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Abstract

Rigid body models with two controls cannot be
locally asymptotically stabilized by continuous state
feedbacks. Existence of a locally stabilizing smooth
time-varying feedback has however been proved.
Here, such a feedback is explicitely derived.

1 Introduction

The attitude control of a rigid spacecraft oper-
ating in degraded mode, i.e with only one or two
controls, has already been much studied in the lit-
erature. With respect to other contributions on the
subject, the present paper focuses on feedback sta-
bilization . The related but simpler problem consist-
ing of stabilizing the angular velocity of the space-
craft with one or two actuators has been investi-
gated by several authors (see e.g [1]). Smooth sta-
bilization of the attitude seems to have been pre-
viously ruled out due to that the resulting system,
although controllable, cannot be stabilized via con-
tinuous state feedback (as easily proved by appli-
cation of Brockett’s necessary condition [2]). An
article by Samson [8] has recently triggered the dis-
covery that many systems of this type can in fact be
stabilized by smooth “time-varying” feedback. Re-
search on time-varying control has then expanded
quickly (see e.g [4], [7]). In particular, results by
Kerai [5] and Coron [4] ensure that the attitude of
a controllable spacecraft with two actuators can be
locally stabilized by continuous time-varying feed-
backs. The purpose of this note is to describe a
smooth (C*) stabilizing time-varying feedback.

2 Main results

The angular velocity vector of the inertial frame
Fy with respect to a fixed frame F), expressed in
the basis of Fy, is denoted as w. The matrix rep-
resentation of the cross product (z —— z A w) is
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denoted as S(w). It is common to use Euler an-
gles in order to work with a minimal parametriza-
tion of SO(3). We prefer here the parametriza-
tion X = sinf u, with (cos$, sinf u) being the uni-
tary quaternion associated with the rotation matrix
representing the attitude of F; with respect to Fy.
With this parametrization, the equation of the sys-

tem may locally be written:

X = %( T-1XPId - S(X))w

wp = cquwaws+u (1)
Wy = Cowiws + Uz

w3 = C3wiwe

where the u; (i = 1,2) are the torques applied to the
rigid body, and the parameters ¢; (j = 1,2,3) are
deduced from the coefficients of the body’s inertia
matrix. We assume that c3 # 0, since otherwise
the system would not be controllable. Moreover,
by an adequate change of variables, we may also
assume that ¢3 > 0. We first consider the following
reduced order system obtained by taking w; = ©
and w, = v, as control variables:

X = HVI-IXPId - 5(X))(v1,v2,w3)"
w3 = Cc3nv2
(2)

Proposition 1 The smooth time-varying controls:

. 13)
vi(X,ws,t) = 2g1hy + Iy —Oz] w3 — 2k1(z1 — g1h1)
3

v2(X, w3, t) = 2g2h2 — 2301 (X, w3, 1) + T1w3
d
+h2~—g‘£w3 — 2k2(z2 — g2h2)
3

or
(3)
with
g = ar3+pPuws
g2 = 2t (4)
hy = a;sint
hy = apsint+ ajcost

and ky,ki,a,B,a1,a2 and a3 being real numbers
such that:

ki >0, k>0, a; >0, a3 <0,
a3 a3 (5)

8ajay’ 4a,

a3 >0, a=-
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locally asymptotically stabilize the origin of (2).

Our second result concerns the original system
controlled by the torques u; and wus.

Proposition 2 The control laws:

ul(X,w,t) = —Cwaw3 +51(X,w,t)
-k:;(wl - 'Ul(X,wa,t)) k:; >0

u(X,w,t) = —cowiws + s2(X,w,t)
~ky(wy —v2(X,w3,t)) ks >0
(6)

with vy and vy given by (3). (4) and (5) and, s, and
sz their time derivatives along the trajectories:
1 0v;
s = =
20X

(VI = X2Id=S(X))ot 2% cgwrap + 22
dws ot

locally asymptotically stabilize the origin of (1).

The proof of Proposition 1 is based upon the two
following lemmas, with Of(X) denoting any contin-
uous function of t and X such that,

35> 0,3K : |X| < 6§ == |0¥(X)| < K|X]*.

Lemma 1 is an adaptation of Center Manifold The-
ory [3} to periodic time varying systems, while
Lemma 2 is an original averaging result which takes
advantage of the particular structure of the closed-
loop system obtained via an adequate choice of the
controls.

Lemma 1 Consider the system

T
2
Za

with £ € ",z = (z1,22), A a matriz with
eigenvalues having zero real parts, f,ly and I
C? T periodic functions such that, for all t,
{(0,0,t) = O,f(’z’z)(ﬂ,.ﬂ,t) = 0, 1;(0,0,t) = 0 and
I} (zvz)(0,0,t) =0fori=1,2.

It is assumed that 1;(z,0,0,t) is @ OF function
and that ly(z, Of* (z),0,t) is ¢ OF* function with 2 <
g1 < g2. Assume further that the origin of the time-
varying system:

Az + f(z,2,1)
—ki121 + li(z,2,1) ,
—kng -+ 12(1‘, Z,t) y

ki >0
ka >0

(M

= Az + f(z,71(t,z), 73(t, z),t)

(8)

is locally asymptotically stable when m,(t,z) (resp
na(t,z)) is any OF (resp OF ) function. Then, the
origin of (7) is locally asymptotically stable.

Lemma 2 Consider the system
i = Az + D(t)d(z)+ 07 (z) (9)

with z € R™, A ¢ n x n (strictly) upper trian-
gular matriz (j < 1 = a;; = 0),D(t) a n x p
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matriz where d;;(t) is a T periodic C"(r > 1)
function for all (3,5) € {1,..n} x {1,..p} end
d(z) = (d1(x),....,dp(z))T where the d; are polyno-
mials in (%1....,%,) of degree k > 2. Then there
ezists a neighborhood  of 0 in R™ and ¢ C" lo-
cal change of coordinates: (x,t) — (y,t) defined on
QxR such that: y—z = OF(z) and, for any solution
z of (9), y is solution of:

¥ = Ay + Dd(y) + 07**(y)
where D is the time average of D(t).

(10)

Proposition 2 is obtained from Proposition 1 by
a standard method used for cascaded systems.

Details concerning the way the aforementionned
lemmas are derived and applied to prove Proposi-
tions 1 and 2 can be found in [6].
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