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1 Introduction

These notes are devoted to the study of invariant measures for stochastic evolution equa-
tions in infinite dimensions. Our main reference will be Stochasitc Partial Differential
Equations with Lévy Noise (Peszat and Zabczyk, 2007) [11], which includes most (but
not all) the results contained here, and should be referred to for the details. However,
our focus here will be more specific, in that we will not worry too much about existence
and regularity of solutions, but try to describe the invariant measure in situations where
this is known. The invariant measure can be thought of as describing the long-term
behaviour of a dynamical system, and this is one of the reasons that the results here and
in [11] have many important applications in, for example, lattice systems and financial
mathematics.

We start by considering linear evolution equations driven by a Wiener process in
a separable Hilbert space, covering also the background material needed to describe
them rigourously. Then in Chapter 2 we try and generalise the results to the situation
where the equations are driven by a general Lévy process L on a Hilbert space (which
does not necessarily have continuous trajectories). In Chapter 3, in the case where
L is a square integrable Lévy process, we describe conditions under which we have
exponential convergence of the semigroup to the invariant measure. We finally apply
the results obtained to an important model from mathematical finance: the so-called
Heath-Jarrow-Morton model.
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2 Linear Equations with Gaussian Noise

In this chapter we will be interested in the following family of stochastic differential
equations:

dX(t) = AX(t)dt+BdW (t) (2.1)

where

• (A,D(A)) is the generator of a C0 - semigroup on a Hilbert space H;

• W (t) is a cylindrical Wiener process on a Hilbert space U ;

• B is a bounded linear operator from U to H i.e B ∈ L(U,H).

In the next few sections we will make this description precise.

2.1 C0-semigroups and well-posedness of deterministic linear
problems

Deterministic linear evolution equations can often be formulated as an evolution equation
in a Hilbert space H:

dX

dt
= A0X, t ≥ 0, X(0) = x ∈ D(A0) ⊂ H, (2.2)

with A0 : D(A0) → H an operator (in general unbounded) defined on a dense linear
subspace D(A0) of H. In (2.2) dX/dt stands for the strong derivative of X(t) i.e.

dX

dt
= lim

h→0

X(t+ h)−X(t)

h
.

Problem (2.2) is called the initial value problem or the Cauchy problem relative to the
operator A0.

Definition 2.1.1. We say that the Cauchy problem (2.2) is well-posed if:

(i) for arbitrary x ∈ D(A0) there exists exactly one strongly differentiable function
X(t, x), t ≥ 0 satisfying (2.2) for all t ≥ 0,

(ii) for {xn} ⊂ D(A0) such that limn→∞ xn = 0,we have

lim
n→∞

X(t, xn) = 0,

for all t ≥ 0.
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2 Linear Equations with Gaussian Noise

If the limit in the above definition is uniform in t on compact subsets of [0,∞) we say
that the Cauchy problem (2.2) is uniformly well-posed. From now on we assume that
the Cauchy problem is uniformly well-posed, and define operators S(t) : D(A0)→ H by
the formula

S(t)x = X(t, x), ∀x ∈ D(A0),∀t ≥ 0.

By the density of D(A0) in H and the well-posedness of the problem, for all t ≥ 0 the
linear operator S(t) can be uniquely extended to a bounded linear operator on the whole
of H, which we still denote by S(t). We have clearly that

S(0) = I. (2.3)

Moreover, by the uniqueness

S(t+ s) = S(t)S(s), ∀t, s ≥ 0. (2.4)

Finally, by the uniform boundedness theorem, it follows that

S(·)(x) is continuous in [0,∞) for all x ∈ H. (2.5)

In this way we are led directly from the study of the uniformly well-posed Cauchy
problem to the family (S(t), t ≥ 0) of bounded linear operators on H satisfying (2.3),
(2.4) and (2.5). We say that a family (S(t), t ≥ 0) of bounded linear operators on H
satisfying (2.3), (2.4) and (2.5) is a C0-semigroup of linear operators. So the concept of a
C0-semigroup is in a sense equivalent to that of a uniformly well-posed Cauchy problem.

Definition 2.1.2. The generator of a C0-semigroup S(·) is a linear operator (A,D(A))
on H such that

D(A) =

{
x ∈ H : lim

t→0

S(t)x− x
t

exists

}
,

and for x ∈ D(A),

Ax = lim
t→0

S(t)x− x
t

.

It is easy to see that A is an extension of A0 and moreover that the problem

dX

dt
= AX, t ≥ 0, X(0) = x ∈ H, (2.6)

is also uniformly well-posed with the same associated semigroup S(·). Thus, in our
investigations we will only consider the Cauchy problem (2.6) with A being the generator
of a C0-semigroup.

We can also consider the equation with added drift term i.e

dX

dt
= AX + f, X(0) = x ∈ H, (2.7)

where f : [0,∞)→ H is a bounded measurable function. By the variation of constants
formula we have

X(t) = S(t)x+

∫ t

0

S(t− s)f(s)ds,
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2.2 Nuclear and Hilbert-Schmidt operators

where S(t) solves (2.6) above. We say that a process which satisfies this integral equation
is a mild solution to (2.7). Moreover, if

< X(t), u >H=< x, u >H +

∫ t

0

{< X(s), A∗u >H + < f(s), u >H} ds, ∀u ∈ D(A∗),

then we say that X(t) is a weak solution to (2.7). By direct calculation it can be shown
that every mild solution is a weak solution.

2.2 Nuclear and Hilbert-Schmidt operators

Let E,G be Banach spaces and let L(E,G) be the Banach space of all bounded linear
operators from E into G with the usual supremum norm. Denote by E∗ and G∗ the
dual spaces of E and G respectively.

Definition 2.2.1. T ∈ L(E,G) is a nuclear operator if there exist two sequences {aj} ⊂
G and {φj} ⊂ E∗ such that

∞∑
j=1

‖aj‖G‖φj‖E∗ <∞,

and such that T has the representation

Tx =
∞∑
j=1

ajφj(x), ∀x ∈ E.

The space L1(E,G) of all nuclear operators from E into G endowed with the norm

‖T‖L1(E,G) := inf

{
∞∑
j=1

‖aj‖ G|φj‖E∗ : Tx =
∞∑
j=1

ajφj(x)

}
is a Banach space. This space is interesting for us because of the following facts (see
Appendix C of [12]). Let H be a separable Hilbert space, and let {ek} be a complete
orthonormal system in H. For T ∈ L1(H,H) = L1(H) define the trace of T to be

Tr T =
∞∑
j=1

< Tej, ej >H .

Proposition 2.2.1. For T ∈ L1(H), Tr T is well defined and independent of the choice
of orthonormal basis {ej}.

Proposition 2.2.2. A non-negative operator T ∈ L(H) is nuclear if and only if for
some orthonormal basis {ej} on H

Tr T =
∞∑
j=1

< Tej, ej >H <∞.

Moreover, in this case ‖T‖L1(H) = Tr T .
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2 Linear Equations with Gaussian Noise

Definition 2.2.2. Let H, F be two separable Hilbert spaces with complete orthonormal
basis {ej} ⊂ H. We say that T ∈ L(H,F ) is Hilbert - Schmidt if

∞∑
j=1

|Tej|2F <∞.

The space LHS(H,F ) of all Hilbert-Schmidt operators from H into F is a separable
Hilbert space with the scalar product

< S, T >HS=
∞∑
j=1

< Sej, T ej >F .

Now suppose (Ω,F ,P) is a probability space and H is a separable Hilbert space. Let
X : Ω→ H be a square integrable H-valued random variable such that E(X) = 0. Then
we define the covariance operator of the random variable X to be the operator Q given
by

< Qx, y >H= E(< X, x >H< X, y >H), ∀x, y ∈ H.
Then

|Qx|2H =< Qx,Qx >H= E (< X, x >H< X,Qx >H)

≤ |x|H |Qx|HE|X|2H , (2.8)

by Cauchy-Schwarz, so that Q ∈ L(H). Moreover, if {ej} is a complete orthonormal
sequence for H we have

Tr Q =
∞∑
j=1

< Qej, ej >H

=
∞∑
j=1

∫
Ω

| < X(ω), ej >H |2P(dω)

= E|X|2H <∞.

Therefore by Proposition 2.2.2 we see that Q ∈ L1(H).

2.3 Wiener processes in Hilbert spaces

We first define Q-Wiener processes before constructing more general cylindrical Wiener
processes.

2.3.1 Q-Wiener processes

Let U be a separable Hilbert space and let Q ∈ L(U) be non-neqative and such that
Tr Q <∞. Then there exists a complete orthonormal system {ek} in U and a bounded
sequence of non-negative real numbers γk such that

Qek = γkek, k = 1, 2, . . . .
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2.3 Wiener processes in Hilbert spaces

Definition 2.3.1. A U-valued stochastic process W (t), t ≥ 0 is called a Q-Wiener pro-
cess (or just a Wiener process) if

(i) W (0) = 0,

(ii) W has continuous trajectories,

(iii) W has independent increments,

(iv) L(W (t)−W (s)) = N (0, (t− s)Q), ∀ t ≥ s ≥ 0.

With the help of the Kolmogorov extension theorem (see for example Theorem 3.7 of
[11]), it is fairly straightforward to show the existence of a Q-Wiener process for any
symmetric non-negative operator Q on U such that Tr Q <∞.

Proposition 2.3.1. Let W be a Q-Wiener process with Tr Q < ∞. Then W is a
Gaussian process on U , E(W (t)) = 0 and Cov(W (t)) = tQ. Moreover, for t ≥ 0,

W (t) =
∞∑
j=1

√
γjβj(t)ej

where

βj(t) =
1
√
γ
j

< W (t), ej >U , j = 1, 2, . . .

are real valued Brownian motions mutually independent on (Ω,F ,P), and the series is
convergent in L2(Ω,F ,P).

It can be be shown that the series in Proposition 2.3.1 is in fact uniformly convergent
on any [0, T ] P-a.s. (see Theorem 4.3 of [12]).

2.3.2 Reproducing kernel Hilbert space

In view of the above, one can expect the covariance operator of the noise to play a fun-
damental role in the study of stochastic evolution equations. However, it turns out that
it is much more convenient to study the reproducing kernel Hilbert space of the noise;
see definition 2.3.2 below. Unlike the covariance operator, the RKHS is independent of
the space on which the noise is considered.

Let Z be a square integrable random variable with mean zero in a Hilbert space U ,
and let 〈·, ·〉 : U∗ × U → R be the duality form. Let Q be the covariance operator of
Z. Since Q is a nuclear self-adjoint operator on U , there is an orthonormal basis {ej}
of U consisting of eigenvectors of Q. Then Qej = γjej, j ∈ N. Since Q is non-negative
definite, we have γj ≥ 0. The square root of Q is given by

Q1/2x =
∑
j

< x, ej >U γ
1/2
j ej,
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2 Linear Equations with Gaussian Noise

for x ∈ U . Generally Q and Q1/2 are not injective. However, we will denote by Q−1/2

the pseudo-inverse operator, which is defined by

Q−1/2y = x if Q1/2x = y, and |x|U = inf
{
|y|U : Q1/2y = x

}
.

Definition 2.3.2. Let Z be a square integrable zero-mean random variable taking values
in a Hilbert space U , and let Q be the covariance of Z. Then U0 = Q1/2(U), equipped
with the inner product < x, y >U0=< Q−1/2x,Q−1/2y >U , is called the reproducing kernel
Hilbert space (RKHS) of Z.

If Z is as above and U0 is its RKHS, then since Q is nuclear, Q1/2 is Hilbert-Schimdt.
Consequently the embedding U0 ↪→ U is Hilbert-Schmidt; that is for an arbitrary or-
thonormal basis {fj} of U0 one has

∑
j |fj|2U <∞.

The RKHS of a random variable Z is independent of the space upon which the random
element Z is considered. More precisely, let U0 and Ũ0 be the RKHSs of Z considered
as a random variable on U and Ũ respectively. Then U0 = Ũ0. We also note that the
concept of the reproducing kernel can be extended to a non-square integrable random
variable Z taking values in a Hilbert space U , provided there is a bigger Ũ ←↩ U such
that E|Z|2

Ũ
<∞.

A useful result which characterises the RKHS of Z is the following (see Proposition
7.1 of [11]).

Proposition 2.3.2. Let (U0, < ·, · >U0) be a Hilbert space continuously embedded into
U . Then the following are equivalent:

(i) U0 = Q1/2(U) and < x, y >U0=< Q−1/2x,Q−1/2y >U for all x, y ∈ U0 (i.e U0 is
the RKHS of Z).

(ii) For any orthonormal basis {fj} of U0,

E < x,Z >U0< y,Z >U0=
∑
j

< x, fj >U0< y, fj >U0 , ∀ x, y ∈ U.

(iii) For any orthonormal basis {fj} of U0,

E〈x, Z〉〈y, Z〉 =
∑
j

〈x, fj〉〈y, fj〉, ∀ x, y ∈ U∗.

In the two propositions below, U0 and U are Hilbert spaces such that U0 is densely
embedded into U . Then under the identification of U0 with U∗0 , we have that U∗ ↪→
U∗0 = U0 ↪→ U and we can treat U∗ as a subspace of U0. Recalling that 〈·, ·〉 is the
duality form on U∗ × U , we clearly have that 〈x, y〉 =< x, y >U0 for all x ∈ U∗, y ∈ U0.

Proposition 2.3.3. Let Z be a square integrable zero-mean random variable in U . As-
sume that E〈x, Z〉〈y, Z〉 =< x, y >U0 for all x, y ∈ U∗. Then U0 is the RKHS of Z.
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2.3 Wiener processes in Hilbert spaces

Proof. Let {fj} be an arbitrary orthonormal basis of U0. Then

< x, y >U0=
∑
j

< x, fj >U0< y, fj >U0 .

Since for x ∈ U∗, < x, fj >U0= 〈x, fj〉 we have that

E〈x, Z〉〈y, Z〉 =< x, y >U0=
∑
j

〈x, fj〉〈y, fj〉,

which by Proposition 2.3.2 completes the proof.

Proposition 2.3.4. Assume that the embedding U0 ↪→ U is Hilbert-Schmidt. Let Z :
U0 → L2(Ω,F ,P) be a linear operator such that E(Zx)2 = c|x|2U0

and EZx = 0 for

x ∈ U0. Then there is a unique square integrable zero-mean random variable Z̃ in U
such that

Zx = 〈x, Z̃〉, ∀ x ∈ U∗.

Moreover, U0 is the RKHS of Z̃.

Proof. Let {fj} be an orthonormal basis of U0. We assume that {fj} ⊂ U∗. Such a
basis exists since U∗ is dense in U0. Then

E

∣∣∣∣∣
n+m∑
j=n

(Zfj)fj

∣∣∣∣∣
2

U

= c
n+m∑
j,k=n

(EZfjZfk) < fj, fk >U=
n+m∑
j,k=n

< fj, fk >U0< fj, fk >U

=
n+m∑
j=n

|fj|2U → 0

as n,m → ∞. Thus the series
∑

j(Zfj)fj converges in L2(Ω,F ,P;U). We will show

that its limit Z̃ has the desired properties. To this end, note that for any x ∈ U∗,

〈x, Z̃〉 =
∑
j

(Zfj)〈x, fj〉 =
∑
j

(Zfj) < x, fj >U0 .

Since Z is a continuous linear operator on U0,

∑
j

(Zfj) < x, fj >U0= Z

(∑
j

< fj, x >U0 fj

)
= Zx

and hence by use of Proposition 2.3.3 the result follows.

We will identify Z̃ with Z, and write Z instead of Z̃.
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2 Linear Equations with Gaussian Noise

2.3.3 Cylindrical Wiener processes

Now let (Ω,F , (Ft),P) be a filtered probability space and let U be a separable Hilbert
space as usual.

Definition 2.3.3. A cylindrical Wiener process (adapted to (Ft) ) on U is a linear (in
the second variable) mapping W : [0,∞) × U → L2(Ω,F ,P) satisfying the following
conditions:

(i) for all t ≥ 0 and x ∈ U , E|W (t, x)|2 = t|x|2U ,

(ii) for each x ∈ U , (W (t, x), t ≥ 0) is a real-valued (Ft)-adapted Wiener process.

Lemma 2.3.5. If W is a cylindrical Wiener process then, for all t ≥ s ≥ 0 and x, y ∈ U ,
EW (t, x)W (s, y) = (t ∧ s) < x, y >U .

Proof. Assume that t ≥ s ≥ 0. Then

EW (t, x)W (s, y) = EE ((W (t, x)−W (s, y))W (s, y)|Fs) + EW (s, x)W (s, y)

= EW (s, x)W (s, y)

=
1

4
E
(
(W (s, x) +W (s, y))2 − (W (s, x)−W (s, y))2

)
=

1

4
E
(
W (s, x+ y)2 −W (s, x− y)2

)
=

1

4

(
|x+ y|2U − |x− y|2U

)
= s < x, y >U .

Now let U1 be a Hilbert space such that the embedding U ↪→ U1 is dense and Hilbert-
Schmidt. We identify U∗1 with a subspace of U and denote by 〈·, ·〉 the bilinear form on
U∗1 × U1 as above. As a simple consequence of Propositions 2.3.3 and 2.3.4 we have the
following result.

Theorem 2.3.6. (i) If W is a cylindrical Wiener process on U then there is a U1

valued Q-Wiener process, which we will denote also by W such that

〈x,W (t)〉 = W (t, x), t ≥ 0, x ∈ U∗. (2.9)

Moreover, the RKHS of W is equal to U .

(ii) Conversely, if W is a Wiener process in U1 with RKHS equal to U then (2.9)
defines a cylindrical Wiener process on U .

Assume that W is a cylindrical Wiener process in U . Let {ej} be an orthonormal basis
of U . Let Wj(t) := W (t, ej). Then (Wj) is a sequence of independent standard real-
valued Wiener processes. Let U1 be a Hilbert space such that the embedding U ↪→ U1

is Hilbert-Schmidt. Then

W (t) =
∑
j

Wj(t)ej, t ≥ 0,

where the series converges in L2(Ω,F ,P;U1).

14



2.4 Solving the SPDE

Remark 2.3.1. The concept of a cylindrical Wiener process is closely related to that of
space-time white noise. Loosely speaking, the latter is the time derivative of a cylindrical
Wiener process.

Note that a cylindrical Wiener process W (t) on U has covariance equal to the identity
operator (which is certainly not trace class), whereas every Q-Wiener process on U
has covariance Q such that Tr Q < ∞. A cylindrical Wiener process is an example
of square integrable cylindrical martingale with independent stationary increments, so
that stochastic integration can be defined with respect to W (t) according to section 3.2
below. For more details specifically for the case of a Wiener process, see [12] Chapter 4.
A cylindrical Wiener process is not uniquely determined, but it can be shown that the
class of integrands and the spaces of stochastically integrable processes are independent
of the space U1 chosen.

2.4 Solving the SPDE

Let H and U be separable Hilbert spaces. Let {ej} be an orthonormal basis for U .
Recall we are interested in an H-valued process X(t) which solves the equation (2.1)

dX(t) = AX(t)dt+BdW (t),

where (A,D(A)) is the generator of a C0-semigroup S(t) on H, W (t) =
∑∞

j=1Wj(t)ej
is a cylindrical Wiener process on U and B ∈ L(U,H). What should our solution look
like?

In view of the previous sections, we will define our solution to be the H-valued process
X(t) which satisfies

X(t) = S(t)X(0) +
∞∑
j=1

∫ t

0

S(t− s)BejdWj(s).

We say X(t) is a mild solution to (2.1). However, to make this rigourous, we must say
something about convergence. We would like to have convergence in some sense in H.
We know that {∫ t

0

BejdWj(s) : j ∈ N
}

forms a sequence of independent Gaussian random variables on H, since we are integrat-
ing something continuous with respect to independent 1-dimensional Brownian motions.
We can therefore make use of the Itô-Nisio theorem:

Theorem 2.4.1 (Itô-Nisio). Let {Xk} be a sequence of independent random variables
with values in a Banach space E. Then the following are equivalent:

(i)
∑∞

k=1 Xk converges P-a.s.

(ii)
∑∞

k=1 Xk converges in probability.

15



2 Linear Equations with Gaussian Noise

(iii)
∑∞

k=1Xk converges in distribution.

As convergence in L2 implies convergence in probability, by this theorem if we require

∞∑
j=1

∫ t

0

S(t− s)BejdWj(s)

to be convergent in L2(Ω,F ,P;H), then the sum will converge P-almost surely. Since

∞∑
j=1

E
(∫ t

0

S(t− s)BejdWj(s)

)2

=
∞∑
j=1

∫ t

0

|S(t− s)Bej|2Hds

=

∫ t

0

∞∑
j=1

|S(s)Bej|2Hds

=

∫ t

0

‖S(s)B‖2
LHS(U,H)ds

where ‖S(s)B‖2
HS =

∑∞
j=1 |S(s)Bej|2H is the Hilbert-Schmidt norm, this is equivalent to

requiring that ∫ t

0

‖S(s)B‖2
HSds <∞. (2.10)

If we add this to our assumptions, then

X(t) = S(t)X(0) +
∞∑
j=1

∫ t

0

S(t− s)BejdWj(s)

is a well-defined mild solution to our equation (2.1). This is essentially how we define
stochastic integration with respect to W (t), and condition 2.10 ensures that S(s)B is an
integrable process. Moreover, we also have that the stochastic integral

∫ t
0
S(s)BdW (s)

is distributed N (0, Qt) where

Qt =

∫ t

0

S(s)BB∗S∗(s)ds.

All this is shown in more generality in section 3.2 below (see in particular Remark 3.2.2),
and Chapter 8 of [11].

Remark 2.4.1. In [11] conditions for the existence and uniqueness of solutions to equa-
tions that are much more general than (2.1) are given. These general conditions, how-
ever, still entail a requirement similar to (2.10), so that the stochastic integral appearing
in the definition of a mild solution is well defined.
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2.5 Invariant measures

2.5 Invariant measures

The following theorem of Zabczyk states an important result about the existence of an
invariant measure for the solution X(t) to (2.1) as described above.

Theorem 2.5.1 (Zabczyk). The following conditions are equivalent:

(a) supt≥0 Tr Qt <∞ where Qt =
∫ t

0
S(s)BB∗S∗(s)ds.

(b) There is an invariant measure µ for equation (2.1) i.e. if X(0) has a distribution
µ and is independent of W , then X(t) also has distribution µ for any t ≥ 0.

Moreover, if either (a) or (b) holds, then any invariant measure has the following form

µ = σ ∗ N (0, Q)

where Q =
∫∞

0
S(s)BB∗S∗(s)ds and σ is any probability measure on H such that

S(t)σ = σ

for all t ≥ 0.

Remark 2.5.1. In the above theorem σ∗N (0, Q) denotes the convolution of the measures
σ and N (0, Q) on H i.e.

σ ∗ N (0, Q)(A) = σ ×N (0, Q)
(
{(h1, h2) ∈ H2 : h1 + h2 ∈ A}

)
for all A ∈ B(H). We also denote by S(t)σ the measure defined by

S(t)σ(A) =

∫
H

S(t)1A(x)σ(dx), A ∈ B(H).

Recall the definition of a characteristic function of a probability measure µ on H:

µ̂(λ) =

∫
H

ei<λ,x>Hµ(dx)

for all λ ∈ H. Theorem 2.5.1 depends on the following well-known result of Bochner:

Theorem 2.5.2 (Bochner). Let H be a separable Hilbert space and ϕ : H → C. Then
the following are equivalent:

(i) ϕ is the characteristic function of some probability measure µ i.e. ϕ = µ̂.

(ii) ϕ(0) = 1, ϕ is positive definite in the sense that∑
i,j

ϕ(ξi − ξj)ziz̄j ≥ 0

for all {ξi} ⊂ H, {zi} ⊂ C, and ϕ is S-continuous, in the sense that ∀ε > 0 there
exists a nuclear operator Sε ∈ L1(H) such that

Re ϕ(λ) ≥ 1− ε whenever < Sελ, λ >H≤ 1.
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2 Linear Equations with Gaussian Noise

Proof of Theorem 2.5.1. We have that

X(t) = S(t)X(0) +

∫ t

0

S(t− s)BdW (s),

which is interpreted in the way described above. From this we can see immediately that
µ is an invariant measure for equation (2.1) if and only if

µ = (S(t)µ) ∗ N (0, Qt)

for all t ≥ 0, because the distribution of
∫ t

0
S(t− s)BdW (s) is N (0, Qt). Taking charac-

teristic functions we see that

µ̂(λ) = Ŝ(t)µ(λ) · ̂N (0, Qt)(λ)

where, by definition of S(t)µ, we have that

Ŝ(t)µ(λ) =

∫
H

ei<λ,x>H (S(t)µ)(dx)

=

∫
H

ei<λ,S(t)x>Hµ(dx)

=

∫
H

ei<S
∗(t)λ,x>Hµ(dx) = µ̂(S∗(t)λ).

Hence µ is an invariant measure for equation (2.1) if and only if

µ̂(λ) = µ̂(S∗(t)λ)e−
1
2
<Qtλ,λ>H

for all λ ∈ H, t ≥ 0.

(b) ⇒ (a): Let µ be an invariant measure for (2.1). Then by above

e
1
2
<Qtλ,λ>HRe µ̂(λ) = Re µ̂(S∗(t)λ)

= Re

∫
ei<x,S

∗(t)λ>Hµ(dx)

≤ 1

⇒< Qtλ, λ >H ≤ 2 log

(
1

Re µ̂(λ)

)
for all λ ∈ H, t ≥ 0.

By Bochner’s Theorem, for ε = 1
2

there exists S ∈ L1(H) such that

Reµ̂(λ) ≥ 1

2
, ∀ λ such that < Sλ, λ >H≤ 1.

Therefore

< Qtλ, λ >H ≤ 2 log 2, ∀ λ ∈ H such that < Sλ, λ >H≤ 1

which yields
0 ≤ Qt ≤ 2 log 2S.

Hence supt≥0 Tr Qt ≤ 2 log 2Tr S <∞.
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2.5 Invariant measures

(a) ⇒ (b): If (a) holds, then it is clear that Q =
∫∞

0
S(s)BB∗S∗(s)ds is well defined.

We show that µ = N (0, Q) is invariant. Indeed, we then have that

µ̂(λ) = e−
1
2
<Qλ,λ>H

so that
µ̂(S∗(t)λ) = e−

1
2
<S(t)QS∗(t)λ,λ>H .

Note that by the semigroup property

S(t)QS∗(t) =

∫ ∞
0

S(t+ s)BB∗S∗(t+ s)ds =

∫ ∞
t

S(u)BB∗S∗(u)du

=

∫ ∞
0

S(u)BB∗S∗(u)du−
∫ t

0

S(u)BB∗S∗(u)du = Q−Qt,

so that
µ̂(S∗(t)λ) = e−

1
2
<Qλ,λ>He

1
2
<Qtλ,λ>H .

This yields
µ̂(λ) = µ̂(S∗(t)λ)e−

1
2
<Qtλ,λ>

which, by above, shows that the measure µ is indeed invariant.

For the last part of the result, using the fact that µ̂(λ) = µ̂(S∗(t)λ)e−
1
2
<Qtλ,λ> and

e−
1
2
<Qtλ,λ> → N̂ (0, Q) as t→∞, we see that

µ̂(S∗(t)λ)→ ψ(λ)

for some function ψ. If ψ is the characteristic function of some measure σ i.e. ψ(λ) =
σ̂(λ) then

µ̂(λ) = σ̂ · N̂ (0, Q)

and σ is invariant for S(·) since

σ̂(S(s)λ) = lim
t→∞

µ̂(S(t+ s)λ) = σ̂(λ), λ ∈ H.

So we are done if we show that ψ is indeed the characteristic function of some measure.
For this we use Bochner’s Theorem once more. Firstly, since ψ(λ) is the limit of µ̂(S∗(t)λ)
we have that ψ(0) = 1 and ψ is positive definite. Therefore we just need to show it is
S-continuous. For this we just note that

ψ(λ) = µ̂(λ)e
1
2
<Qλ,λ>

⇒ Re ψ(λ) = e
1
2
<Qλ,λ>Re µ̂(λ)

≥ Re µ̂(λ)

from which S-continuity follows easily.
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2 Linear Equations with Gaussian Noise

Example 2.5.1. Let H = L2(0,∞) and U = R. Define

S(t)ϕ(ξ) = eλtϕ(ξ + t),

b(ξ) = e−ξ
2 ∈ H,

and

A =
d

dξ
+ λ.

One can check that these satisfy our assumptions. We would like to find a non-trivial
invariant measure for the equation

dX(t) = AX(t)dt+ bdW (t)

where W (t) is a 1-dimensional Brownian motion. To achieve this we will find ϕ 6= 0
such that S(1)ϕ = ϕ, and use the above Theorem. Let σ be the distribution of S(η)ϕ
where η has uniform distribution on [0, 1]. Take λ = 1, ϕ(ξ) = e−k for ξ ∈ [k, k + 1),
k = 0, 1, . . . . Then

S(1)ϕ(ξ) = e1ϕ(ξ + 1) = e1e−(k+1)

= e−k = ϕ(ξ)

for ξ ∈ [k, k+ 1). So we know that there exists a non-trivial invariant measure σ for the
semigroup S(·). To apply the above theorem, we check that supt≥0 Tr Qt <∞:

Tr Qt = E
∣∣∣∣∫ t

0

S(t− s)bdW (s)

∣∣∣∣2
=

∫ t

0

‖S(s)b‖2
LHS(R,H)ds

=

∫ t

0

|S(s)b|2L2[0,∞)ds

⇒ sup
t≥0

Tr Qt =

∫ ∞
0

|S(s)b|2L2[0,∞)ds

=

∫ ∞
0

∫ ∞
0

e2se−2(ξ+s)2dsdξ <∞.
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3 Ornstein-Uhlenbeck Processes Driven By Lévy

Processes

In this section we extend the results of the previous chapter to the case when the
evolution equation is driven not by a Wiener process with continuous trajectories, but
by a Lévy process with jumps.

3.1 Martingales on Hilbert spaces

Let (U,< ·, · >U) be a Hilbert space and (Ω,F , (Ft),P) a filtered probability space.
Let M2(U) be the space of all square integrable U -valued martingales which are right-
continuous with left limits. This technical condition is standard and ensures that the
Doob-Meyer decomposition theorem holds. Indeed, let M,N ∈M2(U). Denote by

< M,N >t, t ≥ 0

the unique predictable process, with trajectories having locally bounded variation for
which

< M(t), N(t) >U − < M,N >t, t ≥ 0

is a martingale. By the Doob-Meyer decomposition, the process < M,N > always exists,
and is called the angle bracket of M and N .

We can also introduce the operator angle bracket � M,N � in the following way.
As before, let L1(U) be the space of all nuclear operators on U . Define, for x, y, z ∈ U ,
x⊗y(z) :=< y, z >U x. It is easy to show that x⊗y ∈ L1(U) and ‖x⊗y‖L1(U) = |x|U |y|U .

We also denote by L+
1 (U) the subspace of L1(U) consisting of all self-adjoint non-

negative nuclear operators. If M ∈ M2(U) then the process (M(t)⊗M(t), t ≥ 0) is an
L1(U)-valued right-continuous process such that

E‖M(t)⊗M(t)‖L1(U) = E|M(t)|2U .

We have the following basic result.

Theorem 3.1.1. Let M ∈ M2(U). Then there is a unique right-continuous L+
1 (U)-

valued increasing predictable process (�M,M �t, t ≥ 0) such that � M,M �0= 0
and the process

M(t)⊗M(t)− �M,M �t, t ≥ 0

is an L1(U)-valued martingale. Moreover, there exists a predictable L+
1 (U)-valued process

(Qt, t ≥ 0) such that

�M,M �t=

∫ t

0

Qsd < M,M >s, t ≥ 0. (3.1)
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

Sketch of Proof. For details see Theorem 8.2 in [11]. The idea of the proof is first to
show that for any M,N ∈ M2(U) there exists a predictable process (q(s), s ≥ 0) such
that

< M,N >t=

∫ t

0

q(s)d (< M,M >s + < N,N >s) .

Then, letting {ej} be an orthonormal basis of U and writing M j(t) =< M(t), ej >U∈
M2(R), we take as a candidate for the operator angle bracket

�M,M �t:=
∑
j,k

ek ⊗ ej < Mk,M j >t, t ≥ 0. (3.2)

We then prove that the series converges in L1(Ω,F ,P;LHS(U)) by looking at the Hilbert-
Schmidt norm of the right hand side. Indeed,

‖ �M,M �t ‖2
LHS(U) =

∑
l

∣∣∣∣∣∑
k,j

< Mk,M j >t< ej, el >U ek

∣∣∣∣∣
2

U

=
∑
l

∣∣∣∣∣∑
k

< Mk,M l >t ek

∣∣∣∣∣
2

U

=
∑
l,k

< Mk,M l >2
t .

Since

0 ≤ < Mk + aM l,Mk + aM l >t = a2 < M l,M l >t +2a < M l,Mk >t + < Mk,Mk >t,

we see that
< Mk,M l >2

t ≤ < M l,M l >t< Mk,Mk >t .

Hence

‖ �M,M �t ‖2
LHS(U) ≤

∑
k,l

< M l,M l >t< Mk,Mk >t

=

(∑
k

< Mk,Mk >t

)2

⇒ E‖ �M,M �t ‖LHS(U) ≤ E
∑
k

< Mk,Mk >t= E|M(t)|2U <∞.

Thus (�M,M �t, t ≥ 0) is a well-defined process taking values in the space of Hilbert-
Schmidt operators on U . It is symmetric and non-negative. Note that for 0 ≤ s ≤ t <∞
the operator �M,M �t − �M,M �s is also non-negative. Consequently

‖ �M,M �t − �M,M �s ‖L1(U) = Tr {�M,M �t − �M,M �s}

=
∑
j

{
< M j,M j >t − < M j,M j >s

}
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3.1 Martingales on Hilbert spaces

and
E‖ �M,M �t − �M,M �s ‖L1(U) = E

(
|M(t)|2U − |M(s)|2U

)
<∞.

This shows that �M,M � is an L+
1 (U)-valued predictable increasing process. Finally

to show that it is right-continuous and can be represented in the form (3.1) we apply the
first part of the proof. Namely, it follows that for any pair k, j there exists a predictable
process

(
qk,j(t), t ≥ 0

)
such that

< Mk,M j >t=

∫ t

0

qk,j(s)d < M,M >s=

∫ t

0

qk,j(s)d
∑
l

< M l,M l >s .

Thus

�M,M �t=

∫ t

0

Qsd < M,M >s,

where
Qs =

∑
k,j

ek ⊗ ejqk,j(s), s ≥ 0,

is a predictable process with values in L+
1 (U).

Remark 3.1.1. An L+
1 (U)-valued process V (·) is said to be increasing if the operators

V (t)− V (s) are non-negative definite for all 0 ≤ s ≤ t.

Definition 3.1.1. We call the L+
1 (U)-valued process (Qt, t ≥ 0) satisfying (3.1) the

martingale covariance of M , and the process (�M,M �t, t ≥ 0) the operator angle
bracket process.

Proposition 3.1.2. Let M ∈ M2(U). Then for any vectors x, y ∈ U and any 0 ≤ s ≤
t ≤ u ≤ v <∞,

E (< M(t)−M(s), x >U< M(t)−M(s), y >U |Fs)

= E
(∫ t

s

< Qrx, y >U d < M,M >r |Fs
)

and
E (< M(t)−M(s), x >U< M(u)−M(v), y >U |Fu) = 0.

The most important case for us will be when M ∈ M2(U) has zero mean and inde-
pendent stationary increments. The following result gives an important characterisation
of the angle bracket and operator angle bracket in this case.

Proposition 3.1.3. Let M ∈M2(U) be of zero mean and such that M has independent
stationary increments. Then there exists Q ∈ L+

1 (U) such that

|M(t)|2U − tTr Q

and
M(t)⊗M(t)− tQ

are real- and L+
1 (U)-valued martingales respectively. Note that Q is the covariance oper-

ator of M(1), and that according to the definitions above this means that < M,M >t=
tTr Q, �M,M �t= tQ, and Qt of Theorem 3.1.1 is equal to Q for all t.
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

Proof. First note that for s ≥ 0 we have

U × U 3 (x, y) 7→ E < M(s), x >U< M(s), y >U

is a non-negative definite continuous bilinear form on U . Therefore there exists a sym-
metric non-negative definite continuous linear operator Q(s) such that < Q(s)x, y >U=
E < M(s), x >U< M(s), y >U for all x, y ∈ U , exactly as in (2.8). Since, for any
orthonormal basis {ej} of U ,∑

j

< Q(s)ej, ej >U=
∑
J

E < M(s), ej >
2
U= E |M(s)|2U <∞,

Q(s) is nuclear and Tr Q(s) = E |M(s)|2U . Let 0 ≤ s < t and x, y ∈ U . Then by
independence of increments

E < M(t)−M(s), x >U< M(s), y >U = E < M(t)−M(s), x >U E < M(s), y >U

= 0.

Hence

E < M(t), x >U< M(s), y >U= E < M(s), x >U< M(s), y >U=< Q(s)x, y >U .

We show that Q(s) = sQ(1). Indeed

< Q(s+ h)x, y >U = E (< M(s+ h)−M(s) +M(s), x >U

× < M(s+ h)−M(s) +M(s), y >U)

= E < M(s+ h)−M(s), x >U< M(s+ h)−M(s), y >U

+ E < M(s), x >U< M(s), y >U

=< Q(h)x, y >U + < Q(s)x, y >U ,

again using independent stationary increments, so that Q(s+ h) = Q(s) +Q(h). Since
the functions s 7→< Q(s)x, x >U , x ∈ U, are increasing, they are measurable. Then for
all x, y ∈ U , the function

s 7→< Q(s)x, y >U=
1

4
(< Q(s)(x+ y), x+ y >U − < Q(s)(x− y), x− y >U)

is measurable. Consequently < Q(s)x, y >U= s < Q(1)x, y >U for all x, y ∈ U . Hence,
by definition, the covariance of M(s) is sQ.

Doing very similar calculations as above, and using the fact that M(t) − M(s) is
independent of Fs for all 0 ≤ s < t, we have that

E
(
< M(t), x >U< M(t), y >U − < M(s), x >U< M(s), y >U

∣∣Fs)
= E < M(t)−M(s), x >U< M(t)−M(s), y >U

= (t− s) < Qx, y >U ,
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3.2 The stochastic integral with respect to a square integrable martingale

using the above. Hence M(t) ⊗ M(t) − tQ is a martingale. Moreover, if {ej} is an
orthonormal basis of U , then

|M(t)|2U =
∑
j

< M(t), ej >
2
U .

For every j, < M(t), ej >
2
U −t < Qej, ej >U , t ≥ 0 is a martingale, and therefore so is

|M(t)|2U − t
∑
j

< Qej, ej >U= |M(t)|2U − tTr Q,

which completes the proof.

3.2 The stochastic integral with respect to a square integrable
martingale

To deal with stochastic partial differential equations one needs the concept of the stochas-
tic integral, IMt (Ψ) :=

∫ t
0

Ψ(s)dM(s), where M ∈M2(U) and Ψ(s, ω) are operators from
U to another Hilbert space H. As for real martingales we first define the stochastic in-
tegral for simple processes, and then extend the class of integrands using the isometric
formula (3.3) below. This appeared for the first time in [8], though here we follow [11].

Let U,H be separable Hilbert spaces, M ∈M2(U), and let (Qt, t ≥ 0) be the martin-
gale covariance of M .

Definition 3.2.1. An L(U,H)-valued stochastic process Ψ is said to be simple if there
exists a sequence of non-negative numbers t0 = 0 < t1 < · · · < tm, a sequence of operators
Ψj ∈ L(U,H), j = 0, . . . ,m − 1, and a sequence of events Aj ∈ Ftj , j = 0, . . . ,m − 1,
such that

Ψ(s) =
m−1∑
j=0

1Aj1(tj ,tj+1](s)Ψj, s ≥ 0.

Let S(U,H) denote the class of all simple processes with values in L(U,H).

For a simple process Ψ ∈ S(U,H), we set

IMt (Ψ) :=
m−1∑
j=0

1AjΨ (M(tj+1 ∧ t)−M(tj ∧ t)) , t ≥ 0.

As before, let LHS(U,H) be the space of all Hilbert-Schmidt operators from U into
H.

Proposition 3.2.1. For any simple process Ψ, IMt (Ψ), t ≥ 0 is a square-integrable H-
valued martingale and

E
∣∣IMt (Ψ)

∣∣2
H

= E
∫ t

0

∥∥∥Ψ(s)Q
1
2
s

∥∥∥2

LHS(U,H)
d < M,M >s, t ≥ 0. (3.3)
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

Proof. By direct calculation. See Proposition 8.6 of [11] for details.

Now let T <∞. We equip the class of all simple processes S(U,H) with the seminorm

‖Ψ‖M,T := E
∫ T

0

∥∥∥Ψ(s)Q
1
2
s

∥∥∥2

LHS(U,H)
d < M,M >s . (3.4)

We may identify Ψ with Φ if ‖Ψ − Φ‖M,T = 0. Let J 2
M,T (H) be the completion of

(S(U,H), ‖ · ‖M,T ). The norm on J 2
M,T (H) will also be denoted by ‖ · ‖M,T .

The following theorem shows that we can extend the stochastic integral IMt (Ψ) for
Ψ ∈ J 2

M,T (H).

Theorem 3.2.2. (i) For any t ∈ [0, T ], there exists a unique extension of IMt to
a continuous linear operator, denoted also by IMt , from

(
J 2
M,T (H), ‖ · ‖M,T

)
into

L2(Ω,F ,P;H). Moreover, for any Ψ ∈ J 2
M,T (H) we have

E
∣∣IMt (Ψ)

∣∣2
H

= ‖Ψ‖2
M,T .

(ii) For all Ψ ∈ J 2
M,T (H) and 0 ≤ s ≤ t ≤ T , we have 1(s,t]Ψ ∈ J 2

M,T (H) and

E
∣∣IMt (Ψ)− IMs (Ψ)

∣∣2
H

= ‖1(s,t]Ψ‖2
M,T ≤ ‖Ψ‖2

M,T .

(iii) For any Ψ ∈ J 2
M,T (H),

(
IMt (Ψ), t ∈ [0, T ]

)
is an H-valued martingale. It is square

integrable and mean-square continuous, and IMt (Ψ) = 0.

(iv) For any Ψ,Φ ∈ J 2
M,T (H) and any t ∈ [0, T ].〈

IM(Ψ), IM(Φ)
〉
t

=

∫ t

0

〈
Ψ(s)Q1/2

s ,Φ(s)Q1/2
s

〉
LHS(U,H)

d < M,M >s

and

� IM(Ψ), IM(Ψ)�t=

∫ t

0

Ψ(s)QsΨ
∗(s)d < M,M >s .

(v) Let A be a bounded linear operator from H into a Hilbert space V . Then, for every
Φ ∈ J 2

M,T (H), we have AΦ ∈ J 2
M,T (V ) and AIM(Φ) = IM(AΦ).

Proof. The first two assertions follow from the linearity of IMt on S(U,H) and from
Proposition 3.2.1. In order to prove mean-square continuity we need to show that

lim
s→t
‖1(s,t]Ψ‖M,T = 0. (3.5)

To do this, consider the family of linear operators T (s) : Ψ 7→ 1(s,t]Ψ from J 2
M,T (H) into

J 2
M,T (H). We have

sup
s
‖T (s)‖L(J 2

M,T (H),J 2
M,T (H)) ≤ 1.

Thus since (3.5) holds on a dense subspace, it holds on the whole space by a Banach
Steinhaus argument.

It is enough to check the martingale property and the identities in (iv) for simple Ψ,Φ.
The last assertion of the theorem clearly holds for simple Φ and therefore for all Φ by
standard limiting arguments.
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3.3 Lévy processes and the Lévy-Khinchin formula

Let us again consider the case where M ∈ M2(U) has zero mean and stationary
independent increments. Exactly as in section 2.3.2, it is convenient to introduce the
reproducing kernel Hilbert space, and work with this space rather than the space in
which M takes its values. First note that for Q ∈ L+

1 (U) as in Proposition 3.1.3 we have
by above that for all t ≥ 0,

E
∣∣∣∣∫ t

0

Ψ(s)dM(s)

∣∣∣∣2
U

=

∫ t

0

‖Ψ(s)Q1/2‖2
LHS(U,H)ds,

since Qs = Q for all s. Then let U0 := Q1/2(U) equipped with the inner product

< u, v >U0 :=< Q−1/2u,Q−1/2v >U ,

where Q−1/2 is the pseudo-inverse of Q1/2. We call U0 the reproducing Hilbert kernel
space of M , and M a cylindrical martingale in U0.

Remark 3.2.1. Exactly as in the case of a cylindrical Wiener process, M does not take
values in U0 unless dimU0 <∞. It does however take values in any Hilbert space V such
that the embedding U0 ↪→ V is Hilbert-Schmidt.

It follows that the class of admissible integrands equals

L2 (Ω× [0,∞),P , dPdt;LHS(U0, U))

where P is the σ-field of predictable sets. Moreover, for any Ψ in this space, by Theorem
3.2.2 we have that ∫ t

0

Ψ(s)dM(s)

is a square integrable H-valued martingale,

E
∣∣∣∣∫ t

0

Ψ(s)dM(s)

∣∣∣∣2
H

=

∫ t

0

E‖Ψ(s)‖2
LHS(U0,H)ds

and �
∫ t

0
Ψ(s)dM(s)�t as a process in L+

1 (U0) is given by

�
∫ t

0

Ψ(s)dM(s)�t=

∫ t

0

Φ(s)Φ∗(s)ds.

Remark 3.2.2. In the case of a cylindrical Wiener process, this shows that
∫ t

0
S(s)BdW (s)

is distributed N
(

0,
∫ t

0
S(s)BB∗S∗(s)ds

)
, as claimed at the end of section 2.4.

3.3 Lévy processes and the Lévy-Khinchin formula

As usual, let (Ω,F ,P) be a probability space and U be a separable Hilbert space.

Definition 3.3.1. A stochastic process L : Ω× [0,∞)→ U is a Lévy process in U if
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

(i) L(0) = 0,

(ii) L is stochastically continuous i.e. ∀ε > 0, limh→0 P (|Xt+h −Xt| ≥ ε) = 0,

(ii) L has independent stationary increments.

Remark 3.3.1. A Lévy process L has a modification which is right-continuous with left
limits (see [11], Theorem 4.3). We sometimes say that such a process is càdlàg.

Remark 3.3.2. Condition (ii) of the above definition does not in any way imply that
the sample paths are continuous. Indeed a Poisson process is a Lévy process. It serves
to exclude processes with jumps at fixed non-random times and means that for a given
time t, the probability of seeing a jump at t is zero.

Remark 3.3.3. It is clear that if L is integrable with zero mean then L is a martingale.

Note that every Lévy process is also Markov with corresponding semigroup

Ptϕ(x) =

∫
E

ϕ(x+ y)L(L(t))(dy),

where L(L(t)) is the law of L(t).

Example 3.3.1 (Compound Poisson process). Any compound Poisson process on U is
Lévy. Let ν be a finite Borel measure on U . Recall that a compound Poisson process
with jump, or equivalently Lévy measure, is given by

L(t) :=

Π(t)∑
j=1

Xj,

where Π is a Poisson process with intensity λ = ν(U) < ∞, and Xj are independently
identically distributed random variables with distribution

P (Xj ∈ Γ) =
ν(Γ)

ν(U)
, Γ ∈ B(U).

One can think of a compound Poisson process as describing the position of a random
walk with step size Xj after a random number of time steps, given by Π(t). One can
show that

Eei<L(t),u>U = e−tΨ(u),

where

Ψ(u) :=

∫
U

(
1− ei<u,v>U

)
ν(dv).

Indeed

E
(
ei<L(t),u>U

)
= E

Π(t)∏
j=1

E
(
ei<Xj ,u>U

)
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3.3 Lévy processes and the Lévy-Khinchin formula

using independence. Moreover, since Xj is identically distributed for all j, we have that

the characteristic function of Xj is E
(
ei<Xj ,u>U

)
= ν̂(u)

λ
for all j. Therefore

E
(
ei<L(t),u>U

)
= E

((
ν̂(u)

λ

)Π(t)
)

=
∞∑
n=0

e−λt(λt)n
(
ν̂(u)
λ

)n
n!

= e−t(λ−ν̂(u))

= exp

{
−t
∫
U

(
1− ei<u,v>U

)
ν(dv)

}
.

One can also show that L is integrable if and only if∫
U

|u|Uν(du) <∞,

and if this is the case, then

EL(t) = t

∫
U

uν(du).

Finally, L is square integrable if and only if∫
U

|u|2Uν(du) <∞

and if this is the case, then

E 〈L(t)− EL(t), u〉U 〈L(t)− EL(t), v〉U =

∫
U

< z, u >U< z, v >U ν(dz). (3.6)

Remark 3.3.4. The concept of a compound Poisson process is crucial for understanding
the characterisation of a general Lévy process. The Lévy-Khinchin Theorem (see below)
says that an arbitrary Lévy process is the sum of a Wiener process, a uniform movement,
and a ”compound Poisson process L with infinite jump measure”. How do we construct
a compound Poisson process with infinite (but σ-finite) jump measure?

Using the definition of σ-finiteness, we can divide U into a countable sum U =
⋃
Un

of measurable sets Un such that ν(Un) = 1 and Un ∩ Um = ∅ for m 6= n. Then one may
try and write L =

∑
n Ln where Ln are independent compound Poisson processes each

with Lévy measure νn, which is the restriction of ν to Un. However, usually this series
does not converge in any reasonable sense! The idea is to write

U = U0 ∪ U c
0 ,

where U0 =
⋃
n∈I Un is such that∫

U0

|u|2Uν(du) <∞,
∫
Un

|u|Uν(du) <∞, ∀n ∈ I,
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

and Ic is finite. We can then define the Lévy process with intensity ν as as

L(t) :=
∑
n∈I

(Ln(t)− ELn(t)) +
∑
n6∈I

Ln(t),

where Ln are as above. The first sum is a sum of square integrable martingales with∑
n∈I

E |L(t)− EL(t)|2U =

∫
U0

|u|2Uν(du) <∞.

This follows from (3.6) with appropriate choices of u and v. Recall that the Doob sub-
martingale inequality says that if X is a right-continuous submartingale then

r2P

(
sup
t∈[0,T ]

X(t) ≥ r

)
≤ EX+(T ).

Using this in our case, we see that

P

(
sup
t∈[0,T ]

∑
n≤N,n∈I

|L(t)− EL(t)|2U ≥ r

)
≤

∫S
n≤N Un

|u|2Uν(du)

r2
,

so that
∑

n∈I (Ln(t)− ELn(t)) converges in probability (and P-a.s.) uniformly in t on
any bounded interval.

Assume now that L is a Lévy process on a Hilbert space U which is right-continuous
with left limits. The following theorem provides a very useful decomposition.

Theorem 3.3.1 (Lévy-Khinchin formula). (i) Given a non-negative nuclear operator
Q0 ∈ L+

1 (U), a ∈ U , and a measure ν on U\{0} satisfying∫
U

|x|2U ∧ 1ν(dy) <∞,

there is a Lévy process L such that

Eei<x,L(t)>U =

∫
U

ei<x,y>UL(L(t))(dy) = e−tψ(x)

and

ψ(x) = −i < a, x >U +
1

2
< Q0x, x >U

+

∫
U

{
1− e|<x,y>U | + 1{|y|<1}(y)i < x, y >U

}
ν(dy).

Note that the measure ν is not necessarily finite, but the condition ensures that the
integral is finite.
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3.3 Lévy processes and the Lévy-Khinchin formula

(ii) Conversely, if L is a Lévy process then there exist a,Q0 and ν as in (i).

Definition 3.3.2. We call the measure ν appearing in the above theorem the Lévy mea-
sure of L, and we call the triple (a,Q0, ν) the characteristics of L.

The Lévy-Khinchin formula follows directly from the Lévy-Khinchin decomposition,
which states that any Lévy process L can be decomposed in the following way:

L(t) = at+W (t) + ξ(t), (3.7)

where a ∈ U , W (t) is a U -valued Wiener process, ξ(t) is a compound Poisson process,
and the processes W (t) and ξ(t) are independent. If Q0 is the covariance operator of
the Wiener process W (t) and ν is the Lévy measure of ξ(t) then the characteristics of
L are (a,Q0, ν) (see [11] Theorem 4.23 or section 5.2 of the appendix for details). Note
also that by Remark 3.3.4, ν is not necessarily finite.

The Lévy-Khinchin formula gives the explicit form of the characteristic function of a
Lévy process. It turns out that it is also useful for computing characteristic functionals
of stochastic integrals, as we will see in Theorem 3.4.5 below.

The other major use of the Lévy-Khichin decomposition is that it facilitates the con-
struction of the stochastic integral with respect to a general Lévy process. We will need
this construction in section 3.4 below. The decomposition allows us to construct the in-
tegral as the sum of a Riemannian integral, an integral with respect to a Wiener process
and an integral with respect to a compound Poisson process. To describe the class of
operator valued process which are integrable with respect to a general Lévy process is
quite technical, and we refer the reader to [11] section 8.6, or [1] Chapter 1 for details.

We finally consider square-integrable Lévy processes. We have (see Theorem 4.47 of
[11])

Theorem 3.3.2. (i) A Lévy process L on a Hilbert space U is square integrable if and
only if its Lévy measure satisfies∫

U

|y|2Uν(dy) <∞.

(ii) Assume L is square integrable, and let L have the representation (3.7) i.e.

L(t) = at+W (t) + ξ(t).

Let Q0 be the covariance operator of the Wiener part of L and let Q1 be the co-
variance operator of the jump part. Then

< Q1x, z >U =

∫
U

< x, y >U< z, y >U ν(dy), x, z ∈ U,

EL(t) =

(
a+

∫
{|y|U≥1}

yν(dy)

)
t,

and the covariance Q of L is equal to Q0 +Q1.

If L is a square integrable zero-mean Lévy process, then it clearly a martingale, and
so we can use Proposition 3.1.3 to see that < L,L >t= tTr Q and� L,L�t= tQ where
Q is the covariance of L(1).
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

3.4 Existence of an invariant measure for OU process driven
by a Lévy process

Let U be a separable Hilbert space. Consider the equation on U

dX(t) = AX(t)dt+ dL(t) (3.8)

where

• A generates a C0-semigroup on U ,

• L is a Lévy process in U .

We define a mild solution to this equation to be the U -valued process X(t) such that

X(t) = S(t)X(0) +

∫ t

0

S(t− s)dL(s).

In this situation it can be shown that a mild solution to (3.8) exists and is unique.
Indeed, as mentioned at the end of section 3.3, by decomposing the process L into a
deterministic process, a Wiener process and a compound Poisson processes, we can define
the integral with respect L, and show that S(s) lies in the space of integrands. Then by
Theorem 9.34 of [11] there is a unique weak solution to (3.8). Moreover, by Theorem
9.15 of the same book, we therefore have that there exists a unique mild solution to
(3.8). Note that in [11] they deal with much more general equations, but in our simple
case the Lipschitz conditions imposed on the constants are trivially satisfied.

We now try and describe conditions on A and the characteristics (a,Q0, ν) of L under
which there is a stationary solution (i.e. invariant measure) to (3.8).

Proposition 3.4.1. If there is a stationary solution to (3.8) then

sup
t≥0

Tr

∫ t

0

S(s)Q0S
∗(s)ds <∞.

Proof. If X(t) is a mild solution to (3.8), then we can write

X(t) = S(t)X(0) +

∫ t

0

S(t− s)dW (s) +

∫ t

0

S(t− s)d(L(s)−W (s)),

where W (s) is the Wiener process in U with covariance Q0 appearing in the Lévy-
Khinchin decomposition. If µ is an invariant measure for (3.8) then since everything is
independent, we can just multiply characteristic functions to get that

µ̂(λ) = µ̂(S∗(t)λ) · ̂N (0, Qt) · γ̂t(λ)

in a similar way to the proof of Theorem 2.5.1, where γt = L
(∫ t

0
S(t− s)d(L(s)−W (s))

)
and Qt =

∫ t
0
S(s)Q0S

∗(s)ds. Now

̂N (0, Qt) = e−
1
2
<Qtλ,λ>U
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3.4 Existence of an invariant measure for OU process driven by a Lévy process

so that

Re µ̂(λ) = e−
1
2
<Qtλ,λ>URe (µ̂(S∗(t)λ) · γ̂t(λ))

≤ e−
1
2
<Qtλ,λ>U

⇒< Qtλ, λ >U ≤ 2 log

(
1

Re µ̂(λ)

)
.

The result follows by an application of Bochner’s Theorem, exactly as in Theorem 2.5.1.

Proposition 3.4.2 (Chojnowska-Michalik). If L
(∫ t

0
S(t− s)dL(s)

)
converges weakly,

then there is an invariant measure µ for the equation (3.8). Moreover, any invariant
measure is of the form

µ = σ ∗ η

where σ is any invariant measure for S i.e. S(t)σ = σ and

η = lim
t→∞
L
(∫ t

0

S(t− s)dL(s)

)
.

To prove this theorem we need the following useful lemma.

Lemma 3.4.3. Let ηt = L
(∫ t

0
S(t− s)dL(s)

)
. Then ηt is weakly convergent as t→∞

if and only if
∫∞

0
S(s)dL(s) exists. In this case

w − lim
t→∞

ηt = L
(∫ ∞

0

S(s)dL(s)

)
.

Proof. Let L̄ be the double-sided Lévy process :

L̄(t) =

{
L(t), t ≥ 0

L̃(−t), t < 0
(3.9)

where L̃ is an independent indentically distributed Lévy process. Then by properties of
the stochastic integral∫ t

0

S(t− s)dL(s)
d
=

∫ 0

−t
S(−u)dL̄(u)

d
=

∫ t

0

S(u)dL(u).

Since
(∫ t

0
S(u)dL(u)

)
t≥0

is a process with independent increments, it converges in dis-

tribution as t→∞ if and only if it converges in probability. The last convergence means
the existence of the integral

∫∞
0
S(u)dL(u) and the lemma follows.
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

Proof of Proposition 3.4.2. Let ηt = L
(∫ t

0
S(t− s)dL(s)

)
. As above, we have that a

measure µ is invariant for (3.8) if and only if

µ̂(λ) = µ̂(S∗(t)λ) · η̂t(λ),

for all λ ∈ U, t ≥ 0. By assumption ηt → η weakly as t → ∞, so by the above lemma∫∞
0
S(s)dL(s) exists and η = L

(∫∞
0
S(s)dL(s)

)
. We first show that η is an invariant

measure for the equation (3.8).
Let L̄ be the double sided Lévy process as defined in (3.9). From the proof of Lemma

3.4.3 we obtain

ηt = L
(∫ 0

−t
S(−u)dL̄(u)

)
,

so that η is also the distribution of
∫ 0

−∞ S(−u)dL̄(s). Then we have that

S(t)

(∫ 0

−∞
S(−u)dL̄(u)

)
+

∫ t

0

S(t− u)dL̄(u) =

∫ t

−∞
S(t− u)dL̄(u)

d
=

∫ 0

−∞
S(−u)dL̄(u).

Hence, taking characteristic functions in the usual way, we have

η̂(λ) = Ŝ(t)η(λ) · η̂t(λ)

= η̂(S(t)∗λ) · η̂t(λ)

for all λ ∈ U, t ≥ 0, which shows that η is indeed and invariant measure for (3.8), and
we have shown existence.

For the second part of the proposition, let µ be an invariant measure for (3.8). Then

µ = S(tn)µ ∗ ηtn
for tn →∞.

We now make use of the following general result (see Theorem 2.1 in [9]):

Theorem 3.4.4. Assume {λn}, {µn}, {νn} are sequences of probability measures on a
complete separable metric group G. Let

λn = µn ∗ νn.

If {λn} and {νn} are relatively weakly compact, then so is {µn}.

By assumption {ηtn} is relatively weakly compact, and trivially so is {µ}. Therefore
the theorem shows that {S(tn)µ} is relatively weakly compact and we may assume
S(tn)µ converges weakly to some probability measure σ. Therefore µ = σ ∗η. Moreover,
since µ = S(t)µ ∗ ηt for all t ≥ 0, we have that

σ ∗ η = S(t)σ ∗ S(t)η ∗ ηt = S(t)σ ∗ η.

Hence we get that S(t)σ = σ for all t ≥ 0.
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3.4 Existence of an invariant measure for OU process driven by a Lévy process

The following is the main result of this chapter, and can be found in [1].

Theorem 3.4.5. Assume that the C0-semigroup S(t), t ≥ 0 is exponentially stable, which
means that there exist constants C, α > 0 such that

‖S(t)‖L(U) ≤ Ce−αt.

Then the following are equivalent:

(i) There is a unique invariant measure η for the Ornstein-Uhlenbeck equation (3.8).

(ii) ηt = L
(∫ t

0
S(t− s)dL(s)

)
converges weakly as t→∞ to a probability measure η.

(iii)
∫
U

log+ |x|Uν(dx) <∞, where ν is the Lévy measure for L.

Proof. We first show (ii) implies (i). So suppose L
(∫ t

0
S(t− s)dL(s)

)
converges weakly

to η as t → ∞. By Proposition 3.4.2 we therefore know that there is an invariant
measure µ for (3.8) and µ = σ ∗ η where σ is an invariant measure for S. However, we
also have that

σ̂(λ) = lim
t→∞

µ̂(S∗(t)λ)

as usual, and S∗(t)λ → 0 since S is exponentially stable. Therefore σ̂(λ) = µ̂(0) = 1,
which implies σ = δ0, so that µ = η as required.

For (i) implies (ii) if µ is an invariant measure for (3.8), then we have that

µ̂(λ) = µ̂(S∗(t)λ) · η̂t(λ)

⇔ µ = S(t)µ ∗ ηt.

{S(t)µ : t ≥ 0} is relatively weakly compact since by the exponential stability of S,
S(t)µ → δ0 as t → ∞, and trivially so is {µ}. Hence by Theorem 3.4.4 we have
{ηt : t ≥ 0} is relatively weakly compact i.e. ∃{tj} ⊂ [0,∞) such that tj → ∞ and ηtj
converges weakly to some measure η. Finally we have that

η̂t(λ) =
µ̂(λ)

µ̂(S∗(t)λ)
→ µ̂(λ)

so by uniqueness of limits ηt → η = µ.
We give an outline of how to prove (iii) ⇒ (ii). For full details see [1]. The first

thing to notice is that in the Lévy-Khinchin decomposition of the Lévy process L we
may assume that the Wiener part is 0, since the law of the integral with respect to the
Wiener part converges weakly irrespective of whether condition (iii) holds or not.

Our strategy will be the following. Let Z(t) =
∫ t

0
S(t − s)dL(s). We will show that

L(Z(t)) = L(Lt(1)) where Lt is some Lévy process with characteristics at ∈ U , and νt
(where νt the Lévy measure). We will then pass to the limit at → a, νt → ν. We must
check the convergence, and that ∫

|x|2U ∧ 1ν(dx) <∞

to ensure that ν is a Lévy measure.
We will need the following lemma:
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3 Ornstein-Uhlenbeck Processes Driven By Lévy Processes

Lemma 3.4.6. Let L be a Lévy process. Let ψ be the exponent of the characteristic
function of L i.e. ψ is such that

Eei<x,L(t)>U = e−tψ(x)

(which exists by the Lévy-Khinchin formula). Let F : [0, T ]→ U = U∗. Then

Eeiα
R T
0 F (s)dL(s) = e−

R T
0 ψ(αF (s))ds

provided the integral is well defined in the Riemannian sense.

Proof of Lemma. We have

Eeiα
R T
0 F (s)dL(s) = lim Eeiα

P
i F (si)(L(si+1)−L(si))

by definition of the integral, where the limit is over all finite partitions {si} of the interval
[0, T ]. Since L has independent and stationary increments by definition, we then have
that

Eeiα
R T
0 F (s)dL(s) = lim

∏
i

EeiαF (si)(L(si+1)−L(si))

= lim
∏
i

EeiαF (si)L(si+1−si).

Then by definition of ψ in the Lévy-Khinchin formula, this gives

Eeiα
R T
0 F (s)dL(s) = lim

∏
i

e−(si+1−si)ψ(αF (si))

= e−
R T
0 ψ(αF (s))ds.

Now we calculate

̂
L
(∫ t

0

S(t− s)dL(s)

)
(λ) = Eei<

R t
0 S(t−s)dL(s),λ>U

= Eei
R t
0 S
∗(t−s)λdL(s)

= e−ψt(λ)

where we have used the above lemma, since S∗(t− s)λ ∈ U∗, and where

ψt(λ) =

∫ t

0

ψ(S∗(t− s)λ)ds.
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3.4 Existence of an invariant measure for OU process driven by a Lévy process

Now by a change of variables and using the explicit form of ψ given in the Lévy-Khinchin
formula (Theorem 3.3.1)

ψt(λ) =

∫ t

0

ψ(S∗(s)λ)ds

= −i
∫ t

0

< S∗(s)λ, a >U ds

−
∫ t

0

∫
U

{
ei<S

∗(s)λ,y>U − 1− 1{|y|<1}(y)i < S∗(s)λ, y >U

}
ν(dy)ds

= −i
〈
λ,

∫ t

0

S(s)ads

〉
U

−
∫ t

0

∫
U

{
ei<λ,S(s)y>U − 1− 1{|y|<1}(y)i < λ, S(s)y >U

}
ν(dy)ds.

Denote the second term by It(λ). We would like to have

It(λ) =

∫
U

(
ei<x,y>U − 1− 1{|y|<1}(y)i < x, y >U

)
νt(dy).

If we set νt =
∫ t

0
S(s)νdt then we have

It(λ) =

∫ t

0

∫
U

{
ei<λ,S(s)y>U − 1− 1{|y|<1}(S(s)y)i < λ, S(s)y >U

}
ν(dy)ds

+

∫ t

0

∫
U

[
1{|y|<1}(S(s)y)− 1{|y|<1}(y)

]
i < λ, S(s)y >U ν(dy)ds

=

∫
U

{
ei<λ,y>U − 1− 1{|y|<1}(y)i < λ, y >U

}
νt(dy)

+ i

〈
λ,

∫ t

0

∫
U

[
1{|y|<1}(S(s)y)− 1{|y|<1}(y)

]
S(s)yν(dy)ds

〉
U

.

Therefore

ψt(λ) = −i
〈
λ,

∫ t

0

S(s)ads+

∫ t

0

∫
U

[
1{|y|<1}(S(s)y)− 1{|y|<1}(y)

]
S(s)yν(dy)ds

〉
U

+

∫
U

{
1− ei<λ,y>U + 1{|y|<1}(y)i < λ, y >U

}
νt(dy)

= −i 〈λ, at〉U

+

∫
U

{
1− ei<λ,y>U + 1{|y|<1}(y)i < λ, y >U

}
νt(dy)

for at =
∫ t

0
S(s)ads+

∫ t
0

∫
U

[
1{|y|<1}(S(s)y)− 1{|y|<1}(y)

]
S(s)yν(dy)ds.
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Note that this is in the same form as the exponent in the Lévy-Khinchin formula,
so we have calculated the element at ∈ U and Lévy measure νt which characterise

L
(∫ t

0
S(t− s)dL(s)

)
. Hence,

L
(∫ t

0

S(t− s)dL(s)

)
= L(Lt(1)),

where Lt(1) has characteristics (at, νt) (recall we are assuming the Wiener process to be

0), and we can see that L
(∫ t

0
S(t− s)dL(s)

)
converges weakly if and only if

at → a

in U , and ν =
∫∞

0
S(s)νds = limt→∞ νt satisfies

∫
U

|x|2U ∧ 1ν̃(dx) <∞.

Using more detailed calculations, one can show that the above conditions are equiva-
lent to (iii) (again see [1]). Here we will just present some calculations for the convergence
of at. Note that

∫ t

0

∫
U

[
1{|y|<1}(S(s)y)− 1{|y|<1}(y)

]
S(s)yν(dy)ds =

∫ t

0

∫
|y|>1
|S(s)y|≤1

S(s)yν(dy)ds

−
∫ t

0

∫
|y|≤1
|S(s)y|>1

S(s)yν(dy)ds

= a1
t − a2

t .

Now

|a2
t | ≤

∫ t

0

∫
|y|U≤1

|S(s)y|2Uν(dy)ds

≤ C2

∫ t

0

e−2αs

∫
|y|U≤1

|y|2Uν(dy)ds

≤ C2

∫ t

0

e−2αsds

∫
|y|2U ∧ 1ν(dy)
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3.4 Existence of an invariant measure for OU process driven by a Lévy process

which converges as t→∞ since ν is a Lévy measure. For a1
t :

|a1
t | ≤

∫ ∞
0

∫
|y|U>1
|S(s)y|U≤1

|S(s)y|Uν(dy)ds

≤
∫ ∞

0

∫
1<|y|U<eαs/2

|S(s)y|Uν(dy)ds∫ ∞
0

∫
|y|U≥eαs/2
|S(s)y|U≤1

|S(s)y|Uν(dy)ds

≤
∫ ∞

0

∫
1<|y|U<eαs/2

|S(s)y|Uν(dy)ds∫ ∞
0

∫
|y|U≥eαs/2

ν(dy)ds.

Note the first term will converge in the same way as a2
t , using the exponential stability

of S. Finally the second term can be written as∫ ∞
0

∫
2
α

log+ |y|U≥s
ν(dy)ds =

∫
U

∫ 2
α

log+ |y|U

0

dsν(dy)

=

∫
U

2

α
log+ |y|Uν(dy)

which is finite if and only if
∫
U

log+ |y|Uν(dy) <∞. Hence at converges if condition (iii)
holds.
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4 Convergence to the Invariant Measure

4.1 Exponential mixing

Let P (t, x, ·) be a transition function on a Banach space E, with corresponding transition
semigroup (Pt)t≥0. We assume that Pt is Feller, i.e. that Pt maps the space Cb(E) of
continuous bounded functions on E to itself.

Denote by (ϕ, µ) the action of a probability measure µ on a function ϕ i.e. (ϕ, µ) =
µ(ϕ).

Definition 4.1.1. We say that an invariant measure µ for Pt is exponentially mixing
with exponent ω > 0 and a function c : E → (0,∞) if

|Ptϕ(x)− (ϕ, µ)| ≤ c(x)e−ωt‖ϕ‖Lip

for all x ∈ E, t ≥ 0 and bounded Lipschitz functions ϕ on E.

Let us equip the space of Borel probability measures on E with the so-called Fortet-
Mourier norm

‖ρ‖FM = sup{|(ϕ, ρ)| : ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1}.

Then µ is exponentially mixing with exponent ω and function c if and only if

‖Pt(x, ·)− µ‖FM ≤ c(x)e−ωt, ∀t > 0, x ∈ E.

It is known (see e.g. [7]) that weak convergence of measures is equivalent to convergence
in the Fortet-Mourier norm. Thus, if µ is exponentially mixing then, for any x ∈ E,
Pt(x, ·) converges weakly to µ as t→∞.

The following result provides useful conditions for the existence, uniqueness and ex-
ponential mixing of an invariant measure.

Proposition 4.1.1. Assume that

(i) there exists x0 ∈ E such that Pt(x0, ·) converges weakly to a probability measure µ,

(ii) there exist functions c : E → (0,∞), c̃ : E × E → (0,∞) and a constant ω > 0
such that for all s ≥ t ≥ 0, x, x̃ ∈ E and ϕ ∈ Lip(E) we have

|Ptϕ(x)− Psϕ(x)| ≤ c(x)e−ωt‖ϕ‖Lip

and
|Ptϕ(x)− Ptϕ(x̃)| ≤ c̃(x, x̃)e−ωt‖ϕ‖Lip.
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4 Convergence to the Invariant Measure

Then µ is the unique invariant measure for (Pt), and it is exponentially mixing with
exponent ω and function c.

Proof. By the Krylov-Bogoliubov existence theorem (see appendix) µ is invariant for
(Pt)t≥0. Moreover, by the assumptions

|Ptϕ(x)− (ϕ, µ)| = lim
s→∞
|Ptϕ(x)− Psϕ(x0)|

≤ lim
s→∞
|Ptϕ(x)− Psϕ(x)|+ lim

s→∞
|Psϕ(x)− Psϕ(x0)|

≤ c(x)e−ωt‖ϕ‖Lip.

For the uniquenes, let µ̃ be another invariant measure. Let ψ ∈ Lip(E). Then

(ψ, µ̃) = (Ptψ, µ̃)→
∫
E

(ψ, µ)µ̃(dx) = (ψ, µ).

Therefore (ψ, µ̃) = (ψ, µ) for all Lipschitz ψ, which implies that µ = µ̃.

4.2 Existence and exponential mixing: Regular case

In this section we will let L be a square integrable mean-zero martingale with RKHS
U and Lévy measure ν. Since L is square-integrable, by Theorem 3.1.3 we can assume
that

∫
U
|y|2Uν(dy) = κ <∞. We will consider the equation

dX(t) = (AX(t) + F (X(t)))dt+G(X(t))dL (4.1)

where

• (A,D(A)) generates a C0-semigroup S on a Hilbert space H,

• F : H → H and G : H → LHS(U,H) are Lipschitz.

Once again, under these Lipschitz conditions we have that there exists a unique mild
(or equivalently weak) solution to (4.1). See [11] Chapter 9 for details, as before.

We would like to know when an invariant measure for such a process is unique and
exponentially mixing. We outline the strategy. Let X(t, x) be the value at time t of the
solution X(t, x) starting at time 0 from x. Taking into account the Krylov-Bogoliubov
theorem we would like to show the weak convergence of Pt(x, ·) = L(X(t, x)). To do this
one can ask whether X(t, x) converges in probability (or in L2) to a random variable.
This, however, is not even true in the simplest case, that of the one-dimensional Ornstein-
Uhlenbeck diffusion, for which

dX(t) = −1

2
X(t)dt+ dW (t), X(0) = 0, (4.2)
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4.2 Existence and exponential mixing: Regular case

where W (t) is a Brownian motion in R. Indeed, in this case

L(X(t, 0)) = L
(∫ t

0

e−(t−s)/2dW (s)

)
= L

(∫ t

0

es/2dW (s)

)
→ L

(∫ ∞
0

es/2dW (s)

)
= N (0, 1).

However for every ε > 0, n ∈ N,

lim
n→∞

P (|X(n+ 1, 0)−X(n, 0)| ≥ ε) 6= 0 (4.3)

so X(n, 0) is not a Cauchy sequence in probability. (4.3) follows from the fact that
L(X(n+ 1, 0)−X(n, 0)) = N (0, δn), where

δn =

∫ n

0

(
e−(n+1−s) − e−n−s

)2
ds+

∫ n+1

n

e−2(n+1−s)ds.

The first term converges to some 1
2
e−2 while the second term is constant (1

2
(1 − e−2)).

Therefore X(t, 0) does not converge in probability to any random variable (since δn 6→ 0).
To get around this problem we consider the double-sided Lévy process L̄ (as defined

in the previous section):

L̄(t) =

{
L(t), t ≥ 0

L̃(−t), t < 0

where L̃ is an independent identically distributed Lévy process. Given−∞ < t0 ≤ t <∞
and x, let X(t, t0, x) be the value at time t of the (mild) solution to the equation

dX(t) = (AX(t) + F (X(t)))dt+G(X(t))dL̄(t), X(t0) = x. (4.4)

From the uniqueness of the solution, L(X(t, x)) = L(X(t0 + t, t0, x)). We will show that
under certain conditions on A,F and G, X(t0, 0, x) converges in probability as t0 → −∞.
In this way we obtain the existence of an invariant measure. To show it’s exponentially
mixing we will use Proposition 4.1.1.

Below, An stands for the Yosida approximation of A; see appendix. The following
result is from [13], which should be referred to for the details.

Theorem 4.2.1. Assume there exists ω > 0 such that for all x, y ∈ U, n ∈ N,

2 < An(x− y) + F (x)− F (y), x− y >H +‖G(x)−G(y)‖2
LHS(U,H) ≤ −ω|x− y|2H

(where An are the Yosida approximations to the generator A). Then there exists a unique
invariant measure µ and it is exponentially mixing with exponent ω/2 and a function
c : H → (0,∞) of linear growth.
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4 Convergence to the Invariant Measure

We first prove a Lemma:

Lemma 4.2.2. Suppose
dY (t) = a(t)dt+ β(t)dL̄(t),

where a(t) ∈ H, β(t) ∈ LHS(U,H) for t ∈ R. Then

E|Y (t)|2H ≤ E|Y (t0)|2H + E
∫ t

t0

(
2 < Y (s), a(s) >H +‖b(s)‖2

LHS(U,H)

)
ds.

Proof. Applying Itô’s formula (see section 5.5 of the appendix) to the function ψ(x) =
|x|2H , we obtain

|Y (t)|2H = |Y (t0)|2H +

∫ t

t0

< Dψ(Y (s−)), dY (s) >H +
1

2

∫ t

t0

D2ψ(Y (s−))dJM,MKcs

+

∫ t

t0

∫
H

ϕ(s, y)πY (ds, dy),

where ϕ(s, y) = ψ(Y (s−)+y)−ψ(Y (s−))− < Dψ(Y (s−)), y >H= |y|2H , πY ((0, t],Γ) :=∑
s≤t 1Γ(Y (s)− Y (s−)) is the measure of the jumps of Y and M is the matringale part

of Y . Hence

|Y (t)|2H = |Y (t0)|2H + 2

∫ t

t0

< Y (s−), dY (s) >H +

∫ t

t0

dJM,MKcs

+

∫ t

t0

∫
H

|y|2HπY (ds, dy). (4.5)

Now by definition (again see section 5.5 of the appendix),∫ t

t0

dJM,MKcs = (1− κ)

∫ t

t0

‖b(s)‖LHS(U,H)ds

and ∫ t

t0

∫
H

|y|2HπY (ds, dy) =

∫ t

t0

∫
U

|b(s)y|2Hπ(ds, dy)

where π((0, t],Γ) =
∑

s≤t 1Γ(L(s) − L(s−)) is the measure of the jumps of L. We also
clearly have that

E
∫ t

t0

< Y (s−), dY (s) >H= E
∫ t

t0

< Y (s−), a(s) >H ds.

Let Bs := {Y (s) 6= Y (s−)}. Then

E < Y (s)− Y (s−), a(s) >H= E (1Bs < Y (s)− Y (s−), a(s) >H) = 0,

since P(Bs) = 0. Then

E
∫ t

t0

< Y (s−), a(s) >H ds = E
∫ t

t0

< Y (s), a(s) >H ds.
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4.2 Existence and exponential mixing: Regular case

Finally

E
∫ t

t0

∫
U

|b(s)y|2Hπ(ds, dy) = E
∫ t

t0

∫
U

|b(s)y|2Hν(dy)ds

≤ E
∫ t

t0

∫
|y|2U‖b(s)‖2

LHS(U,H)ν(dy)ds

= κE
∫ t

t0

‖b(s)‖2
LHS(U,H)ds,

since we are assuming that
∫
U
|y|2Uν(dy) = κ. Putting all this together and taking

expectations in 4.5 we see that

E|Y (t)|2H ≤ E|Y (t0)|2H + 2E
∫ t

t0

< Y (s), a(s) >H ds+ E
∫ t

t0

‖b(s)‖LHS(U,H)ds.

Proof of Theorem 4.2.1: Let L̄ be the double sided Lévy process corresponding to L.
Given n ∈ N, t0 ∈ R and x ∈ H we consider the regularised problem

dX(t) = (AnX(t) + F (X(t))) dt+G(X(t))dL̄(t), t ≥ t0, X(t0) = x,

with a straightforward generalisation of the stochastic integral with respect to L̄. It
is quite easy to show that the regularisation equation has a unique solution Xn(t) =
Xn(t, t0, x) by general existence theorems (see for example [11] chapter 9) and that,
since An is a bounded linear operator, Xn is a strong solution. That is,

Xn(t) = x+

∫ t

t0

(AnXn(s) + F (Xn(s))) ds+

∫ t

t0

G(Xn(s))dL̄(s).

Moreover, for each t ≥ t0, Xn(t) converges in L2(Ω,F ,P;H) to the unique (mild) solution
X(t, t0, x) of (4.4).

We will divide the proof into three steps:

Step 1: Here we prove that

E|X(t, t0, x)|2H ≤ C(1 + |x|2H) (4.6)

for all x ∈ H, t > t0, t0 ∈ R. Using Lemma 4.2.2 we get

E |Xn(t)|2H ≤ |x|
2
H + E

∫ t

t0

{2 〈Xn(s), AnXn(s) + F (Xn(s))〉H

+ ‖G(Xn)‖2
LHS(U,H)

}
ds.

Note that

2 〈Anx+ F (x), x〉H + ‖G(x)‖2
LHS(U,H)

≤ 2 〈Anx+ F (x)− F (0), x〉H + ‖G(x)−G(0)‖2
LHS(U,H) + I(x),
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4 Convergence to the Invariant Measure

where

I(x) := 2|F (0)|H |x|H + 2‖G(x)−G(0)‖LHS(U,H)‖G(0)‖LHS(U,H) + ‖G(0)‖2
LHS(U,H).

Clearly for any ε > 0 there is a constant Cε such that

I(x) ≤ ε
(
‖G(x)−G(0)‖2

LHS(U,H) + |x|2H
)

+ Cε.

Thus, since G is Lipschitz continuous and by assumption, there is a constant C1

such that for all n and x, we have

2 〈Anx+ F (x), x〉H + ‖G(x)‖2
LHS(U,H) ≤ −

ω

2
|x|2H + C1.

Hence

E |Xn(t)|2H ≤ |x|
2
H −

ω

2
E
∫ t

t0

|Xn(s)|2H ds+ C1(t− t0),

and so by Gronwall’s lemma

E |Xn(t)|2H ≤ e−ω(t−t0)/2
(
|x|2H + C1(t− t0)

)
.

Letting n→∞ we obtain (4.6).

Step 2: Recall that X(t, t0, x) is the value at time t of the solution to (4.4). We will
show that there is a constant K such that, for all x ∈ H, t0 < 0 and h > 0,

E|X(0, t0, x)−X(0, t0 − h, x)|2H ≤ Keωt0(1 + |x|2H), (4.7)

and
E|X(0, t0, x)−X(0, t0, x̃)|2H ≤ Keωt0|x− x̃|2H . (4.8)

To do this, observe that Xn(t, t0 − h, x) = Xn(t, t0, Xn(t0, t0 − h, x)). Thus, by
Itô’s lemma

∆n(t, t0, h, x) := E |Xn(t, t0, x)−Xn(t, t0 − h, x)|2H
satisfies

∆n(t, t0, h, x) ≤ ∆n(t0, t0, h, x)− ω
∫ t

t0

∆n(s, t0, h, x)ds

and hence by Gronwall’s inequality,

∆n(t, t0, h, x) ≤ e−ω(t−t0)E |Xn(t0, t0 − h, x)− x|2H .

Since by step 1 there exists a constant C such that

E|X(t, t0, x)|2U ≤ C(1 + |x|2U)

for all t0, h, x, we have

∆n(t, t0, h, x) ≤ e−ω(t−t0)2C(1 + |x|2U).

Letting n→∞ and t = 0 we obtain (4.7). Similarly for (4.8).
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4.3 An example: the Heath-Jarrow-Morton model

Step 3: We will show that the assumptions of 4.1.1 are satisfied. It follows from (4.7)
that X(0, t0, x) converges in L2(Ω,F ,P;H) as t0 → −∞ to a random variable X̃.
Therefore L(X(−t0, x)) = L(X(0, t0, x)) converges weakly to µ := L(X̃). Now, for
ψ ∈ Lip(U), s ≥ t ≥ 0 and x, x̃ ∈ H

|Ptψ(x)− Psψ(x)|2H = |E (ψ(X(t, x))− ψ(X(s, x)))|2H
≤ ‖ψ‖2

LipE |X(0,−t, x)−X(0,−s, x)|2H

and

|Ptψ(x)− Ptψ(x̃)|2H = |E (ψ(X(t, x))− ψ(X(t, x̃)))|2H
≤ ‖ψ‖2

LipE |X(0,−t, x)−X(0,−t, x̃)|2H .

Hence by (4.7)

|Ptψ(x)− Psψ(x)|2H ≤ Ke−ωt(1 + |x|2H)‖ψ‖2
Lip

and, by (4.8)
|Ptψ(x)− Ptψ(x̃)|2H ≤ Ke−ωt|x− x̃|2H‖ψ‖2

Lip.

4.3 An example: the Heath-Jarrow-Morton model

This is a well known model which is used in mathematical finance to price bonds. For
an in-depth treatment see [11], or the original paper [4]. A basic concept in bond market
theory is the forward rate function. Denote by

P (t, θ), 0 ≤ t ≤ θ

the price at time t of a bond paying the amount 1 at a time θ. Denote also the short-
rate process offered by a bank (i.e. the interest rate) by (R(t), t ≥ 0). A function
f(t, θ), 0 ≤ t ≤ θ defined by the relation

P (t, θ) = e−
R θ
t f(t,η)dη, t ≤ θ,

is called a forward rate function.
In Heath, Jarrow and Morton ([4]) it was assumed that

df(t, θ) = α(t, θ)dt+ < σ(t, θ), dW (t) >,

where W is a d-dimensional Wiener process with covariance Q. According to the ob-
served data, the random function f(t, θ) is regular in θ for fixed t and chaotic in t for
fixed θ. The latter property is implied by the presence of W in the representation and
the former is implied by the regular dependence of α(t, θ) and σ(t, θ) on θ for fixed t.
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4 Convergence to the Invariant Measure

For practical implementation of bond market models it is useful to replace the Wiener
process W by a Lévy process L defined on a filtered probability space (Ω,F , (Ft),P)
and taking values in a possibly infinite dimensional Hilbert space U . Thus we assume
that the dynamics of the forward rate function are given by the equation

df(t, θ) = α(t, θ)dt+ < σ(t, θ), dL(t) >U

for t ≤ θ.

Let

P̂ (t, θ) := exp

{
−
∫ t

0

R(s)ds

}
P (t, θ), t ≥ 0

be the discounted price of the bond. The fundamental theorem of asset pricing from
[2] states that there are no arbitrage strategies (which is a key assumption in market
models) if and only if there exists a probability measure P̂ equivalent to the original
one P, such that P̂ (t, θ), t ≤ θ is a local martingale on (Ω,F , P̂). In [5], [6], under mild
assumptions a necessary and sufficient condition was given that ensures the discounted
price process is in fact a local martingale with respect to the initial probability P. This
is the so-called HJM condition. In brief, under the assumption that the Lévy process
has exponential moments, using the Lévy-Khinchin formula we may explicitly determine
its Laplace transform. Indeed, for x ∈ U

Ee−<x,L(t)>U = e−tψ̃(x)

where ψ̃ is explicitly given: if we define J := −ψ̃ then

J(x) = − < a, x >U +
1

2
< Qx, x >U +J0(x)

and

J0(x) =

∫
U

(
e−<x,y>U − 1+ < x, y >U 1{|y|U≤1}

)
ν(dy).

The HJM condition requires that

α(t, θ) =
d

dθ
J

(∫ θ

t

σ(t, η)dη

)
=

〈
DJ

(∫ θ

t

σ(t, η)dη

)
, σ(t, θ)

〉
. (4.9)

For more details about the HJM condition see also [11] section 20.2.

An important link between HJM modelling and stochastic partial differential equations
is provided by the Musiela parameterisation. For t ≥ 0, ξ ≥ 0 and u ∈ U define

r(t)(ξ) := f(t, t+ ξ),

a(t)(ξ) := α(t, t+ ξ),

(b(t)u)(ξ) :=< σ(t, t+ ξ), u >U .
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4.3 An example: the Heath-Jarrow-Morton model

We will call r the forward curve. Next let S(t)ϕ(ξ) = ϕ(ξ + t) be the shift semigroup.
Then

r(t)(ξ) = f(t, t+ ξ)

= f(0, t+ ξ) +

∫ t

0

α(s, t+ ξ)ds+

∫ t

0

〈σ(s, t+ ξ), dL(s)〉U

= r(0)(t+ ξ) +

∫ t

0

a(s)(t− s+ ξ)ds+

∫ t

0

b(s)(t− s+ ξ)dL(s)

= S(t)r(0)(ξ) +

∫ t

0

S(t− s)a(s)(ξ)ds+

∫ t

0

S(t− s)b(s)(ξ)dL(s).

Hence

r(t) = S(t)r(0) +

∫ t

0

S(t− s)a(s)ds+

∫ t

0

S(t− s)b(s)dL(s)

is a mild solution to the equation

dr(t) =

(
∂

∂ξ
r(t) + a(t)

)
dt+ b(t)dL(t),

where d
dξ

denotes the generator of (S(t), t ≥ 0). Identifying the L(U,R)-valued process

b(·)(ξ) with the corresponding U -valued process (denoted also by b(·)(ξ)) we have that
under the HJM-condition (4.9)

dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) +

〈
b(t)(ξ), DJ

(∫ ξ

0

b(t)(ζ)dζ

)〉
U

)
dt+ b(t)(ξ)dL(t)

=
∂

∂ξ

(
r(t)(ξ) + J

(∫ ξ

0

b(t)(ζ)dζ

))
dt+ b(t)(ξ)dL(t).

Let the volatility b depend on the forward rate curve r according to, say, b(t)(ξ) =
G(t, r(t))(ξ), and let

F (t, r)(ξ) :=
∂

∂ξ
J

(∫ ξ

0

G(t, r(t))(ζ)dζ

)
.

Then the forward curve process becomes a solution of the so-called Heath-Jarrow-
Morton-Musiela (HJMM) equation

dr(t)(ξ) =

(
∂

∂ξ
r(t)(ξ) + F (t, r(t))(ξ)

)
dt+G(t, r(t))(ξ)dL(t). (4.10)

In [10], in the case where U = Rd and where G(t, r(t))(ξ)[z] = 〈g(t, ξ, r(t)(ξ)), z〉 with
g : [0,∞) × [0,∞) × R → Rd the following result was proven. We define Hγ := Hγ ⊕
{constant functions} where Hγ := L2

(
[0,∞),B([0,∞)), eγξdξ

)
. Note that Hγ equipped

with the scalar product < ψ + u, ϕ + v >Hγ :=< ψ,ϕ >Hγ +uv for ψ, ϕ ∈ Hγ, u, v ∈ R
is a real separable Hilbert space.
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4 Convergence to the Invariant Measure

Theorem 4.3.1. Let L be an Rd-valued square integrable zero-mean Lévy process with
jump measure ν, and let G be of the form described above. Assume that there exist
functions ḡ ∈ Hγ and h̄ ∈ Hγ ∩ L∞ such that

(i)
∫

R y
2 exp{|ḡ|L1|y|}ν(dy) <∞,

(ii) for all t, ξ ∈ [0,∞) and u, v ∈ R

|g(t, ξ, u)| ≤ ḡ(ξ), |g(t, ξ, u)− g(t, ξ, v)| ≤ h̄(ξ)|u− v|.

Then, for for each r0 ∈ Hγ there is a unique solution to (4.10) in Hγ satisfying
r(0) = r0. Moreover, if the coefficient g does not depend on t then (4.10) defines (time-
homogeneous) Feller families on Hγ.

We finally can say something about the invariant measure, using Theorem 4.2.1.

Theorem 4.3.2. Let G and F satisfy the assumptions of Theorem 4.3.1 for functions
ḡ and h̄. Define

K1(J, ḡ) := sup
z:|z|≤|ḡ|L1

|DJ(z)|, K2(J, ḡ) := sup
z:|z|≤|ḡ|L1

∥∥D2J(z)
∥∥
L(Rd,Rd)

and let K := |h̄|L∞
(

2K2(J, ḡ)|ḡ|2Hγ + 2K1(J, ḡ)
)1/2

. Let ω := γ−|h̄|2L∞−2K2 > 0. Then

for any C ≥ 0, there exists a unique invariant measure for (4.10) considered on Hγ +C,
and it is exponentially mixing with exponent ω/2 and function c of linear growth.

Proof. Verify the conditions of Theorem 4.2.1. See [11] Chapter 20 for more details.
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5.1 Gaussian measures in Hilbert spaces

It is well known that if Q is a positive definite n×n matrix with real entries, and m ∈ R
then the function

1

((2π)n detQ)
1
2

exp

(
−1

2
〈Q−1(x−m), x−m〉

)
is the density of a Gaussian probability measure µ on Rn with mean m and covariance
Q. Its characteristic function is given by

µ̂(λ) :=

∫
Rn
ei〈λ,x〉µ(dx)

= ei〈λ,m〉−
1
2
〈Qλ,λ〉.

We would like like to be able to extend this idea to an infinite dimensional separable
Hilbert space, H.

Definition 5.1.1. A probability measure µ on (H,B(H)) is Gaussian if for every h ∈ H
there exists m ∈ R and q ≥ 0 such that

µ{x ∈ H : 〈h, x〉H ∈ A} = N (m, q)(A)

for all A ∈ B(R). A random variable X taking values in H is said to be Gaussian if its
law is a Gaussian measure on H. A random process X taking values in H is Gaussian
if for all t1, . . . , tn, (X(t1), . . . , X(tn)) is a Gaussian random element in Hn.

The definitions of the mean vector and the covariance matrix can be extended to the
infinite dimensional case, thanks to the following theorem.

Theorem 5.1.1. Assume that X is a centred (i.e. EX = 0) Gaussian random variable
with values in a Hilbert space H. Then E|X|2H <∞. Moreover,

Ees|X|2H ≤ 1√
1− 2sE|X|2H

, ∀s < 1

2E|X|2H
.

Proof. See Theorem 3.31 of [11].

It follows from this theorem, as in section 2.2 that for every centered Gaussian random
variable X there exists a non-negative nuclear operator Q : H → H called the covariance
operator of X such that

E〈X, x〉H〈X, y〉H = 〈Qx, y〉H .
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It is easy to see that Tr Q = E|X|2H . More generally, if EX = m then the covariance
operator of X is the covariance operator of X −m.

It also follows that a Gaussian measure µ on H with mean m and covariance Q has
the following characteristic function

µ̂(λ) = ei〈λ,m〉He−
1
2
〈Qλ,λ〉H

for λ ∈ H. It is therefore uniquely determined by m and Q, and is also denotedN (m,Q).

5.2 Lévy-Khinchin decomposition

Assume that L is a Lévy process which is right-continuous with left limits on a Hilbert
space U . Let ∆L(s) := L(t)− L(t−). Given a Borel set A separated from 0, write

πA(t) :=
∑
s≤t

1A(∆L(s)), t ≥ 0.

Note that since L is right-continuous with left limits, πA is Z-valued. Clearly it is
a Lévy process with jumps of size 1. Thus πA is a Poisson process. Note also that
EπA(t) = tEπA(1) = tν(A), where ν is a measure that is finite on sets separated from 0.
Write

LA(t) :=
∑
s≤t

1A (∆L(s)) ∆L(s).

Then LA is a well-defined Lévy process.

Theorem 5.2.1 (Lévy-Khinchin decomposition). (i) If ν is a jump intensity measure
corresponding to a Lévy process then∫

U

(
|y|2U ∧ 1

)
ν(dy) <∞.

(ii) Every Lévy process has the following representation:

L(t) = at+W (t) +
∞∑
k=1

(
LAk(t)− t

∫
Ak

yν(dy)

)
+ LA0(t),

where A0 := {x : |x|U ≥ r0}, Ak := {x : rk ≤ |x|U < rk−1}, (rk) is an arbitrary
sequence decreasing to 0, W is a Wiener process, all members of the representation
are independent processes and the series converges P-almost surely uniformly on
each bounded subinterval of [0,∞).

It follows from the proof (see [11] Theorem 4.23 or [3]), that the processes

Ln(t) := LAn(t)− t
∫
An

yν(dy), t ≥ 0,
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are independent compensated coumpound Poisson processes. Hence we have the decom-
position

L(t) = at+W (t) +
∞∑
n=1

Ln(t) + L0(t), t ≥ 0,

where the processes W,Ln, n ≥ 0 and L0 are independent, W is a Wiener process, L0

is a compound Poisson process with jump intensity measure 1{|y|U≥r0}(y)ν(dy) and each
Ln is a compensated compound Poisson process with jump intensity measure

1{rn+1≤|y|U<rn}(y)ν(dy).

5.3 Krylov-Bogoliubov Theorem

Let (Pt)t≥0 be the transition function of a Markov process X = (X(t), t ≥ 0) on a
Banach space E.

Definition 5.3.1. A probability measure µ is invariant with respect to the transition
function (Pt)t≥0 or invariant for X if, for any Borel set Γ ⊂ E and any t ≥ 0,

µ(Γ) =

∫
H

µ(dx)Pt(x,Γ).

If the initial position X(0) of X is a random variable with distribution µ then the
distribution of X(t) is equal to µ for all t ≥ 0. Thus one can expect that processes with
invariant measures exhibit some kind of stability.

The following classical result provides a method of proving the existence of invariant
measures for Feller semigroups.

Theorem 5.3.1 (Krylov-Bogoliubov). Assume that (Pt) is a Feller transition semigroup
on E (so that for all t ≥ 0, Pt maps bounded continuous functions to bounded continuous
functions). Suppose also that there is an x ∈ E such that Pt(x, ·) converges weakly to a
probability measure µ. Then µ is an invariant measure.

5.4 Yosida approximations

Let A be a closed, densely defined linear operator on a Banach space E. The resolvent
set of A is ρ(A) = {α ∈ C : αI − A is invertible}. Denote the inverse (αI − A)−1 by
R(α). The family {R(α) : α ∈ ρ(A)} is called the resolvent of A.

Theorem 5.4.1 (Hille-Yosida). (i) A densely defined closed operator A generates a
C0-semigroup S such that, for some ω and M > 0, |S(t)z|E ≤ eωtM |z|E for all
z ∈ E and t ≥ 0 if and only if (ω,∞) ⊂ ρ(A) and

‖Rm(α)‖L(E,E) ≤
M

(α− ω)m
, ∀ m ∈ N, α > ω.
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Moreover if the above holds then

R(α) =

∫ ∞
0

e−αtS(t)dt, α > ω,

and S(t)z = limα→∞ e
tAαz, where Aα = α(αR(α)− I), α > ω.

(ii) If, for some z ∈ E, Aαz converges as α→∞, then z ∈ D(A) and

lim
α→∞

Aαz = Az.

Definition 5.4.1. The operators (Aα) in the Hille-Yosida theorem are called the Yosida
approximations of A.

5.5 Itô formula for Hilbert space valued semimartingales

First of all we need to define the quadratic variation process [M,M ]t of a general real-
valued square integrable martingale M . We note that this is closely related the angle
bracket process < M,M >t that appears in the Doob-Meyer decomposition (recall that
this is defined as the unique increasing predictable process such that < M,M >0= 0
and M2− < M,M >t is a martingale), but is not equal to this process when the sample
paths are not continuous. Its definition and properties are contained in the theorem
below. For its proof we refer the reader to [8] Theorem 18.6.

Theorem 5.5.1. For every M ∈M2 there exists an increasing adapted process ([M,M ]t, t ≥
0) which is right-continuous with left limits, called the quadratic variation of M , having
the following properties.

(i) For every sequence πn = (0 < tn0 < tn1 < · · · ) of partitions of [0,∞) such that tnk →
∞ as k →∞ and limn→∞ supj

(
tnj+1 − tnj

)
= 0, one has

[M,M ]t = lim
n→∞

∑
j

(
M
(
tnj+1 ∧ tnj

)
−M

(
tnj ∧ t

))2
,

where the limit is in L1(Ω,F ,P).

(ii) M2 − [M,M ] is a martingale.

(iii) If M has continuous trajectories then < M,M >t= [M,M ]t.

We can now state the Itô formula for a general Hilbert space valued valued semimartin-
gale. This can be found in [8], or appendix D of [11]. First we will need some notation.
Let H be a separable Hilbert space. For any process Y , ∆Y (s) := Y (s) − Y (s−). De-
note by H⊗̂H the space H ⊗ H completed with respect to the Hilbert-Schmidt norm.
Clearly, L(H⊗̂H,R) ≡ LHS(H,H). Let {en} be an orthonormal basis of H and let M
be a square integrable martingale taking values in H. Define Mk = 〈M, ek〉H , which is
a real-valued square integrable martingale.
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We can then define
JM,MKs :=

∑
i,j

ek ⊗ ej[Mk,M j]s,

which should be compared with the operator angle bracket defined in section 3.1. We
also define the so-called continuous part JM,MKct of JM,MKt by

JM,MKct :=
∑
i,j

ek ⊗ ej

(
[Mk,M j]t −

∑
s≤t

∆Mk(s)M j(s)

)
.

Theorem 5.5.2. (Itô formula) Assume that X = M + A is a semimartingale taking
values in a Hilbert space H. Let ψ : H → R be of class C2. Assume that for each x ∈
H,D2ψ(x) ∈ LHS(H,H) and the mapping x 7→ D2ψ(x) ∈ LHS(H,H) ∼= L(H⊗̂H,R) is
uniformly continuous on any bounded subset of H. Then ψ(X) is a local semimartingale
and, for all t ≥ 0, P-a.s.,

ψ(X(t)) = ψ(X(0)) +

∫ t

0

〈Dψ(X(s−)), dX(s)〉H +
1

2

∫ t

0

D2ψ(X(s−))dJM,MKs

+
∑
s≤t

{∆(ψX)(s)− 〈Dψ(X(s−)),∆X(s)〉H − Y (s)}

where

Y (s) :=
1

2
D2ψ(X(s−))∆X(s)⊗∆X(s).

We also have

ψ(X(t)) = ψ(X(0)) +

∫ t

0

〈Dψ(X(s−)), dX(s)〉H +
1

2

∫ t

0

D2ψ(X(s−))dJM,MKcs

+
∑
s≤t

{∆(ψX)(s)− 〈Dψ(X(s−)),∆X(s)〉H} .

If we let πX((0, t],Γ) :=
∑

s≤t 1Γ(∆X(s)) be the jump measure of X, then the above
formula becomes

ψ(X(t)) = ψ(X(0)) +

∫ t

0

〈Dψ(X(s−)), dX(s)〉H +
1

2

∫ t

0

D2ψ(X(s−))dJM,MKcs

+

∫ t

0

∫
H

(ψ(X(s−) + y)− ψ(X(s−))− 〈Dψ(X(s−)), y〉H)πX(ds, dy).
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Noise, Encyclopedia of Mathematics, Cambridge University Press, 2007.

[12] G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,
Encyclopedia of Mathematics, Cambridge University Press, 1992.

[13] A. Rusinek, Invariant measures for a class of stochastic evolution equations,
Preprint IMPAN 667, Wardzawa, (2006).

57


