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What is a ‘complex system’ from an
engg. optimization standpoint?

Prototype example: shape optimization of an aircraft wing

A situation that is
• multi-disciplinary

aerodynamics, structural design, acoustics, stealth, ...

• multi-objective (in each discipline)
and for aerodynamics alone:

3 forces and 3 moments, and several perspectives: energy, maneuverabilty, ...

• multi-point
and for aerodynamics alone:

cruise (transonic, small AoA) vs take-off and landing (subsonic, large AoA, deployed

flaps), other critical configurations of the flight envelope, ...
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Complex system from an engg.
optimization viewpoint

(foreword)
A situation involving cost functions that are

• functionals
(not in closed-form expressions), involving several complex
simulation codes
compressible 3D EULER (wave drag) vs RANS equations (deployed flaps), elasticity,

wave equation (acoustics), Maxwell (stealth)...

• many,
some of which being revealed more critical than anticipated
after a first campaign of multi-objective optimization, and a
first analysis of the concept.

Let us simplify...
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Problematics
Suppose a design-point x?A ∈ Rn that is Pareto-optimal w.r.t. the
minimization of the following m primary cost functions

{
fj (x)

}
(j = 1, . . .,m)

subject to the K equality constraints

ck (x) = 0 (k = 1, . . .,K )

is known (by a preliminary multiobjective process).
Can we construct a continuum of neighboring design-points {x̄ε }
parameterized by a small parameter ε in such a way that:

1 “consistency”:
x̄0 = x?A

2 the Pareto optimality of the primary cost functions is degraded
by an-O(ε2) term only

3 the constraint are satisfied throughout (ck (x̄ε ) = 0, ∀k, ∀ε)
4 additional secondary cost functions

{
fj (x)

}
(j =m+1, . . .,M)

are reduced at least linearly in ε?
6 / 31
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Construction

Preparation phase
• Primary steering function f+A (x), convexity fix
• Territory splitting
• Secondary steering function fB (x)

Nash games
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Preparation phase
Momentarily assume that all differential elements are available

Primary steering function f+A (x), convexity fix
• Gram-Schmidt orthogonalization of constraint gradients {∇c?k } (k = 1, . . .,K ) assumed

to be linearly independent by “constraint qualification”:

∇c? =
*.....
,

.

.

.
.
.
.

∇c?1 . . . ∇c?K
.
.
.

.

.

.

+/////
-

= QR, Q =

*......
,

.

.

.
.
.
.

q1 . . . qK

.

.

.
.
.
.

+//////
-

.

• Define the projection operator onto the subspace tangent to the constraint manifold:

P = In −
K∑

k=1

[
qk

] [
qk

] t
.

• Compute the projected (logarithmic) gradients of the primary cost functions:

g?
j = P

∇f?j
f?j
=
∇f?j
f?j
−

K∑
k=1

(∇f?j
f?j

, qk )qk (j = 1, . . .,m, g?
j ∈ Rn).
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Primary steering function f+A (x)
(end)

• MGDA: recursive exploration of the boundary of an n-polytope with m vertices to identify
the coefficients {α?

j } appearing in the expression of Pareto-optimality at x = x?A :

ω?
A = argminu∈UA

| |u | | =
∑m

j=1α
?
j g?

j = 0

UA =
{
u =

∑m
j=1αj g?

j s.t. αj ≥ 0 (∀j),
∑m

j=1αj = 1
}
.

• Define the “agglomerated primary cost function":

fA (x) =
m∑

j=1
α?

j
fj (x)
f?j

so that P∇f?A = 0⇐⇒∇f?A +
∑K

k=1 λk∇c?k = 0 (λk : Lagrange multiplier).

• “Primary steering function”: augment fA (x) by a convexity-fix term:

f+A (x) = fA (x)+ c
2




x−x?A





2

(c ≥ 0, and sufficiently large): convex and minimum at x?A under the constraints.
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Preparation continued
Territory splitting
Split design space Rn into two supplementary subspace U and V

• Compute and diagonalize the reduced Hessian matrix

H′A = P
(
∇2f+,?A

)
P =ΩHΩt, ΩtΩ = In, H = Diag(h′k ) =

(
Hu 0
0 Hv

)
,

where the ordering is such that: h′1 = · · · = h′K = 0; h′K+1 ≥ h′K+2 ≥ · · · ≥ h′n > 0.
• Choose dimension p, and split the matrixΩ as follows:

Ω = (Ωu Ωv), Ωu =

(
Ωuu
Ωvu

)
, Ωv =

(
Ωuv
Ωvv

)
,

(Ωu : n× (n−p); Ωv : n×p) corresponding to a split of Rn into two supplementary
subspaces

Rn = U ⊕V (dimU = n−p, dimV = p, U ⊥ V )

where U is spanned by the first n−p eigenvectors of matrix H′A, the first K of which
spanning the null space of P, and V by the last p eigenvectors.

• Introduce the change of variables:

x = x?A +Ω
(

u
v

)
= x?A +Ωuu+Ωvv := X(u, v) (u ∈ Rn−p, v ∈ Rp)
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Preparation (end)
Secondary steering function, fB(x)

• New p-dimensional variable (alternative to v), w = S
1
2 v

where S = ∇2
vvf+,?A = Hv (positive-definite diagonal matrix)

• Logarithmic gradients of secondary cost functions w.r.t. the variable w (for fixed u):

g?
j =
∇w f?j

f?j
=

S−
1
2 Ωt

v∇f?j
f?j

(j =m+1, . . .,M).

• MGDA: identify minimum-Euclidean norm elementω?
B =

∑M
j=m+1α

?
j g?

j in the convex
hull UB of the above gradients:

UB =




u =
M∑

j=m+1
αj g?

j s.t. αj ≥ 0 (∀j),
M∑

j=m+1
αj = 1



.

• “Secondary steering function”:

fB (x) =
∑M

j=m+1α
?
j

fj (x)

f?j

so that: ∇w f?B =ω
?
B ,

(
∇w f?B ,ω

?
B
)
= σB =




ω
?
B





2
≥ 0.

• If σB is too small: abandon, or formulate the problem differently; otherwise, proceed.
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Nash games1

Formulation
• Define a continuation parameter ε (0 ≤ ε ≤ 1), and the
auxiliary cost function

fAB = (1− ε)f+A + εfB .

• For each fixed value of ε, a Nash equilibrium point
x̄ε = X(ūε, v̄ε )

is sought such that:
• the sub-vector ūε minimizes f+A

(
X(u, v̄ε )

)
w.r.t. u

subject to the constraints

ck
(
X(u, v̄ε )

)
= 0, ∀k

• the sub-vector v̄ε minimizes fAB
(
X(ūε,v)

)
w.r.t. v

subject to no constraints.

14 / 31
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Nash games2

Theoretical result
• The Nash equilibrium point x̄ε exists
for all sufficiently small ε, and for ε = 0:

x̄0 = x?A

(consistency).
• As ε increases
(and remains sufficiently small):

• The primary steering function f+A
(
X(ūε, v̄ε )

)
augments

from the value 1, with an initial derivative equal to 0, and the equilibrium point
departs from the Pareto-optimality of the primary cost functions {fj }
(j = 1, . . .,m) by a term O(ε2) only.

• The secondary steering function fB
(
X(ūε, v̄ε )

)
diminishes

linearly with ε, as (−σB)ε
(where the positive constant σB is calculated a priori). The secondary cost
functions {fj } (j =m+1, . . .,M) decrease at the same rate, or faster.

“Horn-shaped pattern in function space”
15 / 31
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Nash games3

Computational implementation

Metamodels
• Global (i.e. fixed) quadratic metamodels for steering functions f = f+A or fB :

f̃ (x) = f? +
(
x−x?A ,∇f? + 1

2 H? (x−x?A )
)

(gradients by finite differences, Hessians by least squares)
• Local (i.e. regularly upgraded along the process) quadratic constraint metamodels:

c̃k (x) = ck (x̄)+
(
x− x̄,∇ck +

1
2 Hck (x− x̄)

)
(k = 1, . . .,K )

Nash-Game Implementation
• u-subproblem: minimization of a quadratic form subject to a set of quadratic

constraints; the optimality conditions are solved by Newton’s method.
• v-subproblem: unconstrained minimization of a quadratic form; the optimality

conditions are linear and solved by direct inversion.

Coordination by Schwarz-method-type algorithm: The upper bound εmax guaranteeing
convexity is known a priori.
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A testcase in flight mechanics
Black-box software provided by Dassault Aviation
15 design variables subject to interval bounds

symbol significance lower bound upper bound
(Xi ) (unit) Xi,min Xi,max
z cruise altitude (m) 8000 18500

xmach cruise Mach number 1.6 2.0
S wing reference surface (m2) 100 200

phi0w wing leading-edge sweep angle (o) 40 70
phi100w wing trailing-edge sweep angle (o) -10 20
xlw wing taper ratio 0.05 0.50
t_cw wing relative thickness 0.04 0.08
phi0t vertical-tail leading-edge sweep angle (o) 40 70

phi100t vertical-tail trailing-edge sweep angle (o) 0 10
xlt vertical-tail taper ratio 0.05 0.50
t_ct vertical-tail relative thickness 0.05 0.08
dfus fuselage diameter (m) 2.0 2.5
wfuel fuel mass (kg) 15,000 40,000
alpha landing maximum angle of attack (o) 10 15
xfac mlw/tow, landing to take-off mass ratio 0.85 0.95

For each design variable Xi , let:

Xi =
Xi, max+Xi,min

2 +
Xi, max−Xi,min

2 sinxi

x = {xi } ∈ R15: preliminary optimization variable
18 / 31
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A testcase in flight mechanics
Optimization formulation

Functions of interest
• mass, M (kg) (to be minimized)
• range, R (m) (to be maximized)
• take-off (t.o.) distance, D (m) (to be maintained below 1828 m)
• approach speed, V (m/s) (to be reduced)

Function values, no gradients.

Cost functions and constraint

Primary: f1(x) = exp
[
γ

(
M

M?
−1

)]
, f2(x) = exp

[
γ

(
R?

R
−1

)]

Secondary: f3(x) = exp
[
γ

(
V

V?
−1

)]

Constraint: c1(x) =
D

1828
−1+ x2

16 = 0 (x16 : slack variable)

(starred symbols: values at x?A) 19 / 31
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A testcase in flight mechanics
Two-step numerical experiment

First step
Identify some starting point x?A on the mass-range (f1, f2)
Pareto front subject to constraint on take-off distance
c1(x) = 0 (and interval bounds on all 15 physical variables)
Procedure: Pareto Archived Evolution Strategy

Second step
Reduce approach speed (through f3) while maintaining:

• quasi mass-range Pareto-optimality,
• and constraint on take-off distance.

20 / 31
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A testcase in flight mechanics
Results

Discrete mass-range Pareto front and five continua of
Nash equilibria to reduce approach speed
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Mass-range Pareto front subject to bound constraints on all variables
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Case B
Case C
Case D
Case E
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A testcase in flight mechanics
Set-up for the numerical experimention

Numerical parameters
case γ a hdiff b hbox c κ d `max

e TOL f λmax
g µmax

h

A 10 10−2 0.5 10 100 ; 96 10−4 15 5
B 10 10−2 0.5 5 100 ; 94 10−4 15 5
C 10 10−4 0.5×10−2 10 100 ; 99 10−4 15 5
D 103 10−5 0.5×10−3 10 100 ; 99 10−4 15 5
E 40 10−4 0.5×10−2 1.5 100 ; 99 10−4 15 5

aconstant to control magnitude of initial gradients
bstepsize in central differencing
cbox size for global metamodels
dparameter controling the convexity fix
enumber of discretization subintervals of [0, εmax]
faccuracy tolerance in (u, v) coordination outer loop
gmaximum number of (u, v) coordination iterations
hmaximum number of iterations by Newton’s method in each u subproblem

22 / 31
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A testcase in flight mechanics
Case B

Horn-shaped or lily-shaped cost function pattern
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A testcase in flight mechanics
Case B

Actual reduction of approach speed
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Flight-mechanics testcase - case B

Approach speed as a function of massB

B’
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A testcase in flight mechanics
Case B

The 16 optimization variables along the continuum
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A testcase in flight mechanics
Case B

The constraint along the continuum
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At point B’: c1 = −3.5×10−5.
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A testcase in flight mechanics
Case B
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Number λ of outer iterations necessary to coordinate the subvectors
u and v at a given ε = ε` as a function of ` = 1, . . .,94 (Case B).
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A testcase in flight mechanics
Main conclusions1

• Testcase of actual interest revealed physical scales raising numerical

difficulties (PAES).

• Successful Nash-game approach able to identify a continuum of equilibria

in R16 (15 physical + 1 slack variables) initiated from a large part of the mass-range

Pareto front subject to the constraint on take-off distance to preserve properly the Pareto

optimality.

• Along (more than 80% of) the continuum, the variation of the
cost functions exhibit a horn-shaped (or lily-shaped) pattern:

• the primary steering function increases moderately with the continuation
parameter ε (initial derivative equal to 0), and the Pareto-optimality condition
relating the primary cost functions and the constraint is degraded of only O(ε2);

• the secondary steering function decreases linearly with ε and the initial
derivative (−σ) is given by the theory, as well as the limit of convexity εmax;

• the constraint is strictly satisfied
• the objective of reducing the secondary cost function related to

approach speed is attained.
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A testcase in flight mechanics
Main conclusions2

• Quadratic metamodels are adequate; however, the constraint metamodels must

be upgraded throughout.

• For a given ε, are sufficient:
• 3 iterations by Newton’s method to solve each u-subproblem, for fixed v;
• a moderate number of (u,v) coordination iterations except at the

approach of the limit of convexity εmax.

• The interactive running time is about 45 s for a given case on a standard

laptop. This includes: code assembly and compilation, 15 stages of preparation of the

Nash games involving in particular the construction of metamodels, the application of the

QR algorithm on the Hessian and several matrix diagonalizations and system inversions

(by Lapack), the computation of 100 Nash equilibria, and the elaboration of graphics.

• The software platform is general: the user provides

• a Fortran-compatible source file for the evaluation of cost functions and
constraints (no gradients required),

• a datafile specifying 14 methodological parameters including the coordinates of
the Pareto-optimal starting point x?A .

29 / 31



Prioritized optimization by
Nash games : towards an
adaptive multi-objective

strategy

Désidéri-Duvigneau

Introduction

Problematics

Algorithmic construction

Nash games

Application to a sizing
problem in flight mechanics

Conclusion

Outline

1 Introduction

2 Problematics

3 Algorithmic construction

4 Nash games

5 Application to a sizing problem in flight mechanics

6 Conclusion

30 / 31



Prioritized optimization by
Nash games : towards an
adaptive multi-objective

strategy

Désidéri-Duvigneau

Introduction

Problematics

Algorithmic construction

Nash games

Application to a sizing
problem in flight mechanics

Conclusion

Conclusion

Inria Research Reports 9290 & 9291
• Platform for prioritized multi-objective optimization by
metamodel-assisted Nash games

• Direct and adaptive approaches to multi-objective optimization

accessible on the HAL open archive
https://hal.inria.fr

Software platform http://mgda.inria.fr currently
being remodeled.

Thank you!
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