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Abstract. A constructive method for time-varying stabilization of smooth driftless controllable
systems is developed. It provides time-varying homogeneous feedback laws that are continuous and
smooth away from the origin. These feedbacks make the closed-loop system globally exponentially
asymptotically stable if the control system is homogeneous with respect to a family of dilations
and, using local homogeneous approximation of control systems, locally exponentially asymptotically
stable otherwise.

The method uses some known algorithms that construct oscillatory control inputs to approximate
motion in the direction of iterated Lie brackets that we adapt to the closed-loop context.
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1. Introduction.

1.1. Related work and contribution. Stabilization by continuous time-vary-
ing feedback laws of nonlinear systems that cannot be stabilized by time-invariant
continuous feedback laws has been an ongoing subject of research in the past few
years.

The fact that for many controllable systems no continuous stabilizing feedback
exists was first pointed out by Sussmann [23]. A simple necessary condition was given
by Brockett [1], since known as “Brockett’s condition.” It allows us to identify a wide
class of controllable systems for which no continuous stabilizing feedback exists; these
include most controllable driftless systems. More recently, Coron gave a stronger
necessary condition [2].

A possible way of stabilizing systems for which these necessary conditions are
violated is to use discontinuous (time-invariant) control laws. This has been explored
in the literature, but the present work does not go in this direction at all.

The possibility of stabilizing nonlinear controllable systems via continuous time-
varying feedback control laws was first noticed in the very detailed study of stabiliza-
tion of one-dimensional systems by Sontag and Sussmann [21]. More recently, smooth
stabilizing control laws for some nonholonomic mechanical systems were given by
Samson [18]; this was the starting point of a systematic study of time-varying stabi-
lization. Coron [3] proved that all controllable driftless systems may be stabilized by
continuous (and even smooth) time-varying feedback and that “most” controllable sys-
tems (even with drift) can also be stabilized by continuous time-varying feedback [4].
Pomet deals with a less general class of controllable driftless systems [15].
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From here on, only driftless systems are considered in this paper. After the
general existence result given in [3], studies on the subject have focused on methods to
construct continuous time-varying stabilizing feedback laws and on obtaining feedback
laws that provide sufficiently fast convergence.

As far as the constructiveness aspect is concerned, for simplicity let us divide
the construction methods into two kinds. The first kind of method applies to rather
large classes of controllable driftless systems, such as the work of Coron [3] (general
controllable driftless systems; the paper is not oriented toward construction of the
control, but a method can be extracted from the proofs), Pomet [15] (controllable
driftless systems for which the control Lie algebra is generated by a specific set of
vector fields), or of M’Closkey and Murray [12] (same conditions as in [15]). These
studies all share the following feature: they use the solution of a linear PDE, or the
expression of the flow of a vector field, to construct the control law. This solution, or
this flow, has to be calculated beforehand, either analytically or numerically, and this
introduces, especially when no analytical solution is available, a degree of complication
which may not be necessary. The second kind of method found in the literature
provides explicit expressions. Its drawback is that it applies only to specific subclasses
of driftless systems, such as models of mobile robots or systems in the “chain form”
or “power-form,” like the work of Samson [18], Teel, Murray, and Walsh [27], and
Sépulchre, Campion, and Vertz [20], among others.

Alternatively, a need to improve the speed of convergence came out of the slow
convergence associated with the smooth control laws that were first proposed. This
concern motivated several studies, starting with the work by M’Closkey and Murray
[11], yielding continuous control laws which are not smooth, or even Lipschitz every-
where, but are homogeneous with respect to some dilation, and thus exponentially
stabilizing, not in the standard sense but with respect to some homogeneous norm
(this notion was introduced by Kawski [7]). See, for instance, further work by the au-
thors of this paper [16, 14] or by M’Closkey and Murray [12], who have also proposed
recently a procedure that transforms a given smooth stabilizing control law into a
homogeneous one [13]. Except for this last reference, which requires that a smooth
stabilizing control law has been designed beforehand, the construction of homoge-
neous exponentially stabilizing control laws in the literature is restricted to specific
subclasses of driftless systems.

The design method described in the present paper has the advantage of being
totally explicit, in the sense that it requires only ordinary differentiation and lin-
ear algebraic operations, while it applies to general controllable systems and pro-
vides exponential stability. This method gives homogeneous feedbacks, which ensure
global stability if the control vector fields are homogeneous and local stability oth-
erwise. The fact that it relates controllability with the construction of a stabilizing
control law in a more direct way than previous designs also makes it conceptually
appealing, all the more so as it may be viewed as converting the open-loop control
techniques reported by Liu and Sussmann in [25] and Liu [9] into closed-loop tech-
niques.

However, the generality of the method also has a price. When applied to particular
systems for which explicit solutions have long been available, the present method often
yields solutions which are significantly more complicated. This comes partly from the
complexity of the approximation algorithm proposed in [25, 9], which we use. This is
also a consequence of the modifications that we have made to adapt this algorithm
to our feedback control objective.
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1.2. Outline of the method. Nonlinear controllability results were first de-
rived for driftless systems; see, for instance, the work by Lobry [10], where it is shown
that such systems are controllable if and only if any direction in the state space can be
obtained as a linear combination of iterated Lie brackets of the control vector fields,
at least in real-analytic cases. It was also shown very early on by Haynes and Hermes
[5] that, under this same condition, any curve in the state-space can be approached by
open-loop solutions of the controlled system. (Note that this property is not shared
by all controllable systems, but rather is specific to driftless systems.) In these stud-
ies the key element is that, in addition to the directions of motion corresponding to
the control vector fields, motion along other directions corresponding to iterated Lie
brackets is also possible by quickly switching motions along the original control vector
fields. Take, for example, a system with two controls

ẋ = u1 b1(x) + u2 b2(x)(1.1)

with state x in R5, and assume that at each point x the vectors

b1(x) , b2(x) , [b1, b2](x) , [b1, [b1, b2]](x) , [b2, [b1, b2]](x)(1.2)

are linearly independent, and thus span R5. The idea in [5] is the following: first, it is
clear that any (e.g., differentiable) parameterized curve t 7→ γ(t) is a possible solution
of the “extended” system with five controls:

ẋ = v1 b1(x) + v2 b2(x) + v3 [b1, b2](x)(1.3)

+ v4 [b1, [b1, b2]](x) + v5 [b2, [b1, b2]](x)

(simply decompose γ̇(t) on the basis (1.2) to obtain the controls). Then it is proved
in [5] that there exists a sequence of (oscillatory) controls u1(ε, t, v1, v2, v3, v4, v5) and
u2(ε, t, v1, v2, v3, v4, v5) such that the system (1.1) “converges to” the system (1.3)
when ε → 0 in the sense that the solutions of (1.1) with these controls uk converge
uniformly on finite time intervals to the solutions of (1.3). The proof in [5] does
not give a process to build these sequences of approximating sequence of oscillatory
control, and although the case of a simple bracket (approximating [b1, b2] by switching
between b1 and b2) is elementary and well known, the case above of brackets of order
3 is more complex. The more recent work by Liu [9] and Sussmann and Liu [25] gives
an explicit construction of the approximating sequence. The process of building this
sequence is amazingly intricate compared to the simplicity of the existence proof in
[5]. Of course, the controls uk are not defined for ε = 0, and both their frequency and
their amplitude tend to infinity when ε goes to zero.

Being aware of these results, and faced with the problem of proving that any
controllable driftless system may be stabilized by means of a periodic feedback, the
most natural idea is probably the following, which we illustrate for (1.1) (5 states, 2
controls):

(a) Stabilize the extended system (1.3) by a control law vi(x). This is very easy,
and ẋ may even be assigned to be any desired function, for instance, −x.

(b) Use the approximation results and build the controls uk(ε, t, v1(x), v2(x),
v3(x), v4(x), v5(x)), according to the process given in [25, 9] so that when ε
tends to zero, the system (1.1) controlled with these controls “tends to” the
extended system (1.3) controlled with the controls vi(x).
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(c) Since the limit system is asymptotically stable (for instance, ẋ = −x), and
asymptotic stability is somehow robust, the constructed control laws are, it
is to be hoped, stabilizing for ε nonzero but small enough. For instance, one
may take ‖x‖2 as a Lyapunov function for the limit system, its time-derivative
along the limit system is −2‖x‖2, and it is tempting to believe that its time-
derivative along the original system controlled by uk(ε, t, v1(x), v2(x), v3(x),
v4(x), v5(x)) is no larger than −‖x‖2 for ε small enough.

Unfortunately, these arguments, which would have been somewhat simpler than those
in [3], are not rigorous as they stand. The meaning of “tends to” in point (b) is very
imprecise. In [5], and in [25, 9], only uniform convergence of the trajectories on finite-
time intervals are considered. This is not adequate for asymptotic stabilization. The
Lyapunov function-based argument in point (c) does not work because, in general,
when ε tends to zero, the time derivative of a given function along the system (1.1)
in feedback with the controls uk from point (b) does not tend to the time-derivative
of this function along the “limit” system (1.3). In addition, the fact that feedback
controls are considered instead of open-loop controls complicates the proofs because
the controls depend on the state and therefore may have a very high derivative with
respect to time not only through the high frequencies and amplitudes built into the
approximation process but also through their dependence on the state, whose speed
is proportional to these high amplitudes.

However, we show in the present paper that the above sketch is basically correct,
provided that homogeneous controls associated with a homogeneous Lyapunov func-
tion are used and that the construction of the approximating sequence is modified to
take into account the closed-loop nature of the controls. An argument of the type
of point (c) is possible based on a notion of approximation that is not in terms of
uniform convergence of trajectories, but in terms of the differential operator defined
by derivation along the system.

This paper is organized as follows. After a brief recall of technical material in
section 2, we state in section 3 the control objective, make homogeneity assumptions,
and explain how they will yield local results for general controllable systems. The
design method is developed in section 4 through four steps: choice of the “useful”
Lie brackets, construction of the stabilizing controls for the extended system (system
(1.3) in the above example), construction of the “state dependent” amplitudes for
the feedback law, and construction of the oscillatory controls by the method exposed
in [9]; the material from these steps is then gathered to give the control law, and
the stabilization result is stated. We present in this section all that is needed for
the construction of the control law, but the proofs of some properties needed at each
steps, and of the theorem, are given separately in section 7. Section 6 is devoted to
a convergence result needed in the proof of the stability theorem; it is a translation
in terms of differential operators (instead of trajectories) of the averaging results
presented in [25, 9, 26] and in [8]. An illustrative example is given in section 5.

2. Background on homogeneous vector fields. For any λ > 0, the “dilation
operator” δλ associated with a “weight vector” r = (r1, . . . , rn) (ri > 0) is defined on
Rn by

δλ(x1, . . . , xn) = (λr1x1, . . . , λ
rnxn).

A function f ∈ C o(Rn;R) is said to be homogeneous of degree τ with respect to the
family of dilations (δλ) if

∀λ > 0, f(δλ(x)) = λτf(x) .
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A homogeneous norm is any proper continuous positive function that is homogeneous
of degree 1.

A continuous vector field X on Rn is said to be homogeneous of degree σ with
respect to the family of dilations (δλ) if one of the following equivalent properties is
satisfied:

(1) For any i = 1, . . . , n, its ith component, i.e., the function x 7→ Xi(x), is
homogeneous of degree ri + σ.

(2) For any function h homogeneous of degree τ > 0 with respect to the same
dilation, the function LXh (its Lie derivative along X) is homogeneous of
degree σ + τ .

(3) For all positive constant λ, the vector field ((δλ)∗X), conjugate of X by the
diffeomorphism δλ —away from the origin— satisfies ((δλ)∗X) (x) = λ−σX(x)
for x 6= 0.

The previous definitions of homogeneity can be extended to time-varying functions
and vector fields by considering an “extended dilation”:

δλ(x1, . . . , xn, t) = (λr1x1, . . . , λ
rnxn, t).

Finally, let f ∈ C 0(Rn × R;Rn), with f(x, .) T -periodic, defining a homogeneous
vector field of degree zero with respect to a family of dilations (δλ). Then, the two
following properties are equivalent (see [7] for the autonomous case):

(i) the origin x = 0 of the system ẋ = f(x, t) is locally asymptotically stable.
(ii) x = 0 is globally ρ-exponentially asymptotically stable, i.e., for any homoge-

neous norm ρ, there exist K, γ > 0 such that, for any solution x(.) of the
system,

ρ(x(t)) ≤ Kρ(x(0))e−γt.

In what follows, when using the expression exponentially asymptotically stable, we will
refer to the ρ-exponential asymptotic stability defined above.

3. Problem statement. Consider a smooth driftless controllable system

ẋ =

m∑
i=1

uifi(x).(3.1)

In general, there does not exist a dilation with respect to which the control vector fields
are homogeneous. However, controllability implies that after some adequate change
of coordinates, there exist a dilation and a controllable homogeneous approximation
[6, 7]—with respect to this dilation—of the system (3.1) around the origin. Different
methods exist to find such a change of coordinates and dilation. For instance, a
constructive method (i.e., requiring only algebraic computations and derivations) is
given in [22]. Using this method, one obtains a driftless control system with control
vector fields homogeneous of degree −1. Moreover, any homogeneous feedback law
that asymptotically stabilizes this system also locally asymptotically stabilizes the
original system.

The present work constructs a homogeneous feedback that ensures global expo-
nential stabilization for homogeneous systems. Applied to the homogeneous approxi-
mation of a general system (3.1), it provides local exponential stabilization of (3.1).

Throughout this paper, we always consider a system

ẋ =

m∑
i=1

uibi(x),(3.2)
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where the bi’s are smooth vector fields and the system of coordinates is such that
there exist some integers (r1, . . . , rn) such that

(1) each vector field bi is homogeneous of degree −1 with respect to the family
of dilations δλ with weights (r1, . . . , rn);

(2) the rank at the origin of the Lie algebra generated by the bi’s is n:

Rank(Lie{b1, . . . , bm}(0) ) = n.(3.3)

The integer valued weights r1, . . . , rn are now fixed, and we denote

P = Max {ri; i = 1, . . . , n}.(3.4)

Our objective is to design feedback laws u = (u1, . . . , um) ∈ C 0(R×Rn;Rm) such
that the origin x = 0 of the closed-loop system (3.2) is exponentially asymptotically
stable.

Remark 3.1. We require only full rank control Lie algebra at the origin, but con-
trollability follows, because homogeneity allows us to deduce the same rank condition
everywhere.

Remark 3.2. We assume that the degrees are all equal to −1. These are the
degrees given by the construction of a homogeneous approximation in [22]. If a system
is naturally homogeneous, but the degrees are not all equal (if they are equal, a simple
scaling makes them all equal to −1), it might be better to use this natural homogeneity
than to construct a different homogeneous approximation that will have all the degrees
equal to −1. The present method can be adapted to the case when the degrees of
homogeneity are not all equal; this requires only a modification of the first step (see
Remark 4.3).

4. Controller design. The control design consists of four steps described below.
Step 1 (selection of Lie brackets).
In this step, we select some vector fields b̃j (j = 1, . . . , N), obtained as Lie brackets

of the control vector fields b1, . . . , bm. The b̃j are chosen recursively as follows. For
any p = 1, . . . , P (with P defined by (3.4)),

(1) compute all brackets of length p made from the control vector fields bi (i =
1, . . . ,m);

(2) select among the vector fields so obtained a maximal number of vector fields
independent1 over R. These vector fields are the b̃j (mp−1 + 1 ≤ j ≤ mp).
(We set m0 = 0 so that all the integers mp (p = 0, . . . , P ) are defined, with
N = mP .)

It follows from this construction that with each vector field b̃j we can associate a
Lie bracket of some bi’s, i.e.,

b̃j = Cj(bτ1
j
, . . . , b

τ
`(j)
j

) ,(4.1)

with
• Cj a formal bracket and bτ1

j
, . . . , b

τ
`(j)
j

the elements that are bracketed (listed

in the order they appear in the bracket);
• `(j) the number of vector fields that are bracketed in (4.1), i.e.,

`(j) = p ⇔ mp−1 + 1 ≤ j ≤ mp.

1Recall that some vector fields X1, · · · , Xr are said to be linearly independent over R if and only
if for any (λ1, . . . , λr) in Rr, the vector field λ1X1 + · · · + λrXr is identically zero on Rn only if
λ1 = · · · = λr = 0.
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For instance, if we choose a vector field b̃6 = [[b2, b1], [b1, [b1, b2]]], then we encode
this as (4.1) with `(6) = 5, τ2

6 = τ3
6 = τ4

6 = 1, τ1
6 = τ5

6 = 2, and the symbol C6
defined by C6(z1, z2, z3, z4, z5) = [[z1, z2], [z3, [z4, z5]]]. This notation is sloppy but
avoids using formal Lie brackets and the evaluation operator (see [24]) from a free
Lie algebra to vector fields, which would make the exposition uselessly heavy. Of
course, the decomposition (4.1) is not unique in general. From now on, we consider
that one decomposition has been chosen and that the Cj ’s and τkj ’s have been defined
accordingly.

Remark 4.1. (1) In Step 1 above, we do not need to compute all brackets of length
p. More precisely, let F denote the free Lie algebra generated by some indeterminates
s1, . . . , sm. Then, one can select a basis B of this Lie algebra (for instance a P. Hall
basis, as used by Sussmann and Liu [25, 26] and Liu [9]). If Bp denotes the elements
of B of order p, then it is clearly sufficient to consider Lie brackets of the bi obtained
by evaluating (in the sense of [24]) the elements of Bp at si = bi (i = 1, . . . ,m). One
usually takes this into account when checking controllability.

(2) Since the vector fields bi (i = 1, . . . ,m) are homogeneous of degree −1, each
bracket of length p of these vector fields is homogeneous of degree −p. Moreover, the
weights of the dilation being integers, any smooth vector field homogeneous of integer
degree is, in fact, polynomial. Using a (finite) basis of the polynomials homogeneous
of degree k (k ∈ {0, . . . , P − 1}), selecting Lie brackets of a given length consists only
of computing a basis of a finite dimensional vector space.

(3) We do not need to consider brackets of order larger than P because they
are identically zero; indeed, all components of these vector fields are homogeneous of
negative degree and, therefore, they would tend to infinity at the origin if they were
not identically zero.

Example. Let us illustrate this step on the following academic example:

ẋ1 = u1,

ẋ2 = x2
3(u1 + u2),

ẋ3 = u3,

which is of the form (3.2) with m = 3 and

b1 =
∂

∂x1
+ x 2

3

∂

∂x2
, b2 = x 2

3

∂

∂x2
, b3 =

∂

∂x3
.

The control vector fields are homogeneous of degree −1 with respect to the dilation
with weights r1 = 1, r2 = 3, and r3 = 1.

For the brackets of length 1, i.e., the control vector fields, b1 and b3 are indepen-
dent at the origin while b2 is zero at the origin but independent from b1 and b3 away
from x3 = 0. Hence m1 = 3, and one can take b̃1 = b1 = C1(b1), b̃2 = b2 = C2(b2),
and b̃3 = b3 = C3(b3).

At length 2 all the brackets vanish at the origin, but they are not identically zero:
[b2, b3] = −2x3

∂
∂x2

, and [b3, b1] = −[b2, b3]. Since [b1, b2] = 0, we have m2 = 4. We

define, for instance, b̃4 = [b2, b3] = C4(b2, b3).
Finally, since [b3, [b2, b3]] = −2 ∂

∂x2
, m3 = 5 with, for instance, b̃5 = [b3, [b2, b3]] =

C5(b3, b2, b3). Note that here, due to the origin being a singular point for the distri-
butions spanned by the control vector fields and by the brackets of order at most 2,
N is strictly larger than n.

With this general construction, we have the following proposition.
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Proposition 4.2. For any family (b̃j)j=1,...,N defined as above, we have the
following:

(a) Let j1, . . . , jn be such that Span{b̃j1(0), . . . , b̃jn(0)} = Rn. Then

∀x ∈ Rn, Span{b̃j1(x), . . . , b̃jn(x)} = Rn .

(b) Any vector field b that can be written as a Lie bracket of order p of some bi’s
is a linear combination of the b̃j’s with `(j) = p, i.e.,

b =

mp∑
j=mp−1+1

λj b̃j =
∑
`(j)=p

λj b̃j

for some real numbers λj ∈ R.

(c) The vector fields {b̃j}j=1,...,N are linearly independent over R.
(The proof is in section 7.1.)
Remark 4.3. If the degrees of the vector fields bi are not all equal, the above

construction has to be modified. More precisely, in the recursive construction of the
family (b̃j)j=1,...,N , we have to consider an induction on the degree of homogeneity
instead of an induction on the length of the Lie brackets. (Note that this is just a
generalization of the above construction, since for vector fields of the same degree −1
the set of Lie brackets of length p is the same as the set of Lie brackets of degree −p.)
This means that at each step, we have to compute the set of Lie brackets of a certain
degree and select from among them a finite number of vector fields that form a basis
of this set.

Step 2 (stabilization of the extended system).
Let a be a smooth vector field, homogeneous of degree zero with respect to the

family of dilations (δλ), and such that the origin x = 0 of the system ẋ = a(x) is
asymptotically stable. One may take, for instance, a(x) = −x. In view of Proposition
4.2(a), the n × n matrix whose columns are b̃j1(x), . . . , b̃jn(x) is invertible for all x.
Define the functions ũj (j = 1, . . . , N) by

•

 ũj1(x)
...
ũjn(x)

 =
(
b̃j1(x), . . . , b̃jn(x)

)−1

a(x),

• ũj = 0 ∀j /∈ {j1, . . . , jn}.

(4.2)

These functions are obviously such that

a =

N∑
j=1

ũj b̃j ,(4.3)

and furthermore, we may state this proposition.
Proposition 4.4. For any j = 1, . . . , N , the above-constructed function ũj is in

C∞(Rn − {0};R) ∩ C 0(Rn;R) and is homogeneous of degree `(j).
Proof. Continuity and smoothness away from the origin are inherited from the

vector fields b̃j and the vector field a. Each ũjk is homogeneous of degree `(jk) because
the lth component of the vector field a is homogeneous of degree rl and the element
(k, l) of the matrix (b̃j1(x), . . . , b̃jn(x))−1 is homogeneous of degree `(jk) − rl. This
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last statement is true because the element (k, l) of the matrix (b̃j1(x), . . . , b̃jn(x)) is

homogeneous of degree rl − `(jk) for the vector field; b̃jk is an iterated Lie bracket
of `(jk) homogeneous vector fields of degree −1 and hence is homogeneous of degree
−`(jk).

Step 3 (construction of the state-dependent amplitudes).
This step consists of finding some functions vkj ∈ C∞(Rn−{0};R)∩C 0(Rn;R) (j =

1, . . . , N, k = 1, . . . `(j)) homogeneous of degree one and such that

N∑
j=1

ũj Cj(bτ1
j
, . . . , b

τ
`(j)
j

) =

N∑
j=1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ).(4.4)

Recall that the Cj ’s, defined in Step 1, are the brackets associated with the b̃j ’s, i.e.,

b̃j = Cj(bτ1
j
, . . . , b

τ
`(j)
j

) .(4.5)

The construction of the functions vkj is based on the following lemma.
Lemma 4.5. Let C(bi1 , . . . , bip) (ik ∈ {1, . . . ,m}) be any Lie bracket of some vector

fields bik (ik ∈ {1, . . . ,m}), and vk ∈ C∞(Rn−{0};R)∩C 0(Rn;R) (k = 1, . . . , p) some
functions homogeneous of degree 1. Then,

(i) C(bi1v1, . . . , bipvp) = v1 . . . vp C(bi1 , . . . , bip)−
mp−1∑
j=1

hj b̃j ;

(ii) for any j = 1, . . . ,mp−1, hj ∈ C∞(Rn −{0};R)∩C 0(Rn;R) is homogeneous
of degree `(j).

The proof of this lemma, left to the reader, follows from Proposition 4.2(b) by a
direct induction on the length p of the bracket C(bi1v1, . . . , bipvp). It is a generalization
of the fact that for two functions v1 and v2, and vector fields bi1 and bi2 , [v1bi1 , v2bi2 ] =
v1v2[bi1 , bi2 ]− v2(Lbi2 v1)bi1 + v1(Lbi1 v2)bi2 .

Note that the functions hj in Lemma 4.5 can be explicitly computed by expressing

brackets of order not larger than p− 1 as linear combinations of b̃1, . . . , b̃mp−1
.

Based on Lemma 4.5, the functions vkj can be constructed recursively as follows.
Step p = P : For any j ∈ {mP−1 + 1, . . . ,mP }, we define

vPj =
ũj
ρP−1

and vkj = ρ (k = 1, . . . , P − 1) ,(4.6)

with ρ any homogeneous norm in C∞(Rn − {0};R) ∩ C 0(Rn;R) (for instance, one

may take ρ(x) = (
∑ |xi| qri )

1
q with q = 2

∏n
i=1 ri).

In view of (4.5), (4.6), and Lemma 4.5, we have

mP∑
j=mP−1+1

Cj(bτ1
j
v1
j , . . . , bτPj v

P
j ) =

mP∑
j=mP−1+1

ũj b̃j −
mP−1∑
j=1

hPj b̃j(4.7)

with hPj (j = 1, . . . ,mP−1) obtained by expanding the brackets in the left-hand side

of (4.7) with respect to the variables vkj and their derivatives.

Step 1 ≤ p < P : Assume that the functions vkj (j = mp + 1, . . . ,mP , k =

1, . . . , `(j)) and hkj (j = mp + 1, . . . ,mP , k = p + 1, . . . , P ) have been computed in
Steps P to p+ 1 and satisfy the induction assumption

N∑
j=mp+1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) =

N∑
j=mp+1

ũj b̃j −
mp∑
j=1

hp+1
j b̃j .(4.8)
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We define, for any j ∈ {mp−1 + 1, . . . ,mp},

vpj =
1

ρp−1
(ũj + hp+1

j ) and vkj = ρ (k = 1, . . . , p− 1) .(4.9)

In view of (4.5), (4.9), and Lemma 4.5, we have

mp∑
j=mp−1+1

Cj(bτ1
j
v1
j , . . . , bτpj v

p
j ) =

mp∑
j=mp−1+1

(ũj + hp+1
j )b̃j +

mp−1∑
j=1

(hp+1
j − hpj )b̃j(4.10)

for an adequate choice of the hpj (j = mp−1 + 1, . . . ,mp) obtained again by expanding

the brackets in the left-hand side of (4.7) with respect to the variables vkj and their
derivatives. In view of (4.8) and (4.10), we have

N∑
j=mp−1+1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) =

N∑
j=mp−1+1

ũj b̃j −
mp−1∑
j=1

hpj b̃j(4.11)

so that the induction assumption (4.8) on Steps P to p+ 1 is also true for Steps P to
p.

The computation of the functions vkj and hkj ends after Step p = 1 has been
performed. Let us remark that in the last step (p = 1), there is no function hpj to
compute. With this construction, we have the next proposition.

Proposition 4.6. Consider the functions vkj defined above. Then

(a) each vkj (j = 1, . . . , N , k = 1, . . . , `(j)) belongs to C∞(Rn − {0};R) ∩
C 0(Rn;R) and is homogeneous of degree 1;

(b) (4.4) is satisfied.
Proof. Point (b) is a direct consequence of (4.11) with p = 1. Point (a) is an easy

consequence of Proposition 4.4, equations (4.6) and (4.9), and Lemma 4.5.
Step 4 (oscillatory approximation of Lie brackets).
The last step of our construction relies on the work of Liu [9] and Sussmann and

Liu [25, 26]. More precisely, consider a control system

ẋ =

A∑
α=1

uαXα(x)(4.12)

with X1, . . . , XA some smooth vector fields on a smooth n-dimensional manifold, a
“Lie bracket extended” system

ẋ =
B∑
β=1

wβXβ(x) (B ≥ A),(4.13)

where the A first vector fields are the same as in (4.12), and the other vector fields
are Lie brackets of X1, . . . , XA. In [9], an algorithm is given that builds, for any set
of integrable functions of time wβ (β = 1, . . . , B), some “highly oscillatory” functions
of time uεα such that the trajectories of (4.12), with uα = uεα, approximate those of
(4.13).

We do not describe this algorithm here, though we use the notation

uεα = F (α , ε , (wβ)1≤β≤B) ,(4.14)
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where F is a function described algorithmically in [9]. It depends only on which Lie
brackets have to be performed to obtain the vector fields XA+1, . . . , XB from the
vector fields X1, . . . , XA. It is of the form

uεα(t) = ηα,0(t) + ε−
1
2

∑
ω∈Ω(2,α)

ηω,α(t)eiωt/ε +
N∑
n=3

ε
n−1
n

∑
ω∈Ω(n,α)

ηω(t)eiωt/ε,(4.15)

with N the length of the higher order bracket Xβ in (4.13), ηα,0, ηω,α, and ηω some
functions, and Ω2,α, Ωn,α some finite subsets of R, that are all built precisely in [9].
In particular, the construction of the “approximating inputs” uεα given in [9] implies
the following.

Theorem 4.7 (see [9]). For any T (0 < T < +∞) and any family wβ (β =
1, . . . , B) of integrable functions on [0, T ], the functions uεα (α = 1, . . . , A) given
by (4.14), where F symbolizes the algorithm described in [9], are integrable and are
such that the trajectories of (4.12)–(4.15) converge to the trajectories of (4.13) in the
following sense: For any p ∈ Rn, if the system (4.13) with x(0) = p has a unique
solution x∞ defined on [0, T ] and if xε is a maximal solution of system (4.12)–(4.15)
with x(0) = p, then xε is defined on [0, T ] for ε small enough and converges uniformly
to x∞ on [0, T ] as ε→ 0.

Remark 4.8. (1) The functions uεα in (4.15) are real-valued because each Ωn,α
(n = 2, . . . , N) is symmetric (ω ∈ Ωn,α ⇒ −ω ∈ Ωn,α), η−ω = ηω, and η−ω,α = ηω,α.

(2) If the functions wβ in (4.13) are constant, the functions ηα,0, ηω,α, and ηω are
also constant.

Consider now the following two systems:

ẋ =
N∑
j=1

`(j)∑
s=1

uj,sbτs
j
vsj ,(4.16)

ẋ =

N∑
j=1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) .(4.17)

Systems (4.16) and (4.17) are of the same form as (4.12) and (4.13), respectively, with
the vector fields Xα being the bτs

j
vsj ’s (with α a double index (j, s)), the vector fields

Xβ being these plus the brackets in (4.17), i.e., Cj(Xj,1, . . . , Xj,`(j)), 1 ≤ j ≤ N , and
each wβ in (4.13) being constant: 0 in front of theXβ ’s that are alsoXα’s and 1 in front
of the added brackets. Note that since each original vector field from (3.2) appears
many times in the brackets selected in Step 1, we consider here as independent control
vector fields in (4.12) some vector fields that are in fact “multiples” of each other: for
instance if the vector field b1 appears more than one time, we have τsj = τ s′j′ = 1 for
some (j, x) 6= (j′, s′), and vsj b1 and vs′j′b1 are distinct control vector fields Xα in (4.12).

Following Liu’s algorithm, we construct some functions

uεj,s = F ((j, s), ε, (0, . . . , 0, 1, . . . , 1)) ,

where F is the notation introduced in (4.14), such that the trajectories of (4.16)–(4.18)
(which exist on any time interval because the system is degree zero homogeneous)
converge uniformly on any time interval [0, T ] to those of (4.17), as ε tends to zero.
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Recall (see (4.15)) that they are of the form

uεj,s(t) = ηj,s,0 + ε−
1
2

∑
ω∈Ω(2,j,s)

ηω,j,se
iωt/ε +

P∑
n=3

ε
n−1
n

∑
ω∈Ω(n,j,s)

ηωe
iωt/ε .(4.18)

Note that the functions η in (4.18) are constant in view of Remark 4.8 above. We
rewrite system (4.16)–(4.18) as

ẋ =

m∑
i=1

( ∑
(j,s):τs

j
=i

uεj,s(t)v
s
j (x)

)
bi(x) .(4.19)

Our final control laws are defined by

uεi (x, t) =
∑

(j,s):τs
j

=i

uεj,s(t)v
s
j (x) .(4.20)

As stated in the following theorem, they ensure asymptotic stability of system (3.2)
for “sufficiently large” frequencies.

Theorem 4.9. Let the controls uεi be these described above. Then, the vector
field in the right-hand side of the time-varying closed-loop system

ẋ =

m∑
i=1

uεi (x, t) bi(x)(4.21)

is homogeneous of degree zero and, for ε > 0 sufficiently small, the origin is exponen-
tially uniformly asymptotically stable. (See the proof in section 7.3.)

Remark 4.10. Our construction a priori implies uniform convergence of the tra-
jectories of (4.21) to those of (4.17), the origin of which is asymptotically stable from
(4.3) to (4.5). However, this is not enough to infer asymptotic stability of (4.21).
In the proofs, and in section 6, we introduce a stronger kind of convergence (DO-
convergence), sufficient to infer asymptotic stability of (4.21). However, we quote
uniform convergence here (instead of the DO-convergence, which we really need) be-
cause we base our construction on [9]. It makes the present construction clearer. (To
construct the controls, one needs only to follow the algorithm in [9]; the kind of con-
vergence does not matter.) Also, using the convergence result from [9] (Theorem 4.7)
provides a shortcut in the proof on DO-convergence. This may make the paper less
self-contained, but it avoids reproducing some difficult calculations made in [9].

5. An illustrative example. We now illustrate the control design method
shown in section 4. Let us consider the following system in R4:

ẋ = b1u1 + b2u2 ,(5.1)

with b1 = ∂
∂x1

+x3
∂
∂x2

+x4
∂
∂x3

and b2 = ∂
∂x4

, which can be used to model the kinematic
equations of a car-like mobile robot. One easily verifies that the vector fields b1 and
b2 are homogeneous of degree −1 with respect to the family of dilations of weight
r = (1, 3, 2, 1), and that this system is controllable. We follow this example with the
four steps of our control design procedure.

Step 1. Since [b1, b2] = − ∂
∂x3

, [b1, [b1, b2]] = ∂
∂x2

, and [b2, [b2, b1]] = 0, the family

(b̃j) is directly given by

(b̃j) = (b̃1, b̃2, b̃3, b̃4) = (b1, b2, [b1, b2], [b1, [b1, b2]])

= (C1(bτ1
1
), C2(bτ1

2
), C3(bτ1

3
, bτ2

3
), C4(bτ1

4
, bτ2

4
, bτ3

4
)).

(5.2)
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This implies that τ1
1 = 1, τ1

2 = 2, τ1
3 = 1, τ2

3 = 2, τ1
4 = τ2

4 = 1, τ3
4 = 2, and that

m1 = 2, m2 = 3, and m3 = N = 4.
Step 2. Let us, for instance, define the vector field a by a(x) = −x. (The origin

x = 0 of ẋ = a(x) is obviously asymptotically stable.) Then the integers jk are simply
defined by jk = k (k = 1, . . . , 4). By a direct computation, one obtains the following
expression for the functions ũj :

(ũ1, ũ2, ũ3, ũ4)T (x) = (b̃1, b̃2, b̃3, b̃4)−1(x) a(x)

= (−x1,−x4,−x1x4 + x3, x1x3 − x2)T .
(5.3)

Step 3. From Step 1, the brackets Ck are defined by

C1(x1) = x1, C2(x2) = x2, C3(x1, x2) = [x1, x2], C4(x1, x1, x2) = [x1, [x1, x2]] .

We now follow the procedure exposed in section 4.
Step p = P = 3: The functions v1

4 , v
2
4 , and v3

4 are given, in view of (4.6), by

v1
4 = v2

4 = ρ, v3
4 =

ũ4

ρ2
,(5.4)

with ρ ∈ C∞(R4−{0};R)∩C 0(R4;R) a homogeneous norm. (For instance, one may

take ρ(x) = (x12
1 + x4

2 + x6
3 + x12

4 )
1
12 .)

We also compute the functions hPj involved in (4.7). A tedious but simple calcu-
lation gives

h3
1 = v2

4v
3
4L[b1,b2]v

1
4 + v2

4Lb1v
3
4Lb2v

1
4 + v1

4Lb1(v3
4Lb2v

2
4)− v3

4Lb1v
1
4Lb2v

2
4 ,

h3
2 = −v1

4Lb1(v2
4Lb1v

3
4) ,

h3
3 = −v1

4Lb1v
2
4v

3
4 − v1

4v
2
4Lb1v

3
4 .

(5.5)

Step p = 2: The functions v1
3 and v2

3 are given, in view of (4.9), by

v1
3 = ρ, v2

3 =
(ũ3 + h3

3)

ρ
.(5.6)

The functions h2
1 and h2

2 defined by (4.10) can be computed using (5.6):

h2
1 = h3

1 + v2
3Lb2v

1
3 ,

h2
2 = h3

2 − v1
3Lb1v

2
3 .

(5.7)

Step p = 1: Finally, the functions v1
1 and v1

2 are defined, from (4.9) again, by

v1
1 = ũ1 + h2

1, v1
2 = ũ2 + h2

2 .(5.8)

Step 4. First, we need to find functions uj,s (j = 1, . . . , 4 , s = 1, . . . , `(j)) such
that the trajectories of the system

ẋ =

4∑
j=1

`(j)∑
s=1

uj,sbτs
j
vsj(5.9)

converge uniformly to those of the system

ẋ =

4∑
j=1

Cj(bτ1
j
v1
j , . . . , bτ`(j)

j

v
`(j)
j ) .(5.10)
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We remark that, in view of (5.2), (5.4), and (5.6), the vector fields bτ1
3
v1

3 , bτ1
4
v1

4 , and

bτ2
4
v2

4 are in fact identical. As a consequence, there are only 5—not 7 (the number

of terms in the sum (5.9))—different vector fields in (5.9) or (5.10). Therefore, the
system (5.9) can be rewritten as

ẋ =

5∑
i=1

uiXi(5.11)

with X1 = b1v
1
1 , X2 = b2v

1
2 , X3 = b1v

1
3 = b1v

1
4 = b1v

2
4 , X4 = b2v

2
3 , and X5 = b2v

3
4 , and

u1, u2, u3, u4, u5 standing, respectively, for u1,1, u2,1, u3,1 +u4,1 +u4,2, u3,2, and u4,3,
and the system (5.10) can then be rewritten as

ẋ = X1 +X2 + [X3, X4] + [X3, [X3, X5]] .(5.12)

We choose some candidate functions ui, for the approximation of trajectories of (5.12)
by solutions of (5.11), of the following form:

u1(t) = η1,0 ,

u2(t) = η2,0 ,

u3(t) = ε−
1
2 ηω1,1

cosω1,1t/ε+ ε−
2
3

(
ηω2,1

cosω2,1t/ε + ηω2,2
cosω2,2t/ε

)
,

u4(t) = ε−
1
2 ηω1,2

sinω1,2t/ε,

u5(t) = ε−
2
3 ηω2,3

cosω2,3t/ε

(5.13)

with ωk,j defined for instance by

Ω1 = {ω1,1, ω1,2} = {7
2 ,− 7

2}
and Ω2 = {ω2,1, ω2,2, ω2,3} = {2, 3,−5}.

Note in particular that each set Ωk is “minimally cancelling” (MC) in the sense of
[9, 25, 26]. Using [9, Theorem 5.1] (see also [9, section 8]), where a very similar example
is treated), one can show that the trajectories of system (5.11)–(5.13) converge to those
of the system

ẋ = η1,0X1 + η2,0X2 −
ηω1,1

ηω1,2

2ω1,1
[X3, X4]− ηω2,1

ηω2,2
ηω2,3

4ω2,1ω2,2
[X3, [X3, X5]] .(5.14)

In order to identify system (5.12) with system (5.14), one can, for instance, define

η1,0 = η2,0 = ηω1,1 = ηω2,1 = ηω2,2 = 1

and

ηω1,2
= −2ω1,1, ηω2,3

= −4ω2,1ω2,2 .

Expressing the right-hand term of (5.11) as a function of the control vector fields b1
and b2, we finally obtain the expression of our stabilizing feedbacks:{

uε1(x, t) = u1(t/ε)v1
1(x) + u3(t/ε)v1

3(x),

uε2(x, t) = u2(t/ε)v1
2(x) + u4(t/ε)v2

3(x) + u5(t/ε)v3
4(x)

(5.15)

with the ui’s defined by (5.13) and the vsj ’s defined by (5.4), (5.6), and (5.8).
Although the above expression of the control laws appears quite simple, it is, in

fact, quite involved due to the terms contained in the vsj ’s, and in particular due to the
functions hpj defined by (5.5) and (5.7). This is a negative aspect of our construction:
solving the equation (4.4) in the vsj ’s leads to heavy computations.
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6. Convergence of highly oscillatory vector fields as differential oper-
ators. As explained in the introduction (section 1.2), the convergence results which
are implicitly contained in [5], and explicitly in [25, 9] or [8], in terms of uniform con-
vergence of solutions on finite time intervals, are not sufficient here. In this section,
we state separately the convergence result that is used to prove Theorem 4.9. The
word convergence is perhaps a bit farfetched since there is no notion of limit in the
topological sense; the convergence is more of an algebraic nature: we simply decom-
pose the operator as the sum of a nonoscillating term (the “limit”) and a term which
is a differential operator—of order higher than 1—whose coefficients are, when ε goes
to zero and x remains in a compact set, O(εγ), with γ > 0. However, this result will
prove to be sufficient for our needs. It is also sufficient to recover the uniform conver-
gence stated in [5, 8, 25, 9]. In what follows, T denotes any time interval (possibly
infinite).

Definition 6.1. Let F ε (ε ∈ (0, ε0] ε0 > 0) and F 0 be vector fields on R1+n,
defined by F ε(t, x) = ∂

∂t + f(ε, t, x) and F 0(t, x) = ∂
∂t + f0(t, x) with f ∈ C0((0, ε0]×

T ×Rn;Rn) ∩ C∞((0, ε0]× T × (Rn − {0});Rn), and f0 ∈ C0(T ×Rn;Rn) ∩ C∞(T ×
(Rn − {0});Rn).

We say that F ε converges as a differential operator of order one on functions of
t and x, in brief “DO-converges,” to F 0, as ε −→ 0, if

F ε = F 0 + εγ1

(
F εDε

1 − Dε
1

∂

∂t

)
+ εγ2 Dε

2 .(6.1)

The above equality is understood as an equality of differential operators. γ1 and γ2

are strictly positive reals, and Dε
1 and Dε

2 are differential operators whose coefficients
are continuous, smooth outside the origin, and locally uniformly bounded when ε→ 0,
i.e., there exists ε0 > 0 such that for all compact subset K of Rn, each component of
these differential operators is bounded for (ε, t, x) ∈ (0, ε0]× T ×K.

This kind of convergence carries with it two important properties.
Proposition 6.2. Suppose that a vector field F ε DO-converges, as ε −→ 0, to a

vector field F 0 on a time interval T . Then we have the following.
(1) The trajectories of ẋ = f(ε, t, x) converge uniformly to those of ẋ = f0(t, x)

on finite time intervals. More precisely, let [0, T ] ⊂ T , and let x0 be the
(unique) solution of

ẋ = f0(t, x),

x(0) = x0 .
(6.2)

Then, for ε small enough, the unique solution xε of

ẋ = f(ε, t, x),

x(0) = x0

(6.3)

is defined on [0, T ], and xε(t) converges to x0(t) uniformly on [0, T ].
(2) If T = [0,+∞), and if all vector fields in (6.1) are homogeneous of degree

zero and f0 is autonomous, then, if the origin of

ẋ = f0(x)(6.4)

is asymptotically stable, the origin of

ẋ = f(ε, t, x)(6.5)

is (exponentially) asymptotically stable too for ε > 0 sufficiently small.
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Proof. We prove (1). First, we rewrite (6.1) as

F ε(I − εγ1Dε
1) = F 0 − εγ1 Dε

1

∂

∂t
+ εγ2 Dε

2 .

This is an equality between differential operators. We apply each side to the coor-
dinate functions xi. Dε

1xi and Dε
2xi are simply the coefficients in front of ∂

∂xi
in

the expression of the differential operator Dε
1 or Dε

2. This implies (coordinate by
coordinate) that the differential equation (6.3) can be rewritten

d

dt
(x − εγ1d1(ε, t, x)) = f0(t, x) + εγ2d2(ε, t, x),(6.6)

where di(ε, t, x) (i ∈ {1, 2}) is the vector whose jth component is the coefficient of
∂
∂xj

in Dε
i . This implies that the difference between x0(t)− xε(t) satisfies

‖xε(t)− x0(t)‖ ≤ εγ1‖d1(ε, t, x0(t))‖ + εγ1‖d1(ε, t, x0)‖

+

∫ t

0

‖f0(τ, xε(τ))− f0(τ, x0(τ))‖dτ + εγ2

∫ t

0

‖d2(ε, τ, xε(τ))‖dτ.

The standard Gronwall lemma then yields, ∀ ε ∈ (0, ε0] and ∀ t ∈ [0, T ] such that xε

remains in the interior of a certain compact neighborhood K of the trajectory x0, the
estimate ‖xε(t)− x0(t)‖ ≤ (2εγ1 + Tεγ2)Meλt, where λ is a Lipschitz constant (with
respect to x) of F on [0, T ] ×K and M is an upperbound on (0, ε0] × [0, T ] ×K for
both ‖d1‖ and ‖d2‖. This proves (1).

Let us prove (2). Since the right-hand side of (6.4) is homogeneous of degree
zero, there exists [17] a homogeneous and autonomous Lyapunov function V , positive
definite, whose derivative along (6.4) is given by

V̇(6.4) = F 0V = −W.(6.7)

Here X V , for X a vector field, denotes the Lie derivative of V along X with W
homogeneous positive definite of the same degree as V , i.e.,

W (x) ≥ c V (x).(6.8)

Let us now compute the derivative of V along system (6.5). From (6.1) and (6.7),

V̇(6.5) = F εV = −W + εγ1 F εDε
1V − εγ1 Dε

1

∂V

∂t
+ εγ2 Dε

2V,

which can be rewritten, since V is autonomous, as

F εVε = −W + εγ2 Dε
2V,(6.9)

with

Vε = V − εγ1 Dε
1V.(6.10)

Since, by assumption, the operators Dε
1 and Dε

2 are homogeneous of degree zero, and
locally uniformly bounded with respect to ε > 0, one has, since V is positive definite,

|Dε
1V | ≤ k V, |Dε

2V | ≤ k V
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∀ ε > 0. Hence, for ε sufficiently small, Vε is arbitrarily close to V and hence positive
definite, and also

V̇ε = F ε Vε ≤ − c
2
V.(6.11)

Therefore, for ε small enough, Vε is a strict Lyapunov function for system (6.5). This
ends the proof of 2 via Lyapunov’s first method.

Before stating our convergence result, we recall two definitions introduced in
[25, 9].

Definition 6.3 (see [25, 9]). Let Ω be a finite subset of R and |Ω| denote the
number of elements of Ω. The set Ω is said to be MC if and only if

(i)
∑
ω∈Ω ω = 0;

(ii) this is the only zero sum with at most |Ω| terms taken in Ω with possible
repetitions: ∑

ω∈Ω

λωω = 0

(λω)ω∈Ω ∈ Z|Ω|∑
ω∈Ω

|λω| ≤ |Ω|


=⇒


(λω)ω∈Ω = (0, . . . , 0),

or (1, . . . , 1),

or (−1, . . . ,−1).

(6.12)

For example, a set {ω1, ω2} is MC if and only if ω2 = −ω1 with ω1 6= 0, a set
{ω1, ω2, ω3} is MC if and only if ω3 = −ω1 − ω2 with ω1 6= 0, ω2 6= 0, ω1 + ω2 6= 0,
ω1 − ω2 6= 0, ω1 + 2ω2 6= 0, 2ω1 + ω2 6= 0, ω1 − 2ω2 6= 0, 2ω1 − ω2 6= 0. . . .

Definition 6.4 (see [25, 9]). Let (Ωα)α∈I be a finite family of finite subsets Ωα
of R. The family (Ωα)α∈I is said to be “independent with respect to p” if and only if

•
∑
α∈I

∑
ω∈Ωα

λωω = 0

• (λω)ω∈Ωα,α∈I ∈ ZΣ|Ωα|

•
∑
α∈I

∑
ω∈Ω

|λω| ≤ p


=⇒

∑
ω∈Ωα

λωω = 0 ∀α ∈ I.(6.13)

For example, the sets ({ω1, ω2, ω3}, {ω4, ω5}) are both MC and independent with
respect to 2 if and only if ω3 = −ω1 − ω2 and ω5 = −ω4 with ω1 6= 0, ω2 6= 0,
ω1 + ω2 6= 0, ω1 − ω2 6= 0, ω1 + 2ω2 6= 0, 2ω1 + ω2 6= 0, ω1 − 2ω2 6= 0, 2ω1 − ω2 6= 0,
ω4 6= 0 (this is MC), and ω1 + ω4 6= 0, ω1 − ω4 6= 0, ω2 + ω4 6= 0, ω2 − ω4 6= 0,
ω1 + ω2 + ω4 6= 0, ω1 + ω2 − ω4 6= 0 (this is independence).

We are now ready to state our convergence result.
Theorem 6.5. Let N be a positive integer and consider, for j = 1, . . . , N ,
• some vector fields Xs

j ∈ C∞(Rn − {0};Rn) ∩ C 0(Rn;Rn) (s = 1, . . . , `(j)),
• some smooth complex valued functions of time ηsj (s = 1, . . . , `(j)) such that,

for some M, ∣∣ηsj (t)∣∣ ≤M and
∣∣η̇sj (t)∣∣ ≤M ∀t ∈ T ,(6.14)

• some sets Ωj = {ω1
j , . . . , ω

`(j)
j } of real numbers such that ωsj = 0 if `(j) = 1,

Ωj is MC if `(j) ≥ 2, and the family (Ωj) (`(j) ≥ 2) is independent with

respect to P
∆
= Maxj`(j).
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Then the vector field

F ε =
∂

∂t
+

N∑
j=1

`(j)∑
s=1

αsj,εX
s
j ,(6.15)

with

αsj,ε(t) = 2ε−
`(j)−1
`(j) <

(
ηsj (t) e

iωsj t/ε
)
,(6.16)

DO-converges, as ε→ 0, to the vector field

F 0 =
∂

∂t
+

N∑
j=1

2

`(j)
<
(
η1
j · · · η`(j)j

i`(j)−1

)
Bj(6.17)

with Bj =
∑

σ∈S(`(j))

[X
σ(1)
j , [X

σ(2)
j , [. . . , X

σ(`(j))
j ] . . .]]

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) . . . (ω

σ(1)
j + . . .+ ω

σ(`(j)−1)
j )

.

Furthermore, if all the vector fields Xs
j are homogeneous of degree zero, then all the

differential operators in (6.1) are homogeneous of degree zero also.
Remark 6.6. This result is very much related to the theory of “normal forms” for

time-varying differential equations, as shown, for instance, in [19, Chapter 6]. Let us
recall (see [19] for details) that a vector field ∂

∂t + εf0(t, x) ∂
∂x is said to be in normal

form if and only if [ ∂∂t , f
0 ∂
∂x ] = 0, i.e., if f0 does not depend on t. For a system

(Σε) ẋ = f(ε, t, x),

finding a normal form means finding a change of coordinates x 7→ y = x+α(ε, x) that
transforms (Σε) into

(Σ0) ẏ = εf0(y).

In general, deciding whether a normal form exists for a system, and then possibly
finding this normal form, is a difficult problem and there are no systematic tools
available.

Let us, however, rephrase Theorem 6.5 in the terms of [19]. By a time-scaling
t 7→ εt, the system ẋ = f(ε, x, t), where f is defined by F ε = ∂

∂t + f ∂
∂x , with F ε given

by (6.15), is rewritten as

(Σ′ε) ẋ = εf1(t, x) + ε1/2f2(t, x) + · · · + ε1/P fP (t, x).

In the context of “normal forms,” Theorem 6.5 states that (Σ0), with f0 defined by
F 0 = ∂

∂t + f0 ∂
∂x and F 0 given by (6.17), is a normal form for (Σ′), up to terms of

higher order in ε.

7. Proofs.

7.1. Proof of Proposition 4.2 (section 4). Point (b) is strictly a consequence
of the construction. Point (c) follows from the fact that if a linear combination of all
the vector fields b̃j with constant real coefficients is identically zero, then homogene-
ity implies that each linear combination where only the terms corresponding to the
brackets of same length must also be zero, and since by construction all the brackets
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b̃j of same length are linearly independent over R, this implies that all the coefficients
are zero.

Let us prove point (a). Recall that any Lie bracket of length p > P made with the
vector fields bi is identically zero (see Remark 4.1). From this fact, the controllability
assumption (3.3), and the construction itself, there clearly exist integers j1, . . . , jn ∈
{1, . . . , N} such that {b̃j1(0), . . . , b̃jn(0)} is a basis of Rn. Hence {b̃j1(x), . . . , b̃jn(x)}
is a basis of Rn for x in some neighborhood W of the origin. Let us show that this is
true for any x in Rn. Let x be outside W . There exist λ > 0 such that x̄ = δλ(x) is
in W and hence {b̃j1(x̄), . . . , b̃jn(x̄)} is a basis of Rn. This implies, since δλ is a local
diffeomorphism from a neighborhood of x to a neighborhood of x̄, that{(

(δ−1
λ )∗b̃j1

)
(x), . . . ,

(
(δ−1
λ )∗b̃jn

)
(x)
}

is also a basis of Rn. Now, from the homogeneity, (δ−1
λ )∗b̃jk = λ−`(jk)b̃jk . This proves

point (a).

7.2. Proof of Theorem 6.5. In [5, 8, 25, 9], the main ingredient of the proof
was iterated integrations by parts. Here we mimic these integrations by parts but at
the level of products of differential operators instead of integrals along the solutions.
The closed-loop vector field F ε can be rewritten as

F ε =
∂

∂t
+
∑

1≤j≤N
`(j)=1

2η1
jX

1
j(7.1)

+
∑

1≤j≤N
`(j)≥2

`(j)∑
s=1

ε−
`(j)−1
`(j)

(
ηsje

iωsj t/ε + ηsje
−iωsj t/ε

)
Xs
j .

Let us make some conventions and definitions, used only in the present proof. We
define the sets of indices

J = {j ∈ {1, . . . , N}, `(j) ≥ 2} = {m1 + 1, . . . , N},(7.2)

Jl = {j ∈ {1, . . . , N}, `(j) = l} = {ml−1 + 1, . . . ,ml},(7.3)

Kj = {−`(j),−`(j)− 1, . . . ,−1, 1, 2, . . . `(j)}(7.4)

and the sets of pairs of indices

I = {(j, s), j ∈ J, s ∈ Kj} =
⋃
j∈J
{j} ×Kj ,(7.5)

Il = {(j, s) ∈ I, `(j) = l} =
⋃
j∈Jl
{j} ×Kj .(7.6)

We call F1 the vector field

F1 =
∑

1≤j≤N
`(j)=1

2η1
jX

1
j =

∑
(j,s)∈I1

2ηsjX
s
j .(7.7)

Clearly, if we define, for s < 0, the real numbers ωsj , the complex numbers ηsj ,
and the vector fields Xs

j by

ω−sj = −ωsj
η−sj = ηsj

X−sj = Xs
j

 for j ∈ J , s ∈ Kj , s > 0,(7.8)
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the vector field F ε from (7.1) may be rewritten as

F ε =
∂

∂t
+ F1 +

∑
(j,s)∈I

ε−
`(j)−1
`(j) ηsje

iωsj t/εXs
j(7.9)

=
∂

∂t
+ F1 + ε−

1
2 F ε2 + ε−

2
3 F ε3 + · · · + ε−

P−1
P F εP ,(7.10)

where

F εl =
∑

(j,s)∈Il
ηsje

iωsj t/εXs
j .(7.11)

Note that the interest of (7.10) is that the negative powers of ε are written apart,
and the vector fields F εj have the “boundedness” property that their coefficients are
continuous functions of x and t, smooth outside x = 0, indexed by ε > 0, and locally
uniformly bounded with respect to ε > 0. (It is not the case of F ε itself because
of the negative powers of ε.) In the remainder of the proof, we shall always write
the negative powers of ε apart so that all the differential operators written as capital
letters never contain coefficients that are unbounded when ε goes to zero.

We now define a certain number of differential operators F εp1,p2,...,pd
of order d for

d between 1 and P , and for all d-tuple (p1, p2, . . . , pd) of integers such that

1 ≤ pk ≤ P for 1 ≤ k ≤ d,
1
p1

+ · · ·+ 1
pd−1

≤ 1,

(p1, p2) 6= (2, 2),

(p1, p2, p3) 6= (3, 3, 3),
...

(p1, . . . , pd−1) 6= (d− 1, . . . , d− 1).

(7.12)

We define F εp1,p2,...,pd
to be equal to

∑
( (j1,s1) ,... , (jd,sd) ) ∈ Id(p1,...,pd)

ηs1j1 η
s2
j2
· · · ηsdjd e

i(ω
s1
j1

+···+ωsd
jd

) tε Xsd
jd
X
sd−1

jd−1
. . . Xs1

j1

i(d−1)ωs1j1 (ωs1j1 + ωs2j2 ) · · · (ωs1j1 + · · ·+ ω
sd−1

jd−1
)

,(7.13)

where Id(p1, . . . , pd) is the set of d-tuples of indices ((j1, s1), . . . , (jd, sd)) such that
`(jk) = pk, and which are neither a collection of d

2 pairs of the form (j, s), (j,−s) nor
such that, for some (even) k, 2 ≤ k ≤ d, ((j1, s1), . . . , (jk, sk)) would be a collection
of k

2 pairs of the form (j, s), (j,−s). More precisely, Id(p1, . . . , pd) may be defined
recursively by I1(p) = I1 and

((j1, s1), . . . , (jd, sd)) ∈ Id(p1, . . . , pd)

⇔


• (jk, sk) ∈ Ipk ∀ k,
• ((j1, s1), . . . , (jd−1, sd−1)) ∈ Id−1(p1, . . . , pd−1) ,

• there exists no permutation τ ∈ S(d)
such that (jτ(k), sτ(k)) = (jk,−sk).

(7.14)
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With the above definition of the sets of indices Id(p1, . . . , pd), the denominators
in (7.13) cannot be zero because of the following lemma.

Lemma 7.1. Let ((j1, s1), . . . , (jd, sd)) ∈ Id (see the definition of I in (7.5)) be
such that ωs1j1 + · · ·+ ωsdjd = 0. Then
• either (`(j1), . . . , `(jd)) = (d, . . . , d) and there exists a permutation σ ∈ S(d)

such that the p-tuple ((j1, s1), . . . , (jd, sd)) is exactly equal to ((j, σ(1)), . . . , (j, σ(p)))
or ((j,−σ(1)), . . . , (j,−σ(p))) (with j1 = · · · = jd = j),
• or 1

`(j1) + · · ·+ 1
`(jd) > 1,

• or there exists a permutation τ ∈ S(d) such that (jτ(k), sτ(k)) = (jk,−sk) ∀ k.
Proof. The equality ωs1j1 + · · ·+ ωsdjd = 0 may be rewritten as

∑
j∈{1,...,N}
`(j)≥2

`(j)∑
s=1

λsjω
s
j = 0,(7.15)

where the integer λsj is equal to the number of times that (j, s) appears in ((j1, s1), . . . ,
(jd, sd)) minus the number of times (j,−s) appears. Of course, (7.15) may be rewritten
as ∑

j∈J

∑
ω∈Ωj

λωω = 0

with λωs
j

= λsj . Note that ∑
ω

|λw| =
∑
j,s

|λsj | ≤ d ≤ P.

Hence, from the assumption that the sequences of frequencies are mutually “indepen-

dent with respect to P” and are all MC (see (6.12)–(6.13)), each (λ1
j , . . . , λ

`(j)
j ) is equal

to either (0, . . . , 0), (1, . . . , 1), or (−1, . . . ,−1). If it is different from (0, . . . , 0) for at
least one j, then all the couples (j, 1), . . . , (j, `(j)) or all the couples (j,−1), . . . , (j,−`(j))
appear in ((j1, s1), . . . , (jd, sd)). If d = `(j) for this j, i.e., if ((j1, s1), . . . , (jd, sd)) is
a reordering of ((j, 1), . . . , (j, `(j))), or of ((j,−1), . . . , (j,−`(j))), then we are in the
first case of the lemma; if d > `(j), then there is at least another couple (j′, s′)
in ((j1, s1), . . . , (jd, sd)) and hence the sum 1

`(j1) + · · · + 1
`(jd) can be no less than

1 + 1
`(j′) and we are in the second case of the lemma. Let us now examine the

case where all the (λ1
j , . . . , λ

`(s)
j )’s are equal to (0, . . . , 0). This means that for all

j, s, the couple (j, s) and the couple (j,−s) appear the same number of times in
((j1, s1), . . . , (jd, sd)). This allows one to build the permutation having the property
required in the third point of the lemma: it is the one that exchanges 1 with the first
k1 such that (jk1 , sk1) = (j1,−s1), 2 (3 if k1 = 2) with the first k2 6= k1 such that
(jk2

, sk2
) = (j2,−s2), and so on.

We shall now prove the following two facts.
Fact 1. For all q, 1 ≤ q ≤ P , there exist γ1,q and γ2,q strictly positive such that

F ε =
∂

∂t
+ F1 +

q∑
p=2

(−1)p−1F εp, p, . . . , p︸ ︷︷ ︸
p times

(7.16)

+ εγ1,q

(
F εDε

1,q − Dε
1,q

∂

∂t

)
+ εγ2,q Dε

2,q
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+
∑

(p1,...,pq)∈{2,...,P}q,
1
p1

+···+ 1
pq
≤1,

(p1,...,pq)6=(q,...,q)

(−1)q−1ε
−
(

1− 1
p1
−···− 1

pq

)
F εp1,...,pq

Fact 2. For all p, 1 ≤ p ≤ P , there exist γ′1,p and γ′2,p strictly positive such that

F εp, p, . . . , p︸ ︷︷ ︸
p times

= 2
(−1)p−1

p

∑
j∈Jp
<
(
η1
j · · · ηpj
i(p−1)

)
Bj(7.17)

+ εγ
′
1,p

(
F εD′ε1,p − D′ε1,p

∂

∂t

)
+ εγ

′
2,p D′ε2,p

with

Bj =
∑

σ∈S(`(j))

[X
σ(1)
j , [X

σ(2)
j , [. . . , X

σ(`(j))
j ] . . .]]

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(`(j)−1)
j )

.(7.18)

These two facts imply Theorem 6.5. Indeed, for q = P , the last sum in (7.16) is
empty since 1

p1
+ · · · + 1

pP
≤ 1 with all the integers pj no larger that P implies

(p1, . . . , pP ) = (P, . . . , P ). Hence for q = P , (7.16) reads

F ε =
∂

∂t
+ F1 +

P∑
p=2

(−1)p−1F εp, p, . . . , p︸ ︷︷ ︸
p times

(7.19)

+ εγ1,P

(
F εDε

1,P − Dε
1

∂

∂t

)
+ εγ2,P Dε

2,P .

Substituting in the above the expression of F εp,...,p given by (7.17), one clearly gets (6.1)
with the appropriate differential operators Dε

1 and Dε
2 and the appropriate positive

real numbers γ1 and γ2.
Proof of Fact 1. We prove (7.16) by induction on q, from q = 1 to q = P .
For q = 1, the sum on the first line of (7.16) is empty, one may take Dε

1,1, D
ε
1,

and Dε
2,1 to be zero, and (7.16) is simply (7.10).

Let us now suppose that (7.16) holds for a certain q ≥ 1 and let us prove it for
q+ 1. This is done through a manipulation on differential operators that more or less
mimics an integration by parts. Since we shall use it elsewhere, let us explain it on a
“general” differential operator Y before applying it.

Consider a differential operator of order d on functions of t and x that does not
contain derivations with respect to t:

Y =
∑

multi-indices I of length d

ηI(t)aI(t, x)
∂|I|

∂xI
.(7.20)

Define Y [−1] and Y [1] to be

Y [−1] =
∑

multi-indices I of length d

ηI(t)

(∫ t

∗
aI(τ, x)dτ

)
∂|I|

∂xI
,(7.21)

Y [1] =
∑

multi-indices I of length d

dηI
dt

(t)

(∫ t

∗
aI(τ, x)dτ

)
∂|I|

∂xI
.(7.22)



44 PASCAL MORIN, JEAN-BAPTISTE POMET, AND CLAUDE SAMSON

Note that these are defined up to a function of x (through the initial time in the
integrals) and that Y [1] is zero if the η’s are constants. The derivative with respect
to t of Y [−1] is Y + Y [1] in the following sense:

Y + Y [1] =

[
∂

∂t
, Y [−1]

]
=

∂

∂t
Y [−1] − Y [−1] ∂

∂t
.(7.23)

Indeed it is obvious that for any smooth function h of x and t, one has

Y.h (t, x) + Y [1].h (t, x) =
∂

∂t

(
Y [−1].h (t, x)

)
− Y [−1].

∂h

∂t
(t, x),(7.24)

simply because ∂
∂t commutes with ∂

∂|I|xI
. Then we rewrite (7.23) in the following way:

Y =

[
∂

∂t
, Y [−1]

]
− Y [1]

= F ε Y [−1] −
(

P∑
r=1

ε−
r−1
r F εr

)
Y [−1] − Y [−1] ∂

∂t
− Y [1].(7.25)

In order to prove that if (7.16) holds for q, it also holds for q + 1, we apply the
identity (7.25) with

Y = F εp1,...,pq ,

Y [−1] = εGεp1,...,pq ,

Y [1] = εHε
p1,...,pq ,

for

(p1, . . . , pq) 6= (q, . . . , q) and
1

p1
+ · · ·+ 1

pq
≤ 1,(7.26)

where Gεp1,...,pq and Hε
p1,...,pq are given by

Gεp1,...,pq=
∑

((j1,s1),...,(jq,sq)) ∈ Iq(p1,...,pq)

ηs1j1 · · · η
sq
jq
e
i(ω

s1
j1

+···+ωsq
jq

)t/ε
X
sq
jq
X
sq−1

jq−1
. . . Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sq
jq

)
(7.27)

Hε
p1,...,pq=

∑
((j1,s1),...,(jq,sq))∈Iq(p1,...,pq)

(
d
dt

(
ηs1j1 · · · η

sq
jq

))
e
i(ω

s1
j1

+···+ωsq
jq

)t/ε
X
sq
jq
X
sq−1

jq−1
. . . Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sq
jq

)
.(7.28)

Note that the denominators are nonzero because, from Lemma 7.1, the definition
(7.14) of the set of indices Iq(p1, . . . , pq) precisely removes the terms where the de-
nominators would be zero.

Then (7.25) with the above expressions for Y , Y [1], and Y [−1] yields

F εp1,...,pq = −
P∑
r=1

ε
1
rF εrG

ε
p1,...,pq + ε F εGεp1,...,pq − εGεp1,...,pq

∂

∂t
− εHε

p1,...,pq .(7.29)

From (7.27) and (7.11) we have

F εrG
ε
p1,...,pq

=
∑

( (j1, s1) , . . . , (jq, sq) ) ∈ Iq(p1, . . . , pq)
(jq+1, sq+1) ∈ Ir

ηs1j1 · · · η
sq+1

jq+1
e
i(ω

s1
j1

+···+ωsq+1
jq+1

)t/ε
X
sq+1

jq+1
X
sq
jq
. . . Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sq
jq

)
.
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From (7.14), the (q+1)-tuples ((j1, s1), . . . , (jq+1, sq+1)), which are in Iq(p1, . . . , pq)×
Ir but not in Iq+1(p1, . . . , pq, r), are such that there exists a permutation τ of the set
of integers {1, . . . , q + 1} for which

((jτ(1), sτ(1)), (jτ(2), sτ(2)), . . . , (jτ(q+1), sτ(q+1)))

= ((j1,−s1), (j2,−s2), . . . , (jq+1,−sq+1)),
(7.30)

and this is possible only if q is odd. Equations (7.8) (for X and ω, not for η) and
(7.30) imply that the term corresponding to ((j1,−s1), (j2,−s2), . . . , (jq+1,−sq+1)) is
equal to

η
sτ(1)

jτ(1)
· · · ηsτ(q+1)

jτ(q+1)
e
i(ω

sτ(1)
jτ(1)

+···+ωsτ(q+1)
jτ(q+1)

)t/ε
X
sq+1

jq+1
X
sq
jq
· · ·Xs1

j1

iq(−ωs1j1 )(−ωs1j1 − ωs2j2 ) . . . (−ωs1j1 − · · · − ω
sq
jq

)

which, since q must be odd (if not, there is no such term), is equal to

−
(∏q+1

k=1 η
sτ(k)

jτ(k)

)
e
i(ω

s1
j1

+···+ωsq+1
jq+1

)t/ε
X
sq+1

jq+1
X
sq
jq
· · ·Xs1

j1

iqωs1j1 (ωs1j1 + ωs2j2 ) · · · (ωs1j1 + · · ·+ ω
sq
jq

)

and τ gives the change of index in the product allowing us to say that this is the oppo-
site of the term corresponding to ((j1, s1), (j2, s2), . . . , (jq+1, sq+1)). Hence these terms
sum to zero in the above sum. From (7.14), this implies F εrG

ε
p1,...,pq = F εp1,...,pq,r.

Substituting this in (7.29) yields (we rename r as pq+1)

F εp1,...,pq = −
P∑

pq+1=1

ε
1

pq+1 F εp1,...,pq,pq+1
+ ε F εGεp1,...,pq − εGεp1,...,pq

∂

∂t
− εHε

p1,...,pq .

Hence (7.16) yields

F ε =
∂

∂t
+ F1 +

q∑
p=2

(−1)p−1F εp, p, . . . , p︸ ︷︷ ︸
p times

(7.31)

+ εγ1,q

(
F εDε

1,q − Dε
1

∂

∂t

)
+ εγ2,q Dε

2,q

+ (−1)q
∑

(p1, . . . , pq) ∈ {2, . . . , P}q
1
p1

+ · · ·+ 1
pq
≤ 1

(p1, . . . , pq) 6= (q, . . . , q)
pq+1 ∈ {1, . . . , P}

ε
−
(

1− 1
p1
−···− 1

pq+1

)
F εp1,...,pq,pq+1

+ (−1)q−1
∑

(p1, . . . , pq) ∈ {2, . . . , P}q,
1
p1

+ · · ·+ 1
pq
≤ 1

(p1, . . . , pq) 6= (q, . . . , q)

ε
1
p1

+···+ 1
pq

(
F εGεp1,...,pq − Gεp1,...,pq

∂

∂t
− Hε

p1,...,pq

)
.

The term corresponding to (p1, . . . , pq+1) = (q+ 1, . . . , q+ 1) in the sum on the third
line is (−1)qF εq+1,...,q+1, it adds to the sum on the first line and this yields the first

line of (7.16) for q + 1. The other terms in this sum such that 1
p1

+ · · · + 1
pq+1

≤ 1

yield exactly the third line of (7.16) for q + 1, and the terms in this sum such that
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1
p1

+ · · · + 1
pq+1

> 1, as well as all the last sum, add up with the second line to give

the second line (the “small” terms) of (7.16) for q + 1. This proves (7.16) for q + 1
and ends the proof by induction of Fact 1.

Proof of Fact 2. From the definition (7.13) of F εp1,p2,...,pd
, we have

(7.32)

F εp, . . . , p︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp

= 0

ηs1j1 η
s2
j2
· · · ηspjp X

sp
jp
X
sp−1

jp−1
. . . Xs1

j1

i(p−1)ωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp−1

jp−1
)

+
∑

( (j1, s1) , . . . , (jp, sp) ) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

ηs1j1 η
s2
j2
· · · ηspjp e

i(ω
s1
j1

+···+ωsp
jp

)t/ε
X
sp
jp
X
sp−1

jp−1
. . . Xs1

j1

i(p−1)ωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp−1

jp−1
)

.

Now, apply (7.20), (7.21), (7.22), and (7.25) with Y equal to the second sum, and
therefore

Y [−1] = εGεp,...,p, Y [1] = εHε
p,...,p,

with

(7.33)

Gεp, . . . , p︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

ηs1j1 · · · η
sp
jp
e
i(ω

s1
j1

+···+ωsp
jp

)t/ε
X
sp
jp
X
sp−1

jp−1
· · ·Xs1

j1

ipωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp
jp

)
;

(7.34)

Hε
p, . . . , p︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p . . . p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

(
d
dt

(
ηs1j1 · · · η

sp
jp

))
e
i(ω

s1
j1

+···+ωsp
jp

)t/ε
X
sp
jp
X
sp−1

jp−1
· · ·Xs1

j1

ipωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp
jp

)
.

This allows us to rewrite the second sum in (7.32) as

ε F εGεp,...,p − εGεp,...,p
∂

∂t
− εHε

p,...,p −
P∑
r=1

ε
1
rF εp,...,p,r

with
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(7.35)

F εp, . . . , p, r︸ ︷︷ ︸
p times

=
∑

((j1, s1), . . . , (jp, sp)) ∈ Ip(p, . . . , p)

ω
s1
j1

+ · · ·+ ω
sp
jp
6= 0

(jp+1, sp+1) ∈ Ir

ηs1j1 · · · η
sp+1

jp+1
e
i(ω

s1
j1

+···+ωsp+1
jp+1

)t/ε
X
sp+1

jp+1
X
sp
jp
. . . Xs1

j1

ipωs1j1 (ωs1j1 + ωs2j2 ) . . . (ωs1j1 + · · ·+ ω
sp
jp

)
.

Let us now consider the first sum in (7.32). From Lemma 7.1 and the fact
that, from (7.14), a p-tuple that is in Ip(p, . . . , p) cannot be of the type described
in the third item of this lemma, all the p-tuples ((j1, s1), . . . , (jp, sp)) in Ip(p, . . . , p)
such that ωs1j1 + · · · + ω

sp
jp

= 0 are exactly of the form ((j, σ(1)), . . . , (j, σ(p))) or

((j,−σ(1)), . . . , (j,−σ(p))) with `(j) = p and σ ∈ S(p). Hence the first sum may be
rewritten (recall that X−sj = Xs

j ) as

2
∑
j∈Jp
<
(
η1
j · · · ηpj
ip−1

)
Cj

with

Cj =
∑

σ∈S(p)

X
σ(p)
j X

σ(p−1)
j · · ·Xσ(1)

j

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

.(7.36)

If one replaces in the above sum σ by σ ◦ τ, where τ is the permutation that sends
(1, 2, . . . , p) on (p, p− 1, . . . , 1) (change of indices in the summation), one gets

Cj =
∑

σ∈S(p)

X
σ(1)
j X

σ(2)
j · · ·Xσ(p)

j

(ω
σ(p)
j + · · ·+ ω

σ(2)
j )(ω

σ(p)
j + · · ·+ ω

σ(3)
j ) · · · (ωσ(p)

j + ω
σ(p−1)
j )ω

σ(p)
j

.

Since ω1
j + · · ·+ ωpj = 0, the denominator may be transformed:

Cj = (−1)p−1
∑

σ∈S(p)

X
σ(1)
j X

σ(2)
j . . . X

σ(p)
j

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

.

Finally, a combinatorial computation in the free Lie algebra (see [8], or [9] in which
this identity is also obtained but in a less computational way) gives

∑
σ∈S(p)

X
σ(1)
j X

σ(2)
j . . . X

σ(p)
j

ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

=
1

p

∑
σ∈S(p)

[X
σ(1)
j , [X

σ(2)
j , [· · · , Xσ(p)

j ] · · ·]]
ω
σ(1)
j (ω

σ(1)
j + ω

σ(2)
j ) · · · (ωσ(1)

j + · · ·+ ω
σ(p−1)
j )

.
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Hence Cj = (−1)p−1

p Bj with Bj given by (7.18). Substituting the above in (7.32)
yields

F εp, . . . , p︸ ︷︷ ︸
p times

=
2 (−1)p−1

p

∑
j∈Jp

<
(
η1
j · · · ηpj
ip−1

)
Bj(7.37)

+ ε

F εGεp, . . . , p︸ ︷︷ ︸
p times

−Gεp, . . . , p︸ ︷︷ ︸
p times

∂

∂t

 − εHε
p,...,p −

P∑
r=1

ε
1
rF εp, . . . , p, r︸ ︷︷ ︸

p times

.

This clearly yields (7.17), ends the proof of Fact 2, and hence ends the proof of
Theorem 6.5.

7.3. Proof of Theorem 4.9. Let F ε = ∂
∂t + fε with fε the vector field asso-

ciated with the right-hand side of (4.21), and let G = ∂
∂t + g with g the vector field

associated with the right-hand side of (4.17). First, we show that F ε DO-converges
(see Definition 6.1) to G as ε tends to zero.

Since (4.21) is the same as (4.16) with uj,s = uεj,s given by (4.18), F ε can be
expressed in the form (6.15), with all Xs

j ’s homogeneous of degree zero because each
Xs
j corresponds to one of the bτs

j
vsj ’s and, from Proposition 4.6, all vector fields bτs

j
vsj

are homogeneous of degree zero. We can apply Theorem 6.5 because the sets Ωn,α (n =
2, . . . , N) in the construction of Theorem 4.7 are MC and linearly independent with
respect to P (see [9, section 5]). It implies that F ε DO-converges, as ε tends to
zero, to a vector field F 0 = ∂

∂t + f0 of the form (6.17), and in the definition (6.1)
of DO-convergence, all differential operators are homogeneous of degree zero. We
claim that G = F 0. Indeed, from Proposition 6.2, the property of DO-convergence
implies the uniform convergence of the trajectories on finite time intervals. Therefore,
the trajectories of (4.21) converge to those of ẋ = f0(t, x); however, from Theorem
4.7 (recall that (4.21) is the same as (4.16)–(4.18)), they converge to the trajectories
of (4.17). This implies that the systems ẋ = g(t, x) and ẋ = f0(t, x) are the same
because they have the same trajectories. Hence, F 0 = G.

Finally, since F ε DO-converges to G = ∂
∂t + g (with g autonomous) and since all

differential operators in the definition of DO-convergence are homogeneous of degree
zero, the asymptotic stability of the origin of (4.21), for ε > 0 small enough, will
follow from Proposition 6.2 if we can show that the origin of (4.17) is asymptotically
stable. This is a direct consequence of (4.3) to (4.5).
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