
I., 

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. I ,  JANUARY 1995 I27 

However, it is straightforward to verify that there exist constants 
u1 > 0 and u2 > 0 such that we can write 01(1111(.)11; + ll.r(.)ll; + 

~ ~ l l E ~ ( . ) l l ; ,  and moreover, c0[11.1-011’ + do + E:=, TJ,) 5 
n[11.r011’ + E,”=, d , ] .  Hence, by combining these inequalities with 
(4.14), it follows that 111((.)112’ + ll.r(.)[lg + E,“=, llEJ(.)llg 5 
m/fl1[11.~011~ + E,“=, d , ] .  That is, condition iii) of Definition 
2.2 is satisfied. Conditions ii) and iv) of Definition 2.2 follows 
directly from the stability of the matrix P. Thus, we can now 
conclude that the system (2.1), (2.3) is absolutely stabilizable via the 
control (4.4). 0 

Remark: The above theorem gives a necessary and sufficient 
condition for absolute stabilizability in terms of the solution to a 
corresponding H m  control problem. It is well known that such an 
H m  control problem can be solved in terms of two algebraic Riccati 
equations; e.g., see [lo]. 

The following corollary is an immediate consequence of the above 
theorem. 

Corollary 4.1: If the uncertain system (2.1), (2.3) satisfies As- 
sumptions 4.1 t 4 . 6 )  and is absolutely stabilizable via nonlinear 
control, then it will be absolutely stabilizable via a linear controller 
of the form (4.4). 

E;=, l lEa(-)ll;) 5 ( 1 / 2 C l  ) l I4 . ) lK  + ;ll.4.)ll; + I lso~.) I l ;  + 

REFERENCES 

M. A. Rotea and P. P. Khargonekar, “Stabilization of uncertain systems 
with norm bounded uncertainty-A control Lyapunov approach,” SIAM 
J. Contr. Optimiz., vol. 27, no. 6, pp. 1462-1476, 1989. 
P. P. Khargonekar and K. R. Poolla, ‘‘Uniformly optimal control of 
linear time-invariant plants: Nonlinear time-varying controllers,” Syst. 
Contr. Lett., vol. 6 ,  no. 5, pp. 303-309, 1986. 
P. P. Khargonekar, T. T. Georgiou, and A. M. Pascoal, “On the 
robust stabilizability of linear time-invariant plants with unstructured 
uncertainty,” IEEE Trans. Automat. Contr., vol. AC-32, pp. 201-207, 
1987. 
K. R. Poolla and T. Ting, “Nonlinear time-varying controllers for robust 
stabilization,” IEEE Trans. Automat. Contr., vol. AC-32, pp. 195-200, 
1987. 
V. A. Yakubovich, “Dichotomy and absolute stability of nonlinear 
systems with periodically nonstationary linear part,” Sysf. Confr. Left., 
vol. 11, no. 3, pp. 221-228, 1988. 
-, “Absolute stability of nonlinear systems with a periodically 
nonstationary linear part,” Sov. Phys. Doklady, vol. 32, no. 1, pp. 5-7, 
1988. 
A. Megretsky and S. Treil, “Power distribution inequalities in opti- 
mization and robustness of uncertain systems,” J. Math. Syst.,  Estimat., 
Confr., vol. 3, no. 3, pp. 301-319, 1993. 
3. S. Shamma, “Robustness analysis for time-varying systems,” in Proc. 
31st IEEE Conf. Dec. Contr., Tuscon, AZ., Dec. 1992. 
A. V. Savkin and I. R. Petersen, “Nonlinear versus linear control in 
the absolute stabilizability of uncertain linear systems with structured 
uncertainty,” in Proc. 32 IEEE Conf. Dec. Contr., San Antonio, TX., 
Dec. 1993. 
T. Basar and P. Bemhard, Hm-Opfimal Control and Related Minimax 
Design Problems: A Dynamic Game Approach. Boston: Birkhauser, 
1991. 

A Linear Algebraic Framework for 
Dynamic Feedback Linearization 

E. Aranda-Bricaire, C. H. Moog, and J.-B. Pomet 

Abstract-To any accessible nonlinear system we associate a so-called 
infinitesimal Brunovsky form. This gives an algebraic criterion for strong 
accessibility as well as a generalization of Kronecker controllability in- 
dices. An output function which defines a right-invertible system without 
zero dynamics is shown to exist if and only if the basis of the Brunovsky 
form can be transformed into a system of exact differential forms. This 
is equivalent to the system being differentially flat and hence constitutes 
a necessary and sufficient condition for dynamic feedback linearizability. 

I. INTRODUCTION 
The problem of exact linearization of a nonlinear system using 

static state feedback was solved in [18] and [22]. It can be shown 
that this problem is linked with the classification of functions (or 
exact one-forms) with respect to their relative degree [8]. When the 
linearization problem can not be solved using static state feedback, it 
is appealing to try to solve it using dynamic state feedback. This note 
emphasizes the links between this new problem and the classification 
of (non necessarily exact) one-forms with respect to their relative 
degree. The dynamic feedback linearization problem was stated in 
its full generality for the first time in [6]: given a nonlinear control 
system 

2: .? = f(s) + g(s)7r (1) 

where .I- E R ,  7( E R”, find a dynamic compensator 

and an extended set of coordinates 2 = @(.r ,  E )  in which the extended 
system reads as a controllable linear one. Relying upon the differential 
geometric approach, sufficient conditions and necessary conditions 
have been given in [7]. In some particular cases, necessary and 
sufficient conditions are given there. A less general formulation of 
the dynamic linearization problem is as follows. Consider a nonlinear 
system where the output y = h ( s ) ,  E R”’, has been specified. 
If the system is right-invertible, it is always possible to construct 
a dynamic compensator in such a way that noninteracting control 
is achieved [lo], [26]. The standard decoupling feedback provides 
also input-output linearization and if, in addition, the system has 
the property of having no zero dynamics, then it actually solves 
the dynamic linearization problem [19], [21]. Thus, the existence 
of such an output function is a sufficient condition for dynamic 
linearizability . 

In [12], [13], and [24], the notions of linearizing output and 
endogeneous feedback were introduced. A linearizing output is a 
system of functions p, of .r, U ,  i C , .  . . , which are differentially 
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independent and such that both s and 7/ can be expressed as functions 
of the yz ’s and their time derivatives. Existence of a linearizing output 
is called differential flatness of the system. A dynamic compensator 
of the form (2) such that can be expressed as a function of 
.r. 1 1 ,  ic. . . . , is called endogeneous. flatness is equivalent to dynamic 
linearizability by endogeneous feedback. Furthermore, recent results 
[14], [I51 show that no system is linearizable by nonendogeneous 
feedback without being flat. An equivalence relation between systems 
may be defined such that differential flatness is equivalence to a 
linear system. This equivalence corresponds to transformations by 
endogeneous feedback. 

In 1231, the notion of a dynamic equivalence has been defined in 
terms of D-algebras. A system is equivalent to a controllable linear 
system if and only if its associated D-algebra is free. The set of 
generators of this D-algebra plays the role of linearizing output. 

The goal of the present note is to characterize the existence of 
these linearizing outputs depending on x ,  U, ir , . . . , defined in a new 
algebraic approach which can be recovered from the early notions 
of zero dynamics and infinite zero structure [9], [19], [20], [26]. 
This characterization is equivalent to the system’s property of being 
differentially flat, and hence constitutes, from the results in [ 141 
and [15], a necessary and sufficient condition for dynamic feedback 
linearizability . 

It will be shown that to any nonlinear system, one can associate 
a so-called infinitesimal Brunovsky form which may be viewed 
as a time-varying Brunovsky form of the first-order approximation 
of Y [ I l l .  The construction of this Brunovsky form provides an 
accessibility criterion, as well as a generalization of linear Kronecker 
indices. This form singles out a family of m elements of the formal 
vector space of differential forms, and it is shown that a linearizing 
output exists if, and only if, this family can be transformed into 
a system of exact one-forms via some invertible transformation. A 
preliminary version of this work was presented in [28], where the 
infinitesimal Brunovsky form was defined (it was called nonexact 
instead of infinitesimal), and was shown to provide a tool to char- 
acterize linearizing outputs in the sense of [12], [13], [24]. Let us 
also mention that a more “differential geometric” presentation of the 
present material may be found in [2] and [29]. 

Section I1 is devoted to some preliminaries from [9], and to a 
problem statement of dynamic linearization in terms of the infinite 
zero structure, as in [19]. The infinitesimal Brunovsky form is intro- 
duced in Section 111 with an algorithmic construction. An accessibility 
criterion is given which involves purely algebraic computations. In 
Section IV, existence of a linearizing output is characterized in terms 
of the infinitesimal Brunovsky form. The above theory is illustrated 
in Section V by the study of various particular cases. Concluding 
remarks are offered in Section VI. 

11. PRELIMINARIES 

A. The Infinite Zero Structure [9] ,  [26] 
Consider the nonlinear control system Y, where f(.) and the 

columns of g ( . )  are meromorphic vector fields. Throughout the 
note it is assumed that rank g ( , r )  = 7 1 ) .  Let K denote the field 
of meromorphic functions of .r, U ,  i r . .  . .. The time derivative of a 
function y E K is defined by 

Clearly, k: is closed under time-differentiation. Let I denote the K -  
vector space spanned by d.r, dic, dit,. . .. The elements of E are called 

n 

differential forms of degree one, or simply one-forms. d / d t  induces 
a derivation on E in the following way d / d t :  4 = E, 0, dvJ H 

2 = E,(h, dv, + 0, ditJ). The relative degree of a one-form 
LJ E span, {dr} is defined as the smallest integer 1’ such that 
d(’) $Z span, {ds}. If such an integer does not exist, set r = w. 

Now, consider the system I: and suppose that the output function 
y = h ( s ) ,  y E R”‘, has been specified. Introduce the chain of 
subspaces EO c &1 c ... C I,, of I, defined by 

(3) 

The number of zeros at infinity of order less than or equal to k ,  for 
1 5 k 5 11, is 

IL: = span, {d.r, dy, . . . , dy‘”}. 

f k  

EL-1 
(Tk = dim -. (4) 

The infinite zero structure can be given either by the list { o k }  or by 
the list { n : }  of the orders of the zeros at infinity. I: is said to be 
(right) invertible if uTL = n?. Following [9], one has the following. 

Lemma 2.1: Assume that I: is invertible. Let X: = span, {dr}, 
3:: = span, {dy(k), k 2 O}. Then dim (A‘ n y )  = Tlni.  

Remark 2.2: Note that although y is, in general, infinite dimen- 
sional, the intersection of subspaces .Y n 3: is, at most, of dimension 
11. The subspace .Y n 3: has been first considered in [5] for studying 
minimality in dynamic decoupling. 

B.  Dynamic Feedback Linearization Problem Statement 
Any nonlinear system with outputs and which is right-invertible 

can be fully linearized whenever it has no zero dynamics, in the 
sense of the dynamics of the reduced inverse system [20]. Thus, 
the absence of zero dynamics is a sufficient condition for dynamic 
feedback linearization [19], [21]. This is equivalent to %n: = 17. 

This yields (more precisely) the following. 
Problem Statement I :  Given 2, find, if possible, an 711-  

dimensional output function y = h( . r )  such that the system is 

Solvability of this problem is not necessary for dynamic feedback 
linearizability. A more general approach to the dynamic feedback 
linearization problem, which originates in [12], [13], [24], where it 
is instrumental to define differential flatness, consists of allowing 
the output function to explicitly depend on the input I I  as well 
as on a finite number, say, Y - 1, of its time derivatives. From 
Lemma 2.1, this situation may be stated as the existence of an m- 
dimensional output function y = h(.r ,  u , .  . . , 7 1 ( ~ - ’ ) )  such that the 
system is right-invertible and dim (A‘,, nY) = n + m v ,  where &: = 
span, {dr, dit,. . . ,dit("-')}. For square invertible systems, one has 
.Y,,+Y = ,Y+Y and consequently dim ( .Yvny) = dim (.Yny)+m v. 
So, the more general problem is stated as follows. 

Problem Statement 2: Given T, find, if possible, an integer U and 
an m-dimensional output function y = h(.r ,  7 1 , .  . . , 7 1 ( ~ - ’ ) )  such 
that the system is right-invertible and 

right-invertible and Xtn: = 1 1 .  

d i m ( . t ‘ n Y )  = 11. ( 5 )  

If such an output exists, it is called a linearizing output. 

C. Differential Flatness 
In [ 121, [13], and [24], the notions of linearizing output, differential 

flatness, endogeneous and exogeneous feedback were introduced. In 
[I21 and [13], this is done within a differential algebraic framework, 
whereas in [24] the analytic case is also considered. 

Roughly speaking, a linearizing output [12], [13] is a system of 
differentially independent functions p, of .r. 81, ti. ’. . , such that .r. [c 
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can in tum be expressed as functions of the pZ ’s and a finite number 
of their time derivatives. This definition is equivalent to the one 
in Problem Statement 2 because condition (5) means that one is 
able to recover the variables s, 71 as functions of the outputs yt 
and their time derivatives, and, on the other hand, right-invertibility 
ensures that the outputs y2 are differentially independent in the 
sense that they do not satisfy any differential equation independent 
of U.  We refer the reader to [I61 for an exhaustive discussion of 
differential flatness and its link with an equivalence relation between 
systems. 

A system Y is said to be differentially flat (or simply flat) if it 
admits a system of linearizing outputs. It is proved in [12], [13], 
and [24] that differential flatness, for a system 2, is equivalent to 
linearizability via a dynamic compensator C which has the property of 
being endogeneous (this may be defined as the possibility to express 
the variables as functions of .r, 7 1 ,  i l , .  . .). Recent results [ 141, [15] 
show that flatness is in fact equivalent to dynamic linearizability 
without any restriction on the nature of compensators. 

111. THE INFINITESIMAL BRUNOVSKY FORM 

A. A Flag for  the Differential Vector Space & 

manner. Define 
We shall construct a sequence of subspaces of & in the following 

‘Ho = span, { d r ,  du),  

‘ H k  = {d E X k - 1 1 2  E ‘ H k - 1  j ,  k > 0 (6) 

It is clear that & 3 ‘Ho 3 ‘HI 3 ‘HZ 3 . . ., and that, at the first step, 
the above induction yields ‘HI = span, {ds). Proposition 3.1 is a 
simple consequence of the construction. Feedback invariance comes 
from the fact that the relative degree of a one-form is obviously 
invariant under regular static state feedback. Existence of the integer 
k* comes from the fact that each ‘ H k  is a finite-dimensional K- 
vector space so that, at each step either its dimension decreases or 

Proposition 3.1; Xn is the space of one-forms which have relative 
degree greater than or equal to k. Both the subspaces ‘ H k  and 
the integers pk = dim‘Hk are invariant under regular static state 
feedback. There exists an integer k* > 0 such that ? & * + I  = 

The following algorithm allows us to explicitly construct bases for 
the subspaces EL.  

StepZ: Take { d r l , . . . , d  .r , , ,d7ll , . . . ,d~f, ,) .  {d . r l , . . . ,ds , )  as 
bases of H O  and ‘HI. 

Step + 1: Suppose that { V I , .  . . , l i p , ,  p 1  . . . , P ~ ~ - ~  1, ( 1 i 1 .  
. ‘ . . I ] , , ~  j are bases, respectively, of ‘ H k - 1  and Hh, and let us 
construct a basis for ‘&+I. The elements of ?-&+I are the one- 
forms J f such that A E ‘&. Let w = YJAJqJ E ‘ H k ,  then 

YJX,GJ E ‘ H k .  Now, note that since 17, E ‘ H k ,  G, must be in ‘H~lk-~, 
so YJX,+, may be written in the following form: 

Rk+l = a h .  

‘ H k * + 2  = ”. = ‘ H E .  

= T- AJ(A,qJ  + A,+,). It is clear that 2 E I-Lk if, and only if, 

Thus, ;? E ’Tin if and only if the coefficients A, satisfy the following 
system of linear equations: 

I’ I 

E T ,  J X J  = 0. 1 5 i 5 PI-1 - p k .  (7) 
,=I 

This system of equations has p k  - p linearly independent solutions, p 
being the rank of the matrix ,I. Thus, dimHk+l = p1+1 = PI -p.  
A basis of I&+I can be computed as 

P I  

CIJ = cAi1)~. 
1=1 

1 5 j 5 PA+] 

where ( X i , .  . . , XJ,, ) are the p k + l  independent solutions of (7). The 
algorithm stops after a finite number k* of steps when p = 0. In fact, 
it is not difficult to show that k* 5 1 1  - 713 + 1. 

Remark 3.2: In general the subspaces ‘ H I .  may depend on 1 1 .  iC.. . . 
in the following sense: the elements (I, built using the above 
algorithm can be written as linear combinations of dx1. . . . . dx,, , 
the coefficients being functions of s, 7 1 ,  ir, . . .. However, a careful 
inspection of the construction shows that, at the kth step, these 
coefficients may be chosen to depend, at most, on 71 and its first 
k-2 time-derivatives. 

B .  Accessibility Criteria 
Proposition 3.3: 

1) ‘H, is the largest subspace of ‘Ho  = span, {dr.  dtr} which 
is invariant under time-differentiation. It is also, for any li 2 1, the 
largest subspace of 7 - L - k  = span, {dx, duo),  0 5 j 5 IC) which 
is invariant under time-differentiation. 

2) Let { a l , .  . . , clp ,  ) be a basis for ‘H,. Then, the Frobenius 
condition do, A ( I~ A ... A op,  = 0, 1 5 i 5 pK is satisfied. 

Proofi Point 1 is a consequence of the construction (it is clear 
that, starting from ‘H-K instead of ‘Ho in (6), one finds ‘Ho after li 

w 
In point 2 of Proposition 3.3, A indicates the exterior product of 

differential forms. These conditions imply integrability of the Pfaffian 
system { ( ~ 1 ,  . . . , a,,, } around regular points, according to the dual 
version of Frobenius theorem. The reader who is not familiar with 
these matters is referred to [l]. 

Subspace H, may be interpreted as a codistribution on R x 
, where li- 1 is the maximum number of input time-derivatives 

necessary to write a basis of ‘H,. Proposition 3.3 implies that this 
codistribution is locally integrable around any point where it has 
constant rank. This implies that ‘H, is locally spanned by pK exact 
one-forms d q l , .  . . , dqlp, where $ 1 ,  . . . , c l P ,  are functions defined 
around such regular points. These functions do not depend on 7 1  and 
its time derivatives because ‘H, C span, {dx}, so R, may be 
interpreted as a codistribution on R .  Since, for a function ( ~ ( x ) ,  
d+ E ‘H, is equivalent to t$ being constant along all the vector 
fields ad;gk(s), with j 2 0 and gk the control vector fields (i.e., to 
be constant along the strong accessibility distribution) 31, is, around 
regular points, the annihilator of the strong accessibility distribution. 
This leads to the following. 

Proposition 3.4 (Accessibility Criteria): The following statements 
are equivalent. 

1) System Y satisfies the strong accessibility rank condition. 
2) Any nonzero one-form has finite relative degree. 

Proposition 3.4 is one key result of this note since it allows the 
following construction which we then relate to linearizing outputs, 
if these exist. 

steps). The proof of point 2 is given in the Appendix. 

R I <  

3) 7-1, = (0 ) .  

C. The Infinitesimal Brunovsky Form 

{ T I .  . . . , T, , ,  }, invariant under regular static state feedback, and 
one-forms d 1 , .  . . . J,,, with relative degrees 1’1.. . . . r , , ,  such that 

Theorem 3.5: Suppose ‘H= = (0). There exists a list of integers 

111 
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1) span, { L J ~ ' ) ,  1 5 t 5 111 ,  0 5 j 5 rz  - 1) = span, {dr}; 
2) span, {dJI(,), 1 5 t 5 m. 0 5 j 5 r " }  = span, {dz, du}; 
3) the forms { d I J ) ,  1 5 i 5 711, j 2 0} are linearly independent. 

Proofi Let WI.* be a basis for Hk.. By definition, wh* and 
WI. are in ' H I  - 1. Note that WJ. - and ?I, are linearly independent. 
For, let WI,- = { i l l  :... lIPI*}-then Wn- = {Tjl ,..., 7jpL.}-and 
suppose that there exist some coefficients {A t ,  k i t }  such that 
Y, (A ,  + p ,  I ) ,  ) = 0. The linear independence of the 71~'s implies 
that not all the p , ' s  vanish. Now consider the one-form ii! = YIp27j. 
whose time derivative is 2 = Y, i / , i jL  - YA,q,. This implies that d 
IS in ' H h * + l ,  which is a contradiction. Hence, it is always possible to 
choose a set W I , - - ~  (possible empty) such that WI,",  WC*,  Wne-1 
is a basis for ? t I . * - 1 .  This procedure is repeated k' times, so the 
sequence {HI. } is shown to have the following structure: 

In particular, E::, r 1  = 1 1 .  

= span, {w,'". k 5 i 5 A-*, 0 5 j 5 i - k } ,  o 5 5 A-*. 

H I  = span, {d.r} and rankg(.r) = m imply that WO = 0. 
It can be proved by induction that, for 0 5 k 5 k * ,  the set 
{ W I  e.. . . . Wit*-'), . . . , WI, } is linearly independent. Finally, set 
{ & I . .  . . . J?,,} = {Wne, . . . , Wl}. The invariance of the list of 
relative degrees is rather obvious from the construction. It can also 
be seen from the fact that the number of r ,  's which are equal to k is 

w 
The following (straightforward) corollary of Theorem 3.5 is the 

reason for the name infinitesimal Brunovsky form: the ~ L ' S  provide 
a basis of one-forms in which the first-order approximation of Y 
looks like a linear Brunovsky canonical form [ 111 .  If these forms 
were integrable, then they would yield a true Brunovsky canonical 
form for system S (for this reason, the term infinitesimal is preferred 
to "non-exact,'' used in [28]). In any case, the integers T ,  are nice 
candidates for generalizing to nonlinear systems the notion of linear 
Kronecker controllability indices. 

Corollary 3.6 (The Infinitesimal Brunovsky form): Suppose 'Hs = 
(0). Then the basis { d ,  J r  1 5 t 5 m ,  1 5 J 5 r t }  of span, {ds} 
defined by d, , = , yields 

given by .'I = cardWL = dim?tL/('Hk+1  HI+^). 

d, 1 = J, 2 

(1 5 15 m )  
J, >, - l  = &'I 1 *  

712 

A,, 1 ,  = En, ,d.r, + x b ,  ,du, 
J=1 J=1 

where (1,  J .  b ,  , E K and [b,,] has an inverse in the ring of m x 711 

matrices with entries in K. 

IV. MAIN RESULTS 

A .  Some Preliminaries 

An Algebra of Polynomial Operators: Let k - [d /d t ]  denote the 
(noncommutative) algebra of polynomials in the operator d / d t  
with coefficients in k'. The addition and extemal multiplication 
are the usual ones. The intemal multiplication corresponds to 
operators composition: ( d / d f ) ( p )  = p ( d / d f )  + Ij, Vp E K .  The 
only invertible elements in k'[d/rlt]  are the nonzero elements of K 
(i.e., nonzero polynomials of degree zero). Let K"' ' I '  [ d / d t ]  denote 
the algebra of n1 x nz matrices with entries in k ' [ d / d f ] .  Let E"' 
be the differential k'-vector space spanned by ni-tuples of one- 
forms. Each P ! k'" 'X" ' [d/df ]  defines a differential operator in 
E"': P . c l  = y,P,62(') for all 12 = ( J I ; . . , ~ ? , , ) ~  E E' " ,  where 
12(') = (~ i" . . . . .d j : , ' )~  and P:= Y , P , ( d / d f ) '  E K"'X"'[d/dt]. 

Invertible elements of K"' ''I [d /r l f ]  play an important role; they are 
elements P ! K"' 'IL [ d / d t ]  such that there exists 4 E K"" 'I1 ( d / d t ]  
such that P . Q = Q . P = I,,,. 

Definition 4.1 (Structure ab Infinity for One-Forms): 12 = ( 4 1 ,  

..., d n t )  IS said to have (TI, = dim (span, {dx. 12, .... 
12(')}/span, {ds,l2,. . . , Cl('-')}) zeros at infinity of order less 
than or equal to k. 

For exact one-forms ( J ,  = dh, ) ,  Definition 4.1 coincides with 
(3) and (4), since exterior differentiation and time-differentiation 
commute, so that the notations of Section I1 may be adopted verbatim. 
In particular, Lemma 2.1 is also valid for systems of one-forms. 

Proposition 4.2: Consider the system of m one-forms 12: = 
( d ~ ; . . , d ~ , ~ ) ~ ,  and the polynomial matrix operator P E 
K n ' x 7 ' 1 [ d / d f ] .  Let Q: = P . Q. Then 

dim(.Yunspan, {<2'"', k 2 0 ) )  5 dim(.Yvflspan, {12("), k 2 0}) 

where U is an integer large enough such that 12 and h belong to .Tu. 
Proof: Suppose P has degree a. Straightforward computations 

show that Q(", for k 2 0, can be written.as a linear combination 
of the following form h(k) = RoR + R1R + . . . + Rn+,,12("+"). 
Thus, span, {12(k). k 2 0} span, {R('). k 2 0} and the result 
follows. w 

T .  

B .  The Results 
Our main result is the following. It is an easy consequence of 

Theorem 3.5 and Proposition 4.2. 
Theorem 4.3 (Problem Statement 2 ) :  Suppose = { O}. There 

exists a system of linearizing outputs if and only if there exists 
an invertible polynomial operator P E K"' "' [rl ldt]  such that 
d ( R I )  = 0, where 52 = ( ~ 1 , .  . . . drrL )T is a system of one-forms 
characterized by Theorem 3.5. 

Proof: 
Necessity: Suppose y = h (s, U ,  . . . , U("-') ) is a linearizing 

output. Problem Statement 2 implies that E = J?. Theorem 3.5 
implies that E = spanh {12(')), k 2 O}. Thus, there exist polynomial 
matrix operators P, CJ such that dy = Pf2 and i2 = Qdy.  Clearly, 
PQ = 4P = I,,, and hence P is invertible. Moreover, d ( P i ] )  = 
d(dy) = 0. 

Sujjkiency: Let N = dim(.ru f l  span,-{f$'), k 2 0}), 
= dim(,Yu n span, {<I('), k 2 0}), where 12 = P12. Theorem 

3.5 implies that N = 11 + niv. Existence of the operator P implies 
lST 5 n7. Invertibiljty of P implies the existence of an operator 4 
such that 12 = Qn, i.e., M 5 *V and hence N = N. The result 
follows because one can assume, without loss of generality, that 

Theorem 4.3 relates linearizing outputs, if they exist, to the set of 
differential one-forms built in Theorem 3.5 for arbitrary accessible 
systems. It provides an altemative way to tackle the problem of 
deciding whether linearizing outputs exist, i.e., whether a given 
system is linearizable by endogeneous dynamic feedback, by looking 
for an invertible matrix P meeting the above conditions. This does 
not provide a practically checkable criterion because the degree (in 
the operator d / d t )  of the matrix P is not known a priori, which 
prevents the condition of the theorem from being finitely checkable. 
By forcing P to have degree zero (i.e., to be an invertible matrix 
with entries in K ) ,  the problem is made finite, and one obtains the 
following sufficient condition. 

Corollary 4.4: A sufficient condition for the existence of a sys- 
tem of linearizing outputs is that a system of one-forms 12 = 
(dl, . . . . )T satisfying the conditions of Theorem 3.5 satisfy the 
Frobenius condition 

(1 = ddi(s, I / .  . . . , u ( ~ - ' ) ) .  $ is a linearizing output. 

d d , A d l A . . . / \ d , , , = O  . 1 < / < 1 1 i .  (8) 

Authorized licensed use limited to: UR Sophia Antipolis. Downloaded on January 22, 2010 at 10:48 from IEEE Xplore.  Restrictions apply. 



, , I  

IEEE TRANSAmIONS ON AUTOMATIC CONTROL, VOL. 40, NO. I ,  JANUARY 1995 131 

The relative degrees of w1,. . . , w, coincide with the orders of the 
zeros at infinity of the linearizing outputs. 

Proof: The Frobenius condition implies that there exists a basis 
composed of exact one-forms for the codistribution spanned by 
{ i ~ l , .  . . , una}, and hence that there exists an invertible matrix (with 

The condition (8) is obviously finitely (and easily) checkable once 
some wz’s have been constructed. It is of course not a necessary 
condition, and it should be noted that, in general, it depends on 
the choice of the ut’s: some systems of one-forms statisfying the 
conditions of Theorem 3.5 may satisfy the Frobenius condition (8), 
whereas some others do not. Even for a linear system, a wrong 
choice of the one-forms L J ~ ,  . . . , LJ ,~  prevents condition (8) from 
being satisfied. However, in many practical cases (see the proofs 
of the results in Section V or [28, Section 3.2]), it is not difficult 
to round this difficulty and check whether (8) is met for one of the 
possible choices of the w,’s. 

A way for bounding the degree of P is to look for linearizing 
outputs depending on s only, as illustrated by the following result. 

Theorem 4.5 (Problem Statement I): Suppose ‘H, = (0). Then 
there exists a system of linearizing outputs which depend only on 
.r if and only if the conditions of Theorem 4.3 are satisfied and, in 
addition, deg(P,,(d/dt))  5 rJ - 1, 1 5 i ,  j 5 m. 

Proofi Sufficiency is obvious. Conversely, suppose that one of 
the polynomial elements of the matrix P( d / d t ) ,  say P,, ( d / d t )  has 
degree equal to r J .  Thus, dh, contains a term which depends on 
du and that cannot be eliminated by the remaining terms since, 
by construction, all the w ! ~ )  are linearly independent. This is a 
contradiction. 

Note that it is very easy to write down some similar criteria for 
the existence of linearizing outputs depending on s, U ,  and any 
finite number of time derivatives of 71. Such types of conditions as 
the ones given in Theorem 4.5 can be restated as existence of a 
finite number of functions-the coefficients of the polynomial entries 
of P-meeting some differential conditions, namely, d ( P R )  = 0 
and P invertible. A possible way to avoid writing the relations on 
the entries of P for it to be invertible is to write P as a finite 
product of elementary invertible matrices and taking the coefficients 
of these elementary matrices as unknowns instead of the entries 
of P itself; this is exploited in [27]. Checking whether there exist 
some linearizing outputs depending on s, U ,  and any finite number 
of time derivatives of u therefore amounts to checking whether a 
finite set of PDE’s in a finite number of unknown functions has a 
solution. 

This is not new since it is easy (although tedious) to write down 
the PDE’s which have to be satisfied by the linearizing outputs 
themselves, if they are restricted to depend on s only. This is the 
underlying idea of the characterizations given in some particular 
cases (see, for instance, [25]). We, however, believe that looking 
for the invertible matrix P once the U L ’ S  have been constructed is 
more natural and more tractable. This is illustrated by the very short 
proofs of the theorems of next section, which are known but usually 
not so natural to prove, and by results like the ones obtained in [28, 
Section 3.21, [27], [3, Theorem 5.41, which work out some nontrivial 
particular cases. 

entries in K )  relating this basis to {&I , .  . . , w n L } .  

V. PARTICULAR CASES 
In this section we recover some classical results using the infini- 

tesimal Brunovsky form. 
Theorem 5.1 (Static State Feedback Linearization): System Y is 

linearizable by static state feedback if, and only if, ‘H, = (0) and, 
for k = 1,. . . , k’,  ‘HL is completely integrable. 

This is, of course, equivalent to the early characterizations of [I81 
and [22], or to the more recent one given in [17] and [30]; the 
infinitesimal Brunovsky form provides a very short proof. 

Proof: If each 31k is completely integrable, one may chose exact 
forms, say, wz = dy’r,(s), i = l , . . .  , m  in Theorem 3.5; this yields 
n? functions &(s) whose relative degrees satisfy Y Z r 1  = 1 1 ,  and 
whose decoupling matrix [21] is nonsingular because the IJ,’S and all 
their time derivatives are linearly independent, this completes the if 
part. The converse is obvious since the ‘ H k ’ s  are invariant by static 

Theorem 5.2 (Single-lnput Systems): Let Y be a single-input sys- 
tem and suppose 3-1, = (0 ) .  Then there is only one differential form 
w1 in Theorem 3.5, and the following statements are equivalent: 

1) 2 is linearizable by static state feedback; 2) C is linearizable 
by dynamic state feedback; 3) diJ1 A w1 = 0, where ~ J I  is such that 
‘H, = span,{wl}. 

This result (equivalence between 1 and 2) was first obtained in [6] 
and [7]. The infinitesimal Brunovsky form-note that ~0’1 is invariant 
up to a nonzero multiplicative function-allows us to give the simple 
characterization 3 and the following very simple proof. 

Proof: It is obvious from Theorem 5.1 and Theorem 4.3 because 
the only invertible elements of K [ d / d t ]  are those having degree 0. In 
turn, multiplication by a nonzero function does not change the rank 
of the differential form dwl A i ~ 1 .  

Theorem 5.3 (Systems with n? = n - 1 inputs [7]): A system C 
with m = n - 1 inputs is linearizable by dynamic state feedback 
if, and only if, ‘H, = (0). 

Proofi ‘HZ is generated by a single nonzero one-form i ~ 1  

which is orthogonal to the distribution spanned by the vector 
fields g1;..,gn-1, and thus can be chosen independent of 71. 

wg , . . . , wn - 1 can be chosen arbitrarily, linearly independent of 
AI}  and belonging to spanh: {dr}: they can also be chosen 

independent of 71. Then, the differential forms dw, A w1 A + . . A dnl ,  

i = 1, . . . , m, are zero because they are ( n  + 1)-forms in n variables. 
The converse is obvious. 

feedback, and are integrable for a linear system. 

VI. CONCLUSION 
We have built a so-called infinitesimal Brunovsky form which 

exhibits m controllable blocks whose dimensions play the role of 
Kronecker controllability indices in the liner case. This extension to 
the nonlinear case is innovative since, to our best knowledge, it is 
the only available one with the property that the sum of these indices 
equals the dimension of the strong accessibility distribution. This 
result on nonlinear accessibility was used to derive a necessary and 
sufficient condition for existence of a linearizing output, and the early 
results in (either static or dynamic) feedback linearization have been 
shown to fit naturally in our formalism. Static feedback linearization 
was shown to be a matter of exact one-forms whereas dynamic 
feedback linearization is a matter of possibly nonexact one-forms. 

APPENDIX 
PROOF OF PROPOSITION 3.3, POINT 2 

Define E* to be the dual vector space of E (topology induced by 
IICn, dr~,11~ = CO:,  d71,’s taken among the d.r,’s or the d7/p)’s, both 
sums are finite), whose elements-“vector fields”-are of the form 

where n , ,  b,  I are in K and d/d.r,,  d/d7rp’ are defined by 
(d /d . r , ,  d.r,i) = 5,,&/,  ( d / d t ~ p ) ,  dirk’)) = 5, ,,5k L t ,  (a/d7i‘,‘’, 
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dx,) = (a/&,, d7rP)) = 0. Note that the above linear combination 
need not be finite, but does define an element of I* because, for all 
i ~ ?  E I ,  (-Y, U )  may be written as a sum with only finitely many 
nonzero terms. Define the “time-derivative” of X E E’ by - 

(3, w )  = (S, d )  -(X, 2) .  (9) 

The interior product (or hook) i ( -Y)  is defined, for a differential 
form of degree two p = E, , a t , ,du t  A dv,, by i ( - Y ) p  = 
E,. , U ,  ,( (S, dvt) dv, - (S, dv,) du,). Clearly, taking the time- 
derivative of both sides in this identity yields, from (9), 

A 
i ( _ ~ ) \ r  = i ( - t ) p  + i(-Y)jc. (10) 

Let a l ,  . . . , a,,, be a basis of E,, and define the following subspace 
of &* 

Q, = {-Y E &*I  Vw E ‘H,, (S, w )  = 0 and 
a1 A . . . A cyp ,  A i (  _Y ) dw = 0) 

whose elements are sometimes called [4] the “Cauchy characteristic 
vector fields” of ‘H,. The “characteristic system” (or “retract- 
ing space” according to [4]) of ‘H, is defined as its annihilator: 
C(31,) = Qk. For a certain li 2 0, the elements a l ; . - , a p ,  of 
the chosen basis for ‘H, can be written as linear combinations of 
d r l ,  . . . , dr ,  with coefficients function of x, U ,  i ~ ,  . . . , 7c(“) only, 
hence all the da,’s are linear combinations of elements of the form 
ds, A d.ri or dr ,  A dii(kl) with I 5 IC, so that all the elements 
d/du(k.‘) are in Q, for j 2 li + 1, and finally that C(‘H,) is a 
subspace of spanx { d s ,  d7c , dic , . . . , d ~ ( ~ ) } .  Furthermore, we have 
the following. 

Lemma: C( ‘H, ) is invariant by time-differentiation. 
From point 1 of Proposition 3.3, this implies C(‘H,) C ‘H,, and 

hence, from standard exterior algebra, d a l  A cy1 A ... A a,,, = 0 
for i = l ; . . ,p=.  

Proof of the Lemma: Consider X E Q,, i~ E ‘H,. We have 
[compare (9) and (lo)] 

(i, d )  = (X, w )  -(X, A) 

= n 1 A . . . A n,,, A i (S ) dw -&I A . . . A a,,, A i (  -Y ) dw - . . . 
- 0 1  A . . . A & , ,  A i ( X ) d w - a i  A . . - A a , ,  A i ( S ) d b .  

Since (S, U) and a1 A ... A a,,, A i ( S ) d w  are identically zero, 
and & I , .  . . , Cip ,  and 2 are in ‘H, (because ‘H, is invariant by 
time-differentiation), $1 the terms on the right-hand sides. above are 
zero, whjch implies (S, w )  = 0 and a1 A .  . . A a,,, A i ( S )  du, = 0. 
Hence, S is in Q, because this is true for all w E ‘H,. Now, take 17 - (-Y, v) is zero because (S, 77) is identically zero, and (-t, 17) is zero 
because is in Goo. This proves 7 E C(‘H,) * rj E C(‘H,), and 
therefore the lemma. w 
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