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Abstract

The present work is an attempt to design “universal
requlators” for nonlinear systems under some minimal
informations. It presents a controller which is a gen-
eralisation of one proposed previously for the linear
case, and based on the knowledge of a finite dimen-
sionnal family of controllers one of which is known to
be a stabilizing one.

1 Problem statement

Consider a control system
i = f(z,u) 1)

with state € IR™ and input v € IR™. We as-
sume that the complete state = is available for con-
trol (i.e. is measured and can be taken as the in-
put of a controller), but we consider that the map
f:R"xIR™ — IR" itself is not known explicitly. For
the sake of simplicity, we suppose that it is smooth.
The objective is to design a dynamic controller

¢ a certain function of ¢ and z )
u = a certain (other) function of ¢ and x

where ( is the state of this controller, such that this
controller “regulates” z in the sense that the closed-
loop system (its state is (z,{)) has the following prop-
erty : for any initial condition, (z(t),{(t)) is bounded
and z(t) goes to zero.

Of course, this is absolutely impossible without any
information at all on the function f : if it were possi-
ble, the obtained controller would achieve the desired
objective for any f, and, for example, would also work
in the case f(z,u) = z, i.e. render the solutions of
& = z bounded.

An interesting question is : what information on f
is necessary to achieve the desired objective ? First of
all, to avoid absurd situations as the one mentioned
above (f(z,u) = x), it is necessary to be certain that

f is such that the objective could be achieved if it
were known, i.e. there exists a controller achieving
the objective at least for this precise f. It is however
very doubtfull that the following information on f: “f
is smooth and there exists a controller of the form (2)
which regulates z” is sufficient, i.e. it seems there most
probably exists no controller of the form (2) satisfy-
ing the objective for any possible f satisfying these
two properties. Note that this non-existence is only a
conjecture.

A more reasonable framework is the case where not
only is it known that a controller exists for f, but also
this controller is known to belongs to a known finite-
dimensional family of controllers. In addition, and
to simplify the statements, we shall assume that this
is a family of static controllers :

There exists a known smooth map U

from R" x IR" to R™

such that, for a certain 6* in R", (3)
0 is an asymptotically stable equilibrium

of & = f(z,U(6*,x)).

In the linear case, i.e. if f is a linear mapping, (3)
is no more restrictive than the existence of a controller
of the form (2) which makes & go to zero since this is
equivalent to the existence of a linear static controller
uw = K*x (K* being an n x m matrix) making 0 an
asymptotically stable equilibrium of = f(z, K*z) :
then K plays the role of 6, r is nm and U (K, z) = K.
It is well known (see e.g. [5]) that, in the linear case,
i.e. if one adds to (3) the —important— information
that f is linear, then an adaptive controller of the
form (2) may be constructed.

Of course, if we remove the information “f is a lin-
ear mapping”, we are left with a more general and diffi-
cult problem, which is actually the problem of nonlin-
ear adaptive control, stated in a “direct” manner. See
section 2 for an equivalent “indirect” setting, which
is the one usually adopted in nonlinear adaptive con-
trol. One may ask the question : is the knowledge of
the mapping U satisfying (3) sufficient to build a con-
troller of the form (2) ? To our knowledge, no answer
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to this question is known, and it is of course a question
of interest to control theory to find an answer and, if
it is negative, to understand what information can be
added to make such a construction possible ? or, ide-
ally, what is the “minimal information” to be added
o

This problem has never really be tackled, and all
the studies in nonlinear adaptive control consist in
finding a controller of the form (2) in a “realistic” sit-
uation, where far more information than (3) is avail-
able; of course from an engineering point of view, this
is quite important since it brings some practical so-
lution for many situations. However, even from the
engineering point of view, some necessary conditions,
i. e. some informations on the systems proved to be
necessary for regulation would also have much inter-
est.

As mentionned above, the linear case in this state-
space setting is well-known; with output measure-
ment, solutions have long been known only under some
minimum-phase assumptions (see e.g. [5]), but the
question of finding the minimal information necessary
has been studied, looking for “universal controllers”.
In [3], it is proved that an upperbound on the order
of a (dynamic linear) stabilizing controller (note that
this implies the knowledge of a finite dimensionnal of
controllers one of which is a stabilizing one) is suffi-
cient information for regulation.

In the present paper, we give a “generalisation” of
the controller proposed in [3] to the nonlinear case,
but with full state measurement. Of course, we have
to add some more information to (3), and we have
no idea if they are necessary, but at least, they are
not at all of the same nature as the ones usually con-
sidered. In particular, no assumption on linearity in
the parameters is made. Of course, this does not give
any necessary conditions for adaptive regulation. The
controller given in [3] was an answer to the question
of necessary informationtion, in the wold of linear sys-
tems : there is no necessary condition beside an upper-
bound ofthe order of a stabilizing controller; we do not
bring such a result to adaptive nonlinear control, but
only a first attempt to build a “universal controller”.

2 The indirect setting

Note that the above formulation of the adaptive
regulation problem is purely “direct” in the sense that
no parametrization of the system is considered. A
more classical —and “indirect”™- formulation of this
problem is to suppose that the system (1) to be con-
trolled belongs to a known finite-dimensional family

of systems
& = F(pzu) , (4)

parametrized by p € IR'. This means that for a certain
p* in R,
F(p*,z,u) = f(z,u) VazVu . (5)
The traditionnal framework is then to be in a pre-
cise situation where (as in [1, 2, 4, 8]), or to suppose
that (as in [6, 7]), there exists, for all p, a controller
which stabilizes (4), and that this controllers depends
smoothly on p, which means that :

There is a known smooth map unom

from R' x IR™ to R™ such that, for all p in R,

0 is an asymptotically stable equilibrium

of £ = F(p, z, Unom(p, x))-

(6)

Of course, this implies (3) with [ = r, § = p, 6* = p*
and U = Unom- Note that this is more than (3) where
nothing is assumed for § different from 6*. With the
exception of [8], which actually only needs the equi-
libium point of & = F(p,x, Unom(p, z)) to be stable
when p = p*, (6) is met in all the situations where a
nonlinear adaptive controller is known to work.

Here, we only make use of the information (3),
which is implied by information (6) from the above
remarks. The knowledge of the function F' is simply
ignored in the controller we are giving here.

In all the situations where a solution is known, the
function F' depends linearly in p; of course, since we
even do not condider F', we do not have to make such
an assumption.

Let us mention that, in this framework, our prob-
lem can be seen as a control problem with output mea-
surement since it may be rewritten £ = F(p,z,u), p =
0, where the state is (x,p) and the ouput is z, the
state p being unmeasured: its initial condition p* is
unknown. Note that some necessary and sufficient
conditions for the existence a (very abstract) stabiliz-
ing dynamic output “controller” are given in [9]. His
conditions are not necessary here because we do not
require convergence of the extra dynamics (¢) whereas
by stabilization, he means convergence of the total
closed-loop state (here (x, ()).

3 Assumptions

Actually, we shall need some more restrictive re-
quirements on the finite-dimensionnal family of con-
trollers than the one in (3) :
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Information 1 : A map
U: R xR"— R™ (7)
is known such that there exists an open subset Q* of
R" and two functions V and p from R"™ to [0,400)
such that
Viz)=0 & =0 ()
plz)y=0 & =0 9)

{z, V(z) < M} is bounded VM >0 (10)
L @F@UO) < —ole) oS

This contains a rather restrictive assumption, i.e.,
compared with the formulation (3), the global stability
of the equilibrium point in # = f(x,U(6*,x)) is robust
in the sense that it is kept when p* is changed into
p* + & with & small enough. This is obviously true
in the linear case since when you change slightly the
coefficients of a linear stabilizing controller, you obtain
a controller which is still stabilizing.

Recall that U is assumed to be known, but not the
functions p and V. However, we require the following
bounds, which are indirect information on the func-
tions p, V and f.

Information 2 : Two positive functions u and R are
known and have the following properties :

Rz)=0 & =0 (12)
{z, R(z) < M} is bounded for any M >0

and, for oll x and u,

19 @) sl < epleu) (13)
R@) < expl) (19
w(z,U0,z)) < c3p(z) VOeQ* (15)

Note that (15) should be understood as : “there exists
an open subset of QO* such that u(z,U(8,x)) < c3 p(z)
for 6 in this open set”; this open set is still called Q*.

Note also that, in the linear case, since f is a linear
mapping, and V may always be take a quadratic form
in 2, u may always be chosen to be u(z,u) = ||z|* +
|u]|? and R to be R(z) = ||z||*.

This paper does not contain a comparison with the
usual conditions for adaptive nonlinear control. The
only very clear difference is that all the known algo-
rithms require a linear parametrization of F' in the
indirect setting described in section 2, and we have no
requirement of this nature. An interesting question
is, of course : in all the situations where a solution is
known, is there enough information available to build
aU, apanda R as above ?

4 The controller and main result

Let us define a curve
O : [0,+00]— R" (16)
with bounded “speed” :

Z—Z)(h) < 1 Yh>0 (17)

which has the property to be dense in IR" in the fol-
lowing sense :

V6 € R", Ve > 0, VH > 0, 3h > H such that ||O(h)-0| < ¢.

(18)
An explicit construction of such a curve © is given in

[3]-

Now, let us define

h : 0,400 — [0,400[ (19)
such that
oh
— 2
% > O (20)
0%h
952 < 0, (21)
hO) = 0, (22)
(m h(k) +o00, (23
. oh .
kETook%(k) = 0. (24)

An explicit choice for h which meets all these require-
ments is

h(k) = Log(1+ Log(1+k)) . (25)
Let now the controller be

k= ulz,u)+ R(z,u) (27)

It is clear that the only information on the system
used in this controller is the knowledge of some func-
tions U, R and p such that the properties given in
“information” 1 and 2. These informations happen to
be enough for regulation :

Theorem 1 Controller (26)-(27) achieves regulation
of © in the sense that, on any solution (z(t),k(t)) of
the closed-loop system (26)-(27)-(1), x(t) and k(t) are
bounded and x(t) goes to zero.
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Appendix: Proof of theorem 1 but does not depend on v) such that
The following proof is a generalization to the non- h(ty) — h(t;) > D > 0. (33)

linear case of the one given in [3]. When possible, we
have kept the same notations as in that paper.

Since k is positive, k either goes to infinity or tends
to a finite limit k... The proof is in two steps. First,
we prove that if k£ tends to a finite limit k., x goes
to zero, and then we prove by contradiction that k
cannot go to infinity.

Step 1 :
Let us suppose that

. ligrn k(t) = ko < 400 . (28)
From (13) and (27), we have, for all ¢ > 0,
V S C1 k (29)
and therefore
V() < V(0) + koo — k(0) VE>0. (30)

This implies, from (10), that x is bounded. In addi-
tion, since R < k, the function R(t) is in L'([0, 400[);
since R(t) is obviously bounded (it can be expressed as
a continuous function of z and k, which are bounded),
we may deduce that R(t) goes to zero and therefore,
from (12), that x goes to zero.

Step 2 :

Let us prove by contradiction that k does go to a finite
limit k... For this, we suppose that k goes to infinity.
This implies, from (23), that h goes to infinity and
therefore that ©(h(k)) goes all the way on the dense
curve. Let O* be an open set strictly contained in
*. (18) implies that ©(h(k(t))) goes infinitely many
times in and out of O* and therefore that there exists
infinitely many time-intervals

I, =]t tf] velN (31)

such that 8(h(k(t))) enters 2, at time ¢, exits at time
t+, and goes inside O* at one time in the interval, i.e.,
denoting ©(h(k(t))) by ©(¢) for short,

tel, = O e Q*
dtel, O@) € OF
o) ¢ ;5 O) ¢ ar .

(32)

Since g—% is bounded, and the length of the curve de-

scribed by © while ¢ is in I, is at least twice the dis-
tance between O* and outside Q*, there exists a pos-
itive number D (which may depend on the trajectory

Now, let us compute h(t}) — h(t; ) in another manner.
Since

weh - n) = [ Phar, @)

we have, from (27), (14), (15) and (21),
)= hit,) < Grhlt,) [ (eatar) V()
) (35)

which yields, since V'(¢) is non-increasing,

M) — hit7) < (er tes) Se(k(1;) V(15 136)

and finally, since, from (13) and (27),

V(t,) < V(0) + a(k(t,) — Kk0)), (37

Oh
h(t7) = h(t)) < (e2+es) 5 (k(t,)) [V(0)
—c1k(0) + 1 (k(t;)] -
This proves, from (24), that h(t] ) — h(t;) goes to zero
when v goes to infinity. This is a clear contradiction

with (33). k(t) cannot therefore be unbounded on any
trajectory. This ends the proof of theorem 1. |

(38)

5 Conclusion

We have given here an adaptive controller, which is
of a different nature as the ones usually designed for
some specific situations. The required assumptions
are also of a rather different nature. We hope that
this contribution initiates some work on the minimum
knowledge necessary for regulation.
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