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Abstract

This paper gives a systematic way to design time-variant feedback control laws for
a class of controllable non-linear systems. This class contains a lot of systems which
cannot be stabilized via a time-invariant feedback control law.

The interest of this work lies in the design method since a general existence result is
already available. The techniques employed here are basic: they mainly involve classical
Lyapunov analysis.
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1 Introduction

Let us consider a control system of the form

ẋ =
m∑

k=1

ukfk (1)

where x lives in IRn and the controls uk are real. The fk’s are smooth vector fields.
Such affine control systems enjoy nice open-loop properties due to their symmetry (any

trajectory can be followed in either direction by changing the sign of the controls). For
instance, full rank of the Control Lie Algebra (i.e. the vector space spanned at any point by
all the Lie brackets of the vector fields fk having dimension n) is sufficient for controllability
in any usual sense. It has however been known for a long time that controllable nonlinear
systems may fail to be stabilizable by time-invariant static or dynamic feedback. The link
between controllability and stabilizability, or between open-loop and closed-loop properties
in general is a topic of ongoing research, and actually one of the most challenging problems
in nonlinear systems. For a survey on nonlinear stabilization, see for instance reference [12]
by E. Sontag.

As a matter of fact, one can appreciate the gap between stabilizability and controllability
for a system like (1) in the following (negative) result, which is a simple consequence of a
necessary condition for feedback stabilization given by R. Brockett in [1]. Note that condition
(2) does not contradict controllability, on the countrary. It is satisfied by our examples (30)
and (36).

Proposition 0 If m < n and

Rank { f1(0), . . . , fm(0) } = m (2)

then there exists no continuous feedback law u1 = u1(x), . . . , um = um(x) making 0 a locally
asymptotically stable equilibrium point of the closed-loop system. There does not exist either
any continuous dynamic feedback law u1 = u1(ξ, x), . . . , um = um(ξ, x), ξ̇ = g(ξ, x) making
(ξ, x) = (0, 0) a locally asymptotically stable equilibrium point of the closed-loop system.

Proof : Let eo be a nonzero vector linearly independent from f1(0), . . . , fm(0). By continu-
ity, there is an ε > 0 such that for all (x, u1, . . . , um) with ‖x‖ < ε, the vector

∑m
k=1 ukfk(x)

is different from λeo for any λ in IR. Therefore, the map (x, u1, . . . , um) "→
∑m

k=1 ukfk(x)
does not map the neighborhood [−ε, ε]n+m of 0 in IRn+m into a neighborhood of 0 in IRn.
This proves the proposition because the necessary condition for local asymptotic stabiliz-
ability of (1) given in [1] is violated. This condition is also necessary for dynamic feedback
stabilization.

This impossibility to stabilize by means of a state feedback has been noticed on many
occasions in the area of mechanical systems with nonholomic constraints; see, for instance,
the works of C. Samson [9] and G. Campion, B. d’Andréa-Novel and G. Bastin [2]. With
this motivation, C. Samson tried, successfully, time varying control laws to stabilize some
nonholonomic robots, see [9, 10]. This showed the power of this class of control, and is the
starting point of some research on time-varying stabilization for nonlinear systems. It has
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recently been proved by J.-M. Coron in [3] that system (1) is stabilizable by means of a
periodic time-varying feedback if its Control Lie Algebra has rank n except possibly at the
origin, but the existence proof does not provide explicitely the control law. R. Sépulchre,
using a different approach, also gives some time-varying control laws in some other situations,
see [11].

The present paper presents a constructive approach allowing to derive an explicit control
law and Lyapunov function under an assumption which is more restrictive than full rank
Lie Algebra. By explicit, we do not necessarily mean that the control law is an algebraic
expression of some functions fixed by the designer and the components of the vector fields,
although this is the case in section 2.2 : in the more general situation considered here (section
2.1), writing the control laws involves the flow of an ordinary differential equation. Note
that this exhibits almost the same degree of complexity as performing feedback linearization
for a feedback linearizable system (i.e. in particular finding the linearizing coordinates),
which involves the flow of several ordinary differential equations, see [7, 5].

The assumption we make is the following : we require the Control Lie Algebra to have
full rank and to be generated by iterated Lie Brackets involving at most one fk different
from f1, and only once :

Assumption 1 For any x %= 0,

Rank { f1(x), f2(x) , . . . fm(x) ,
[f1, f2](x), . . . [f1, fm](x), . . .

. . . adj
f1

f2(x), . . . adj
f1

fm(x), . . . . . . } = n
(3)

Remark 1 : Of course, f1 does not play a privileged role. If there is a linear combination
of the fk’s such that the fk’s and all the iterated Lie brackets of this linear combination
with them span IRn, then one may satisfy assumption 1 by making a preliminary feedback
transformation which “renames” this linear combination f1. We take advantage of this
possibility in the treatment of the 4-dimensional example (36) in section 3.2.

It is actually possible to extend the method presented here from the case of assumption
1 to the more general case of full rank Control Lie Algebra for x %= 0. This extension makes
use of results contained in [3], it is presented in the future publication [4] and it is briefly
outlined in section 3.3.

The techniques employed here are based on Lyapunov analysis and LaSalle’s invariance
principle [8]. They are similar to these employed by Jurjevic and Quinn in [6], see remark
5 in the proof of theorem 1 (section 4.2).

The paper is organized as follows : in section 2, a class of time-varying stabilizing
control laws for system (1) is proposed, section 3 illustrates the method by applying it to
two examples from non-holonomic robots, and outlines a possible extension, section 4 gives
a proof of the stability results stated in section 2.

2 The control laws and the main results

Here, we explicitly build a family of control laws, with a degree of freedom represented by
a function α. Section 2.1 gives a general way of building a time-varying stabilizing control
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law under assumption 1. This method involves solving a linear PDE, i.e. the expression
of the control law (and the Lyapunov function) involves the flow of a certain ordinary
differential equation. Section 2.2 gives, under the additional assumption 2, a way to derive
some stabilizing control laws without solving any differential relations, except possibly for
finding some coordinates in which this assumption is met : the control laws are actually
algebraic functions of the components of the vector fields in these coordinates and of some
variables and functions to be chosen by the designer.

2.1 A general expression under assumption 1

The following proposition gives a periodic time-varying function, used in the design of the
control laws, and meant to be a Lyapunov function for the final closed-loop system.

For a given time-varying function α(t, x), we may consider the time-varying ordinary
differential equation

ẋ = α(t, x) f1(x) , (4)

and define its “general” solution ψ(t1, t2, x) : it is the value at time t1 of the solution of (4)
which started from x at time t2. In other words,

∂ψ
∂t1

(t1, t2, x) = α( t1 , ψ(t1, t2, x) ) f1( ψ(t1, t2, x) )
ψ(t, t, x) = x .

(5)

ψ is defined, from classical results on ordinary differential equations, on an open subset of
IR× IR× IRn containing the points (t1, t2, x) such that t1 = t2.

Proposition 1 Let α be a time-varying function (i.e. a function from IR× IRn to IR), and
let us suppose that :
- it is 2π-periodic and “odd” with respect to time, and vanishes for x = 0 :

α( t + 2π , x ) = α( t , x ) ∀(t, x) (6)
α(−t , x ) = −α( t , x ) ∀(t, x) (7)

α( t , 0 ) = 0 ∀t (8)

- it satisfies the following majoration, for a certain K > 0 :

|α(t, x)| ‖f1(x)‖ ≤ K (1 + ‖x‖) ∀(t, x) . (9)

Then, the function V given by

V (t, x) = 1
2 ‖ψ(0, t, x) ‖ 2 , (10)

where ψ is given by (5), is well defined from IR × IRn to [0,+∞) and enjoys the following
properties :

• It is 2π-periodic with respect to time :

V (t + 2π, x) = V (t, x) (11)
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• V , as well as its derivative with respect to x, vanish if and only if x = 0 :

V (t, x) = 0 ⇔ x = 0 (12)
∂V

∂x
(t, x) = 0 ⇔ x = 0 (13)

• It is (the only) solution of the following linear PDE with initial conditions at t = 0 :

∂V

∂t
(t, x) + α(t, x)

∂V

∂x
(t, x)f1(x) = 0 (14)

V (0, x) = 1
2‖x‖

2 (15)

• For any positive real number K, the set

{x , V (t, x) ≤ K for some t ∈ IR} is bounded. (16)

Remark 2 : • In the expression of V (10), the squared norm might be replaced by any
proper positive function, vanishing only at 0, and with no other singular point.
• (9) might be replaced by any condition ensuring that all the solutions of ẋ = α(t, x)f1(x)
are defined for any time.
• (7) might be replaced by α(T − t, x) = α(t, x) for a certain T ∈ IR, or by any condition
ensuring that all the solutions of ẋ = α(t, x)f1(x) are 2π-periodic.

This proposition will be proved in section 4. It turns out that, for any α meeting (6),
(7), (8), (9) the 2π-periodic time-varying function V given by (10), may be assigned to be
non-increasing along the closed-loop system by using the following 2π-periodic time-varying
control law :

u1(t, x) = α(t, x) − Lf1V (t, x)
u2(t, x) = −Lf2V (t, x)

...
um(t, x) = −LfmV (t, x) .

(17)

Under assumption 1 and a further requirement on α, this control law asymptotically
stabilizes (1). An explicit α meeting all the requirements may very easily be given, but
we keep some freedom on α in order to be able, on some examples, to derive the simplest
control laws we can. This is made precise by the following theorem :

Theorem 1 • Under assumption 1, and if α is chosen such that conditions (6), (7), (8),
(9) of proposition 1 are satisfied and :

Lf1V (t, x) = . . . = LfmV (t, x) = 0
α(t, x) = ∂α

∂t (t, x) = ∂2α
∂t2 (t, x) = . . . = 0

}

⇒ x = 0 , (18)

then 0 is a globally uniformly asymptotically stable equilibrium point of the time-varying
periodic closed-loop system obtained by applying the feedback law defined by (17), and the
function V is non-increasing along its solutions.
• It is always possible to find a function α meeting the required conditions. A possible choice
is

α(t, x) =
‖x‖2

(1 + ‖x‖2) (1 + ‖f1(x)‖2) sin t . (19)
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Remark 3 : A more general choice for α is

α(t, x) = sin t ρ(x) (20)

where ρ vanishes only for x = 0 and is such that (9) is met. Many more choices are possible,
but the expressions of LFkV are needed, and LFkV depends on α. For example (36) (section
3.2), it is a priori possible not to include ξ4 in the expression of α because, regardless of α,
Lf2V = ξ4 whenever α is zero.

2.2 A simpler expression of the control laws in a less general case

The above design of the control laws makes use of the function V constructed in proposition
1. Its expression involves the flow of a differential equation. It is therefore very natural to
look for some situations in which the expression of V can be explicited without solving any
such differential relation. It turns out that if the vector field f1 is globally redressable, it is
actually possible to give an explicit expression of V and the control laws; it is the purpose
of this section. As seen on example (36) in section 3.2, it may often be simpler, if possible,
to make the necessary transformations (i.e. a preliminary static feedback and a change of
coordinates) to meet assumption 2 than to use the general expressions given in previous
section 2.1.

Assumption 2 (simplifies the expression of the feedback law) There exists
a system of coordinates (x1, . . . , xn) such that

f1 =
∂

∂x1
. (21)

Under this assumption, it is always possible to chose V of the form

V (t, x) = 1
2 (x1 + h(t, x2, . . . , xn))2 + 1

2x 2
2 + . . . + 1

2x2
n , (22)

with some requirements on h, so that, instead of taking α as a design parameter and solving
the PDE (14)-(15) for V , we are now able to take h as a design parameter and compute α
so as to satisfy (14)-(15) :

Proposition 2 If assumption 2 is met, then for any function h( t , x2, . . . , xn ) satisfying

h( t + 2π , x2, . . . , xn ) = h( t , x2, . . . , xn ) ∀(t, x) (23)
h( t , 0 ) = 0 ∀t , (24)

the function V given by (22) and the function α given by

α( t , x ) = − ∂h

∂t
( t , x2, . . . , xn ) , (25)

are such that all the conclusions of proposition 1 (from (10) to (16)) are verified and in
addition α satisfies (6) and (8).
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This proposition gives, from h, an α and a V , which are sufficient, as before, to construct
the control law according to (17). We have the following theorem, which is a straighforward
consequence of theorem 1 :

Theorem 2 • Under assumption 1 and 2, and if h is chosen such that (23) and (24) are
met and :

Lf2W (x) = . . . = LfmW (x) = 0
∂h
∂t (t, x) = ∂2h

∂t2 (t, x) = ∂3h
∂t3 (t, x) = . . . = 0

}

⇒ x = 0 , (26)

where
W (x) = 1

2x 2
2 + . . . + 1

2x 2
n , (27)

then 0 is a globally uniformly asymptotically stable equilibrium point of the time-varying
periodic closed-loop system obtained by applying the feedback law defined by (17), with α and
V defined by (22) and (25). The function V is non-increasing along its solutions.
• It is always possible to chose a function h meeting the requirements. A possible choice is

h( t , x ) = cos t (x 2
2 + . . . + x 2

n) (28)
α( t , x ) = sin t (x 2

2 + . . . + x 2
n) . (29)

Remark 4 : Of course, some other choices than (28) are possible, as illustrated by the
second choice for example (31) in section 3.1.

3 Two examples

3.1 A three dimensional example.

Let us consider the following 3-dimensional example :

ẋ1 = u1

ẋ2 = x1u2

ẋ3 = u2 .
(30)

This is a reduced-order model for a three-wheeled cart with two independent rear motorized
wheels. A time-varying feedback law has already been proposed for such a system in [9].
We show here that our method, and even the simplified one given in section 2.2, allows one
to derive very simple feedback laws for this system. System (30) is of the form (1) with

f1 =
∂

∂x1
; f2 = x1

∂

∂x2
+

∂

∂x3
. (31)

Since [f1, f2] = ∂
∂x2

, we have : Rank { f1 , f2 , [f1, f2] } = 3 , so that assumption 1 is
satisfied. Assumption 2 is met as well in the original coordinates, so that we may follow the
method of section 2.2 and take a V of the form (22) :

V (t, x) = 1
2 (x1 + h(t, x2, x3))2 + 1

2x 2
2 + 1

2x2
3 . (32)

Following (28), we may chose h(t, x2, x3) = (x 2
2 + x2

3) cos t, and, from (17), the control law

u1 = (x 2
2 + x2

3) sin t −
(
x1 + (x 2

2 + x2
3) cos t

)

u2 = −2
(
x1 + (x 2

2 + x2
3) cos t

)
(x1x2 + x3) cos t − (x1x2 + x3) .
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A simpler choice of h is possible :

h(t, x2, x3) = x2 cos t (33)

also satisfies (26) since

Lf1V = x1 + x2 cos t
Lf2V = (x1 + x2 cos t) x1 cos t + x2x1 + x3

∂h
∂t = −x2 sin t

∂2h
∂t2 = −x2 cos t .

(34)

With this choice of h, we find the following simpler control law :

u1 = x2 sin t − (x1 + x3 cos t)
u2 = − (x1 + x2 cos t) x1 cos t − (x1x2 + x3) .

(35)

3.2 A four dimensional example.

The following system in IR4 :

ξ̇1 + iξ̇2 = u1 cos ξ4 eiξ3

ξ̇3 = u1 sin ξ4

ξ̇4 = u2

(36)

is a reduced order model for a three-wheeled cart with a steering front wheel. ξ1 and ξ2 are
the cartesian coordinates of the middle of the rear axle, ξ3 is the angle between the axis
of the cart and a fixed direction, and ξ4 is the steering angle. A time-varying stabilizing
feedback law has already been proposed for such a system in [10]. Let us show that :
- Our general method (section 2.1) applies. It is not easy however to write down the expres-
sion of the corresponding control law.
- Our simplified method (section 2.2) also applies, in some coordinates and after a prelim-
inary static feedback transformation. We write down completely the corresponding control
law.
- Our control law is different from the one proposed by C. Samson in [10], the expressions ob-
tained in [10] are slightly simpler, and may be re-obtained through a generalization, outlined
in section 3.3, of the method presented in section 2.1.

System (36) is of the form (1) :

ξ̇ = u1g1(ξ) + u2g2(ξ) (37)

(we use g instead of f on purpose) with

g1 = cos ξ3 cos ξ4
∂

∂ξ1
+ sin ξ3 cos ξ4

∂

∂ξ2
+ sin ξ4

∂

∂ξ3
g2 =

∂

∂ξ4
. (38)

A simple computation gives:

Rank { g1 , g2 , [g1, g2] , [g1, [g1, g2]] } = 4
[g2, [g1, g2]] = g1

(39)
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so that assumption 1 is met with f1 = g1 and f2 = g2 but not with f1 = g2 and f2 = g1.
Unfortunately assumption 2 is not met by f1 = g1 since it may be proven that the vector field
g1 is not globally redressable. It is therefore not possible to use the method of section 2.2 with
f1 = g1, f2 = g2. The method of section 2.1 does apply. The expressions of the Lyapunov
function and the control law involve the flow of the time-variant ordinary differential equation

ξ̇1 + iξ̇2 = α(t, ξ) cos ξ4 eiξ3

ξ̇3 = α(t, ξ) sin ξ4

ξ̇4 = 0
(40)

with a choice of α such that (6), (8), (7), (9), and (18) are met. On this example, as on
most examples, one may find a simpler α than the one given in (19). For example,

α(t, ξ) = ξ1 sin t + ξ2 sin 2t + ξ3 sin 3t (41)

may easily be proved to meet conditions (6), (7), (8), (9), and (18) (the latter is met because
Lf2V = ξ4 when α(t, ξ) = 0). However, even in this case, it is not easy to write explicitely
the solutions of (40), and therefore the controls u1 and u2.

It turns out that it is simpler to perform a preliminary (static) feedback transformation
in order to meet assumptions 1 and 2 together and apply section 2.2. If we define some new
controls v1 and v2 by

u1 = v2 + v1 u2 = v1 , (42)

system (36) reads
ξ̇ = v1 f1 + v2 f2 (43)

with
f1 = g2 + g1 f2 = g1 . (44)

A very simple computation allows us to deduce from (39) that these f1 and f2 satisfy
assumption 1. In addition, since the vector field f1 has a constant nonzero component on
∂

∂ξ4
, it meets assumption 2, and as a matter of fact, the coordinates x1, x2, x3, x4 may be

chosen as :

x1 = ξ4

x2 = ξ3 + cos ξ4 − 1

x3 + i x4 = ξ1 + i ξ2 − ei(ξ3+cos ξ4−1)
∫ ξ4

0
e−i cos τ cos τ dτ

(45)

Note that finding these coordinates involved the expression of the solutions of :

ξ̇1 + iξ̇2 = cos ξ4 eiξ3

ξ̇3 = sin ξ4

ξ̇4 = 1
(46)

whereas applying the method from section 2.1 involved the solutions of (40), which is more
complicated due to the presence of α. In coordinates (x1 . . . x4), the vector fields are

f1 =
∂

∂x1
f2 = sinx1

∂

∂x2
+ χ3(x1, x2)

∂

∂x3
+ χ4(x1, x2)

∂

∂x4
(47)
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with

χ3(x1, x2) + iχ4(x1, x2) = ei x2

(
e−i cos x1 cos x1 − i sin x1

∫ x1

0
e−i cos τ cos τ dτ

)
. (48)

The Lyapunov function V is given by (22) with h = (x 2
2 + x 2

3 + x 2
4 ) cos t :

V (t, x) = 1
2( x1 + (x 2

2 + x 2
3 + x 2

4 ) cos t )2 + 1
2x 2

2 + 1
2x 2

3 + 1
2x 2

4 (49)

and we get the following control law from (17) with α(t, x) = (x 2
2 + x 2

3 + x 2
4 ) sin t :

u1(t, x) = (x 2
2 + x 2

3 + x 2
4 ) sin t − x1 − (x 2

2 + x 2
3 + x 2

4 ) cos t
u2(t, x) = − 2 [ cos t (x1 + (x 2

2 + x 2
3 + x 2

4 ) cos t) + 1 ]
× [x2 sinx1 + x3χ3(x1, x2) + x4χ4(x1, x2) ] .

(50)

In [10], C. Samson designed some different control laws for the same system, using

z1 + iz2 = ( ξ1 + iξ2 )e−iξ3 (51)

instead of ξ1 and ξ2 ( (z1, z2, ξ3, ξ4) is (x, y, θ,α) in [10]). We may rewrite his control laws as

uj = αj(t, z1, z2, ξ3, ξ4) − LgjV (t, z1, z2, ξ3, ξ4) j = 1, 2 (52)

where, k being a function of t, z2, ξ3 (k is a degree of freedom),

V = 1
2(z1 + k(t, z2, ξ3))2 + 1

2z 2
2 + 1

2ξ 2
3 + 1

2ξ 2
4 , (53)

α1 = −∂k

∂t
, (54)

α2 =
(

z1l −
sin ξ4

ξ4
z1z2 +

sin ξ4

ξ4
ξ3

)
∂k

∂t
, (55)

l(t, z1, z2, ξ3, ξ4) =
sin ξ4

ξ4
(z2 −

∂k

∂z2
z1 +

∂k

∂ξ3
) +

cos ξ4 − 1
ξ4

(56)

(l is h in [10]). These laws are proved to yield stabilization for suitable choices of k, like
k(t, z2, ξ3) = z2 sin t + ξ3 cos t.

From a computational point of view, both (52) and (50) give the controls as analytic
fuctions of t, ξ1, ξ2, ξ3, ξ4 and involve some “unusual” analytic functions. It is however
more convenient to have to compute sin ξ4

ξ4
and cos ξ4−1

ξ4
as in (52) than to have to compute

∫ ξ4
0 cos(cos τ) cos τdτ and

∫ ξ4
0 sin(cos τ) cos τdτ , as in (50).

From a methodological point of view, the method leading to the controls in [9] is quite
different from the one presented in the present paper, and (52) is only a way of re-writing
the same controls. However, V given by (53) may be checked to be the unique solution of

∂V

∂t
+ α1Lg1V + α2Lg2V = 0 ; V (0, ξ) = 1

2(z1 + k(0, z2, ξ3))2 + 1
2(z2

2 + ξ2
3 + ξ2

4) . (57)

It is therefore the function V described in section 3.3 below, i.e. it satisfies (60)-(61) (chang-
ing the letter f into g) and it is given by (10) and (59). Since (52) is exactly (62), the
method of section 3.3 with α1 and α2 given by (54) does lead to the same control laws as
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[10]. It may be checked that (63) is met for instance if k(t, z2, ξ3) = z2 sin t + ξ3 cos t.
Note that : • Actually, to get V exactly as in (53), another function than the squared
norm has to be used in (10) if k(0, z2, ξ3) is not zero (see also remark 2); for instance, if
k(t, z2, ξ3) = z2 sin t+ξ3 cos t, then one has to chose in (10) the norm according to the matrix

(

1 0 1 0
0 1 0 0
1 0 2 0
0 0 0 1

) in the coordinates (z1, z2, ξ3, ξ4) since V (0, ξ) is 1
2 [(z1 + ξ3)2 + z2

2 + ξ2
3 + ξ2

4 ].

• The expression of V obtained from section 3.3 involves the solution (ψ) of :

ż1 = α1 (cos ξ4 + z2 sin ξ4)
ż2 = −α1 z1 sin ξ4

ξ̇3 = α1 sin ξ4

ξ̇4 = α2 .

(58)

For α1 and α2 given by (54) and (55), and a general function k(t, z2, ξ3), like k(t, z2, ξ3) =
z2 sin t + ξ3 cos t, the solutions of (58) cannot be completely written. Nevertheless, V given
by (10) has the explicit expression (58) because it turns out that taking the norm cancels
out the parts of ψ which cannot be simply expressed.

3.3 An extension of the present method

In the design proposed in section 2.1, one may use, instead of only one function α, m
functions α1, . . . ,αm, each with the properties (6)-(9) ((9) becomes |αi(t, x)|‖fi(x)‖ ≤ K(1+
‖x‖)), and define the Lyapunov function V by (10) with ψ the flow of ẋ =

∑m
i=1 αi(t, x)fi(x)

instead of ẋ = α(t, x)f1(x), i.e. with

∂ψ
∂t1

(t1, t2, x) =
∑m

i=1 αi( t1 , ψ(t1, t2, x) )fi( ψ(t1, t2, x) )
ψ(t, t, x) = x

(59)

instead of (5). Proposition 1 may easily be extended. Relation (14) is modified : defining,
as in the proof of theorem 1, a vector field Fo on IR × IRn (for the sake of clarity, we keep
IR instead of S1 here and use t instead of the “time modulo 2π” θ) by

F0 =
∂

∂t
+

m∑

k=1

αk Fk (60)

with the Fk’s defined as in the proof of theorem 1 (below equation (72)), (14) is replaced
by :

LFoV = 0 (61)

(which gives (14) if α1 = α and α2 = . . . = αm = 0). The control is then defined by :

uk = αk(t, x) − LFkV (t, x) k = 1 . . .m . (62)

The same proof as for theorem 1 shows that, if the αi’s have the above properties and :

Ladj
Fo

Fk
V (t, x) = 0 k = 1 . . .m

j ≥ 0

}

⇒ x = 0 (63)
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then the control law (62) yields global asymptotic stability of the origin.
This extension is interesting for two different reasons :

• In the context of this paper (systems without drift meeting assumption 1), it gives some
more degrees of freedom. As an aside consequence, it allows one to interpret the control
laws proposed by C. Samson in [10] in the framework of this paper, see section 3.2.
• It may also extend to the more general case of controllable systems without drift, not
necessarily meeting assumption 1. This extension, using results from [3], is develloped and
discussed in the forthcoming [4]. Let us briefly outline it. It is not easy to deduce from
controllability (full rank Control Lie Algebra) an explicit expression of some αi’s meeting
(63), whereas assumption 1 allowed us to give the explicit expression (19) for α. The central
difficulty solved by J.-M. Coron in [3] is to establish existence of some αi’s such that (his
notations are not the same as here) :

Rank
{

adj
Fo

Fk(
3π

2
, x) k = 1 . . .m

j ≥ 0

}

= n ∀x %= 0 .

From (13), this implies property (63), at least for t = 3π
2 , and this is actually enough to

conclude, via an extension of the proof of theorem 1.

4 The proofs

The proof of proposition 2 and theorem 2 are left to the reader. All the properties in
proposition 2 can be checked by hand from (21), (22) and (25). Theorem 2 is actually a
particular case of theorem 1 since it is easy to verify that α given by (25) satisfies all the
properties required in theorem 1 except maybe (7) and (9) but these were only required to
ensure that V be well defined and periodic, which is here obvious from (22) and (23).

4.1 Proof of proposition 1

First of all, (9) implies that ψ, the “general solution” of (4) is defined for any t1, t2 and x
because the right-hand side of (4) sub-linear. V is therefore defined all over IR× IRn.

To prove the other properties, let us explain where formula (10) comes from, and for
which reasons it makes V a solution of the PDE (14). This is just an application of the
method of characteristics for solving the linear PDE (14) : (14) exactly means that the
function V is constant along the vector field ∂

∂t +αf1 in IR×IRn. This vector field is complete
from (9) and its flow at time τ is the diffeomorphism of IR×IRn given by (t, x) "→ ψ(t+τ, t, x).
Formula (10) therefore states that V (t, x) is equal to V (0, ξ) where (0, ξ) is the image of
(t, x) under the flow of ∂

∂t + αf1 at time −t, i.e. (0, ξ) is the only point on the same integral
curve of ∂

∂t + αf1 as (t, x) with a zero t-component. V is therefore obviously constant on
the integral curves of ∂

∂t +αf1, and this proves (14). Note that (14) may also be checked by
hand : by differentiating the identity

ψ( σ , τ , ψ(τ,σ, ξ) ) = ξ (64)

with respect to τ , one gets

∂ψ

∂t2
(σ, τ,ψ(τ,σ, ξ)) +

∂ψ

∂x
(σ, τ,ψ(τ,σ, ξ))

∂ψ

∂t1
(τ,σ, ξ) = 0 . (65)
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From (5), one may, in (65), replace ∂ψ
∂t1

(τ,σ, ξ) with α(τ,ψ(τ,σ, ξ)) f1(ψ(τ,σ, ξ)). Applying
the resulting identity for σ = 0, τ = t and ψ(τ,σ, ξ) = x (i.e. ξ = ψ(0, t, x)), one gets

∂ψ

∂t2
(0, t, x) +

∂ψ

∂x
(0, t, x)α(t, x) f1(x) = 0 . (66)

Together with the expression (10) of V , this clearly implies that V satisfies the PDE (14).
The fact that, for any t1 and t2, ψ(t1, t2, 0) is zero (from (8)) and x "→ ψ(t1, t2, x) is a

diffeomorphism of IRn implies that V defined by (10) satisfies (12), (13), (15) and (16) –(16)
actually uses (11) established below.

The only remaining property to be proved is (11). Consider a solution γ(t) of (4); (7)
implies that γ(−t) = γ(t), and in particular that γ(−π) = γ(π); this and (7) imply that γ is
2π-periodic. ψ is therefore 2π-periodic with respect to its first entry. Identity (64) applied
twice, for σ and σ + 2π, yields

ψ( σ , τ , ψ(τ,σ, ξ) ) = ψ( σ + 2π , τ , ψ(τ,σ + 2π, ξ) ) = ξ (67)

and, since ψ is 2π-periodic with respect to its first entry, ψ(σ, τ,ψ(τ,σ, ξ)) = ψ(σ, τ,ψ(τ,σ+
2π, ξ)), which implies ψ(τ,σ, ξ) = ψ(τ,σ + 2π, ξ) because x "→ ψ(σ, τ, x) is one-to-one. ψ is
therefore 2π-periodic with respect to its second entry. This implies (11).

4.2 Proof of theorem 1

Remark 5 : The stability proof given below is very much in the spirit of the one given
in [6]. Actually, once the time-varying closed-loop system on IRn has been made a time
invariant one on S1× IRn, and once property (81) (lemma 1) has been established, one may
notice that (81) is very similar to the “ad-condition” used in [6], and this allows to make
almost the same application of LaSalle’s invariance principle as in [6]. However, since it is
somehow modified (one extra-dimension, invariant set S1×{0} instead of equilibrium point,
α vanishes...), we give the complete proof rather than refering the reader to [6].

The second point of the theorem is obvious : one may check by hand that α given by
(19) meets all the requirements of the first point. Let us proceed with the proof of the first
point.

Since the functions α, V , u1, ..., um from IR × IRn to IR are 2π-periodic with respect
to time, they induce naturally some functions from S1 × IRn to IR, the circle S1 being the
quotient

S1 = IR / 2πZZ . (68)

The 2π-periodic time-variant closed-loop system can then be considered as a time-invariant
system on S1 × IRn, given by

θ̇ = 1
ẋ =

∑m
k=1 uk(θ, x)fk(x)

(69)

where θ lives in S1. We may re-write (69), with X =
(

θ
x

)

, into :

Ẋ = F (X) (70)
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with

F (
(

θ
x

)

) =
(

1∑m
k=1 uk(θ, x)fk(x)

)

(71)

where the functions uk are given by (17). In other words

F =
∂

∂θ
+

m∑

k=1

ukFk (72)

where Fk stands for the vector field on S1× IRn naturally induced by the original fk on IRn

(Ẋ = Fk(X) means θ̇ = 0, ẋ = fk(x)).
The fact that V decreases along the solutions of the closed-loop system is straightforward

since the time-derivative of V (x(t), θ(t)) along the solutions of the system is, from (69), (17)
and (14),

V̇ (θ, x) = −
m∑

k=1

( LFkV (θ, x) )2 . (73)

To prove that 0 is a unformly asymptotically stable equilibrium point of the time-variant
closed-loop system, or equivalently that the invariant set S1 × {0} (or the periodic orbit
θ̇ = 1, x = 0) of system (69) is globally asymptotically attractive, we will use LaSalle’s
invariance principle [8].

Consider a solution of this closed loop system, with initial condition (θo, xo). Since V
decreases along this solution, it stays in the set V −1(V (θo, xo)), which is compact from (16).
Any solution is therefore bounded.

LaSalle’s invariance principle states ([8] theorem 2) that, since V decreases along any
solution, any bounded solution converges to the largest invariant set included in

A = { (θ, x) , V̇ (θ, x) = 0 } = {X ∈ S1 × IRn , LFkV (X) = 0, k = 1 . . .m } (74)

(where the second equality comes from (73)), which is also the reunion of all the integral
curves of the vector field F which stay in A.

From (17) and (74), we have :

(θ, x) ∈ A ⇒






u1(θ, x) = α(θ, x)
u2(θ, x) = 0

...
um(θ, x) = 0

(75)

so that the vector field F coincides on A with the vector field

Fo =
∂

∂θ
+ αF1 . (76)

We therefore have to prove that the only integral curve of Fo (i.e. solution of Ẋ = Fo(X))
which stays in A is θ̇ = 1, x = 0.

From (74), the functions LFkV are identically zero on these trajectories, and so are their
derivatives : at any point X = (θ, x) of such a trajectory,

Lj
Fo

LFkV (X) = 0 ,
k = 1, . . . ,m
j ≥ 0 (77)
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Now, from (14), V is a first integral of Fo :

LFoV (X) = 0 ∀X ∈ S1 × IRn , (78)

and it is not difficult to prove by induction on k that this implies :

Lj
Fo

LFkV = Ladj
Fo

Fk
V . (79)

From (79) and (77), one can deduce that, at any point (θ, x) of a trajectory which stays in
A,

Ladj
Fo

Fk
V (θ, x) = 0 ,

k = 1, . . . ,m
j ≥ 0 .

(80)

We shall now make use of following lemma :

Lemma 1 Under assumption 1, we have, at any (θ, x) such that α(θ, x) %= 0,

Rank
{

adj
Fo

Fk(θ, x) k = 1 . . .m
j ≥ 0

}

= n . (81)

This lemma is proved further. To complete the proof of the theorem, let us first prove
that α is identically zero on an integral curve of Fo which stays in A. In order to prove this
by contradiction, let us suppose that there is a point (θ, x) on such a curve where α(θ, x) %= 0.
From lemma 1, the vectors adj

Fo
Fk(θ, x), k = 1, . . . ,m, j ≥ 0 span the subspace {0}×TxIRn

of T(θ,x)(S1 × IRn), and from (80) they are in the kernel of the linear form dV (θ, x) ; this
implies that dV is colinear to dθ at this point, which is impossible from (13).

This actually proves that, on an integral curve of the closed-loop system which stays in
A, Fo coincides with ∂

∂θ . Therefore, from (74) and the fact that α is identically zero on this
trajectory, we have, at any point (θ, x) of this trajectory,

∂jα
∂tj (θ, x) = 0 j ≥ 0 ,

Lfk
V (θ, x) = 0 k = 1, . . . ,m ,

(82)

which is equivalent to x = 0 from (18). This proves that any solution of the closed-loop
system which stays in A statisfies x = 0, and completes the proof from LaSalle’s invariance
principle.
Proof of lemma 1 : A simple inductive computation from (76) shows that

adj
Fo

Fk = αk adj
F1

Fk + linear combination of adj′

F1
Fk′

0 ≤ j′ ≤ j − 1
1 ≤ k′ ≤ m

(83)

and this proves the lemma.

5 Conclusion

We have derived some stabilizing time-varying control laws, for a class of controllable non-
linear systems, characterized by assumption 1. Existence has already been established inde-
pendanlty in [3] in a more general situation. The interest of our approach is to provide the
control laws themselves. Actually, it turns out that, for these systems with a zero drift vector
field, there is a very wide range of possible stabilizing control laws. We have kept as many
degrees of freedom as we possibly could without complicating too much the expressions.
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