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1 Introduction

We will be concerned with the existence in small time of solutions of initial bound-
ary value problems for evolution equations. We will place particular emphasis on
the Navier-Stokes equations for incompressible fluids in a domain Ω ⊂ R

3. In
general, we will consider evolution equations in a separable Hilbert space X of the
following form

�
∂

∂t
u+ Au+Q(u) = 0
u(0) = u0 ∈ X.

(1.1)

where A is a self-adjoint linear operator (typically −∆) and Q is a non-linear term.
We give two important examples of such equations.

Example 1.0.1.

(i)
∂

∂t
u+ (−∆u) + p(u,∇u) = 0

where p(x, y) is a polynomial, and u is a scalar.

(ii) The Navier-Stokes equations: The incompressible flow of a fluid is governed
by the Navier-Stokes equations:

�
∂

∂t
u+ (−∆u) + (u · ∇) u = −∇p

∇ · u = 0
. (1.2)

Here u represents the velocity vector field of the fluid flow (so that the equa-
tion is not scalar), p is a scalar pressure function (up to a function of time
t) which maintains the incompressibility of the fluid (so that p is divergence
free), and the requirement ∇ · u = 0 is the incompressibility condition. This
condition follows from the fact that we assume the density of the fluid to be
constant.
If we are working in a domain Ω ⊂ R

3, then we can write u = (u1
, u

2
, u

3),
and the equations (1.2) become

�
∂

∂t
u
i −∆u

i +
��3

j=1 u
i∇j

�
u
i = −∇ip�3

j=1 ∇iu
i = 0
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in Ω ⊂ R

3 for i ∈ {1, 2, 3}.
We can reformulate these equations in a useful way, and show that they are
actually equivalent to a functional evolution equation (and thus they behave
very differently to a standard system of PDEs). We use the Helmholtz de-
composition (see section 3.1 for details), which asserts the existence of an
operator P∞ that projects a vector field u (subject to boundary conditions)
onto its divergence free part. Indeed, for any vector field u, we can write

u = P∞u+∇q

where ∇·(P∞u) = 0 so that ∆q = div (u), which is supplemented by boundary
conditions that depend on those of u.
Now suppose u satisfies (1.2). Then since ∇ · u = 0 and p is divergence free

P∞u = u, P∞
∂u

∂t
=

∂u

∂t
, P∞∇p = 0,

so that if we apply P∞ to (1.2), we arrive at

∂

∂t
u− P∞(∆u) + P∞

�
(u · ∇)u

�
= 0. (1.3)

We thus have an evolution equation of the form (1.1) with A = −P∞ ◦∆ and
Q(u) = P∞

�
(u ·∇)u

�
. Of course, in order to explore solutions, this equation

must first be supplemented with suitable initial and boundary conditions. This
is the main thrust of chapter 3.
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2 General theory

Recall that we are interested in evolution equations of the form

(Eq.I)
�

∂

∂t
u+ Au+Q(u) = 0

u(0) = u0.

where u takes values in some separable Hilbert space X, with inner product (·, ·)X .
The aim of this chapter is to describe some conditions and spaces in which a
solution (in a mild sense) to such an equation exists in small time. The main
reference for this chapter is [3], though the reader might also like to refer to [6].

2.1 Preliminaries and assumptions

Let A : X → X be a self-adjoint operator, and suppose that A has a spectral
gap λ0 > 0. If not, we can shift it by a bounded operator, which we can then
incorporate into Q. We can thus assume that A−1 is a bounded operator. Indeed,
by spectral decomposition we can write

A =

� ∞

λ0

λdEλ

(where {Eλ : λ ∈ R} is a spectral resolution of the identity for A), so that by the
spectral theorem,

A
α =

� ∞

λ0

λ
α
dEλ,

with domain
D (Aα) =

�
x ∈ X :

� ∞

λ0

λ
2α
d (Eλx, x)X < ∞

�

for all α ∈ R. Thus A
α is a bounded operator as long as α < 0. We also define

Pt = e
−tA :=

� ∞

λ0

e
−tλ

dEλ. (2.1)

Lemma 2.1.1. For all α > 0, t > 0 and x ∈ X

�Aα
Ptx�X ≤ C(α)

tα
�x�X .

38
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Proof. By the spectral theorem

�Aα
Ptx�2X =

� ∞

λ0

λ
2α
e
−2tλ

d �Eλx�2X

and taking supremum of the integrand over λ > 0 the result follows.

In looking for a solution to (Eq.I), it is restrictive to assume that u ∈ D(A). We
therefore start to look for weaker solutions. Our starting point is to note that

�
∂

∂t
= −Au

u(0) = u0
(2.2)

has a solution u(t) = e
−tA

u0. We can therefore regard (Eq.I) as a perturbed linear
equation, treating the term Q(u) as a non-linear perturbation.

Suppose u(t) is a "good" solution to (Eq.I). Consider f(s) := Pt−su(s) for
0 ≤ s ≤ t, so that f(t) = u(t) and f(0) = Ptu0. Then

f
�(s) = APt−su(s) + Pt−s

∂u

∂s

= Pt−s

�
Au(s) +

∂

∂s
u

�

= −Pt−s

�
Q(u(s))

�

⇒ f(t)− f(0) =

�
t

0

d

ds
f(s)ds = −

�
t

0

Pt−s

�
Q(u(s))

�
ds,

since Pt−s commutes with A by definition. Thus

(Eq.II) u(t) = Ptu0 −
�

t

0

A
τ
Pt−sA

−τ
Q(u(s))ds (2.3)

for τ ∈ (0, 1). Instead of working directly with equation (Eq.I), we actually look
for solutions to (Eq.II). Looking for solutions to this equation no longer requires
us to assume that u ∈ D(A) (in fact, as we will see, we will just have to assume
u ∈ D (Aε) for some ε < 1).

It is worth noting that, by Lemma 2.1.1, Aτ
Pt−s is bounded since

�
t

0
1
tτ
dt < ∞

for τ ∈ (0, 1). Moreover, A−τ is bounded, since we have assumed that A has a
spectral gap.

In view of the above, define

(Lu) (t) := Ptu0 −
�

t

0

A
τ
Pt−sH (u(s)) ds

where H = A
−τ
Q. It is clear that u is a fixed point for L, if and only if u is a

solution of (Eq.II). We will therefore look for a fixed point for the operator L.
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Remark 2.1.2. In the case of the Navier-Stokes equations described in the intro-
duction, a solution to (Eq.II) has enough regularity to construct a strong solution
(see [3]).

We will make the following important assumptions, which we will label (A).

Assumptions (A): Suppose that there exist δ1 ∈ [0, 1] and δ2 ∈ [0, δ1) and such
that

(I) D(H) consists of all x ∈ D
�
A

δ1
�

such that there exists a sequence (xn)n≥0 ⊂
D
�
A

δ1
�

such that

(i)
���Aδ1xn

��
X
: n ≥ 0

�
is bounded,

(ii) xn → x in A
δ2 i.e.

��Aδ2(xn − x)
��
X
→ 0,

so that D
�
A

δ1
�
⊂ D(H) ⊂ D

�
A

δ2
�
;

(II) H

���
D(Aδ1)

is A
δ1-bounded i.e.

�H(x)�X ≤ K2

���Aδ1x
��
X

�

for all x ∈ D
�
A

δ1
�
, where K2 : [0,∞) → [0,∞) is an increasing function

depending on the non-linearity of H(x);

(III) H

���
D(Aδ1)

is weakly differentiable in the following sense: for x ∈ D
�
A

δ1
�
,

there exists a bounded linear operator DH(x) on D
�
A

δ2
�

such that

(i) d

dε
H(x+ εξ)|ε=0 = DH(x)ξ,

(ii) �DH(x)ξ�
X
≤ K1

���Aδ1x
��
X

� ��Aδ2ξ
��
X

for some increasing function K1 : [0,∞) → [0,∞).

These assumptions will be made throughout the rest of this chapter.

Lemma 2.1.3. Under these assumptions H is locally Lipschitz in the following
sense: for all x, y ∈ D

�
A

δ1
�

�H(x)−H(y)�
X
≤ K1

���Aδ1x
��
X
+
��Aδ1y

��
X

� ��Aδ2(x− y)
��
X
.

Proof. This follows from the mean value theorem for the function H(sx+(1−s)y),
s ∈ [0, 1] and (III) .
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2.2 A first solution space

Definition 2.2.1. Let T > 0 and ζ1 ≥ 0 be some fixed number to be chosen later.
We will say that a path u : [0, T ] → X belongs to HT if

(i) for all t ∈ (0, T ], u(t) ∈ D
�
A

δ1
�

and t �→ A
δ1u(t) is continuous on (0, T ]

such that
sup

t∈(0,T ]

��tζ1Aδ1u(t)
��
X
< ∞;

(ii) u ∈ C ([0, T ], X).

If we define for u ∈ HT

�u�HT := sup
t∈[0,T ]

�u(t)�X + sup
t∈(0,T ]

��tζ1Aδ1u(t)
��
X
,

HT becomes a Banach space.

We will show that, under our assumptions (A), there exists a solution u ∈ HT

to ( Eq.II ) for properly chosen δ1, δ2, τ, ζ1 and small enough T > 0.

Lemma 2.2.2. Let u ∈ HT , with �u�HT ≤ β. Let α ∈ [0, 1). Then

(i) for all t ∈ (0, T ] the map s �→ A
α
Pt−sH(u(s)), is left-continuous on (0, t)

(note that there is a singularity at t, and at s = 0 there is no guarantee that
PtH(u(s)) ∈ D (Aα));

(ii) for all t ∈ (0, T ],
�
t

0 A
α
Pt−sH(u(s))ds exists and

����
�

t

0

A
α
Pt−sH(u(s))ds

����
X

≤ C(α)t1−α

� 1

0

(1− s)−α
K2

�
β(ts)−ζ1

�
ds.

Proof. Fix t ∈ (0, T ]. For s ∈ (0, t), let f(s) := A
α
Pt−sH(u(s)). Let s1, s2 ∈ (0, t),

and without loss of generality, suppose s1 > s2. Then

�f(s1)− f(s2)�X = �Aα
Pt−s1H(u(s1))− A

α
Pt−s2H(u(s2))�X

≤
���Aα

Pt−s1

�
H(u(s1))−H(u(s2))

����
X

+
���
�
A

α
Pt−s1 − A

α
Pt−s2

�
H(u(s2))

���
X

=
���Aα

Pt−s1

�
H(u(s1))−H(u(s2))

����
X

+ �Aα
Pt−s1(1− Ps1−s2)H(u(s2))�X . (2.4)
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Now
���Aα

Pt−s1

�
H(u(s1))−H(u(s2))

����
X

≤ C(α)

(t− s1)α
�H(u(s1))−H(u(s2))�X

≤ C(α)

(t− s1)α
K1

���Aδ1u(s1)
��
X
+
��Aδ1u(s2)

��
X

� ��Aδ2(u(s1)− u(s2))
��
X
,

where we have used Lemma 2.1.1 and Lemma 2.1.3, which converges to 0 as s2 → s1

by part (I) of our assumptions.
To deal with the second term of (2.4), we simply note that, again using Lemma

2.1.1,

�Aα
Pt−s1(1− Ps1−s2)H(u(s2))�X ≤ C(α)

(t− s1)α
�(1− Ps1−s2)H(u(s2))�X

which also converges to 0 as s2 → s1. Thus we have shown (i).
For (ii) we calculate that

�f(s)�X ≤ C(α)

(t− s)α
�H(u(s))�X

≤ C(α)

(t− s)α
K2

���Aδ1u(s)
��
X

�

=
C(α)

(t− s)α
K2

�
s
−ζ1

��sζ1Aδ1u(s)
��
X

�

≤ C(α)

(t− s)α
K2

�
s
−ζ1β

�
,

where we have used assumption (II), �u�HT ≤ β and the fact that the function
K2 is increasing. Then

����
�

t

0

f(s)ds

����
X

≤
�

t

0

�f(s)�Xds

≤ C(α)

�
t

0

1

(t− s)α
K2(s

−ζ1β)ds

= C(α)

� 1

0

t
1−α

(1− s)α
K2

�
(ts)−ζ1β

�
ds,

by making a substitution s �→ ts.

Example 2.2.3. Suppose the function that appears in the case of the Navier-Stokes
equation is given by K2(r) = kr

2 for some positive constant k. Then the right-hand
side of the bound (ii) of Lemma 2.2.2 will read

C(α)t1−α

� 1

0

(1− s)−α
K2

�
β(ts)−ζ1

�
ds = kC(α)t1−α−2ζ1β

2

� 1

0

1

(1− s)αs2ζ1
ds.
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The integral on the right-hand side is the beta function of α + 1 and 2ζ1 + 1, and
so is finite. In this case, we should choose 1− α− 2ζ1 > 0 to ensure that we have
a contraction in small time.

Lemma 2.2.4. Suppose u, w ∈ HT with max{�u�HT , �w�HT } ≤ β and u0 = w0.
Then

(i)
�Lu(t)�

X
≤ c1�u0�X + c2h1(t, β)

for some constants c1, c2 ∈ (0,∞), where

h1(t, β) = t
1−τ

� 1

0

(1− s)−τ
K2

�
β(ts)−ζ1

�
ds;

(ii)
�Lu(t)− Lw(t)�

X
≤ c3h2(t, β)�u− w�HT

for some constant c3 ∈ (0,∞), where

h2(t, β) = t
1−τ−ζ1

� 1

0

(1− s)−τ
s
−ζ1K1

�
2β(ts)−ζ1

�
ds.

Proof. By definition

�Lu(t)�
X
=

����Ptu0 −
�

t

0

A
τ
Pt−sH(u(s))ds

����
X

≤ c1�u0�X +

�
t

0

�Aτ
Pt−sH(u(s))�

X
ds

where the constant c1 comes from the spectral representation of Pt (in the same
way as in Lemma 2.1.1). Part (i) follows from an application of part (ii) of Lemma
2.2.2.

For (ii), we note

�Lu(t)− Lw(t)�
X
=

����−
�

t

0

A
τ
Pt−s

�
H(u(s))−H(w(s))

�
ds

����
X

≤ C(τ)

�
t

0

(t− s)−τ�H(u(s))−H(w(s))�Xds

≤ C(τ)

�
t

0

(t− s)−τ
K1

���Aδ1u(s)
��
X
+
��Aδ1w(s)

��
X

� ��Aδ2(u(s)− w(s))
��
X
ds
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where we have used the fact that H is locally Lipschitz i.e. Lemma 2.1.3. Now

��Aδ2x
��
X
=

��A−(δ1−δ2)A
δ1x

��
X
≤ c

��Aδ1x
��
X

(2.5)

for some constant c, since A
−(δ1−δ2) is a bounded operator for δ2 ≤ δ1. Thus

�Lu(t)− Lw(t)�
X

≤ cC(τ)

�
t

0

(t− s)−τ
K1

���Aδ1u(s)
��
X
+
��Aδ1w(s)

��
X

�
s
−ζ1

��sζ1Aδ1(u(s)− w(s))
��
X
ds

≤ C̃(τ)�u− w�HT

�
t

0

(t− s)−τ
s
−ζ1K1

�
2βs−ζ1

�
ds

where we have used the fact that u, w ∈ HT and the fact that K1 is increasing.
Using the substitution s �→ st then yields (ii).

We will also need the following:

Lemma 2.2.5. Suppose u, w ∈ HT with max{�u�HT , �w�HT } ≤ β and u0 = w0.
Then

(i)
��tζ1Aδ1Lu(t)

��
X
≤ c1�Aδ1−ζ1u0�X + c2h3(t, β)

for some constants c1, c2 ∈ (0,∞), where

h3(t, β) = t
1−τ−(δ1−ζ1)

� 1

0

(1− s)−(τ+δ1)K2

�
β(ts)−ζ1

�
ds;

(ii) ���tζ1Aδ1

�
Lu(t)− Lw(t)

����
X

≤ c3h4(t, β)�u− w�HT

for some constant c3 ∈ (0,∞), where

h4(t, β) = t
1−τ−δ1

� 1

0

(1− s)−(δ1+τ)
s
−ζ1K1

�
2β(ts)−ζ1

�
ds.
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Proof. By using Lemma 2.1.1,

��tζ1Aδ1Lu(t)
��
X
=

����t
ζ1A

δ1

�
Ptu0 −

�
t

0

A
τ
Pt−sH(u(s))ds

�����
X

≤ t
ζ1
��Aδ1Ptu0

��
X
+ t

ζ1

�
t

0

��Aδ1+τ
Pt−sH(u(s))

��
X
ds

≤ t
ζ1
��Aζ1PtA

δ1−ζ1u0

��
X
+ C(δ1 + τ)tζ1

�
t

0

(t− s)−(δ1+τ) �H(u(s))�
X
ds

≤ t
ζ1
C(ζ1)

tζ1

��Aδ1−ζ1u0

��
X
+ C(δ1 + τ)tζ1

�
t

0

(t− s)−(δ1+τ)
K2(βs

−ζ1)ds

= C(ζ1)
��Aδ1−ζ1u0

��
X
+ C(δ1 + τ)t1+ζ1−(δ1+τ)

� 1

0

(1− s)−(δ1+τ)
K2

�
β(ts)−ζ1

�
ds

so that (i) holds.
For (ii), write

���tζ1Aδ1

�
Lu(t)− Lw(t)

����
X

= t
ζ1

����
�

t

0

A
δ1+τ

Pt−s

�
H(u(s))−H(w(s))

�
ds

����
X

≤ t
ζ1

�
t

0

���Aδ1+τ
Pt−s

�
H(u(s))−H(w(s))

����
X

ds

≤ t
ζ1C(δ1 + τ)

�
t

0

(t− s)−(δ1+τ)�H(u(s))−H(w(s))�Xds

≤ t
ζ1C(δ1 + τ)

�
t

0

(t− s)−(δ1+τ)
K1

���Aδ1u(s)
��
X
+
��Aδ1w(s)

��
X

� ��Aδ2(u(s)− w(s))
��
X
ds

≤ t
ζ1cC(δ1 + τ)

�
t

0

(t− s)−(δ1+τ)
K1

�
2βs−ζ1

�
s
−ζ1

��sζ1Aδ1(u(s)− w(s))
��
X
ds

≤ t
ζ1cC(δ1 + τ)�u− w�HT

�
t

0

(t− s)−(δ1+τ)
s
−ζ1K1

�
2βs−ζ1

�
ds

= t
1−δ1−τ

cC(δ1 + τ)�u− w�HT

� 1

0

(1− s)−(δ1+τ)
s
−ζ1K1

�
2β(ts)−ζ1

�
ds

where we have used Lemma 2.1.1, Lemma 2.1.3, (2.5) and the definition of HT .

Combining Lemmas 2.2.4 and 2.2.5, we arrive at the following:

Lemma 2.2.6. Suppose u, w ∈ HT with max{�u�HT , �w�HT } ≤ β and u0 = w0.
Then

(i)
�Lu�

HT
≤ c1

�
�u0�X +

��Aδ1−ζ1u0

��
X

�
+ c2 sup

t∈(0,T ]
h5(t, β)
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for some constants c1, c2 ∈ (0,∞), where h5(t, β) = h1(t, β) + h3(t, β), with
h1 as in Lemma 2.2.4 and h3 as in Lemma 2.2.5;

(ii)

�Lu− Lw�
HT

≤ c3

�
sup

t∈(0,T ]
h6(t, β)

�
�u− w�HT

for some constant c3 ∈ (0,∞), where h6 = h2 + h4 with h2 as in Lemma
2.2.4 and h4 as in Lemma 2.2.5.

Proof. Using both Lemma 2.2.4 and Lemma 2.2.5, we see that

�Lu�
HT

= sup
t∈(0,T ]

�Lu(t)�X + sup
t∈(0,T ]

��tζ1Aδ1u(t)
��
X

≤ c1

�
�u0�X +

��Aδ1−ζ1u0

��
X

�
+ c2 sup

t∈(0,T ]

�
h1(t, β) + h3(t, β)

�

which proves (i). Similarly

�Lu− Lw�
HT

≤ sup
t∈(0,T ]

�Lu(t)− Lw(t)�
X
+ sup

t∈(0,T ]

���tζ1Aδ1

�
Lu(t)− Lw(t)

����
X

≤ c3 sup
t∈(0,T ]

�
h2(t, β) + h4(t, β)

�
�u− w�HT .

Corollary 2.2.7. Suppose Kj(r) ≤ kj(rj + 1) for j = 1, 2, r ≥ 0 and constants
kj. Choose τ such that δ1 + τ < 1 and ζ1 ∈ [0, 1− δ1 − τ) such that 2ζ1 + τ < 1.

Then

�Lu�HT ≤ c1

�
�u0�X +

��Aδ1−ζ1u0

��
X

�

+ c2

�
T

1−τ−2ζ1 + T
1−τ−δ1−ζ1 + β

2
T

1−τ−δ1−ζ1(T δ1−ζ1 + 1)
�

for some constants c1, c2 ∈ (0,∞), and

�Lu− Lw�
HT

≤ c3b0(T, β)�u− w�HT

for some constant c3 ∈ (0,∞), where

b0(T, β) = T
1−τ−ζ1 + T

1−τ−δ1 + βT
1−τ−δ1−ζ1(T δ1−ζ1 + 1).
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Proof. Under the assumptions, we have

sup
(0,T ]

h5(t, β) = sup
t∈(0,T ]

�
t
1−τ

� 1

0

(1− s)−τ
K2

�
β(ts)−ζ1

�
ds

+t
1−τ−(δ1−ζ1)

� 1

0

(1− s)−(τ+δ1)K2

�
β(ts)−ζ1

�
ds

�

= sup
t∈(0,T ]

�
k2t

1−τ

� 1

0

(1− s)−τ
ds+ k2β

2
t
1−τ−2ζ1

� 1

0

(1− s)−τ
s
−2ζ1ds

+ k2t
1−τ−(δ1−ζ1)

� 1

0

(1− s)−(τ+δ1)ds

+k2β
2
t
1−τ−δ1−ζ1

� 1

0

(1− s)−(τ+δ1)s
−2ζ1ds

�

≤ c2 sup
t∈(0,T ]

�
t
1−τ + t

1−τ−(δ1−ζ1) + β
2(t1−τ−2ζ1 + t

1−τ−δ1−ζ1)
�

where we have used the fact that δ1 + τ < 1, which ensures all the integrals are
finite. Since ζ1 ∈ [0, 1− δ1 − τ) and 2ζ1 + τ < 1, all the exponents are > 0. Thus

sup
(0,T ]

h4(t, β) ≤ c2

�
T

1−τ + T
1−τ−(δ1−ζ1) + β

2(T 1−τ−2ζ1 + T
1−τ−δ1−ζ1)

�

which proves the first estimate.
Moreover,

sup
(0,T ]

h6(t, β) = sup
(0,T ]

�
t
1−τ−ζ1

� 1

0

(1− s)−τ
s
−ζ1K1

�
2β(ts)−ζ1

�
ds

+t
1−τ−δ1

� 1

0

(1− s)−(δ1+τ)
s
−ζ1K1

�
2β(ts)−ζ1

�
ds

�

= sup
(0,T ]

�
k1t

1−τ−ζ1

� 1

0

(1− s)−τ
s
−ζ1ds+ 2k1βt

1−τ−2ζ1

� 1

0

(1− s)−τ
s
−2ζ1ds

+ k1t
1−τ−δ1

� 1

0

(1− s)−(δ1+τ)
s
−ζ1ds

+2k1βt
1−τ−δ1−ζ1

� 1

0

(1− s)−(δ1+τ)
s
−2ζ1ds

�

≤ c3 sup
(0,T ]

�
t
1−τ−ζ1 + t

1−τ−δ1 + β(t1−τ−2ζ1 + t
1−τ−δ1−ζ1)

�
.

Once again, all the exponents are > 0 by our assumptions, so that

sup
(0,T ]

h6(t, β) ≤ c3

�
T

1−τ−ζ1 + T
1−τ−δ1 + β(T 1−τ−2ζ1 + T

1−τ−δ1−ζ1)
�
,
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which proves the second estimate.

Remark 2.2.8. We have to be careful to choose the parameters in the right way
to ensure that our estimates don’t explode. We try to choose ζ1 as big a possible,
so we have less regularity assumptions on the initial data, but we are constrained
by the other parameters to ensure the estimates don’t blow up.

Theorem 2.2.9. Under the conditions of Corollary 2.2.7, there exists T ∗
> 0 such

that
�Lu− Lw�

HT∗ ≤ 1

2
�u− w�HT∗

for all u, w ∈ HT ∗ such that

max {�u�HT∗ , �w�HT∗} ≤ 2c1
�
�u0�X +

��Aδ1−ζ1u0

��
X

�

for some constant c1. Thus the operator L is a contraction on the ball, and so by
the Banach fixed point theorem, L admits a unique fixed point in HT ∗. This fixed
point is the unique solution to (Eq.II) i.e. it is the unique element of HT ∗ such
that

u(t) = Ptu0 −
�

t

0

A
τ
Pt−sH(u(s))ds.

Proof. This simply follows from Corollary 2.2.7 by taking T > 0 small enough.

Example 2.2.10. Consider again the Navier-Stokes equations:
�

∂

∂t
u+ (−∆u) + (u · ∇) u = −∇p

∇ · u = 0
(2.6)

on the space X = L
2(Ω) where Ω ⊂ R

3 is a bounded subset with smooth boundary.
In addition we impose the boundary condition

u|∂Ω = 0. (2.7)

As briefly described in the introduction, we can reformulate this equation so that
it is of the form (Eq.II). In this case we can take δ1 = δ2 =

1
2 , τ = 1

4 and ζ1 ∈
�
0, 14

�

(see[3] for details).
It should be noted that one can also treat the case ζ1 =

1
4 too, though the proof is

much more complicated. This will correspond to the case when the initial data is 1
2

differentiable. An open question very much related to the Navier-Stokes millennium
problem is whether one can go beyond this i.e. treat the case ζ1 >

1
4 .
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We also remark that in most cases the boundary condition u|∂Ω = 0 is a rea-
sonable physical assumption for a flowing fluid, as it says the velocity of the fluid
becomes instantaneously 0 on the boundary. However, when the fluid is moving
very fast, experiments have shown that the physical boundary is not the actual
boundary (this is the case for example in engines). Indeed, the physical boundary
can be slightly outside the actual boundary. In this kind of situation the boundary
conditions are quite different, and we therefore have to perform a more careful
analysis. This situation is treated in detail in chapter 3.

2.3 A more regular solution space

Since the equation we are considering is of the form

∂u

∂t
+ Au+Q(u) = 0

we might think that if u ∈ D(A) then u will be differentiable in t. So perhaps
our approach should involve the time derivative of u. In this section we briefly
mention that, using similar techniques to those used in section 2.2 and under some
additional assumptions, one can show that a solution in small time exists in an
adjusted space, which also takes into account the time derivative of u.

Definition 2.3.1. Let T > 0 and ζ2 ≥ 0 be some fixed number to be chosen later.
We will say that a path u : [0, T ] → X belongs to WT if

(i) u ∈ HT i.e. u ∈ C ([0, T ], X), u(t) ∈ D
�
A

δ1
�

for all t ∈ (0, T ], A
δ1u ∈

C ((0, T ], X) and
sup

t∈(0,T ]

��tζ1Aδ1u(t)
��
X
< ∞;

(ii) u ∈ C1 ((0, T ], X), ( so u is differentiable with respect to t and its derivative
is a continuous path on (0, T ] ), such that

u
�(t) ∈ D

�
A

δ2
�

for all t ∈ (0, T ], and

sup
t∈(0,T ]

��tζ2Aδ2u
�(t)

��
X
< ∞.

If we define, for u ∈ WT

�u�WT := sup
t∈[0,T ]

�u(t)�X + sup
t∈(0,T ]

��tζ1Aδ1u(t)
��
X
+ sup

t∈(0,T ]

��tζ2Aδ2u
�(t)

��
X
,

WT becomes a Banach space.
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For u ∈ WT , we consider

Lu(t) = Ptu0 −
�

t

0

A
τ
Pt−sH(u(s))

as before.
In this case, using very similar ideas to those described in detail in section 2.2,

we can prove the following:

Theorem 2.3.2. Suppose (x, ξ) �→ DH(x)ξ is weakly differentiable for all x, ξ ∈
D
�
A

δ1
�

and such that

���D2
H(x)ξ

�
η
��
X
≤






K0

�
�Aδ1x�X

� ��Aδ1ξ
��
X

��Aδ2η
��
X

K0

�
�Aδ1x�X

� ��Aδ2ξ
��
X

��Aδ1η
��
X

for some non-decreasing function K0 : [0,∞) → [0,∞). Suppose Kj(r) ≤ kj(rj+1)
for j = 0, 1, 2 and constants kj. Then for u, w ∈ WT such that �u�WT , �w�WT ≤ β

and u0 = w0, we have

(i)

�Lu�WT ≤ c1 (�Aα
u0�X + �H(u0)�X) + c2T

ζ1�H(u0)�X + c3κ(T )β
2

for α = max{δ1 − ζ1, 1+ δ2 − ζ2} and κ(T ) = T
1−τ−2ζ1 + T

1−ζ2 + T
1−τ−δ2−ζ1;

(ii)
�Lu− Lw�WT ≤ c4βκ(T )�u− w�WT

where κ(T ) is as in part (i).

Thus, once again, with a suitable choice of parameters we have by the Banach
fixed point theorem that there exists a unique u ∈ WT ∗ for some T

∗
> 0 which is

a solution to (Eq.II).

Proof. There is technicality here, which does not appear in the proofs given in the
previous section. This difference comes from the fact that we must differentiate in
t i.e. we must formally take the derivative of Lu(t) in t. If this is done straight
away we will end up with a A

1+τ in front of Pt−s, which is too much. To get around
this, we must first use integration by parts. Indeed, if we define w(t) := H(u(t))
we have

w
�(t) = DH(u(t))u�(t).
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Then
�

t

0

d

ds
Pt−s (w(s)) ds =

�
t

0

Pt−s (Aw(s) + w
�(s)) ds

⇒ A

�
t

0

Pt−s(w(s))ds = w(t)− Ptw0 −
�

t

0

Pt−s(w
�(s))ds.

We have thus removed the operator A from the left-hand side, but have paid a
price in the form of the term involving w

�(s). This is where the assumption on
D

2
H is used. Everything else is the same as in the previous section, but the proofs

are quite long and tedious, and so we omit them.
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3 The Navier-Stokes equations with kinematic and
Navier boundary conditions

The contents of this chapter is primarily taken from the paper [1] of Gui-Qiang
Chen and Zhongmin Qian. Our main goal is to prove the existence in small time
of a strong solution to the Navier-Stokes equations in a bounded domain Ω with
kinematic and Navier boundary conditions.

3.1 The Helmholtz decomposition

Suppose that u = (u1
, u

2
, u

3) is a vector field on a domain Ω ⊂ R
3 which has

smooth boundary Γ. Suppose also that u ∈ C2. We first aim to show that we may
decompose u as

u = P∞u+∇f

where div (P∞u) = 0. If we have such a decomposition, it follows that div (u) =
∆f . Indeed, we define P∞ to be

P∞(u) = u−∇f

where f is the unique (up to a constant) solution of the equation
�

div (u) = ∆f

�∇f, n� ≡ ∂f

∂n
= �u, n� on Γ

(3.1)

where n is a vector normal to surface Γ. Note that f depends on the value of u on
the boundary Γ. Then div (P∞u) = 0 and importantly

�P∞u, n� = 0

on the boundary Γ.
This continues to work for any u ∈ H

1(Ω) = {f ∈ L
2(Ω) : Df ∈ L

2(Ω)} by
standard Sobolev space theory. However, we can extend this decomposition even
further to general u ∈ L

2(Ω) by using a Poincaré inequality. In the case where Ω
is a bounded domain, such an inequality holds. Indeed, suppose u ∈ L

2(Ω). Then
we can choose (un)n≥0 ⊂ C∞(Ω) such that un → u in L

2(Ω). Now

un = P∞(un) +∇fn.
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We can suppose that
�
Ω fn = 0 for all n, since we can shift fn by a constant (recall

fn is only unique up to a constant). To pass to the limit we need to control

�∇(fn − fm)�L2(Ω)

Note that we have �
∆(fn − fm) = div (un − um)

∂(fn−fm)
∂n

= �un − um, n�
.

Since div (f∇f) = |∇f |2 + f∆f ,

�∇(fn − fm)�2L2(Ω) =

�

Ω

div
�
(fn − fm)∇(fn − fm)

�
−
�

Ω

(fn − fm)div (un − um)

=

�

Γ

(fn − fm)
∂(fn − fm)

∂n
+

�

Ω

�∇(fn − fm), un − um�

−
�

Γ

(fn − fm)�un − um, n�

=

�

Ω

�∇(fn − fm), un − um�,

using the divergence theorem and integration by parts. Thus

�∇(fn − fm)�2L2(Ω) ≤ �∇(fn − fm)�L2(Ω)�un − um�L2(Ω)

⇒ �∇(fn − fm)�L2(Ω) ≤ �un − um�L2(Ω).

Since Ω is assumed to be bounded, a Poincaré inequality holds. Thus there
exists a constant C such that

�(fn − fm)�L2(Ω) ≤ C�∇(fn − fm)�L2(Ω) ≤ C�un − um�L2(Ω).

Therefore fn → f and ∇fn → g in L
2(Ω) for some functions f, g ∈ L

2(Ω), so that
∇fn → ∇f in L

2(Ω) since ∇ is a closed operator. We have therefore shown that
we can extend the decomposition to L

2 on bounded domains i.e.

Lemma 3.1.1 (Helmholtz Decomposition). Suppose Ω ⊂ R
3 is a bounded do-

main with smooth boundary. Then there exists a unique projection operator P∞ :
L
2(Ω) → L

2(Ω) such that if u ∈ H
1(Ω) then

div (P∞u) = 0 in Ω, �P∞u, n� = 0 on Γ.

Remark 3.1.2. This statement actually remains true for unbounded domains, but
the proof is more involved.
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3.2 The kinematic and Navier boundary conditions

Now that we have rigorously shown that the Helmholtz decomposition is valid in
our situation, we can project the Navier-Stokes equations in a bounded domain
Ω ⊂ R

3 with smooth boundary Γ onto the Hilbert space X (Ω) := P∞(L2(Ω)).
Indeed, by applying P∞ to the equations

�
∂

∂t
u+ (−∆u) + (u · ∇) u = −∇p

∇ · u = 0
(3.2)

we arrive at the evolution equation

∂

∂t
u+ P∞(u.∇u) = P∞ ◦∆u (3.3)

in X (Ω) = P∞(L2(Ω)).
To be able to solve such an equation in Ω, we need to impose some boundary

conditions. In fluid dynamics, if the rigid surface Γ is at rest, the kinematic and
no-slip conditions are often imposed. The kinematic condition means that the
normal component of the velocity on the boundary vanishes, that is, the velocity
u at the boundary is tangent to Γ:

u
⊥|Γ := �u, n� = 0.

On the other hand the no-slip condition demands the coincidence of the tangent
component of the fluid velocity with that of the boundary Γ. These two boundary
conditions lead to the Dirichlet boundary problem associated with the Navier-
Stokes equations. There has been a large literature for the Navier-Stokes equations
subject to the Dirichlet boundary conditions (see for example [4], [7] and the
references therein). The fundamental problem of the global (in time) existence
and uniqueness of a strong solution remains open (and is one of the millennium
problems); but the Dirichlet boundary problem of the Navier-Stokes equations is
well-posed at least for a small time, or for small data globally in time.

However, the no-slip assumption does not always match the experimental results.
Navier first proposed the so-called Navier boundary condition in [5], which is
essentially a "slip-with-friction" boundary condition. It states that the tangent
part of the velocity u at the boundary should be proportional to that of the normal
vector field of the stress tensor with proportional constant ζ > 0. Such a boundary
condition plays an important role in the case of fast moving fluids (see [2]). It is
these important physical situations that motivate the study described below of the
Navier-Stokes equations subject to the Navier boundary condition.

In [1] an important step is to reformulate the Navier boundary condition in terms
of the vorticity ω := ∇×u (= curl u). This reformulation requires some geometry,
and so we sketch the ideas here, and refer the reader to [1] for the details.
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We will use the convention that repeated indices in a formula are understood
to be summed up from 1 to 3. For the bounded domain Ω ⊂ R

3 with smooth
compact boundary Γ we carry out local computations on the boundary in a moving
frame compatible with Γ. More precisely, if n is the unit normal to Γ pointing
outwards with respect to Ω, by a moving frame we mean any local orthonormal
basis (e1, e2, e3) of the tangent space TΩ such that e3 = n when restricted to Γ. If
u =

�3
j=1 u

j
ej is a vector field on Ω then, on the boundary,

u
� =

2�

j=1

u
j
ej, u

⊥ = u
3
n

are the tangent part and the normal part respectively of u. The Christoffel symbols
Γl

ij
are determined by the directional derivatives ∇iej = Γk

ij
ek (recall Γk

ij
ek =�3

k=1 Γ
k

ij
ek by convention) where ∇i is the directional derivative in the direction

ei.
The tensor (πij)1≤i,j≤2 where πij = −Γ3

ij
for i, j = 1, 2 is a symmetric tensor on

Γ. We define
π
�
u
�
, v

�� :=
�

i,j=1,2

πiju
i
v
j

for any u
�
, v

� ∈ TΓ. We will also identify π with the linear transformation defined
as follows: if u� =

�2
j=1 u

j
ej is tangent to Γ, then

π
�
u
�� :=

2�

j=1

π
�
u
��j

ej =
2�

i,j=1

πiju
i
ej,

so that �π
�
u
��

, v
�� = π

�
u
�
, v

��.
The Navier boundary condition is usually formulated in a moving frame com-

patible to Γ as

u
k = −ζ

�
∇3u

k +∇ku
3
�

on Γ, for k = 1, 2, (3.4)

where ζ is the slip length which is a positive scalar function on Γ depending only on
the nature of the fluid and the material of the rigid boundary. We refer the reader
to [2] for the physical interpretation of this condition. In order to reformulate this
condition in terms of the vorticity, we use the Hodge operator ∗. This operator is
defined as

∗
�
v
1
, v

2
�
:=

�
−v

2
, v

1
�

for any vector field (v1, v2) on Γ. The effect of this operator is to rotate a vector
on Γ by 90◦ with respect to the normal vector pointing to the interior of Ω. It is
independent of the choice of the moving frame, and may be defined via the identity

�v ×
�
∗u��

, n� = �u�
, v

�� (3.5)
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on Γ for any vector fields u, v. With all these definitions, it is then possible to
reformulate the Navier boundary condition (3.4) as

ω
�
���
Γ
= −1

ζ
(∗u) + 2(∗π(u)). (3.6)

For a proof this see Proposition 2.1 of [1]. From now on we will refer to (3.6)
as the Navier boundary condition. This condition can be rewritten in terms of
coordinates as

(∇× u)1 =
1

ζ
u
2 − 2

2�

j=1

πj2u
j
, (∇× u)2 = −1

ζ
u
1 + 2

2�

j=1

πj1u
j (3.7)

in a moving frame compatible with Γ, for constant ζ > 0.

3.3 The Stokes operator with Navier boundary condition

As per the discussion in the previous section, we are interested in a solution to the
equation

(NS)

�
∂tu+ (u · ∇)u = ∆u−∇p

∇ · u = 0
(3.8)

(or more precisely the projection of these equations onto X (Ω) as described above)
in a bounded domain Ω ⊂ R

3 with smooth compact boundary Γ, subject to the
boundary conditions

(BC)

�
u
⊥|Γ = 0

(∇× u)�
���
Γ
= −1

ζ
∗ u+ 2 ∗ π(u) (3.9)

for a small constant ζ > 0 and where π : T ∗Γ → T
∗Γ, is as described in section

3.1. The initial data will be given by

(I) u|t=0 = u0.

We suppose that we are working in a moving frame compatible with Γ.
Define the operator A by

Dζ,0(A) =
�
u ∈ X (Ω) ∩ C∞(Ω̄) : u satisfies (BC)

�

and
A = −P∞ ◦∆
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where P∞ is the projection from the Helmholtz decomposition. Then (A,Dζ,0(A))
is a densely defined linear operator on the Hilbert space X (Ω). If u ∈ Dζ,0(A),
Au = −P∞(∆u) and using a standard vector calculus identity

∆u = −∇× (∇× u) +∇(∇ · u)
= −∇× (∇× u) (3.10)

since ∇ · u = 0. Now define the bi-linear form

E(u, w) := −
�

Ω

�P∞ ◦∆u, w� (3.11)

for any u, w ∈ Dζ,0(A). Using the fact that P∞ is a projection, we then have for
any u, w ∈ Dζ,0(A)

E(u, w) = −
�

Ω

�∆u, P∞w�

= −
�

Ω

�∆u, w�

=

�

Ω

�∇ × (∇× u), w�

=

�

Ω

�∇ × u,∇× w�+
�

Γ

�(∇× u)� × w, n�

where we have also used (3.10), integration by parts and the fact that u, w satisfy
(BC). In particular , since u, w satisfy (BC) we have u

⊥ = w
⊥ = 0 on Γ so that

u = u
�
, w = w

� on Γ. Therefore, by the definition of π and ∗ given in section 3.2,
we have

�(∇× u)� × w, n� =
��

−1

ζ
∗ u+ 2 ∗ π(u)

�
× w, n

�

= −1

ζ

�


−u

2

u
1

0



×




w

1

w
2

0



 ,




0
0
1




�

+

�


−
�

i
πi2u

i

�
i
πi1u

i

0



×




w

1

w
2

0



 ,




0
0
1




�

=
1

ζ
(u1

w
1 + u

2
w

2)− 2
�

i,j

πiju
i
w

j

=
1

ζ
�u, w� − 2π(u, w)

57



Authors’ Complimentary Copy

Authors’ Complimentary Copy3 The Navier-Stokes equations with kinematic and Navier boundary conditions

on Γ so that

E(u, w) =
�

Ω

�∇ × u,∇× w�+ 1

ζ

�

Γ

�u, w� − 2

�

Γ

π(u, w).

Therefore E is symmetric and bi-linear. Moreover, since u
⊥
���
Γ
= w

⊥
���
Γ
= 0

�

Ω

�∇u,∇w� =
�

Ω

�∇ × u,∇× w� −
�

Γ

π(u, w).

We have therefore proved the following:

Lemma 3.3.1. The bi-linear form (E ,Dζ,0(A)) on X (Ω) given by (3.11) is sym-
metric and such that

E(u, w) =
�

Ω

�∇u,∇w� −
�

Γ

π(u, w) +
1

ζ

�

Γ

�u, w�. (3.12)

The next Lemma states some further useful properties of the bi-linear form E .

Lemma 3.3.2. (i) For any ε ∈ (0, 1), there exists a constant C(ε,Ω) such that

E(u, u) ≥ (1− ε)�∇u�22 − C(ε,Ω)�u�22

for any u ∈ Dζ,0(A).

(ii) (E ,Dζ,0(A)) is closable on X (Ω) and its closure will be denoted by (E ,Dζ(E)).
Moreover, identity (3.12) remains true for any u, w ∈ Dζ(E).

(iii) If π ≤ 1
ζ
, then

E(u, u) ≥ �∇u�22
for any u ∈ Dζ(E).

(iv) Dζ(E) = X (Ω)∩H
1(Ω), which is thus independent of ζ and denoted by D(E).

Proof. For (i), let λ1 be an upper bound for π i.e. π ≤ λ1. Then by (3.12), we
have

E(u, u) ≥ �∇u�22 − λ1

�

Γ

|u|2 ≥ (1− ε)�∇u�22 −
C

ε
�u�22

for some C = C(Ω) > 0 and any ε ∈ (0, 1), where we have used the Sobolev
embedding inequality:

�

Γ

|u|2 ≤ ε�∇u�22 +
C

ε
�u�22 ∀ε ∈ (0, 1).
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For (ii), suppose {un}n≥1 ⊂ Dζ,0(A) are such that E(un − um, un − um) → 0 and
�un − um�2 → 0. Then by part (i), there exists a constant C such that

1

2
�∇(un − um)�22 ≤ C�un − um�22 + E(un − um, un − um)

so that �∇(un − um)�22 → 0. Thus, {un}n≥1 is a Cauchy sequence in H
1(Ω), and

hence there exists a unique u ∈ H
1(Ω) such that

�un − u�22 + �∇(un − u)�22 → 0.

It follows by the Sobolev embedding theorem that

lim
n→∞

�

Γ

�un, un� =
�

Γ

|u|2, lim
n→∞

�

Γ

π(un, un) =

�

Γ

π(u, u)

so that
lim
n→∞

E(un, un) =

�

Ω

|∇u|2 + 1

ζ

�

Γ

|u|2 −
�

Γ

π(u, u),

and u belongs to the closure of (E ,Dζ,0(A)).
Part (iii) follows easily from identity (3.12).
Finally, for part part (iv), we remark that Navier’s ζ-boundary condition has to

be satisfied for any u ∈ D0,ζ , which will be forgotten when passing to the limit in
H

1(Ω) (in which the boundary values of the first derivative can not be retained).
Therefore D0,ζ(A) is dense in X (Ω) ∩H

1(Ω) (see [1] for details).

Corollary 3.3.3. (E ,Dζ(E)) is a densely defined closed symmetric form on the
Hilbert space X (Ω) which is bounded from below. Moreover,

E(u, u) = �∇u�22 +
1

ζ
�u�2

L2(Γ) −
�

Γ

π(u, u)

for any u ∈ Dζ(E), and there exist constants Λ,M(ε, ζ) such that

0 ≤ (E + ΛI)(u, u) ≤ (1 + ε)�∇u�22 +M(ε, ζ)�u�22

for all u ∈ Dζ(E) and any ε > 0.

Proof. The first inequality follows directly from part (i) of Lemma 3.3.2. For the
second inequality, note that π ≥ −C0 for some C0 > 0 since Γ is smooth and
compact. Thus by (3.12)

E(u, u) ≤ �∇u�22 +
�
1

ζ
+ C0

�
�u�2

L2(Γ).
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The Sobolev embedding theorem then yields that, for every ε ∈ (0, 1) there exists
C0 > 0 such that

�
1

ζ
+ C0

�
�u�2

L2(Γ) ≤ ε�∇u�22 +M(ε, ζ)�u�22.

Definition 3.3.4. Let ζ > 0. Then the unique self-adjoint operator on X (Ω) as-
sociated with the closed symmetric form (E ,Dζ(E)) is denoted again by A, with
domain Dζ(A). It is called the Stokes operator with the Navier ζ-boundary condi-
tion.

Remark 3.3.5. According to the definition, (A,Dζ(A)) is the unique self-adjoint
operator on X (Ω) such that

E(u, w) = −
�

Ω

�Au,w�

for any u, w ∈ Dζ(A) and

D0,ζ(A) ⊂ Dζ(A) ⊂ H
1(Ω) ∩ X (Ω).

Moreover, if u ∈ Dζ(A), then u ∈ H
1(Ω) with ∇·u = 0 and u

⊥|Γ = 0. In particular
there exists Λ ≥ 0 such that −A+ ΛI is positive definite.

3.4 Spectral theory and useful estimates

In this section we very briefly mention some estimates that are required for the
existence results in section 3.5. We do not prove these technical results, and refer
the reader once again to [1] for the details. We instead give some flavour of the
estimates needed.

Let Λ > 0 be the constant such that −A + ΛI ≥ 0. Then, for λ > Λ let
Rλ := (λI − A)−1, which is a bounded linear operator on X (Ω).

Theorem 3.4.1. For any λ > Λ, Rλ is a compact operator on X (Ω).

Corollary 3.4.2. The spectrum of the Stokes operator (A,Dζ(A)) with Navier’s
ζ- boundary condition is discrete and belongs to (−∞,Λ]. The eigenvalues λj ≤ Λ
can be ordered as

Λ ≥ λ0 ≥ λ1 ≥ · · · ≥ λn ≥ . . .

with λn → −∞. Moreover, there are eigenfunctions {ak}k≥0 ⊂ Dζ,0(A) which form
a complete orthonormal basis of X (Ω).
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Let {ak}k≥0 be the orthonormal basis of X (Ω) consisting of eigenfunctions of
(A,Dζ(A)) given by the above corollary. For an integer N let XN be the Hilbert
space spanned by {ak : k ≤ N}. Thus

�
N
XN = X (Ω). Let PN : L2(Ω) → XN be

the projection such that for u ∈ L
2(Ω),

PNu =
N�

k=0

ak

�

Ω

�ak, u�.

Of course P∞u =
�∞

k=0 ak

�
Ω�ak, u� is the projection from L

2(Ω) onto X (Ω) as
above.

Let u ∈ Dζ(A) and define ω := ∇× u and ψ := ∇×ω = −∆u. We will also use
the notation that for g1, . . . , gm ∈ L

2(Ω)

�(g1, . . . , gm)�22 :=
m�

j=1

�gj�22.

Lemma 3.4.3. For every ε > 0, there exists M(ε) > 0 such that
�

Γ

∂n

�
|ψ|2

�
≤ ε�∇3

u�22 +M�(ψ, u)�22

for any u ∈
�

N
XN .

Theorem 3.4.4. Let u ∈
�

N
XN . Then

�∇3
u�2 ≤ M (�∇ψ�2 + �u�H2)

so that
�u�H3 ≤ M�(∇ψ, ψ, u)�2,

where M > 0 is a constant depending only on ζ and the domain Ω, which may be
different in each occurrence.

Corollary 3.4.5. There exists a constant M such that

M�(∇ψ, ψ, u)�2 ≤ �u�H3 ≤ M
−1�(∇ψ, ψ, u)�2

for any u ∈
�

N
XN .

Lemma 3.4.6. For any ε > 0, there exists M > 0 such that

�(∇× PN(u),∇PN(u))�22 ≤ M�(∇× u, u)�22

for any u ∈ H
2(Ω) and integer N .
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3.5 Existence of a strong solution to (NS) subject to (BC)
and (I) in small time

The idea is to first construct a weak solution globally in time, and then, using
the estimates above, show that for small time such a solution is in fact a strong
solution.

3.5.1 Weak solutions

We introduce the notion of a weak solution to the initial-boundary problem (NS)
with (BC) and (I) in the following way. The minimal requirement on the initial
data is that u0 ∈ X (Ω).

Definition 3.5.1. A vector field u(t, x) on Ω is said to be a weak solution of (NS)
with (BC) and (I) if

(i) for each t > 0, u(t, ·) ∈ X (Ω) and u ∈ L
2([0, T ], H1(Ω)) for any T > 0;

(ii) for any smooth vector field ϕ(t, x) with ϕ(t, ·) ∈ X (Ω) for t ∈ [0, T ]
�

Ω

�u(T, ·), ϕ(T, ·)�

= �u0, ϕ0�+
�

T

0

�

Ω

�u(t, ·), ∂tϕ(t, ·)�

−
�

T

0

�

Ω

�∇ × u, (u× ϕ+∇× ϕ)� − 1

ζ

�
T

0

�

Γ

�u, ϕ�+ 2

�
T

0

�

Γ

π(u, ϕ)

(3.13)

for any T > 0;

(iii)

�u(T, ·)�22 + 2

�
T

0

�∇u�22 + 2

�
T

0

�

Γ

�
1

ζ
|u|2 − π(u, u)

�
≤ �u0�22

for any T > 0, which is the energy inequality.

Remark 3.5.2. Equation (3.13) is obtained by integrating (NS) and using inte-
gration by parts together with (BC).

We start the construction of such a weak solution by recalling that, by Corollary
3.4.2, the operator (A,Dζ(A)) as defined in section 3.3 has a discrete spectrum
consisting of eigenvalues {λn}n≥0 such that

Λ ≥ λ0 ≥ λ1 ≥ . . .
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and the eigenfunctions {an}n≥0 ⊂ D0,ζ(A) form an orthonormal basis of X (Ω).
Then an are subject to (BC) and such that

∆an −∇pn = λnan.

Suppose

u(t, ·) =
∞�

k=0

ck(t)ak, ck(t) =

�

Ω

�ak, u�

is a solution of (NS) with initial data u0. Then

∂tck =

�

Ω

�ak,∆u� −
�

Ω

�ak, u · u∇u� = λkck −
∞�

i,j=0

cicj

�

Ω

�ak, ai · ∇aj�.

In view of this, for each integer N , we solve the Cauchy problem





d

dt
ck = λkck −

�
N

i,j=0 cicj

�
Ω�ak, ai · ∇aj�

ck|t=0 =
�
Ω�ak, u0�

(3.14)

and then define

u
N(t, ·) :=

N�

k=0

ck(t)ak.

Thus u
N(t, ·) ∈ D0,ζ(A) for t > 0 and u

N satisfies the evolution equation

∂tu
N = Au

N −
N�

k=0

ak

�

Ω

�ak, uN · ∇u
N� (3.15)

subject to boundary conditions (BC). We now make energy estimates, and (with
the help of the Sobolev embedding theorem) we arrive at

�uN(T, ·)�22 +
�

T

0

�∇u
N�22 +

2

ζ

�
T

0

�

Γ

|uN |2 ≤ �u0�22 + C

�
T

0

�uN(s, ·)�22

for some constant C independent of N and t. This estimate also ensures that,
for each N , the system (3.14) has a unique solution for all t > 0. Finally, by the
Gronwall lemma, we have that �uN(t, ·)�22 and �∇u

N�22 are uniformly bounded in
t and N . Thus we arrive at the following existence result:

Theorem 3.5.3. Let u0 ∈ X (Ω). Then, for any T > 0, the family {uN(t, x)},
for 0 ≤ t ≤ T , is weakly compact in L

2 ([0, T ],X (Ω)) so that it has a convergent
sub-sequence that converges to a vector u ∈ L

2 ([0, T ],X (Ω)). This limit function
is a weak solution to (NS) with (BC) and (I).
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3.5.2 Strong solutions in small time

Theorem 3.5.4. Let u0 ∈ X (Ω) ∩ H
2(Ω). Then there exists T

∗
> 0 depending

only on ζ,Ω and �u0�H2(Ω) such that there is a strong solution u(t, x) of the initial
boundary value problem (NS) with (BC) and (I) up to T

∗.

To prove this theorem we look for a uniform bound on the second order deriva-
tives of uN defined in the previous section, which will yield the result in the same
way as Theorem 3.5.3. Indeed, we have the following:

Theorem 3.5.5. Let u0 ∈ X (Ω) ∩ H
2(Ω). Then there exist T

∗
> 0 and M > 0

depending only on ζ,Ω and �u0�H2(Ω) (independent of N) such that

�uN(t, ·)�2
H2(Ω) + �∂tuN(t, ·)�22 ≤ M.

Proof. Let u
N be as above. In what follows we will drop the N for notational

sake, so that u = u
N , since it will not cause any confusion. Let ω = ∇ × u and

ψ = −∆u as usual. Define F := �(ψ, u, ut)�22. We first aim to show that

d

dt
F ≤ M1F +M2F

2
. (3.16)

for some constants M1,M2 > 0. To do this we must estimate the three terms
d

dt
�u�22, d

dt
�ut�22 and d

dt
�ψ�22.

Recall that u satisfies the evolution equation (3.15) i.e.

∂tu = Au−
N�

k=0

ak

�

Ω

�ak, u · ∇u� (3.17)

where u(t, ·) ∈ D0,ζ(A) for all t > 0. Thus we have that

d

dt
�u�22 = −2

�

Ω

|∇u|2 −
�

Ω

�
u,∇(|u|2)

�
− 2

ζ

�

Γ

|u|2 + 2

�

Γ

π(u, u).

Since ∇ · u = 0 and u
⊥ = 0,

�
Ω�u,∇(|u|2)� = 0, so that we arrive at the energy

balance identity:

d

dt
�u�22 + 2

�

Ω

|∇u|2 = −2

ζ
�u�2

L2(Γ) + 2

�

Γ

π(u, u). (3.18)

Now, by the Sobolev embedding inequality, we have
�

Γ

π(u, u) ≤ 1

2
�∇u�22 + C�u�22

64



Authors’ Complimentary Copy

Authors’ Complimentary Copy3.5 Existence of a strong solution to (NS) subject to (BC) and (I) in small time

for some constant C. Thus by (3.18) we see that

d

dt
�u�22 ≤ 2C�u�22. (3.19)

To estimate d

dt
�ut�, we note that from (3.17) it also follows that

∂tut = Aut −
N�

k=1

ak

�

Ω

�ak, ut · ∇u� −
N�

k=1

ak

�

Ω

�ak, u · ∇ut�,

and ut(t, ·) ∈ D0,ζ(A) for all t > 0. Therefore ∇ · ut = 0 and ut again satisfies the
same boundary conditions as u. Therefore

d

dt
�ut�22 = 2

�

Ω

�Aut, ut� − 2

�

Ω

�ut, ut · ∇u� − 2

�

Ω

�ut, u · ∇ut�

= 2

�

Ω

�Aut, ut� − 2

�

Ω

�ut, ut · ∇u�

= −2�∇ut�2 −
2

ζ

�

Γ

|ut|2 + 2

�

Γ

π(ut, ut)− 2

�

Ω

�ut, ut · ∇u� (3.20)

using Lemma 3.3.1. Thus, again using the Sobolev embedding inequality,

d

dt
�ut�22 = −2�∇ut�2 −

2

ζ
�ut�2L2(Γ) + 2

�

Γ

π(ut, ut)− 2

�

Ω

�ut, ut · ∇u�

≤ −�∇ut�2 −
2

ζ
�ut�2L2(Γ) + 2C�ut�22 − 2

�

Ω

�ut, ut · ∇u�

≤ −�∇ut�2 −
2

ζ
�ut�2L2(Γ) + 2C�ut�22 + 2�ut�22�∇u�∞

≤ −�∇ut�2 −
2

ζ
�ut�2L2(Γ) + 2C�ut�22 + �ut�42 + �∇u�2∞

≤ −�∇ut�2 −
2

ζ
�ut�2L2(Γ) + ε�∇3

u�22 + C1

�
�(ψ, u, ut)�22 + �ut�42

�
(3.21)

for all ε > 0 and some constant C1 = C1(ε). Now, by Theorem 3.4.4 and Corollary
3.4.5 we have that there exist constants C2, C3 such that

�∇3
u�22 ≤ C2

�
�∇ψ�22 + �u�2

H2

�

≤ C2

�
�∇ψ�22 + �u�2

H3

�

≤ C2

�
�∇ψ�22 + C3�(∇ψ, ψ, u)�22

�

≤ C4

�
�∇ψ�22 + �(ψ, u)�22

�
(3.22)
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for C4 = C2 + C3. Using this in (3.21) we see that

d

dt
�ut�22 ≤ εC4�∇ψ�22 + C5

�
�(ψ, u, ut)�22 + �ut�42

�
(3.23)

where C5 = C1 + εC4 for all ε > 0.
We lastly must estimate d

dt
�ψ�22. In order to do this, we first note that (3.17)

may be re-written as
∂tu = Au− PN(u · ∇u)

where PNu =
�

N

k=0 ak

�
Ω�ak, u� as in section 3.4. Since we can write u · ∇u =

1
2 |u|

2 − u× ω (where we recall ω = ∇× u), we have

∂tu = Au+ PN(u× ω). (3.24)

By taking the curl of both sides once and then twice yields

∂tω = ∆ω +∇× PN(u× ω)

and
∂tψ = ∆ψ +∇×∇× PN(u× ω),

since ∇× Au = ∇× (∆u). It follows that

d

dt
�ψ�22 = 2

�

Ω

�∆ψ, ψ�+ 2

�

Ω

�∇ ×∇× PN(u× ω), ψ�.

Integration by parts leads to

2

�

Ω

�∆ψ, ψ� = −2�∇ψ�22 +
�

Γ

∂n(|ψ|2),

and
�

Ω

�∇ ×∇× PN(u× ω), ψ�

=

�

Ω

�∇ × PN(u× ω),∇× ψ�+ 1

ζ

�

Γ

�ψ, PN(u× ω)� − 2

�

Γ

π(ψ, PN(u× ω)).

Therefore

d

dt
�ψ�22 = −2�∇ψ�22 +

�

Γ

∂n(|ψ|2) + 2

�

Ω

�∇ × PN(u× ω),∇× ψ�

+
2

ζ

�

Γ

�ψ, PN(u× ω)� − 4

�

Γ

π (ψ, PN(u× ω)) .
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By Hölder’s inequality, one obtains

d

dt
�ψ�22 ≤ −2�∇ψ�22 +

�

Γ

∂n(|ψ|2) + 2�∇ × PN(u× ω)�2�∇ × ψ�2

+ C6�ψ�L2(Γ)�PN(u× ω)�L2(Γ)

for some constant C6. By Lemma 3.4.3, we have that for all ε > 0 there exists a
constant C7 = C7(ε) such that

�

Γ

∂n(|ψ|2) ≤ ε�∇3
u�22 + C7�(ψ, u)�22

≤ εC4

�
�∇ψ�22 + �(ψ, u)�22

�
+ C7�(ψ, u)�22

≤ εC4�∇ψ�22 + C8�(ψ, u)�22

were we have used (3.22) and C8 = C7 + εC4. Thus

d

dt
�ψ�22 ≤ −2�∇ψ�22 + εC4�∇ψ�22 + C8�(ψ, u)�22

+ 2�∇ × PN(u× ω)�2�∇ × ψ�2 + C6�ψ�L2(Γ)�PN(u× ω)�L2(Γ). (3.25)

for all ε > 0. Now by the Sobolev embedding theorem, for all ε > 0 there exist
constants C9, C10 = C10(ε) such that

C6�ψ�L2(Γ)�PN(u× ω)�L2(Γ) ≤
�
�∇ψ�2 + C

1
2
9 �ψ�2

��
ε

1
2�∇PN(u× ω)�2 + C

1
2
10�u× ω�2

�

≤ �∇ψ�22 + C9�ψ�22 + ε�∇PN(u× ω)�22 + C10�u× ω�22
≤ �∇ψ�22 + C9�ψ�22 + ε�∇PN(u× ω)�22 + C11�(ψ, u)�22

for some constant C11, where we have used the fact that there exists a constant
M such that

�u× ω�2 ≤ M�u�2
H1 = M�(ψ, u)�22.

Now we can use Lemma 3.4.6 to see that there exists a constant C12 such that

�(∇× PN(u× ω),∇PN(u× ω))�22 ≤ C12�(∇× u× ω, u× ω)�22
= C12�∇ × u× ω�22 + C12�u× ω�22
≤ C13�(ω · ∇u, u · ∇ω, u× ω�22
≤ C14�(ψ, u)�22

for some constants C13, C14. Hence

C6�ψ�L2(Γ)�PN(u× ω)�L2(Γ) ≤ �∇ψ�22 + C15�(ψ, u)�22
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where C15 = C9 + C11 + C14. Using this in (3.25) yields

d

dt
�ψ�22 ≤ −(1− εC4)�∇ψ�22 + εC16�(ψ, u)�22 (3.26)

+ 2�∇ × PN(u× ω)�2�∇ × ω�2, (3.27)

where C16 = C15 + C8 for all ε > 0. Finally, by another application of Lemma
3.4.6, we see that there exists a constant C17 such that

d

dt
�ψ�22 ≤ −(1− εC4)�∇ψ�22 + C17

�
�(ψ, u)�22 + �(ψ, u)�42

�
. (3.28)

We can now combine (3.19), (3.23) and (3.28) to see that, by taking ε small
enough, there exist positive constants M1,M2, such that

d

dt
F ≤ M1F +M2F

2
,

which is (3.16).
To conclude the proof, we note that from (3.24)

�ut�2 ≤ �Au�2 + �PN(u× ω)�2
≤ 2�∆u�2 + �u× ω�2
≤ 2�∆u�2 + �u�2�ω�2,

so that
F (0) ≤ C�u0�2H2

for some constant C. Let ρ be the solution on [0, T ∗) to the ordinary differential
equation:

ρ
� = M1ρ+M2ρ

2
, ρ(0) = C�u0�2H2 ,

where T
∗
> 0 is the blowup time of ρ. Finally, the differential inequality (3.16)

together with the fact that F (0) ≤ ρ(0) implies that F (t) ≤ ρ(t) on [0, T ∗).
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