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Abstract

In this paper preliminary results are presented on the problem
of regulating nonlinear systems by output feedback, using Lyapunov
based techniques. Sufficient conditions for the global stabilization
of the observed states via dynamic output feedback are obtained,
assuming that such stabilization is possible using full state feedback.
Some simple examples are included to illustrate our approach.

1 Introduction

This paper is concerned with the problem of output feedback reg-
ulation of nonlinear systems. Many authors have considered such
problems, using various approaches [4]-[7].

Some necessary and sufficient conditions for regulation via static
ountput feedback are established in Tsinias and Kalouptsidis [7}, by
extending previous results of Arstein [1] and Sontag [6]. However,
these conditions are not explicit and involve the existence of a spe-
cial “control Lyapunov function.” Furthermore, as it is well known,
most feedback stabilizable systems are not static output feedback
stabilizable {(e.g. &) = 23, &2 = u, y = 2,).

For linear systems, a more general problem has been solved,
among others, by Francis [2]. These results were extended to non-
linear systems by Isidori and Byrnes [4], for the case in which the
nonobserved dynamics evolve independently, as a so-called “exosys-
tem”. This exosystem is assumed to be Poisson stable. In addition,
for the case in which the state of the exosystem is not available to the
controller, detectability of the linear approximation of the combined
system is required.

The most “natural” approach to output control is to try to build
an observer. But for nonlinear systems it is unclear how this can be
done. Even in the cases where it is possible to design an observer,
it might not solve the problem of output control because the “sepa-
ration principle”, which is valuable in the linear case, does not hold
in general. In [3], Gauthier and Kupka have proved that this prin-
ciple holds for a certain class of bilinear systems and very particular
observers.

We, on the other hand, follow an approach that does not involve
explicitly building an observer. Qut main assumptions are that the
observed states are stabilizable by full state feedback and that the
nonchserved states enter the system equations linearly. These as-
sumptions, together with some more technical Lyapunov conditions
allow us to obtain global results. Our methods are an extension of
those commonly used in adaptive stabilization (see, for example (5]).
It should be noted that nonlinear adaptive stabilization is a partic-
ular case of our problem, where the nonobserved states are constant
(i.e. unknown parameters).

2 Problem Statement

We consider nonlinear systems of the form
¢ = flz)+g(z)u; z€eR"
y = h(z)
which, in new coordinates (#; = h(®),z2) can be written as

i1 = ea(z,u)+ Az, )z,
&2

Yy = I

b(zl,u)+ B(zl,u)zg (1)

where z; € IR¥ , xp ¢ R, ueR™, n=k+¢,and a, 4, band
B are smooth.

Qur aim is to have y = z; go to zero, and z remain bounded, on
any trajectory, the only available measurement being y.

We will assume that this would be possible if the full state z were
measured, i.e. that there exists a control law u = upom(Z1, 22) such
that the closed loop system & = f(z) + g(2)tnom{21,22) satisfies
z1 — 0 and z bounded. We make this precise the following way:

Basic Assumption Al

There exist two positive functions Vi(z) and V(z) such that

1) V(@) f(z) + ¢(z)unom(2)] < —p(z) where p(z) > 0 and is 0 if
and only if A{z) is zero.

2) Vi(z)- f(z) <0 and Vi(z)-g(z)=0 V.
3) the function V from IR® to IR defined by
V(z) = Vi(z) + Va(z)
is proper (i.e. the preimage of a compact set is compact).
Actually, we will further restrict ourselves as follows:
Assumption A2

There exists a positive definite £ x £ matrix @ such that, for any z;
and u,
B(z1,u)7Q + QB(z1,%)

is symmetric negative semidefinite.
Assumption A3
The function Vi(z) has the following form:
Vi(z) = Us(z1) + -;-z'{sz

where U is smooth, M is symmetric positive semidefinite, and
B(z1,u)T M + M B{z;,u) is negative semidefinite for all.z; and u.

3 Main Result

Consider the dynamic controller:

u = unom(z'l a§2)

. aUNT P o
Zp=Q7! [ET<6—$%) + Mb4+ (MB+ B™M)3,| +b+ Bz, (2)

d stands for a(21, Unom(1,%2))

b stands for b(Z1, Unom(21,%2))

A stands for A(21, tnom(Z1,52))
B stands for B(z1, tnom(T1,%2))-

Theorem 1 Under assumptions A1, A2 and A3, this dynamic con-
troller produces a closed-loop system with the following properties:
z1(t),22(t) and Z2(%) are bounded, and z1 goes to zero.

Proof: Let W be the fallowing function of time:

W() = Vi(a(0) + Va(a(t)) + glaa(t) - 20 QXa — 20 (3)
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Then
X — 6‘/1 -~ 3V1 ~ ~
w(i) = """(1’) [ + Aivz] + 55(33) {b+ B«’Bz]
3V2 - N T
+ S 2@) (=) + 9(2)tnom] + (2 ~ £2)7Q [b+ Bra - & -
A stra.xghtforwa,rd computation shows that
W(t) < —p(21,%2)

+Hzg — By)T [ (BUI) + Mb+ (MB + BT M)z, + Qb + QBz, - le]
+3(z2 ~2)7 [QB 4 BTQ+ MB+ B M) (22 - 2)
which, from the expression of £, and assumptions A2, A3, yields

W () < —p(z1,22)

This implies that (21,23, 3;) is bounded because W is, and that z;
goes to zero because p is zero if and only if 2y is zero.

4 Examples and extensions

Example 1. Let us consider the system (k =1, £=1)

I = z" tu
i = 2%,
If we use Unom{Z1,22) = —21T3 — T2 — 13
Vi(z) = % (:c% + x%)
Va(z) = 0,
then assumption Al is met with p(z) = —z¥ and A2 is met using

any @ > 0 as B(z1,u) = 0. Clearly assumption A3 is also satisfied.

In this example, using @ = 1, our dynamic controller takes the

form
w(Z1,%2) = Upom(T1,F2) = 21T ~ F2e™ — 23
B = [er‘zl + z'ﬂ + z%.

Let us have a look back at our assumptions: the linearity of
the state equations with respect to z, and Al are crucial to our
method. A2 and A3 are more technical. A3 specializes the form of
the Lyapunov function, which restricts the class of systems studied,
yet allows, for example, bilinear systems with a skew symmetric drift
matrix. A2 on the other hand is stronger since QB + BTQ being non
positive does, in itself, almost imply z, being bounded independently
of the control. This is natural if z; is considered as the state of an
“exosysterm” as in [4] and %, depends on z; only. The following
example displays a situation where QB + BTQ is non positive for
no constant matrix €, but an extension of this method using more
dynamics still allows stabilization using the output only.

Example 2. Consider the system (k = 1,£ = 2) defined by (1) with

Alz1,u) = (0,1)

b(xbu)-—{ 1} B(-'th“)=[2?:1 g}

Or, using for convenience z; = (p,q)7,

alz,u)=u

T3 =q+u
P =1
g =2pzy.
With
tnom(T) = Unom(Z1,P,9) = 21 ~p—¢
Vi(z) =32i+3p
Va(z) = ~-q)?
o) = -3

assumptions Al and A3 are met. On the other hand A2 cannot be
satisfied: there is no positive definite Q such that @B + BTQ is
negative semidefinite (since det(QB + BTQ) < 0 for any Q > 0).
Using any positive definite {, controller (2) becomes

% = Unom(Z1,5,§)

5 — - Zy Z1
HENHEFY

and, taking W as in (3), we obtain

T
, R L A N )
W < —p(21,p,4) + = ol B+ B 1.
p(21,5,9) 2[q_q] (@ Q) i
Since A2 is not met, W need not decrease along solutions of the
closed-loop system.
However, we can extend our method by using a dynamic Q: In-
stead of taking ¢ constant, we take Q(t) to satisfy

¢ =-QB-B7Q @
with a positive definite initial condition Q(0), so that W < p(z1,5,4).
Thus we can conclude that {z4, p, g, P, §) remain bounded and z; — 0
provided that Q(t) remains bounded and bounded away from singu-
lar matrices. Since the bottom-right entry of QB + BTQ is zero,
the corresponding entry in Q(t) is constant (we will take it to be 1).

With @ = [ ;: ‘1‘ J, (4) becomes

——21}1

i

i
A

H

—4z10

and (3) may be written as

W= 3ot + 587+ 0P 0+ 50— i) o D7)+ So—)+ (g~ D

Therefore z1, p, ¢, and the quantities in square brackets are bounded.
Noting that A — u? is constant we can conclude that # is bounded.
Since

1 _
37— (A= g2+ Du - 200 - 4*)p

is also constant we can conclude that u is bounded, and therefore §
is bounded as well.
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