theorem 4: For all I , the set E(I) is convex, closed,
bounded, symmetric with respect to the origin and contains
the origin. Furthermore, if

Rank
{
∂jgk
∂θj

(I, θ)
}
k∈{1,...,m}
j∈N

= n (16)

for all θ, then the interior of E(I) is nonempty.

Remark that (16) is equivalent to controllability of the
linear approximation of the control system (7) on M ×S1

Under that controllability assumption, the fact that the
interior of E(I) is nonempty means that the underlying
control system has n controls, i.e. as many controls as
states, whereas the original system had only m < n
controls.

Let us comment further on the properties of E(I) in the
case where (16) is met. Then it is well known that each
set E(I) has all the needed properties to be the unit ball
for a uniquely defined (not necessarily Euclidean) norm
on the vector space TIM (for any v ∈ TIM , ‖v‖ is the
unique λ > 0 such that v/λ ∈ ∂E(I)). This endows
the manifold M with a Finsler metric (provided some
smoothness properties with respect to I are checked). Note
that the only additionnal requirement to get a Riemannian
metric would be that these norms be Euclidean, i.e. that all
the sets E(I) be ellipsoids. Finsler geometry [3] is more
intricate than Riemannian geometry , but in a sense much
simpler than general optimal control (or sub-Riemannian
geometry) (also called Carnot-Caratheodory) because at
each point, curves with all tengent directions are allowed.

One may view (7) as a sub-Riemannian geometry on M ,
parameterized by a fast varying parameter θ, ad we showed
that, under an assumption on its dependence on theta
(16) (different from the ones regarding the disptribution
spanned by the gk’s for fixed θ that are relevent in sub-
Riemannian geometry), this sub-Riemannian geometry can
be averaged to a Finsler geometry.

It is interesting to note that the authors of [4], [5] ob-
tained, by a completely different argument, a Riemannian
metric as the limit of what would be here the problem of
minimizing energy (the integral of ‖u‖2) for the original
system (7) with no constraint on u. The method differs a lot
because it consists in apllying averaging for ODEs to the
equation on the cotangent bundle ontained via Pontryagin
Maximum Principle, and identifying the average as the
geodesic flow of a Riemannian metric. Our method applied
in the same case, yields a Finsler metric for the minimum
time (instead of minimum energy). We have not yet been
able to compute the average system well enough to be sure
that this Finsler metric is not, for these precise systems
(controlled Kepler problem), a Riemannian metric —this



amounts to decide whether or not E is an ellipsoid— but it
is certainly very exciting to compare the two limit objects
(if one started with a system with n controls,they would
not differ because it is well known that minimizing length
or energy is the same in Riemannian geometry).

III. EXAMPLE

Consider a very academic example of (7), with (m,n) =
(1, 2) and ϕ some constant:(

ẋ1

ẋ2

)
= u

(
cos θ

cos(θ + ϕ)

)
, θ̇ =

1
ε
, |u| ≤ 1 .

A computation shows that the set E(x1, x2), that obvi-
ously does not depend on (x1, x2), is given by ẋ2

1 +
(ẋ2 − cosϕ ẋ1)2

/ sin2ϕ ≤ 4/π2. Here, we can write the
differential inclusion (11) as a control system. If ϕ is a
multiple of π, assumption (16) fails, and one gets as an
average control system:(

ẋ1

ẋ2

)
=

2 v
π

(
1
±1

)
, |v| ≤ 1 .

If not, one gets a system with two controls:(
ẋ1

ẋ2

)
=

2 v1

π

(
1

cosϕ

)
+

2 v2

π

(
0

sinϕ

)
with the constraint v1

2 + v2
2 ≤ 1.

Note that constraint is quadratic, so that we do not only
get a Finsler metric, but even a Riemannian metric (even
a trivial one, i.e. it makes M a Euclidean space!). This
example, chosen only to illustrate how the average system
can be computed, is too simple to have any generality,
and we do not claim that the obtained metric is in general
Riemannian (or in other words that the set E(I) in (10) is
always an ellipsoid).

IV. APPLICATION

In this section we apply the above described averaging
method to the controlled 2-body system, in order to study
the asymptotic behavior of time optimal trajectories for
low thrust elliptic orbital transfers. For compactness of the
present note we will consider the planar case.

The controlled Keplerian system in two dimensions can
be written r̈ = −r/‖r‖3 + u with Γ and r 2-dimensional
and µ > 0 a gravitational constant, or equivalently, with
x = (r, v) ∈ R2

∗ × R2 (position and speed), and ε > 0 an
upperbound on the magnitude of the thrust (control),

Kε : ẋ = f0 + Γ1 f1 + Γ2 f2, Γ1
2 + Γ2

2 ≤ ε2, (17)

with f0 = (v,−µ r/‖r‖3), f1 = (0, e1) and f2 = (0, e2),
(e1, e2) being an ortho normal frame of R2.

The free motion (ẋ = f0(x)) is well known. All the
trajectories project to quadratic curves (ellipses, parabolas
or hyperbolas) in the position plane R2

∗. Recall that eccen-
tricity of such a curve is a non negative number e; e < 1
for an ellipse (zero for circles), e = 1 for a parabola, e > 1
for an hyperbola; e can here be given as a smooth function
of r, v, constant on solutions of ẋ = f0(x), e(r, v) being,

for all (r, v)R2
∗×R2, the excentricity of the projection on

R2
∗ of the solution of ẋ = f0(x) starting from this point.

We call elliptic domain the subset of R2
∗×R2 where e < 1

(this is equivalent to negative mechanical energy). IN the
elliptic domain all solutions are periodic and project onto
ellipses in the plane R2

∗. We are only interested in elliptic
orbits. Let O0 and O1 be the trajectories in R2

∗×R2 of two
such orbits (their projections on the first factor are ellipses).
The controlled 2-body system is completely controllable.
Consider the time optimal orbital transfer problem (studied
for instance in [9], [6] for low thrust):

Kε , x(0) ∈ O0, x(T ) ∈ O1, T → min . (18)

This problem admits a solution for all positive ε (see e.g.
these references). Denote the minimum time by Tε.

Chemical engines have a rather high thrust; transfer
problems may then be treated via approximations with
impulsive controls (in a sense ε→∞, but with durations
of the thrust that go to zero). On the contrary, the particu-
larity of low thrust engines is that ε is small (what makes
their industrial interest is of course not small thrust but
their better efficiency). Hence the idealization of low thrust
transfer is captured by the limit behaviour when ε→ 0.

“Open question Q3”, stated in [7] :
Does the product ε Tε have a limit when ε tends to zero?
We give a partial answer to this question, i.e. only for
planar transfers between two elliptic orbits O0 and O1 with
positive angular momentum and such that the time-optimal
trajectories (solutions of Kε above) stay strictly inside the
elliptic domain for all ε (see Theorem 5).

If c = det(r, v) > 0, the Gauss coordinates are I =
(c, ex, ey)T (three independent first integrals of the Kepler
motion; the excenticity mentioned above is defined by
e2 = ex

2 + ey
2) and the cumulated longitude L (in the

planar case, it is simply the polar angle between r and
a fixed direction). Orbits O0 and O1 are defined by the
corresponding value of I , say I0 and I1. The transfer in
(18) means, for some L0, going from x(0) = (I0, L0) to
some x(T ) = (I1, L1) with arbitrary L1.

With the control Γ expressed in the ortho-radial frame
QS associated to the satellite, equation (17) reads, in these
coordinates:

Kε :


İ = Γs gs(I, L) + Γq gq(I, L),
L̇ = ω(I, L),
‖Γ‖2 = Γs2 + Γq2 ≤ ε2

(19)

with

gs =

 c2

µZ
cA
µZ
cB
µZ

 , gq =

 0
c
µ sinL
− c
µ cosL

 , ω =
µ2

c3
Z2, (20)

and

 Z = 1 + ex cosL+ ey sinL ,
A = ex + (1 + Z) cosL ,
B = ey + (1 + Z) sinL .

If one choses t/ε as time instead of t, the above system is
of the form (8) with b = 0 and c = 0. Although we do not



have a lowerbound like (9), let us rescale time t to some
λ with dλ/dt = εω and take u = Γ/ε as new control; one
obtains:

K ′ε :
{

dI
dλ = usgs/ω + uqgq/ω,
dL
dλ = 1/ε,

‖u‖ ≤ 1. (21)

Note that systems (17) and (19) are the same, written
in different coordinates, while (21) leads to the same
trajectories, parametrized by λ instead of time.

Equation (21) belongs to the class of controlled systems
(7) that admits (at least on a domain where gs/ω and gq/ω
are bounded), an averaged controlled system according to
section II, namely

K : İ ∈ E(I) , (22)

now independent of ε, where E(I) is defined according to
(10), the expression of G(I, θ)u(θ)dθ being(

us(L)
gs(I, L)
ω(I, L)

+ uq(L)
gq(I, L)
ω(I, L)

)
dL .

We have not yet performed an explicit computation of this
set E(I), but its exact descritpion is not needed for the
following. We now define the functional J :

J(I(.))(λ) =
∫ λ

0

(
1

2π

∫ 2π

0

1
ω(I(`), s)

ds

)
d`, (23)

and the following optimal control problem, where the
evolution variable is λ ∈ [0,Λ] instead of t ∈ [0, T ], and
the final time (multiplied by ε) is replaced by J (J stands
for J(I(.),Λ):

K , I(0) = I0, I(Λ) = I1, J → min . (24)

As announced, the following theorem gives a partial an-
swer to the above open question.

Theorem 5: For some I0 and I1, assume that there are
positive constants ε0, eM < 1 and 0 < cm < cM such that
the minimum time solutions of problem Kε, for ε ≤ ε0,
satisfy, for all time t, ex(t)2 + ey(t)2 ≤ em

2 and cm ≤
c(t) ≤ cM . Then ε Tε has a limit J∗, which is the value
of the average optimal problem (24).

Let us make a few comments on our assumptions. As-
suming the initial and final angular momenta are positive,
it is easy to show that one must have that inequality on
c(t) on time-minimal trajectories. The other assumption,
that not only the initial and final orbits are elliptic, i.e.
e1
x

2 + e1
y

2 ≤ em2 and e0
x

2 + e0
y

2 ≤ em2 for some em < 1,
but also it remains smaller than such a number for all time
and all ε on minimum time trajectories is not explicit. It
is possible to show that this is true when I0 and I1 are
elliptic and “close enough”. For two general elliptic orbits,
we have not proved this, although it does not seem very
likely that, for small ε, minimum time trajectories would
go closer and closer to the hyperbolic domain.

Sketch of proof of Theorem 5

With eM , cm, cM given by the theorem, pick e′M , e
′′
M ,

c′m, c
′′
m, c′M , c

′′
M such that

eM < e′M < e′′M < 1 ,
0 < c′′m < c′m < cm < cM < c′M < c′′M ,

(25)

and define the domain

D = {(ex, ey, c), c′′m < c < c′′M and ex2+ ey
2 < e′′M

2} .

Obviously, with ωm = µ2(1 − e′′m)2/c′′M
3 and ωM =

µ2(1− e′′M )2/c′′m
3, one has

(I, L) ∈ D × S1 ⇒ ωm ≤ ω(I, L) ≤ ωM . (26)

This implies in particular that the rescaled system K ′ε (21)
and the average system K (22) are well defined on D.

The following lemma states that J given by (23) is the
limit of the following Jε when ε→ 0, and gives a Lipschitz
constant for these functionals:

Jε(L0, I(.))(λ) =
∫ λ

0

d`
ω(I(`), L0 + `/ε)

. (27)

Lemma 6: There exists k′ > 0 and ε0 > 0 such that,
for all λ ∈ [0, 1], L0 ∈ S1, ε ∈ [0, ε0] and all continuous
I and I ′, [0, λ]→ D, one has (convention: J0 = J)

‖Jε(L0, I)(λ)− J(I)(λ)‖ ≤ k′ε , (28)
‖Jε(L0, I)(λ)− Jε(L0, I

′)(λ)‖ ≤ k′ sup
[0,λ]

‖I − I ′‖.(29)

Proof: It is exactly the same sort of computations
than in the proof of Theorem 3.

Let D′ = {c′m ≤ c ≤ c′M and ex2+ ey
2 ≤ e′M

2}; I0, I1

are in D′ by construction. Let γ]: [0,Λ]] → D′ be a mi-
nimizer for problem (24) on D′ (exists for D′ is compact,
depends a priori on c′m, c

′
M , e

′
M ). Let J] = J(γ])(Λ]).

Fix L0. From Theorem 3, there exists, for all positive
ε, a solution λ 7→ (γ]ε(λ), L̃ε(λ)) of (21) with γ]ε(0) =
I0, L(0) = L0 and ‖γ]ε − γ]‖[0,Λ]] < k′ε. Each of them
rescales to a solution t 7→ (Iε(t), Lε(t)) of (19), defined
on [0, T ]ε ] with T ]ε = Jε(L0, γε)(Λ])/ε. Since Iε(T ]ε ) =
γε(Λ]) and γ(Λ]) = I1, one has ‖Iε(T ]ε ) − I1‖ ≤ k′ε.
Then Lemma 7 below, with M = k′, implies that there is
a τ , independent of ε, and, for all ε, a solution of (21) that
goes from Iε(T ]ε ) to I1 in time no more than τ . Since,
from Lemma 6, |εT ]ε − J]| < 2k′ε, the above proves

ε Tε ≤ J] + (2k′ + τ) ε , 0 < ε ≤ ε0 . (30)

Since ε Tε is bounded, we only need to prove that
any convergent sequence εn Tεn (εn → 0) has the same
limit. Consider such a sequence and the corresponding
minimizer, [0, Tεn

] → D′, t 7→ (In(t), Ln(t)); we may
rescale it to a solution λ 7→ (γn(λ), L̃n(λ)) of (21), defined
on [0,Λn] with γn(0) = I0, γn(Λn) = I1 and

Tεn
=

1
εn
Jεn

(L̃n(0), γn)(Λn) . (31)

From (27), this implies Λn ≤ εnTεn
ωM and, from (30),

Λn ≤ Λ with Λ =
(
J] + (2k′ + τ) ε0

)
ωM .



Prolonging γn to the interval [0,Λ] by taking it con-
stant (zero control is allowed) on [Λn,Λ], Ascoli-Arzela’s
theorem implies that a subsequence, that we still denote
γn, converges uniformly on [0,Λ] to some γ, which is a
solution of the average system (22) according to theorem 3
and remains inD′ by the assumption of the theorem; hence,
with Λ the smallest λ ≤ Λ such that γ(λ) = I1, which
is also the limit of Λn, one must have J(γ)(Λ) ≥ J].
Since, according to Lemma 6, Jεn(L̃n(0), γn)(Λn) tends
to J(γ)(Λ), with a difference less than c1εn (c1 a positive
constant), one has, according to (31), εnTεn

≥ J] +
c1εn. This and (30) proves that any converging sequence
(εnTεn), with εn → 0, tends to J], i.e. that ε Tε tends to
J] when ε tends to 0. This also proves that J] does not
depend on the numbers e′M , e

′′
M , c

′′
m, c

′
m, c

′
M , c

′′
M chosen in

(25) and hence that J] = J∗, the minimum value without
restrictions on c, ex, ey of problem (24).

This ends the proof of Theorem 5. The following lemma
was needed.

Lemma 7: Consider the balls Bε of radius Mε around
the target orbit O1, ∀q ∈ B let T εq be the optimal time to
reach the target orbit then the quantity

∆ = sup
0<ε≤δ, q∈Bε

T q (32)

is bounded.
Proof: It is a direct consequence of the property

that the linearized system is controllable along a Keplerian
orbit. Indeed let x0(t) be the target orbit, which is obtained
with the control null. Let x be a trajectory obtain with a
control u(t), x(t) = x0(t) + δx(t).

˙δx = f0(x0(t) + δx)− f0(x0(t)) +
2∑
i=1

fi(x0(t) + δx)ui,

(33)
The linearized system of state δx along the trajectory

x0(t) is given by

˙δx = A(t)δx+
2∑
i=1

fiui, (34)

with

A(t) =
∂f0

∂x
(x0(t)) =

[
0 I
∗ 0

]
and [f1, f2, f3] =

[
0
I

]
.

Hence the end point mapping, F : u −→ q(1) is
continuously differentiable and full-rank at 0 (see Theorem
1 p. 57 in [12]). Then the Rank Theorem (see Theorem 52
p 464 in [12]) implies the existence of an inverse map of
class C1, from Ox0(1) to the space of admissible controls
such that G(x0(1)) = 0 and F (G(y)) = y for each
y ∈ Ox0(1).

V. CONCLUSION AND REMARKS

This notion of average control system captures a lot
of the limiting behavior of the slow variables, and has
the advantage that it does not depend at all on the type
of controls to be used, but it may fail to capture some

phenomenon. For instance, it allows one to treat optimal
control problems where the cost depends only on the slow
variables, like minimum time: the trajectory that joints two
points in minimum time for (11) is ε-close to a trajectory of
the original system and hence gives almost minimum time
for small ε (using Theorem 3). However, for an optimal
control problem where the cost depends, for instance, on
the control u, one may not expect to recover from the
above results alone the results from [8], or these from [4],
[5] on minimum energy.

We cannot yet comute explicitly the average system in
general. This is the topic of ongoing research, in particular
for orbital transfer with low thrust. Even without this
computation, the average system allows to give, in some
cases, an estimation of the asymptotics of minimum time
low thrust transfer when this thrust goes to zero.
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