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Abstract

In this paper results are presented on the problem of regulating nonlinear systems by

output feedback, using Lyapunov-based techniques. In all the cases considered here, we ask

that the part of the state which is not measured enter linearly in the equations. Su�cient

conditions for the global stabilization of the observed states via dynamic output feedback are

obtained, assuming that such stabilization is possible using state feedback. Systems satisfying

these conditions include a natural class of bilinear systems and systems which reduce to linear

observable systems when the nonlinear terms in the measured states are removed. Some simple

examples are included to illustrate our approach.
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1 Introduction

This paper is concerned with the problem of output feedback regulation of nonlinear systems.
Many authors have considered such problems, using various approaches. Some necessary and suf-
ficient conditions for regulation via static output feedback are established in Tsinias and Kaloupt-
sidis [TK], by extending previous results of Artstein [A] and Sontag [S1]. However, these conditions
are not explicit and involve the existence of a special “control Lyapunov function.” Furthermore,
as it is well known, most feedback stabilizable systems are not static output feedback stabilizable
(e.g. ẋ

1

= x
2

, ẋ
2

= u, y = x
1

).
For linear systems, a more general problem has been solved, among others, by Francis [F].

These results were extended to nonlinear systems by Isidori and Byrnes [IB], for the case in
which some of the nonobserved dynamics evolve independently, as a so-called “exosystem”. This
exosystem is assumed to be Poisson stable. For the case in which the state of the exosystem
is not available to the controller, local regulation results follow from detectability of the linear
approximation of the combined system.

The most “natural” approach to output control is to try to build an observer. But for nonlinear
systems the theory of observers is not well developed, and only partial results are known (see [I] sec
4.9). Even in the cases where it is possible to design an observer, it might not solve the problem
of output control because the “separation principle”, which is valuable in the linear case, does not
hold in general. In [GK], Gauthier and Kupka have proved that this principle holds for a certain
class of bilinear systems and very particular observers. In [V], a rather general condition is given
for such a separation principle to hold. This was generalized by Tsinias [T], but the main result
is local, and the situations considered here include many where it is not clear that an asymptotic
observer can be built.

Output stabilization of a certain class of systems has been recently obtained, independently
and by di↵erent methods, by Kanellakopoulos, Kokokovic and Morse in [KKM] and by Marino
and Tomei in [MT1, MT2]. They consider output stabilization of a particular class of systems
which are, roughly speaking, input-output linear up to output injection and are “minimum phase”
in a rather strong sense (the zero-dynamics are also linear up to output injection). These systems
have a common feature with those considered here, i.e. they are globally stabilizable by full-state
feedback and (for proper coordinates in the state-space) the non-observed coordinates of the state
appear linearly in the equations. The other assumptions considered in this paper (in particular
A3 or A30, see section 2 below) are usually not satisfied in a straightforward manner.

Let us mention also some necessary and su�cient conditions given by Sontag in [S2] for the
existence a stabilizing dynamic output controller, where “controller” is taken in a rather abstract
sense; these conditions are not necessary here since they only characterize the case where all the
state variables are required to converge whereas we only require that the output converges.

We follow an approach that does not involve explicitly building an observer. Our main as-
sumptions are that regulation of the observed states is possible by full state feedback and that the
nonobserved states enter the system equations linearly. Under these assumptions, together with
some technical Lyapunov conditions, global results can be obtained. Our methods are an extension
of those commonly used in adaptive stabilization (see, for example, [PBPJ]). It should be noted
that nonlinear adaptive stabilization is a particular case of our problem, where the nonobserved
states are constant (i.e. unknown parameters).

Some preliminary results using this approach were presented by the authors in [CHP], un-
der rather restrictive technical assumptions. These results were extended by Praly [P] by using
di↵erent Lyapunov techniques (leading to some “growth conditions” as assumptions) and taking
advantage of a kind of weak observability.

In this paper, we present a dynamic controller similar to our original one [CHP], but the
assumptions are greatly relaxed. We also use some observability conditions, as in [P]. The results
now apply to a much larger class of systems. In particular, we obtain output regulation for the
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same class of bilinear systems as in [GK], using a di↵erent controller.

2 Problem Statement

We consider a nonlinear system with input u 2 IRm and output y 2 IRk which admits a state-space
representation in IRn (n � k) of the form

ẋ
1

= a
1

(x
1

, u) +A
1

(x
1

, u)x
2

ẋ
2

= a
2

(x
1

, u) +A
2

(x
1

, u)x
2

y = h(x) = x
1

(1)

with x
1

2 IRk, x
2

2 IR`, (x
1

, x
2

)T = x 2 IRn and where a
1

, a
2

, A
1

and A
2

are, respectively, a
k-vector, a `-vector, a k ⇥ `-matrix and a ` ⇥ `-matrix smoothly depending on x

1

and u. The
assumption contained in (1) is linearity of the equations with respect to the unmeasured states.
We may also write

ẋ = a(x
1

, u) +A(x
1

, u)x
2

y = Hx (2)

with

a(x
1

, u) =

✓

a
1

(x
1

, u)
a
2

(x
1

, u)

◆

A(x
1

, u) =

✓

A
1

(x
1

, u)
A

2

(x
1

, u)

◆

H = (I
k

0) (3)

As explained above, we suppose that it is possible to design a full state feedback controller
which regulates the output x

1

, i.e. such that any solution of the closed-loop system, x(t) =
(x

1

(t), x
2

(t)) is bounded and x
1

(t) goes to zero.
This is expressed by assumptions A1 or A10 below, via existence of some “Lyapunov-like”

functions. We actually decompose the Lyapunov function into two parts (V = V
1

+ V
2

) where
V
1

determines the design of the controller, and V
2

is assured to be non-increasing whatever the
control is. This distinction is motivated by the fact that we will assume a special structure on V

1

,
which need not apply to all of V . In the case where the x

2

part of the system is an “exo-system”
supposed to be Poisson stable, as in [IB], V

2

may be taken as a function of x
2

. Motivated by
various examples, we study our problem under two slightly di↵erent assumptions –A1 or A10–
which both express the ability to regulate using full-state feedback. Assumption A10 is somewhat
less restrictive than A1 since (8) obviously implies (9). Assumption A1 lets us conclude that x
is bounded and x

1

goes to zero via the standard Lyapunov “second” theorem, whereas LaSalle’s
invariance principle (see [L]) is needed to deduce this from assumption A10. It is often the case
(as for bilinear systems, see section 4.2) that a simple non-strict Lyapunov function (i.e. satisfying
(9) and not (8)) can be found; a more complicated one may very well exist that allows assumption
A1 to be satisfied, but again, since we are going to impose some additional restrictions on V

1

, we
wish to keep the widest possible range in the choice of V

1

.
Assumption A1 : There exist two continuously di↵erentiable positive semidefinite functions V

1

and V
2

from IRn to IR and a map u
nom

from IRn to IRm such that

1. The function V from IRn to IR defined by

V (x) = V
1

(x) + V
2

(x) (4)

is proper (i.e. the preimage of a compact set is compact).

2. For any x and u,
@V

2

@x
(x) · [a(x

1

, u) +A(x
1

, u)x
2

]  0 (5)
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3. Defining the function ⇢ by

⇢(x) = �@V
1

@x
(x) [a(x

1

, u
nom

(x)) +A(x
1

, u
nom

(x))x
2

] , (6)

we have that

⇢(x) � 0 8x 2 IRn (7)

⇢(x) = 0 ) x
1

= 0 (8)

Assumption A1

0
: This is the same as assumption A1 with (8) replaced by

⇢(x(t)) = 0 8t
dx

dt

(t) = a(x
1

(t), u
nom

(x(t))) +A(x
1

(t), u
nom

(x(t)))x
2

(t) 8t

�

) x
1

(t) = 0 8t (9)

In order to obtain our global results, we will use the following somewhat restrictive hypothesis.
Assumption A2 : V

1

has the form

V
1

(x) = U
1

(x
1

) + xT

2

L(x
1

) +
1

2
xT

2

Mx
2

(10)

where U
1

and L are smooth functions from IRk to IR and from IRk to IR` respectively, and M is
a symmetric `⇥ ` real matrix.

Now, let us define the n⇥ n matrices N(x
1

, x
2

) and E(x
1

, x
2

) by:

N(x
1

, x
2

) =

✓

0 0
0 Z(x

1

, x
2

)

◆

(11)

E(x
1

, x
2

) =

✓

0 A
1

(x
1

, u
nom

(x
1

, x
2

))
0 A

2

(x
1

, u
nom

(x
1

, x
2

))

◆

(12)

where

Z(x
1

, x
2

) =
@L

@x
1

A
1

(x
1

, u
nom

(x
1

, x
2

)) + [
@L

@x
1

A
1

(x
1

, u
nom

(x
1

, x
2

))]T

+MA
2

(x
1

, u
nom

(x
1

, x
2

)) +AT

2

(x
1

, u
nom

(x
1

, x
2

))M . (13)

Our third assumption is a kind of weak observability. Assumption A3 is the weakest version,
while assumption A30 is stronger. An even stronger A300 will allow us to get a converging estimate
of the unmeasured states.
Assumption A3 : There exist a constant positive definite n⇥ n matrix Q and an n⇥ k matrix
K(x

1

, x
2

) smoothly depending on x = (x
1

, x
2

) such that, for any x,

Q(E(x
1

, x
2

)�K(x
1

, x
2

)H) + (E(x
1

, x
2

)�K(x
1

, x
2

)H)TQ+N(x
1

, x
2

)  0 (14)

in the sense of symmetric matrices.
Assumption A3

0
: There exist a constant positive definite n⇥ n matrix Q and an n⇥ k matrix

K(x
1

, x
2

) smoothly depending on x = (x
1

, x
2

) such that, for any x = (x
1

, x
2

), the matrix (14) is
negative definite for x

1

6= 0, i.e.

Q(E(x
1

, x
2

)�K(x
1

, x
2

)H) + (E(x
1

, x
2

)�K(x
1

, x
2

)H)TQ+N(x
1

, x
2

)  �↵(x
1

, x
2

)I (15)

for a certain ↵(x
1

, x
2

) such that

↵(x
1

, x
2

) � 0 8x
1

, x
2

and ↵(x
1

, x
2

) = 0 =) x
1

= 0 (16)
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Assumption A3

00
: There exist a constant positive definite n⇥ n matrix Q and an n⇥ k matrix

K(x
1

, x
2

) smoothly depending on x = (x
1

, x
2

) such that, for any x, is negative definite for x
1

6= 0,
i.e.

Q(E(x
1

, x
2

)�K(x
1

, x
2

)H) + (E(x
1

, x
2

)�K(x
1

, x
2

)H)TQ+N(x
1

, x
2

)  �↵I (17)

with ↵ a positive constant.
Remarks:

• These assumptions are somehow similar to assumption D in [P] in the sense that they open up
the possibility to use a gain K to counteract some possibly unstable terms (here, N).
• If the matrix Q were not required to be constant, a su�cient condition for A30 would be that the
pair (E(x) , H ) be observable for any x (and a su�cient condition for A3 that its unobservable
modes be marginally stable). The fact that we ask Q to be constant makes it much more di�cult
to give reasonable su�cient conditions in terms of the “family of pairs” (E(x) , H ) indexed by
x. Our Example 3 in Section 4.3 displays a very particular situation where we may extend our
methods to work without the requirement that Q be constant.

3 The controller and main results

3.1 The controller

We shall use the following notations:

• The dynamic controller we are designing has state bx = (bx
1

, bx
2

).

• ex
1

, ex
2

, ex stand for x
1

� bx
1

, x
2

� bx
2

, x� bx , respectively.

• A hat on functions depending on u or x
2

indicates it is evaluated with bx
2

substituted for x
2

and for u = u
nom

(x
1

, bx
2

) e.g.

bA
1

stands for A
1

(x
1

, u
nom

(x
1

, bx
2

))

ba
2

stands for a
2

(x
1

, u
nom

(x
1

, bx
2

))

c

@V1
@x1

stands for @V1
@x1

(x
1

, bx
2

)

bK stands for K(x
1

, bx
2

)

The dynamic controller we propose is then :

u = u
nom

(x
1

, x̂
2

) (18)

˙̂x = ba+ bAx̂
2

+ bKx̃
1

+Q�1

✓

0
P (x

1

, x̂
2

)

◆

(19)

with

P (x
1

, x̂
2

) =
@L

@x
1

⇣

ba
1

+ bA
1

x̂
2

⌘

+M
⇣

ba
2

+ bA
2

x̂
2

⌘

+ bAT

1

(
@U

1

@x
1

+
@L

@x
1

x̂
2

)T + bAT

2

(L+Mx̂
2

) . (20)

where Q and K are given by assumption A3 or A30 depending which one is met.
The idea behind this design is to consider V

1

(x
1

, x
2

)+ 1

2

x̃TQx̃ as a Lyapunov function candidate

and design ˙̂x so that it decreases. This is done by canceling all the terms in its derivative other
than �⇢(x

1

, x̂
2

), which appears rather naturally. For the details, see the proof of Lemma 1 below.
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3.2 Regulation results

We are stating here our main results concerning the properties of the closed-loop when using our
dynamic regulator.

Theorem 1 Under assumptions A1, A2 and A3, or A10, A2 and A3 0, the dynamic controller
(18)-(19) achieves the following property for the closed-loop system: for any initial conditions, the
state (x

1

(t), x
2

(t), bx
1

(t), bx
2

(t)) is bounded, and x
1

(t) ! 0. Moreover, if assumption A3 00 is met,
then x

1

(t)� bx
1

(t) and x
2

(t)� bx
2

(t) converge to 0.

The proof of this theorem is based on the following lemma.

Lemma 1 The derivative of the function

W
1

(x, x̂) = V
1

(x
1

, x
2

) +
1

2
x̃TQx̃ (21)

along the solutions of the closed-loop system obtained with controller (18)-(19) is given by :

Ẇ
1

= �⇢(x
1

, x̂
2

) +
1

2
x̃T

h

bN + Q( bE � bKH) + ( bE � bKH)TQ
i

x̃.

Proof : We have, from (21),

Ẇ
1

(x, x̂) = V̇
1

(x
1

, x
2

) + x̃TQ
⇣

ẋ� ˙̂x
⌘

. (22)

Now, on one hand,

V̇
1

=
@V

1

@x
1

(ba
1

+ bA
1

x
2

) +
@V

1

@x
2

(ba
2

+ bA
2

x
2

) (23)

which gives, since

d@V
1

@x
1

(ba
2

+ bA
2

x̂
2

) +
d@V

1

@x
2

(ba
2

+ bA
2

x̂
2

) = �⇢(x
1

, x̂
2

) , (24)

V̇
1

= �⇢(x
1

, x̂
2

)

+

 

@V

@x
1

�
d@V

@x
1

!

⇣

ba
1

+ bA
1

x̂
2

⌘

+

 

@V
1

@x
2

�
d@V

1

@x
2

!

⇣

ba
2

+ bA
2

x̂
2

⌘

+

"

d@V
1

@x
1

bA
1

+
d@V

1

@x
2

bA
2

#

ex
2

+

" 

@V
1

@x
1

�
d@V

1

@x
1

!

bA
1

+

 

@V
1

@x
2

�
d@V

1

@x
2

!

bA
2

#

ex
2

(25)

= �⇢(x
1

, x̂
2

)

+ exT

2



@L

@x
1

⇣

ba
1

+ bA
1

x̂
2

⌘

+M
⇣

ba
2

+ bA
2

x̂
2

⌘

�

+



(
@U

1

@x
1

+ x̂T

2

@L

@x
1

) bA
1

+ (LT + x̂T

2

M) bA
2

�

ex
2

+ exT

2



@L

@x
1

bA
1

+M bA
2

�

ex
2

= �⇢(x
1

, x̂
2

) + exT

2

bP

+
1

2
exT

2

"

@L

@x
1

bA
1

+ bAT

1

@L

@x
1

T

+M bA
2

+ bAT

2

M

#

ex
2

(26)
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where bP stands for P (x
1

, x̂
2

) (see (20)). On the other hand, from (1) and (21),

ẋ � ˙̂x = bAex
2

� bKex
1

� Q�1

✓

0
P (x

1

, x̂
2

)

◆

=
⇣

bE � bKH
⌘

x̃ � Q�1

✓

0
P (x

1

, x̂
2

)

◆

. (27)

Clearly (27) and (22) imply (21). 2

Proof of the theorem: We use the result of Lemma 1. Let us define the function W of the
closed-loop state (x, bx) by

W (x, bx) = W
1

(x, bx) + V
2

(x)

From (21) and (4), W is a proper function of (x, bx) and, from (22) and (5), we have:

Ẇ (x, bx)  �⇢(x
1

, bx
2

) +
1

2
exT[ bN +Q( bE � bKH) + ( bE � bKH)TQ]ex (28)

This proves that on any solution of the closed-loop system, W decreases. Therefore all the solutions
are bounded.

We may now apply LaSalle’s invariance principle: (x(t), bx(t)) goes to the largest invariant
subset of the set of (x, bx)’s where the right-hand side of (28) is zero.

If A3 is met, (28) reduces to Ẇ  �⇢(x
1

, bx
2

). Therefore the invariant set is defined by
⇢(x

1

, bx
2

) = 0 which, under assumption A1, implies x
1

= 0 .
Now suppose that A10 and A30 are met. In this case, making the right-hand side of (28)

equal to zero implies ⇢(x
1

, bx
2

) = 0 and ↵(x
1

, bx
2

)kx̃k2 = 0 . If ↵(x
1

, bx
2

) is identically zero on a
solution of the closed-loop, then x

1

= 0 on this solution by assumption A30. On the other hand,
if ↵(x

1

, bx
2

) > 0 , then kx̃k = 0 , hence bx
2

= x
2

, and now A10 implies x
1

= 0 .
Finally, if A300 is met (i.e. if ↵ is a positive constant), we always have kx̃k = 0 for the invariant

set. Therefore bx
1

(t) �! x
1

(t) and bx
2

(t) �! x
2

(t) as stated. 2

A closer examination of the proof of Theorem 1 indicates that, instead of assumptions A1 and
A3 or A10 and A30, there is a very natural assumption which allows one to get the same regulation
result :
Assumption A4 : Assumption A3 holds as well as assumption A1 with (8) replaced by :

⌘(x(t), bx(t)) = 0 8t
(x(t), bx(t)) is a trajectory for the combined
closed-loop system (1), (18)-(19), for all t

9

=

;

=) x
1

(t) = 0 8t , (29)

where ⌘ is defined by

⌘(x, bx) = ⇢(x
1

, bx
2

)� 1

2
exT[ bN +Q( bE � bKH) + ( bE � bKH)TQ]ex . (30)

This assumption is obviously implied either by assumptions A1 and A3 or by assumptions A10

and A30. It is rather implicit (since it is given in terms of the solutions of the closed-loop system),
and the corresponding theorem, stated below, is quite straightforward. However, when working
on examples, one realizes that in some interesting cases (C.f. Ex. 2), A4 is met (and our controller
therefore yields global regulation) whereas neither of the sets of assumptions A1-A3 or A10-A30

are met. This is the motivation for the following theorem :

Theorem 2 Under assumptions A2 and A4 the dynamic controller (18)-(19) achieves the follow-
ing property for the closed-loop system: for any initial conditions, the state (x

1

(t), x
2

(t), bx
1

(t), bx
2

(t))
is bounded and x

1

(t) converges to 0.
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Proof : We proceed as in Theorem 1 to obtain

Ẇ (x, bx)  �⌘(x, bx) (31)

Then assumption A4 is exactly what is needed to conclude x
1

�! 0 from LaSalle’s invariance
principle. 2

3.3 Reduced order controller

In this section, we present a result that was obtained in [CHP] under more restrictive assumptions.
Those assumptions actually imply the ones we are making in this paper, so it is possible to simply
use our present controller for that case. However, in order to obtain a simpler controller (of reduced
order), as in [CHP], we consider a special case of assumption A3. The positive definite matrix Q

in A3 or A30 is replaced by



0 0
0 Q

2

�

with Q
2

> 0 and K is assumed to be zero.

Assumption A3

000
: There exists a (constant) positive definite `⇥ ` matrix Q

2

such that, for any
x,

Q
2

A
2

(x
1

, u
nom

(x
1

, x
2

)) +A
2

(x
1

, u
nom

(x
1

, x
2

))TQ
2

+ Z  0 (32)

where Z is defined by equation (13).
The reduced order dynamic controller is then:

u = u
nom

(x
1

, bx
2

) (33)

ḃx
2

= ba
2

+ bA
2

bx
2

+Q�1

2

P (x
1

, bx
2

) (34)

where P is given by (20). Then Theorem 1 becomes:

Theorem 3 Under assumptions A1, A2 and A3 000, the dynamic controller (33)-(34) achieves the
following property for the closed-loop system: for any initial conditions, the state (x

1

(t), x
2

(t), bx
2

(t))
is bounded, and x

1

(t) converges to 0.

The proof is essentially the same as before and is given in [CHP].

3.4 Complete stabilization

Although this paper is more oriented towards output regulation (regulation of x
1

), an extension
of the above results to regulation of the whole state x = (x

1

, x
2

) is possible, under the assumption
that the full-state control u

nom

not only regulates x
1

, but (x
1

, x
2

), i.e. it is a stabilizing feedback
control for the system (1):
Assumption A1

00
: This is assumption A10, with (9) replaced by

⇢(x(t)) = 0 8t
dx

dt

(t) = a(x
1

(t), u
nom

(x(t))) +A(x
1

(t), u
nom

(x(t)))x
2

(t) 8t

�

) x(t) = 0 8t (35)

We have the following result:

Theorem 4 : Under assumptions A100, A2 and A3 00, the dynamic controller (18)-(19) is such
that (x, bx) = (0, 0) is a globally asymptotically stable equilibrium of the closed-loop system.

Remark: A somewhat less restrictive version of the above theorem can be obtained for the
case where (17) does not hold with a positive constant ↵, but for a positive function ↵(x) –as in
assumption A30– with the property –stronger than (15) in assumption A30– that ↵(x) = 0 =) x =
0 ; in that case, we have to suppose, in addition (for a proper application of LaSalle’s Principle),
that (A

2

(0, u
nom

(0, 0)), A
1

(0, u
nom

(0, 0))) is an observable pair (i.e. the linear approximation to
system (1) around x

1

= 0 and u = u
nom

(0, 0) is observable).
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4 Applications

4.1 Systems Strictly Linear in the Unobserved States

By “strictly linear”, we mean that system (1) is linear with respect to the unobserved part of
the state, x

2

, with a constant regressor, i.e. that the matrix A(x
1

, u) in the state equation (2) is
constant. If, in addition, the linear approximation is detectable then assumption A300 is equivalent
to a simple growth condition on the “o↵-diagonal terms” in the Lyapunov function V

1

.

Proposition 1 Suppose that the matrix A = (A
1

, A
2

)T defining system (1) is constant, and the
linear approximation of (1) around (x, u) = (0, 0) is observable. Let V

1

be a function satisfying
assumption A2 for certain U

1

, L and M . If there exists a positive constant ↵ such that, for all x
1

,

@L

@x
1

(x
1

)A
1

+AT

1

@L

@x
1

T

(x
1

)  ↵I , (36)

then assumption A3 00 is met.

This proposition allows us to apply one of the theorems above if, in addition, one of the full state
regulation assumptions (A1, A10 or A100) is met.

Let us prove this proposition. Condition (36) and A
2

constant imply that the matrix N(x
1

, x
2

)
defined by (11) and (13) is bounded. Thus there exists a constant � such that N(x

1

, x
2

)  �I for
all x

1

, x
2

, and hence A300 will hold if there exists a constant positive definite n⇥ n matrix Q and
an `⇥ n matrix K(x

1

, x
2

) smoothly depending on x = (x
1

, x
2

) such that for any x,

Q(E(x
1

, x
2

)�K(x
1

, x
2

)H) + (E(x
1

, x
2

)�K(x
1

, x
2

)H)TQ  �2|�|I.

If the linear approximation to our system is detectable then such a K and Q exist. To see
this, recall that the linear approximation to ẋ = f(x, u); y = h(x) about (x, u) = (0, 0) is the time
invariant linear system (F,G,H) where

F =
@f

@x

�

�

�

�

x=0,u=0

, G =
@f

@u

�

�

�

�

x=0,u=0

, H =
@h

@x

�

�

�

�

x=0

.

The linear approximation to system (1) when A is constant has

F =

"

@a

@x
1

�

�

�

�

x=0,u=0

A

#

, G =
@a

@u

�

�

�

�

x1=0,u=0

, H = [I 0].

If this system is detectable, there exists an n ⇥ ` matrix K such that F � KH, or equivalently,
E �KH has its poles strictly in the left-half plane, where E = [0 A].

In this case there exists a unique positive definite matrix Q solving

Q(E �KH) + (E �KH)TQ  �2|�|I

(cf. [B]), hence
Q(E �KH) + (E �KH)TQ+N  �|�|I

and condition A300 is satisfied.
Remark: Suppose that the system (1) is a time-invariant linear system which satisfies assumption
A1 with u

nom

linear and V
1

quadratic. Then assumption A2 holds with L(x
1

) linear (and hence
the growth condition (36) holds as well), and assumption A300 follows if, in addition, the system
is detectable.

8



4.2 Bilinear systems

Consider the bilinear system

ẋ = Fx+
m

X

k=1

u
k

G
k

x

y = Hx = x
1

(37)

where the observed states are the k first components of x. We shall prove that it is possible
to use Theorem 4 to stabilize the origin with the only measurement of x

1

, under the following
assumptions:

1. First, we ask that the system has a controllable linear approximation (i.e. the “ad-condition”
is satisfied, see [JQ]) everywhere except at zero:

8x 6= 0, Span
n⇣

adj
F

G
k

⌘

x | j � 0, k = 1 . . .m
o

= IRn (38)

where the ad operator is the one corresponding to matrix commutators:

ad0
F

G = G and adj+1

F

G = F (adj
F

G)� (adj
F

G)F .

2. System (37) also has to be observable for small inputs:

Rank(H,HF,HF 2, . . . , HFn�1) = n (39)

3. Finally, we ask that the system be naturally (with a zero control) dissipative or conservative;
namely we suppose that all the eigenvalues of F have nonpositive real parts and that the
Jordan blocks corresponding to the imaginary ones be diagonal.

Proposition 2 If points 1, 2 and 3 above are satisfied then it is possible to satisfy the assumptions
of Theorem 4, and the controller (18)-(19) is then a stabilizing output feedback controller for system
(37).

Let us prove this proposition, i.e. explain how to build the appropriate u
nom

, V
1

and V
2

for the
system (37). Points 1 and 3 allow us to derive a stabilizing full state control law for system (38),
following the idea of [JQ] (see also [NV]) : point 3 implies the existence of a symmetric, positive
definite matrix � such that

�F + FT�  0 . (40)

Now take
V
1

(x) = xT�x , (41)

and define u
nom

by :

u
nom,k

(x) = � �
p

1 + (xT�G
k

x)2
xT�G

k

x , (42)

where � is a positive constant. This yields

V̇
1

= � ⇢(x) + xT(�F + FT�)x  0 (43)

with

⇢(x) = �
m

X

k=1

(xT�G
k

x)2
p

1 + (xT�G
k

x)2
. (44)

9



The reason for the coe�cient
�

1 + (xT�G
k

x)2
�

1
2 is to obtain a bounded control: (42) implies that

|u
nom,k

(x)| < � 8x 2 IRn . (45)

Suppose that x(t) is a system trajectory such that the right-hand side of (43) is identically
zero. Then xT(t) (�F + FT�)x(t) = 0 for all t . Since �F + FT� is negative semidefinite, it
follows that xT(t) (�F + FT�) = 0 , and thus xT(t)�F = �xT(t)FT� for all t. Using this fact
and point 1 above one can check (see [JQ], or [NV], for some details) that the following is true for
any function x(t) :

x(t)T�G
k

x(t) = 0 8k = 1, . . . ,m 8t
ẋ(t) = Fx(t) 8t

�

=) x(t) = 0 , 8t . (46)

From (44), ⇢(x) is zero if and only if all the xT�G
k

x’s are zero. As in [JQ], we can conclude that,
from (46), (43) and the fact that V

1

is proper, x = 0 is an asymptotically stable equilibrium of
the closed loop obtained with the full state feedback u = u

nom

(x).
Under the additional assumption (observability) contained in point 2, we are able to derive

an output feedback controller. Note that Gauthier and Kupka have given in [GK] an output
controller which yields stabilization in the very same situation; they use quite a di↵erent method,
explicitly based on the convergence of a nonlinear observer, and the controller obtained is di↵erent
from ours.

Let us prove that we are in the situation of Theorem 4. First of all, system (37) is of the form
(1) with

a
1

(x
1

, u) = F
11

x
1

+
P

u
k

G
k,11

x
1

a
2

(x
1

, u) = F
21

x
1

+
P

u
k

G
k,21

x
1

A
1

(x
1

, u) = F
12

+
P

u
k

G
k,12

A
2

(x
1

, u) = F
22

+
P

u
k

G
k,22

(47)

where F
11

, F
12

, F
21

, F
22

are defined by

F =

✓

F
11

F
12

F
21

F
22

◆

G
k

=

✓

G
k,11

G
k,21

G
k,12

G
k,22

◆

. (48)

Assumption A100 is met with V
1

defined by (41), V
2

= 0, u
nom

defined by (42) and ⇢ defined
by (44) : points 1 and 2 in A100 are obvious and point 3 is a consequence of (46). Assumption A2
is obviously met with

U
1

(x
1

) = xT

1

�
11

x
1

, L(x
1

) = 2�
12

x
1

, M = �
22

. (49)

Let us prove that assumption A300 is met for � small enough. From (39), there exists K such
that the matrix F � KH is Hurwitz. On the other hand, N is, in the present case, a constant
matrix, as seen from (11) and (49). Therefore there exists a positive definite matrix Q such that,
for instance

Q(F �KH) + (F �KH)TQ = �N � 2↵I (50)

with ↵ a positive constant. But assumption A300 requires E in place of F in (50).
From (47) and (12),

E(x) = F +

✓

�F
11

P

u
nom,k

(x)G
k,12

�F
21

P

u
nom,k

(x)G
k,22

◆

.

Then, with

K(x) = K �
✓

F
11

+
P

u
nom,k

(x)G
k,11

F
21

+
P

u
nom,k

(x)G
k,21

◆

10



it follows that

Q(E �KH) + (E �KH)TQ+N = �2↵I �
X

u
nom,k

(x)(QG
k

+GT

k

Q) . (51)

From (45), it is clear that, for a choice of the constant � small enough, the right-hand side of (51)
is smaller than �↵I, and therefore that assumption A300 is met.

4.3 Examples

Example 1. Let us consider the system

ż
1

= �(z
1

)z
2

+ u

ż
2

= �z
3

ż
3

= z
2

y = z
1

,

where � is a smooth real function. It is clearly of the form (1) with x = (z
1

, z
2

, z
3

), x
1

= z
1

,
x
2

= (z
2

, z
3

).
This is a typical illustration of the problem considered in [IB], (z

2

, z
3

) being the state of the
“exo-system”, clearly Poisson stable since it is an harmonic oscillator. Let us give our controller
for this example and compare it with the techniques from [IB].

If we use

u
nom

(z
1

, z
2

, z
3

) = ��(z
1

)z
2

� z
1

V
1

(x) =
1

2
z 2

1

V
2

(x) =
1

2
(z 2

2

+ z 2

3

) ,

then assumption A1 is met with ⇢(x) = z 2

1

. Clearly assumption A2 is also satisfied, with L =
M = 0 . Computing E according to (12), we obtain

E =

2

4

0 �(z
1

) 0
0 0 �1
0 1 0

3

5

then

E �K(z
1

, z
2

)H =

2

4

�k
1

�(z
1

) 0
�k

2

0 �1
�k

3

1 0

3

5

and

(E �KH) + (E �KH)T =

2

4

�2k
1

�k
2

+ �(z
1

) �k
3

�k
2

+ �(z
1

) 0 0
�k

3

0 0

3

5

Then, since N = 0, assumption A3 is satisfied, with Q = I , if we take k
1

= 1 , k
2

= �(z
1

) , and
k
3

= 0 .
In this case, our dynamic controller takes the form

u = u
nom

(z
1

, bz
2

, bz
3

) = ��(z
1

)bz
2

� z
1

where

11



ḃz
1

= �bz
1

ḃz
2

= �bz
3

+ (2z 2

1

� bz
1

)�(z
1

)

ḃz
3

= bz
2

(52)

Remark. Note that bz
2

and bz
3

do not converge to z
2

and z
3

. In steady state (z
1

= ẑ
1

= 0), z
2

�bz
2

and z
3

� bz
3

evolve as a harmonic oscillator.

For this example it is possible to use the reduced order dynamic controller from section 3.3 (or
from [CHP]) for the corresponding assumptions are satisfied. One can choose Q

2

= I
2

to satisfy
(32) and our controller (33)-(34) takes the form

u = �z
1

� z
1

bz
2

ḃz
2

= �bz
3

+ z
1

�(z
1

)

ḃz
3

= bz
2

.

It does yield boundedness of (z
1

, z
2

, z
3

, ẑ
2

, ẑ
3

) and convergence of z
1

to zero. One may again note
that z

2

� bz
2

and z
3

� bz
3

oscillate when z
1

= 0.
Let us consider the methods from [IB] for this class of examples. The linear approximation of

the system, i.e. the linear system (F,G,H) with

F =

2

4

0 �(0) 0
0 0 �1
0 1 0

3

5 , G =

2

4

1
0
0

3

5 , H = [1 , 0 , 0] ,

is detectable if and only if �(0) 6= 0. Our techniques work for any function �. If �(0) = 0, for
instance �(z

1

) = z
1

, the technique developed in [IB] does not apply. One may however notice that
our controller is unnecessarily complex since, instead of the full-state feedback u

nom

given above,
one may chose the static output feedback control u = �z

1

to globally stabilize z
1

. If �(0) 6= 0, for
instance �(z

1

) = 1 + z 2

1

, the technique developed in [IB] applies, but gives only local regulation;
note that in this case there exists no static output feedback which regulates z

1

.
Example 2. Consider the system

ż
1

= z
1

z
3

+ z
2

u

ż
2

= z
1

� z
3

ż
3

= z
2

� z 2

1

y = z
1

. (53)

which, again, is clearly of the form (1) with x = (z
1

, z
2

, z
3

), x
1

= z
1

, x
2

= (z
2

, z
3

).
The interest of this example, compared to the previous one, is that it is not possible –or at

least we have not been able– to build u
nom

and V
1

to meet the assumptions of section 3.3 (i.e. of
[CHP]), nor is it possible to find u

nom

and V
1

meeting assumption A1 or A100 (x
2

= 0 ) ẋ
1

= 0
whatever u and x

1

are).
With V

1

= 1

2

(z 2

1

+ z 2

2

+ z 2

3

) and V
2

= 0 , we have

V̇
1

= z
1

z
2

(1 + u) .

If we take u
nom

= �1 � z
1

z
2

we obtain V̇
1

= �z 2

1

z 2

2

, which does not satisfy assumption A1,
but a simple computation shows that assumption A10 is met. Assumption A2 is clearly satisfied,
with L = 0 and M = I . However our observability assumption A30 cannot be met. Indeed
Q(E � KH) + (E � KH)TQ + N cannot be negative definite for any choice of k

1

, k
2

, k
3

since

12



if it were, the 2 ⇥ 2 submatrix of it obtained by deleting the first row and column would also be
negative definite. This submatrix is



2(q
12

u
nom

+ q
23

) q
12

z
1

+ q
13

u
nom

+ q
33

� q
22

q
12

z
1

+ q
13

u
nom

+ q
33

� q
22

2(q
13

z
1

� q
23

)

�

,

and if it were negative definite for all z, then the diagonal terms would be negative. Since z
1

and
u
nom

may take any real values, this implies q
12

= q
13

= 0, and the determinant of this submatrix
would be �4q 2

23

� (q
33

� q
22

)2, which is obviously negative.
On the other hand, the detectability assumption A3 is satisfied by choosing k

1

= 1 , k
2

= u
nom

and k
3

= z
1

, but we have no theorem for the case A10+A2+A3. Let us proceed to check that the
more implicit but less restrictive assumption A4 is met.

The system (53) with the controller (33)-(34), using

u = u
nom

(z
1

, bz
2

, bz
3

) = �1� z
1

bz
2

,

becomes

ż
1

= z
1

z
3

� z
2

(1 + z
1

bz
2

)

ż
2

= z
1

� z
3

ż
3

= z
2

� z2
1

ḃz
1

= �bz
1

+ z
1

(1 + bz
3

� bz2
2

)� bz
2

(54)

ḃz
2

= �bz
3

+ bz
1

� z
1

bz
2

(2z
1

� bz
1

)

ḃz
3

= bz
2

� z
1

bz
1

From equation (30) we have ⌘(z, bz) = (z
1

� bz
1

)2 + z2
1

bz2
2

. It is straightforward to verify that if
⌘(z(t), bz(t)) = 0 8t and (z(t), bz(t)) satisfies (54), then z

1

(t) = 0 8t . Therefore assumption A4
is met and Theorem 2 implies that z

1

�! 0 and z
2

, z
3

, bz are bounded.

As remarked in Section 2, our restrictive assumptions are assumption A2 (restricting the form
of V

1

) and the fact that, in assumption A3 (or its variations) the matrix Q is asked to be constant.
The following example from [CHP] displays a situation where assumption A3 cannot be met by any
constant matrix Q, but an extension of our methods using a dynamic Q does allow stabilization
of z

1

.
Example 3. Consider the system (k = 1, ` = 2) defined by (2) with

a
1

(z
1

, u) = u A
1

(z
1

, u) = (0, 1)

a
2

(z
1

, u) =



z
1

0

�

A
2

(z
1

, u) =



0 0
2z

1

0

�

.

Or, using for convenience z
2

=



p
q

�

,

8

<

:

ż
1

= q + u
ṗ = z

1

q̇ = 2pz
1

.

With
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

u
nom

(x) = u
nom

(z
1

, p, q) = �z
1

� p� q
V
1

(x) = 1

2

z 2

1

+ 1

2

p2

V
2

(x) = (p2 � q)2

⇢(x) = �z 2

1

U
1

(z
1

) = 1

2

z 2

1

and M =



1 0
0 0

�

,
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assumptions A1 and A2 are satisfied. On the other hand, neither assumption A3 nor even as-
sumption A4 can be satisfied: there is no (constant) positive definite Q such that

Q(E �KH) + (E �KH)TQ+N  0 . (55)

This follows from the observation that the determinant of the 2 ⇥ 2 submatrix of (55) obtained
by deleting the first row and column (K has no action on this submatrix) is negative for z

1

large
enough whatever the constant entries of Q are. Note that the assumption (32) cannot be satisfied
either since it is a particular case of (55) forcing some entries of Q to be zero.

Using any positive definite Q
2

, the reduced order controller (33)-(34) (coming from [CHP])
becomes

u = u
nom

(z
1

, bp, bq)


ḃp

ḃq

�

= Q�1

2



z
1

z
1

�

+



z
1

2bpz
1

�

and, following the proof of Theorem 1 but taking

W
1

= V
1

(z
1

, z
2

) +
1

2
z̃T
2

Q
2

z̃
2

and W = V
2

+W
1

we obtain

Ẇ  �⇢(z
1

, bp, bq) +
1

2



p� bp
q � bq

�

T

(Q
2

bA
2

+ bAT

2

Q
2

)



p� bp
q � bq

�

.

Since A300 is not met, W need not decrease along solutions of the closed-loop system. However,
we can extend our method by using a dynamic Q

2

: instead of taking Q
2

constant, we take Q
2

(t)
to satisfy

Q̇
2

= �Q
2

bA
2

� bAT

2

Q
2

(56)

with a positive definite initial condition Q
2

(0), so that Ẇ  ⇢(z
1

, bp, bq). Thus we can conclude that
(z

1

, p, q, bp, bq) remain bounded and z
1

! 0 provided that Q
2

(t) remains bounded and bounded away
from singular matrices. Since the bottom-right entry of Q

2

bA
2

+ bAT

2

Q
2

is zero, the corresponding

entry in Q
2

(t) is constant (we will take it to be 1). With Q
2

=



� µ
µ 1

�

, (56) becomes

µ̇ = �2z
1

�̇ = �4z
1

µ

and W can be written as

W =
1

2
z 2

1

+
1

2
p2 + (p2� q)2 +

1

2
[(�� µ2)(p� bp)2] + 1

2
[µ(p� bp) + (q � bq)]2.

Therefore z
1

, p, q, and the quantities in square brackets are bounded. Noting that � � µ2 is
constant we can conclude that bp is bounded. Since

1

2
µ2 � (�� µ2 + 1)µ� 2(�� µ2)bp

is also constant we can conclude that µ is bounded, and therefore bq is bounded as well.

5 Conclusions

We have presented here some new methods for building output feedback controllers from full
state feedback controllers for nonlinear systems. The use of Lyapunov based techniques allows
us to obtain global results. Our methods do not rely on explicitly building an observer. On the
contrary, we have considered a more direct approach to the problem of output feedback regulation
as a whole. This is, in our opinion, the main contribution of this work.
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