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Abstract: In this paper the spectra of certain Schrédinger-type operators defined in the
sub-elliptic setting of H-type groups are investigated. Two approaches are taken: the first
one makes use of a convenient unitary transformation on the Heisenberg group, while the
second proceeds via functional inequalities. The paper concludes by highlighting a major
difference between the spectrum of the considered operators depending on which natural
sub-Riemannian metric is chosen.

Keywords: H-type groups, super-Poincaré inequality, spectral gap tnequality, spectrum,
logarithmic Sobolev inequality

Contents

[L_Introduction 2
b Dofni ] —] 5
E G e —— ] - I 6
S s I — el 10

K1 Super-Poincaré inequalitied . . . . ... 10
1.2 Potentials defined by the Carnot-Carathéodory distancd . . . . . . . 12

L3 Potentials defined by the Kaplan distaned . . . . . . . . ... ... 16
[Referenced 26

*Supported by EPSRC EP/D05379X/1




1 Introduction

In the classical setting of R™ an extensive study has been made of the spectral
properties of so-called Schrodinger operators, that is operators of the form

L=-A+V (1.1)

where A is the standard Laplacian on R™ and V' is some potential. In particular
the location of the continuous and discrete parts of the spectra of such operators
(if indeed they exist) is of great interest. A classical reference detailing this study
is the book of M. Reed and B. Simon [21].

In this paper we pursue the same questions, but instead work in the sub-
Riemannian setting of H-type groups. We consider a direct analogue of the classical
operator ([LJ]) in such a setting, where we replace the full Laplacian with the more
natural sub-Laplacian. Given an H-type group G, we will thus be interested in the
sub-elliptic operators

L=—-Ag+ VU Vg (1.2)

where Ag and Vg are the sub-Laplacian and sub-gradient respectively. When
considered as an operator acting on L?(uy) with uy = Z e Ydx, such operators
are positive and self-adjoint. Our aim will be principally to find conditions on the
potential U that ensure the operator (L2) has a purely discrete spectrum, focusing
on the natural case when U is given by a power of one of the intrinsic distance
functions defined on the group.

Our first attempt to answer some of these questions involves the use of an ap-
pealing unitary transformation on the Heisenberg group, but it quickly becomes
apparent that such an approach is limited when it comes to general H-type groups
and our preferred choices for the potential U. The majority of this paper is there-
fore devoted to taking a functional inequality approach, similar to that taken in
[, [25] and 28], in order to overcome these limitations.

Functional inequalities on H-type groups have attracted considerable atten-
tion recently (see for example [I 8, @, [0, 07, [8]), since despite being relatively
simple cases of sub-Riemannian settings, the structure that they possess renders
traditional methods inapplicable. Indeed, the main difficulty (as described in [II)
stems from the fact that the Ricci tensor of the sub-Laplacian on an H-type group
is —o0o, and hence the methods of Bakry and Emery (see [2]) to prove many useful
inequalities can not be used.

Another major motivation for this paper is the work of Hebisch and Zegartinski
([T4]), in which an effective technology was introduced to prove inequalities such
as the logarithmic Sobolev inequality for measures on H-type groups of the form

—adP (x)

Z J

e

p(dx) =



where a > 0,p > 1 and d is Carnot-Carathéodory distance on the group. The
work we present here can thus be thought of as an extension of their study to
alternative inequalities that carry spectral information.

Similar questions to those addressed here have recently been investigated in
[27], where general conditions for empty essential spectrum for hypoelliptic gen-
erators are put forward. However, these conditions are not easily applicable to
the cases of special interest to us, i.e. when the potential U in ([[2) is defined in
terms of a natural distance function on the group. This is because of the singular-
ities possessed by such distance functions, and hence our approach is necessarily
different.

The layout of this paper is as follows. After presenting the necessary definitions
and notation, we start by proving a generalisation of a classical result in the
setting of the Heisenberg group, which gives some conditions on the growth and
smoothness of the potential U that ensure that the operator has empty essential
spectrum. Since these conditions do not cover cases of particular interest to us and
the methods are not easily generalised to all H-type groups, we then take a different
approach, and investigate functional inequalities for the associated measures that
contain spectral information. This section is split into two subsections: the first
concentrates on the situation when the potential U is defined in terms of the
Carnot-Carathéodory distance, while the second tries to overcome some of the
extra difficulties encountered when the Carnot-Carathéodory distance is replaced
by the Kaplan distance. These difficulties are perhaps rather surprising, and it is
interesting that they result in operators with differently structured spectra.

2 Definitions and notation

In this section we briefly give the basic definitions and results that will be used
throughout the rest of the paper. We refer the reader to [6] for a comprehensive
review of this material.

Definition 2.1 (H-type group). Let g be a finite-dimensional real Lie algebra
equipped with Lie bracket [-,-] : ¢ X g — @. Let 3 denote the centre of g, that is
3={Xeg: [ X,)Y]=0VY €g}.

The Lie algebra g is said to be of H-type if it can be endowed with an inner
product {-,-) such that [3-, 3] = 3, and moreover, for every fized Z € 3, the map
Jyz 3T — 3 defined by

(J7(X),Y)=(Z,[X,Y]) VY €3t

15 an orthogonal map.
An H-type group is a connected and simply connected Lie group G whose Lie
algebra is of H-type.



In addition to this abstract definition, we have the following characterisation
result (Theorem 18.2.1 of [6]):

Theorem 2.2. G is an H-type group if and only if G is (isomorphic to) R™™
with the group law

(w,2) o (w,() = ( 5+ G+ i _'gw(lj’)w Zw; L j= 1 ) ) (2.1)

for w,w € R™, 2, € R™ and where the matrices UV, ... U™ have the following
properties:
(1) UY) is an nxn skew-symmetric and orthogonal matriz for every j € {1,...,m};
(2) URUW - UOUF =0 for every k,j € {1,...,m} with k # j.

Thus, without any loss of generality, we will henceforth assume that any H-type
group G is of this form. For an H-type group G and x € G, we will therefore use
the notation

r=(w,2) = (W,..., Wy, 21, Zm),
for w € R™ and z € R™. It is clear that the point (0,0) is the identity in G and
the inverse operation is (w, 2)™! = (—w, —z).

There is a natural family of dilation operators on an H-type group G:

Definition 2.3. The family of operators 6y : G — G for A > 0 defined by
(w, z) = (Aw, \z)

for (w,z) € G is called the family of dilations on G. The map 6y is a group
homomorphism, in the sense that dy(x oy) = dx(x) 0 d\(y), Vz,y € G.

We can identify g with the space spanned by the left-invariant vector fields
{X1,..., X, Z1,..., Zy} on G, where

o 1 . 0
Xi= ot ZZUH wy— 2= 5 (2.2)

klll

forie {1,...,n},j € {1,...,m}. One can calculate that
X X)) =Y Uz, (2.3)

from which it follows that span{X;, [X;, X;]| 4,5,k €{1l,...n}} = g. This is
equivalent to saying that the H-type group G is a Carnot group of step 2.
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Definition 2.4. The second order differential operator Ag = Z?Zl X? is the
canonical sub-Laplacian on G. The vector-valued operator Vg = (Xq,...,X,) is
the canonical sub-gradient on G.

We will treat a general H-type group G as a metric space, and we can do this
in two natural ways. Despite the fact that both metrics are equivalent (in fact all
homogeneous metrics on an H-type group are equivalent — see Proposition 5.1.4
of [6]), it turns out that the the choice of metric will make a big difference to the
spectrum of the associated operator.

The first, and perhaps most common way to define a metric on an H-type group
G is to exploit the structure of the group:

Definition 2.5 (Carnot-Carathéodory distance). Let v : [0,1] — G be an ab-
solutely continuous path. We say that ~ is horizontal if there exist measurable
functions aq, ..., ay, :[0,1] — R such that
() =Y ai(®)Xi(v(1)
i=1
for almost all t € [0,1] i.e. (t) € span{Xi(y(t)),..., X, (y(t))} almost every-
where. For such a horizontal curve v, we define the length of v to be

1 n %
o= [ (Z a?(t)) dt.
0 \i=1
We then define the Carnot-Carathéodory distance d(x,y) between two points x,y €
G to be

d(z,y) := inf {|7y| such that 7 : [0,1] — G is horizontal and v(0) = z,~(1) = y}.
We will write d(x) = d(z,0).

It should be noted that the Carnot-Carathéodory distance is well-defined by
Chow’s Theorem (see for example [4, 24]).

The second natural distance function that will be of interest to us arises from
the fundamental solution of the the sub-Laplacian Ag. This was discovered by A.

Kaplan in [I5] on general H-type groups, extending the work of G.B. Folland [IT]
on the Heisenberg group.

Definition 2.6 (Kaplan distance). Define the function N : G — [0, 00) by N(x) =
(Jw|* + 16|z|2)1/4 forx = (w,z) € G. Then N is a symmetric homogeneous norm,
which we will call the Kaplan distance. Moreover, F = N?~% is a fundamental

solution of Ag, where (Q = 2m + n is the homogeneous dimension of the group, in
the sense that F' is smooth out of the origin and

AcF(z) =0 in G\{0}.



An important difference between the two distance functions is that N is smooth
everywhere outside the origin, whilst d has points of non-smoothness on the centre
of the group:

Proposition 2.7. (i) d : G — [0,00) is smooth on the set {x = (w,z) € G :
w # 0}, and |Vgd(x)| =1, for all x = (w, z) € G such that w # 0.

(ii) N : G — [0,00) is smooth on G\{0}, and |VeN(x)| = ||z||/N(z), for all
z = (w,z) €G such that x # 0, where ||z|| := |w| = (Y1, w?)?.

Proof. Part (i) is found in [I9], whilst part (ii) can be calculated directly. O

Example 2.8 (The Heisenberg group). The main example of an H-type group to
keep in mind is the Heisenberg group H. In fact H-type groups were introduced as
a generalisation of the Heisenberg group. H can be realised as R?T! with the group
operation

1
(w1,w272) © <W17w27 C) = (wl +wi, Wy + wo, 2+ + é(wle - sz))

for w = (wy,wy),w = (w1, wq) € R? and z,{ € R. The left-invariant vector fields
on H are given by

1 1
Xy = awl - §w26z, Xy = an + §w18z, Z = 0.,

and one can easily calculate that [ X1, Xs| = Z and [X4, Z] = [Xs, Z] = 0. Higher
dimensional Heisenberg groups can similarly be defined, and all have the common
characteristic of a one-dimensional centre.

3 Generalisation of a classical result to the Heisen-
berg group

We begin our investigation into the spectrum of sub-elliptic operators of the form
([C2A) by working in the Heisenberg group, H. The aim of this section is to prove
a direct analogue of the following classical result for Schrédinger operators on R™
(see for example Theorem XIII.67 of [21]): consider the operator H = A +V on
R", where A is the standard Laplacian on R" and V' € L} (R") is a potential

which is bounded from below. Then, if V(z) — oo as |z| — oo, it follows that H
has a purely discrete spectrum.



We will utilise a useful representation of the sub-Laplacian Ay on H given in
[T3]. Indeed, denote by Fj3 the partial Fourier transform with respect to the third

variable:
o0

Fsf(wy,wy, () := (27?)1/2/ e*ich(wl,wQ,z)dz,

—00

for x = (w, z) € H. Then it can be shown that

Fol—Duf)(w, ) = (Ve + CA(w))? Faf(w, ),

where where w = (wi,ws) € R?, V,, = (9, Ou,) and A(w) = L(—wo, wy). For
fixed ¢ the operator (iV,, + CA(w))® has been well studied, since it corresponds
to the Hamiltonian of a particle moving in a magnetic field (see [I6]). Indeed, we
have the following spectral decomposition:

Fa(=Auf)(w, Q) =Y M(Q)PeFaf(w,(), weR*(eR
k=0

where A\ (¢) := [C|(2k+1),k € {0,1,...}, and P is the orthogonal eigenprojection
given by

Puf(w) = [ J(w )y, )i

for w € R?, where

Wk(w, w/) — |§| z w1w2—w2w1)_@\w—w <|<| |w o w,|2>

2

and Ly, is the k-th Laguerre polynomial. If we then define f(¢, k) := ||PxFsf (w, )| z2(aw)
for any f € L?*(H), one can calculate that

[ #a)-dapia)ds - > [ tctek+ v || d. (3.1
H —p /R

Moreover, by the spectral theorem we can define a functional calculus for the
operator Ay. Indeed, for any Borel function « : [0, 00) — R, we define

o(=Am) = ¢ (A(C)), (3.2)

where the right hand side represents the operator Fys >, ¢(Ae(C))PrFs, and we
have that

[ rwpt-answi =3 [o(ider s n)icnfac 63

k=0
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Finally, for a self-adjoint operator H on L*(H), let ,,(H), m € NU{0} be as in
the Min-Max principle i.e. either 6,,(H) is the m-th eigenvalue below the bottom
of the essential spectrum of H, or 6,,(H) is the bottom of the essential spectrum
and 60,,(H) = 0, (H) for m" > m (see for example Theorem XIII.1 of [21]).

Theorem 3.1. Suppose V is in L}, .(H) and is bounded from below. Suppose also
that for every L > 0 there exists R, > 0 such that V(z) > L whenever d(x) >
Ry. Then the operator L = —Ag +V on L*(H) has empty essential spectrum. In
particular it has a purely discrete set of eigenvalues and a complete set of eigen-
functions.

Proof. Suppose W is a bounded function, supported in a compact set Q C R?, so
that
sup |W(x)| < M,

€
for some M € R. For ¢ > 0 consider the operator

Wo-(—An),

where ¢.(t) = (et> +t +1)"" for t € R. Using the above observations, and follow-
ing [I3], we have that

Te(W2¢3(—Ag)) < M?— // qu? (A () (w, w)dCdw

o k=0

Q
QJLW'ZZ/ FOuC)IClC

|Q| q
27r2 Z/ (e|C12(2k + 1)2 + || (2k + 1) + 1)2d€ =

Since W¢.(—Ag) is positive and self-adjoint on L?(H), we thus have that
Wé.(—Apg) is Hilbert-Schmidt for all € > 0. Moreover,

(EM(O? + MO + 1) = (MO + 1) 71 = do(MlQ))

in L2(R) x [*(NU {0}) as ¢ — 0. Therefore W¢o(—Apg) is a norm-limit of
Hilbert-Schmidt operators:

W (o — é2) (— AH>wr\2<M2z/ do — 6.)? i

< 52M2

="M [[9ll5.



We can thus conclude that W¢o(—Apg) is a compact operator, or in other words
that W is relatively compact with respect to —Ag.
Since Wao(—Ap) is compact, by Weyl’s Theorem (see Corollary 2 of Theorem
XII1.14 of [21]),
Uess(_AH + W) = Oess(_AH) = [07 OO)

Therefore by the Min-Max principle 6,,(—Ag + W) > —1 for m sufficiently large.
Now, given a > 0, define V, by

Vo(x) = min{V(z),a+ 1} —a — 1.

Then V, has compact support, since V' (z) — oo as d(x) — oo. Thus, by the above
considerations, 6,,(—Ag + V,) > —1 for large m. Finally, since

Om(L) > O (—Am + Vo) +a+ 1,

we see that 6,,(L) > a for large m. Since a is arbitrary we reach the desired
conclusion. O

As mentioned in the introduction, we are actually interested in probability
measures of the form juy(dz) :== Z7'e V@ dx on H, where Z = Ju e V@ dr < oo,
with which we can associate a positive and self-adjoint operator £L = —Ayg +

VHUVH on Lz(d,uU).
Corollary 3.2. Suppose that V = |VuU|* = 3AuU is in L}, (H), is bounded from

loc

below, and is such that V(x) — oo as d(x) — oo. Let L = —Ag + VyU.Vy, so
that L is a positive self-adjoint operator on L*(juy). Then oess(L) = 0.

Proof. Follows from Theorem Bl and the identity

O

Following a recent trend (see [I4] and references therein), for the rest of this
paper we will concentrate on the case when U is given as a power of one of the
natural distance functions i.e. U(x) = —adP(z) or U(x) = —aNP(z) with p €
(1,00) and a > 0, where d and N are the Carnot-Carathéodory and Kaplan
distance functions respectively. We can therefore try and apply Corollary in
both these cases. However, this is not straightforward in either case. Indeed, when
U = adP we have that

1 1 22 1
ZIVRUP - SARU = %d%”l) - %&’2 - %dﬁ*lAHd, (3.4)



but we must understand this expression in the sense of distributions since Ayd is
not defined on the centre of the group. Moreover, when U = NP we have
a?p?

1 1
$VEUP — 2 Aul = “L N @)

- (= 20 sy,

where ||z]|? = w} 4+ w3 as usual, so that it is certainly not true that V(z) — oo
as |z| — oo (V(z) = 0 for all z = (0,2) € H). We therefore look for alternative
methods to investigate these interesting cases.

4 Spectral information via functional inequali-
ties

The relationship between functional inequalities and the spectrum of operators is
a very interesting and much studied one. Indeed, if (€2, 1) is a probability space
and (£,D(L)) is a positive self-adjoint operator on L*(p), then it is well-known
that £ has a gap at the bottom of its spectrum if and only if there exists a constant
co > 0 such that

u(f = n(f)?* < c€lf, f),

where (€, D(€)) is the Dirichlet form associated to £. More recently this relation-
ship has been further illustrated by the work of F. Cipriani ([7]) and F. Y. Wang
([25]) in which functional inequalities are introduced that characterise the essential
spectra of operators under very general conditions. In this section we aim to use
functional inequalities to overcome the problems encountered at the end of section
in the more general setting of H-type groups.

4.1 Super-Poincaré inequalities

To state the results of Wang and Cipriani in full generality, we first need the
following two technical definitions.

Definition 4.1. A topological space ) is a Lusin space if ) is homeomorphic to
a Borel subset of a compact metric space.

Remark 4.2. [t should be noted that, as shown in Theorem 82.5 of [24], every
complete metric space is a Lusin space. In particular, any H-type group G is a
Lusin space.
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Definition 4.3. Let Q) be a Lusin space, and u a positive Radon measure on
Q having full topological support. A positive, self-adjoint operator (L, D(L)) on
L?(u), with associated closed Dirichlet form (£, D(E)) defined by

E(f,9)=nu(fLg),  f,g€DL),

is called a Persson operator if inf o.5s(L£) = sup {3(K) : K C Q is compact}, where

€. 1)
A1

This class of operator was introduced by A. Persson in [20]. The result below
is a combination of the independent work of Wang and Cipriani, and is explicitly

stated in [26].

Y(K) := inf{ : feD(E), supp(f) CKC}.

Theorem 4.4 (Wang/Cipriani). Let 2 be a Lusin space, ju a positive Radon mea-
sure on 0 having full topological support, and (L, D(L)) a Persson operator on
L?(u). Then the inequality

p(f?) S rp(fLf) + B (ulf)?,  ¥r>r,  feDL), (4.1)

for some decreasing function (3 : (rg,00) — (0,00) and rog > 0 holds if and only
if 0ess(L) C [rgt,00). In particular, @) is satisfied with ro = 0 if and only if
Oess(L) = 0.

Inequality (Bl is known as a super-Poincaré inequality. In a similar way
to the generalisation of the standard logarithmic Sobolev inequality to the LS,
inequality (see [H]), we can generalise the super-Poincaré inequality to a g-super-
Poincaré inequality:

Definition 4.5. Let (2, 1) be a probability space, equipped with a metric d : ) X

Q2 — [0,00). Forq € (1,2], we say that p satisfies a g-super-Poincaré inequality,
or SP, for short, with constant ro, if

o\ 2

wulfle <ru|VfIT+ 6(r) (,u\f|5> : Yr > 1o, (SF,) (4.2)

for all locally Lipschitz functions f and some 3 : (1o, 00) — (0,00), where |V f|(z) =
lim sup ;.o 1f () = f(y)/d(z,y).

Remark 4.6. In an H-type group G equipped with the Carnot-Carathéodory dis-
tance d, [V f|(w) = lim supp.) o | (@) — F(0)|/d(.y).
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4.2 Potentials defined by the Carnot-Carathéodory dis-
tance

Let G be an H-type group as usual, equipped with the Carnot-Carathéodory dis-
tance d. Let p, be the probability measure on G defined by

e—ozdp (z)

Z

pp(dx) = dx (4.3)

where Z = [e @z is the normalisation constant, and p € (1,00),a > 0.
Define
L, :=—Ag+ Vg(ad’) - Vg = —Ag + apd” 'Ved - Vg (4.4)

as a positive self-adjoint operator acting on L?(y,). The associated Dirichlet form
E,(f,g) is then given by

E,(£.9) = 1p(fLyg) = / Vef - Vegdpy. (4.5)

We aim to prove the following:

Theorem 4.7. For any p > 1 the positive self-adjoint operator L, on L*(p,) given
by Q) has a purely discrete spectrum i.e. oess(L,) = 0.

The idea is to use Theorem B4 It is clear that we first need to show that £, is
a Persson operator. We make use of the following very general result stated in the
setting of Dirichlet forms, proved by G. Grillo in [I2] (and also stated explicitly in

@)

Theorem 4.8 (Grillo). Let (Q, ) be a locally compact, separable metric space,
and (£,D(E)) a regular, strongly local Dirichlet form on L*(SY), with associated
positive self-adjoint operator (L, D(L)).

Define the associated intrinsic pseudo-metric p on ) by

pla,y) = sup{|f(x) = f(y)| : f € DE)NCo(Q),T(f, ) < 1}
where for f € D(E), T'(f, f) is such that

[ e ndu=eer =36 FaeDENGO)

Suppose p is a true metric generating the original topology of 2. Then the operator
(L,D(L)) is a Persson operator.

Corollary 4.9. The operator L, given by ) acting on L*(u,) is a Persson
operator.

12



Proof. The intrinsic pseudo-metric associated to £, is given by

pz,y) = sup {|f(z) = F()| : [Vaf® <1},
which is nothing more than the Carnot-Carathéodory distance (by definition). O

The next result we prove on route to Theorem E is that the measures p,
satisfy certain super-Poincaré inequalities.

Theorem 4.10. Let p, be the probability measure on G given by [E3).

(i) Suppose p > 2. Then p, satisfies an S P, inequality with constant ro =0 i.e.

o\ 2

ol f19 < rip Vs 17+ B0) (el f12) ", W >0,

where + +% =1, for some function 3 : (0,00) — (0,00) and for all locally
Lipschitz functions f.

(i) Suppose p € (1,2]. Then w, satisfies an SPs inequality with constant ro = 0
1.€.
o(f?) < i |V f P+ B(r) Gl F)* ¥r>0,
for some function (3 : (0,00) — (0,00) and for all locally Lipschitz functions

f.

Proof. The idea is to pass from a logarithmic Sobolev inequality for the measure
{p, which is true by Theorem 4.1 of [I4], to a super-Poincaré inequality by adapting
the methods of [25].

We first deal with the case p > 2. Without loss of generality we may assume
that f > 0. By Theorem 4.1 of [I4], we have that there exists a constant ¢ such
that

b (fq log 1 ) < ey V|7 (4.6)

pp 9

where % + % = 1. Let g : (0,00) — R be given by g(§) = t& — £ log (%) for any
t,a > 0. We then have that

max g(&) = 2Vaet 2. (4.7)

{&>0}
Suppose that 1,(f2) = 1, and set a = p,(f?). Then by @), for all ¢ > 0,

tf% — flog (fq) < 2Vae?

a

= [y (fq log %) > ta — 2V ae! =2, (4.8)
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using the fact that f > 0 and p,(f2) = 1. Setting b = y,| Vg f|?, by (), we then
have

ta —2Vaet=2 —cb < 0.
Solving this quadratic inequality gives

2\/ et—2 \/ 4et=2 4 4tch

2t

Va <

for t > 0, so that a < %b+ 46;2. Thus

t 2

pelF7) < 2l Vel 4%

for all t > 0 and f such that ,(f2) = 1. Replacing f by 577 vields

G

)

for all ¢ > 0. Taking r = % we see that SP, holds, proving part (i).

In the case where p € (1,2), we no longer have an inequality of the type (EG).
However, by Theorem 4.3 of [I4] there exists a constant ¢ € (0, 00) such that

t 2

o) < i Va1 + 4% (ol

ke

iy (f2 [log(1 + f2)}6) < Ve f)?+ (log2)’,  pm(ff) =1, (49

where 6 = %. In this case we instead let g : (0,00) — R be given by g(§) =t —

0

1S [log <1 + %)} for t,a > 0, so that supge o g(§) < ¢ a(et’’ —1). Proceeding

now in a very similar way as in the proof of part (i), we arrive at an S P, inequality.
O

The final result we need is that SF, inequalities are stronger than S P, inequal-
ities (at least when the dimension of the underlying space is finite).

Lemma 4.11. Suppose an arbitrary probability measure j1 on G satisfies an SP,
inequality with ¢ € (1,2] and constant ro = 0. Then u also satisfies an SPs
inequality with constant ro = 0.

Proof. As usual, without loss of generality we may suppose f > 0. Let ¢ < 2
2
(there is nothing to prove if ¢ = 2). Applying the SFP, inequality to fq yields,

) (w2, v >o.

p(f?
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Therefore for all » > 0, we have by Holder’s inequality followed by Young’s in-
equality,

29y

u(I?) < o (PPIVs 1) + 80) ()’
20=1p 5 2a—1p (9 _
< Z L Ve 4 T ) 4 60) ()
for all 7 > 0. Taking 7 = M we see that
1 2071y ayg
() < T Vel P+ () (f)°
2q L 79 2-q 2 2 2
-2 (5) 2= )5 Ve + 80) ()
4
= u(f) < (2= Q) 7Tl Vef 2+ 26(r) (uf)*
Taking s = (2 — q) 74 then yields the result. O

Proof of Theorem[f.”} We can now combine all of the above results to arrive at
Theorem 7l Indeed by Theorem EET0 and Lemma LTIl we have that the measures
1, satisfy a super-Poincaré inequality with constant ro = 0 for all p > 1. Moreover,
by Corollary E9, £, is a Persson operator, so that we may conclude by applying
Theorem EAL O

Remark 4.12. Since the main result we use to prove Theorem [{] is that the
measure [i, satisfies a logarithmic Sobolev inequality, we can greatly extend the
class of measures for which these results remain valid when p > 2. Indeed, if we

define

efoV

fp = — Ay

with W a differentiable potential satisfying VW |4 < d¥+ K for constants K and
v € (0,p), and V' a measurable function such that maxV — minV < oo, then all
the above results remain true for fi,. This follows from Corollary 4.1 of [T7).

Corollary 4.13. Let pi(x,y) be the heat kernel at time t on an H-type group G
i.e. pi(x,y) is the function (smooth by Hormander’s theorem) such that

5 f(e) = [ ) f)dy
Let p(z) := p1(z,e) and define
Ly :=—Ag+ Vglogp-Vg.
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Then Ly is a positive self-adjoint operator on L*(puy), where py(dr) := p(x)dz,
and ess(Ly) = 0, so that Ly has a purely discrete spectrum.

Remark 4.14. Ly can be regarded as the natural Ornstein- Uhlenbeck generator on
G, as suggested in [3], and the resulting Markov process is the natural OU-process
associated to the hypoelliptic diffusion on G.

Proof. Tt follows exactly as above, once we have recalled that uy satisfies a loga-
rithmic Sobolev inequality (see [Tl [4] and [I7]). O

4.3 Potentials defined by the Kaplan distance

An interesting question to ask is whether one can replace the Carnot-Carathéodory
distance with the Kaplan distance in the above work. At first glance such a
question might seem simple, since all homogeneous metrics on G are equivalent.
However, as we will see, this is not the case, and there are some fundamental
differences between the two situations which arise from the different smoothness
properties of the two distance functions.

To proceed, suppose now that we are working in an H-type group G as before,
but now equipped with a probability measure and associated self-adjoint operator
given by

e—aN? (z)

Z
respectively, where p € (1,00), @ > 0 and Z = [ e *N"@)qy.

Trying to apply the functional inequality approach of section Tl we immedi-
ately immediately come up against a problem in the form of Theorem 6.3 from

T4
Theorem 4.15 (Hebisch-Zegarlinski). The measure v, on G given by [EIW) with
p > 1 satisfies no LS, inequality with q € (1,2].

vp(dz) == dr, T, = —Ag +apN?'VgN - Vg (4.10)

Thus we cannot simply follow the proof of Theorem BT to conclude that the
operator 7, given by (EZI0) has empty essential spectrum. Theorem EETH illustrates
a major difference in the behaviour of the measures defined with the Carnot-
Carathéodory distance and those defined with the Kaplan distance.

In view pf this, it seems that the problem of gaining spectral information about
the operator 7, given by (EZI0) is an interesting one. We therefore start by asking
whether such operators have a spectral gap. This question is completely answered

by Theorems ELT0 and EET9 below.

Theorem 4.16. If p < 2, then the measure v, given by [EIW) does not satisfy a
spectral gap inequality. In particular the operator T, given by [EIW) does not have
a spectral gap, and hence it does not have empty essential spectrum.
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To prove this, we make use of the following result, quoted from [I4] (Lemma
6.3), and we refer the reader to this work for the proof.

Lemma 4.17. Let f be a smooth function on G and d the Carnot-Carathéodory
distance as usual. Then at points xo € G such that (Vg f)(xo) = 0 we have

|[f(2) = f(z0)| < O (& (=, 20))
forall z € G.

Proof of Theorem[f.18 Let p < 2 and suppose for a contradiction that there exists
a constant ¢y such that

vp(f?) = (1) < | Ve fI? (4.11)
for all locally Lipschitz functions f.
Fix zp = (0,2) € G for = € R™{0}. Then |VeN(zp)| = 372 = 0 by

Proposition B, so that VgN(zg) = 0. Similarly Ve N(—z9) = 0. Let 7o > 0 be
small enough so that 0 & B, (x¢) = {y € G : d(y',x0) < ro}. Then N is smooth
on B, (xg), and by Lemma FLTT7 there exists a constant C} such that

IN(y) = N(z0)| < Cyr, (4.12)

for all y € B,,(xp). The same holds for y € B,,(—zo). We now dilate by a factor
of t > 0. Since N is homogeneous, we have that

IN(y) = N(8i(0))| = t|N(-1(y)) — N(wo)| < Cutrg

for 0;-1(y) € Byy(x0) < y € By (0:(20)), where (6;)i~0 is the natural family of
dilations given by Definition 223 The same holds for y € By, (6:(—x0)).
Let r = tro. We have for y € B,.(6;(x)) or y € B.(6;(—x0))

IN?(y) — NP(6:(20))] < CaNP=H(8i(w0)) [N (y) — N(8:(0))|
< O3t Mg = CatPr?

for some constants Cs, C3, using the mean value theorem. Thus if we take ¢ large
enough so that ro = ¢~ 2, we have

INP(y) — NP(6:(w0))| < T3, Vy € B,(6:(0)) U B, (6:(—0)),
so that

e_ﬁNp(y)

e—BN?(8t(z0))

‘ ~ 1 (4.13)
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for all y € B,.(0;(x0)) U B, (0;(—x0)). Now define

oly) = max{mm {2 - M, 0zm)) 1} ,o}

r

—max{min{2—w,l},0}. (4.14)

r

Then ¢ is a Lipschitz function supported on balls of radius r centred at d;(xy) and
d¢:(—xp), which is equal to 1 on balls of radius /2 around these two points and
decays to zero linearly in between r/2 and r. We can note that by construction,
and since the measure v, is symmetric about the origin,

/s@(y)dvp(y) = 0.
G

Applying the spectral gap inequality (EEI]) to the function ¢, then yields

©*(y)duy(y) < co / IVee(y) Pdvy(y).

/Brwt(xo))u&(st(mo» By (54(0))UB, (54(~x0))
(4.15)

Now, using ([EI3), there exist positive constants Cy and C5 such that

P (y)dvy(y) = 2 / dv,(y) > CyrQe PN @),

/Br(&(m))UBr(&(—ﬂCO)) By (6t(z0))

and

|VG<P(y)‘2de(y) < QT_Q/ dvy(y) < Cyr=2HQe AN (z0)

/JBr(5t($o))UBr(5t(ro)) Br(6¢(z0))

where () = n + 2m is the homogeneous dimension of the group. Using these

estimates in (E1H) yields
Cy < coCsr2,

where r = tro = t'~2. Since p < 2 and t can be taken arbitrarily large, this is a
contradiction. O

Remark 4.18. Theorem [.1q provides another illustration of a fundamental dif-
ference between the operators L, defined by () with the Carnot-Carathéodory
distance and the operators T, defined by [EIW) with the Kaplan distance. Indeed,
with p € (1,2), by Theorem [, L, has empty essential spectrum, while T, does
not even have a spectral gap.
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Theorem 4.19. If p > 2, the measure v, given by [EI0) satisfies a q-spectral gap
inequality, i.e. there exists a constant ¢y such that

vplf — vpf|? < covp| Vg f1°

for all locally Lipschitz functions f, where é + % = 1. In particular, for p > 2 the
operator T, associated to v, given by [EIO) has a spectral gap.

To prove this we adapt the methods of Hebisch and Zegarliniski in [I4], and
proceed through an intermediate inequality which is similar to the U-bound studied
there.

Lemma 4.20. For p > 2 there exist constants A, B such that
vp(FINPZ2|| - 1) < Awy| Ve f|? + Buy|f|* (4.16)

for all locally Lipschitz functions f, where % +é =1, and ||z|| = |w| for x =
(w,z) € G=R" x R™.

Proof. We can suppose as usual that f > 0 and moreover that f € C;°(G). We
can write

(Ve f)e N = Vg (fe ") + apf NP~ (VgN)e M.

We now take the inner product of both sides of this equation with I ”VGN and
integrate over G to arrive at

/ WVGN-VG fe N dr = / H—N||VGN-VG (fe ") da
+0zp/f|| H|VGN|26‘°‘Nde.
By the Cauchy-Schwarz inequality, we then have
[ TaiVeN Ve e ds

N p
> /MVGNVG (f d:L’—l—Ozp/f ‘|VGN‘2 7aN d.T

so that by Proposition X1 and integration by parts,
P N P — — P
/|V¢;,f|e_o‘N dzx > /WVGN Vg (fe ") dx + ap/pr 2|xlle” N dx
x

N P P
= —/fVG~ (MVGN) e N d;z:+ozp/pr_2HxHe_o‘N dx.
(4.17)
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Note that

N VN2 N N
VG'(_VGN) - rﬁcu‘ T tet I Vel Vel

i
[Edl VeN-Velzl.  (418)

- QU

Moreover, denoting x = (w, z) € G and recalling the results from Section B it can

be calculated that || ||3
T

VeN - Vgl = -

Using this in ([IF) yields

O <H ”VGN) Q- 1)l (4.19)

Putting ({T9) in ([ETID) then gives
N 1) < wiVer]+ @ - v (15,

Replacing f by f|| - ||, we see that

apry (NP2 1) < v (- Ve f D) + Qup (f) (4.20)

using the fact that ||z|| < N(x) and |Vg||z||| = 1. Now, by replacing f by f¢ with
% + ;1) =1 in ([E20), we then arrive at

aprp (NP2 1) < vy (| - £ 1|va|)+@up<fq>
i VG A1+ S, (1 179+ Quy ().

<

(‘f)

for all € > 0, using Young’s inequality. Thus

1

apu (N2 |P) < =

\VGf\q+p€Vp (NP2 12 f9) + Qup (f9)

so that, by taking € < %a, we see that
vp(FINP72| - |*) < Avp| Ve f|* + By, (f7),

with A = e~ (ap — fe)™!, and B = Q(ap — 1e) .
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We are now in a position to prove Theorem EET9

Proof of Theorem[{.19 First note that
Wl = v 17 < 2, f — ml, (421)
for all m € R. Now, for R > 0 and L > 1,

vl f = ml" = v (If = m|" Ly pene—25ry) +vp (If — m|*Lgppnr-2<my Lin<ry)
+ v (If = m Ly pne2<myLinery) - (4.22)

We treat each of the three terms of ([{L2ZZ) separately.

First term of (2ZZ): This can be estimated using Lemma Indeed

1 _
vp (If = m| 1 zne-25my) < T (If = m|*NP=2|| - |I?)
A B
< EVP ‘VGf|q + El/p‘f — TH|q. (4.23)

Second term of [Z): We have

v (If = ml" Ly pner2<mylinery) < vp (If = m|q1{N<L})

— —/ m\qe_o‘Np(”C)d:L’
N<L}
|f(z) —m|'dz.
Z (N<L}
Take )
m = f(z)dx
|BL1| BLI

Then, since all homogeneous norms on G are equivalent, by the Poincaré inequality
in balls (see for example Theorem 5.6.1 of [23]) there exist constants Py, L; such
that

v (|f = m| "L env2<mylinery) < Poeiu,|Ve £, (4.24)

Third term of @2A): Set f = f—mand Ay p :={z € G : ||z||*> < R,N(z) > L}.
Note that since L > 1 we have

{z€G:|z|*N’*(z) < R,N(z) > L} C A p.
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Thus
I/p (|f — m|q1{||.||2Np—2§R}1{N2L}) S / |f(l‘)|qdl/p(l‘)
AL.R

Recall that we can write x = (w, z) € G for w € R" and z € R™. For e € {0,1}™,
set

So={r=(w2) €G: (-1)15 20, (~1)"z, > 0},

so that G = Ugggo,13mSe. The reason for introducing these sets is so that in a
particular S, the signs of z; € R for j € {1,...,m} are known. By above, we
then have

vp (If = ml"Lppewo-ecmlovany) < ) / )[*dvp(r).  (4.25)
eﬁALR

ec{0,1}m

We consider fsemAL R | f(2)|9dv,(z) with e = (0,...,0) (the other cases are similar).
Let h € G be such that ||| = 2¢/R. Then we may write

/ |f(x)|qdl/p(x) < 2‘1_1/ |f(x) — f(:ph)|qd1/p(:p)
SeNAL R

SeﬂAL’R

+ 20 /S o |F(zh)|du, (). (4.26)

Let v : [0,t] — G be a horizontal geodesic from 0 to h such that |§(s)| < 1 for
s € [0,t]. Then, by Holder’s inequality,

/SeﬂAL,R ‘f_<x) - f<xh)|qdyp<x> B /SeﬂAL,R
<it | gl Vel @i (420

q

| g iass| dna)

Using this estimate in ([220), we arrive at
t
|l <2tdim [ Dapt(s) s
SeNAL R 0 cNAL R
e / \F(xh) | (). (4.28)
ScNAL R

Since we have chosen h such that ||h|| = 2v/R, we have for x € Ay

lzhll = |[All = || > 2VR — VR = VR. (4.29)
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We now claim that, for fixed R, we can choose h depending only on R, with
||| = 2v/R, such that for large enough L

NP(zh) < NP(x), VeeS NALR (4.30)

i.e. translation by h shifts points of S, N Ay, g closer to the origin (with respect to
the distance N).

Proof of claim ([30): For z = (w,z) € S, N AL g, we have
|| = |w| < VR, N(z) > L, and 2 >0,...2, >0.

Let h = (2V/R,0,...,0,hy,..., hy) € G = R*™™ for hy, ..., h, only depending
on R to be chosen later. Then, by the definition of the group law (see Theorem

22),

rh = (w1+2\/}_%,...,wn,

n

21+h1+\/§<ZU1(;)wj> ,...,zm+hm+\/§<ZU1(;”)wj> ),

j=1 j=1
so that

N*(zh) — N*(x)

2
2 n
— ((w1+2\/R)2+w§+...wi) + 16 <21+h1+vR (E Ul(;)wj>>

J=1

n 2
+---+16<zm+hm+\/ﬁ< Ul(;”)wj>>
_'_

2

— (w44 w))” —16(z] +22)
After expansion and cancellation, since we are taking = such that ||z|| = |w| < V/R,
we can bound all the remaining terms in the above expression that only involve
wi, ..., w, from above in terms of R. This will leave us with

N*(zh) — N*(z) < K(R) + 322 <h1 +VR <zn: Ul(j.)wj))
e+ 322, (hm +VR (ﬁ: Uf;”)wj»
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for some constant K depending on R and the matrices U® for i € {1,...,m}.
Now, for i € {1,...,m} let K;(R) be the constant such that

VR[S 00w,
j=1

for all w € R" such that |w| < v/R (so that K; also depends on the matrix U®).
Then, since z; > 0 for i € {1,...,m} by assumption, we have

N*(zh) — N*(x) < K(R) + 32z (hy + K1(R)) + - + 322, (hy + K (R)) .
Let € > 0, and take h; = —K;(R) — ¢ for i € {1,...,m}. Then
N*(xh) — N*(x) < K(R) — 32e2; — - - — 32¢e2,,. (4.31)

< Ki(R)

Now, since we are assuming that N(z) > L and |w| < VR, it follows that
1
2> — (L' - R
5 > (Lt - )

Thus z; > ﬁ(L4 — R2)2 for at least one j € {1,...,m}, so that by (B3I we
have

1
N*(zh) — N*(z) < K(R) — sgﬁ(ﬁ — R?)a. (4.32)
For big enough L the right-hand side of (E32) is negative, which proves the claim

E3D).

We now use ([29) and ([E30) to estimate the terms of 2Y). Indeed, using
[EEZT) we have that

2t [ ey <
SeﬂAL’R

q—1

/ (F(@h) |9 ch]Pdv, ()
R SelﬁlAl”R

C f 7 INP=2(xh)dv, (z
< RN fony, TN b ) (459

for L large in comparison with N(h). By [E3) we also have
dvy(z) = Z7te N @y < 771 N @ gy — du,(2h)

on S N Ag g, so that we can continue (E33) to see that

. f(xh)|1dv,(z 4.34

) /S [Fah)|tduy () o
= R(L —2;V(h))p2/8rm | f(zh)|9||zh||> NP~ (xh)dv,(xh)
29-1 A ’ . 29-1 R )

< R(L — N(h))r—2 vp| Ve fl? + R(L = N(h))2 vl f —m| (4.35)

24



where we have used the translational invariance of the Lebesgue measure, and
Lemma again.

For the first term of [@ZH), note that there exists a constant K = K (h) de-
pending only on A (and hence only on R) such that

NP(zv(s)) — NP(z) < K (h), Ve e S.NALg, s€l0,t].

This is because N?(zy(s)) — NP(xz) — 0 as N(z) — oo by the mean value theorem.
Then

/o /eﬂAL,R (Ve f(xy(s))|*dvy(z)ds < el?(h)/o /EQAL’R Ve f(2v(5))|%dv, (2y(s))ds

< d(h)e" My, |V f|. (4.36)
Using (E30) together with [{34) in E2Y) yields

g

F(a)|a q— 441 % (h) A ) .
/senAL,R Fle)ltdy(a) < 27 (d Tt R — N2 ) Vel

+ 2! f—ml? 4.37
R(L — N(h))p72yp| m| ( )
The key point is that the coefficient RN ()2 quj\;(lhB))p_Q can be made as small as we wish

by taking R large enough, provided L remains large in comparison. Although we
have done the calculations for a specific e € {0,1}™, the same may be done for
arbitrary e (with a different choice of h). Thus, by ([EZH), we see that there exist
constants C'(R, L) and §(R, L) such that

v (If = m|"Lgenr—2<rylvary) < C(R, L)vy|Vef|? +0(L, R)vp|f — ml(", |
438

where 0(L, R) may be made as small as we wish by taking L and R large enough.
This completes the estimate of the third term of ([E23).

It remains to insert the estimates ({LZ3), ({Z4) and [E3Y) into [EZJ). Doing

this we arrive at
A p B
gl =mlt < (o + PALO S 4 CR D) )l Vaf 4 (5 + 00 1) ) £ =,

where R and L may be taken large enough so that % + 0(R, L) < 1. Upon rear-
rangement, this inequality, combined with the observation (E2II), proves Theorem

O

Conjecture 4.21. Although our current techniques do not allow us to conclude
that 7, given by [EIW) has empty essential spectrum, we conjecture that this will
be true for p > 2. This is a clear direction for further investigation.
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