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1 Introduction

In the classical setting of R
n an extensive study has been made of the spectral

properties of so-called Schrödinger operators, that is operators of the form

L = −∆ + V (1.1)

where ∆ is the standard Laplacian on Rn and V is some potential. In particular
the location of the continuous and discrete parts of the spectra of such operators
(if indeed they exist) is of great interest. A classical reference detailing this study
is the book of M. Reed and B. Simon [21].

In this paper we pursue the same questions, but instead work in the sub-
Riemannian setting of H-type groups. We consider a direct analogue of the classical
operator (1.1) in such a setting, where we replace the full Laplacian with the more
natural sub-Laplacian. Given an H-type group G, we will thus be interested in the
sub-elliptic operators

L = −∆G + ∇GU · ∇G (1.2)

where ∆G and ∇G are the sub-Laplacian and sub-gradient respectively. When
considered as an operator acting on L2(µU) with µU ≡ Z−1e−Udx, such operators
are positive and self-adjoint. Our aim will be principally to find conditions on the
potential U that ensure the operator (1.2) has a purely discrete spectrum, focusing
on the natural case when U is given by a power of one of the intrinsic distance
functions defined on the group.

Our first attempt to answer some of these questions involves the use of an ap-
pealing unitary transformation on the Heisenberg group, but it quickly becomes
apparent that such an approach is limited when it comes to general H-type groups
and our preferred choices for the potential U . The majority of this paper is there-
fore devoted to taking a functional inequality approach, similar to that taken in
[7], [25] and [28], in order to overcome these limitations.

Functional inequalities on H-type groups have attracted considerable atten-
tion recently (see for example [1, 8, 9, 10, 17, 18]), since despite being relatively
simple cases of sub-Riemannian settings, the structure that they possess renders
traditional methods inapplicable. Indeed, the main difficulty (as described in [1])
stems from the fact that the Ricci tensor of the sub-Laplacian on an H-type group
is −∞, and hence the methods of Bakry and Emery (see [2]) to prove many useful
inequalities can not be used.

Another major motivation for this paper is the work of Hebisch and Zegar liński
([14]), in which an effective technology was introduced to prove inequalities such
as the logarithmic Sobolev inequality for measures on H-type groups of the form

µ(dx) =
e−αdp(x)

Z
,
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where α > 0, p > 1 and d is Carnot-Carathéodory distance on the group. The
work we present here can thus be thought of as an extension of their study to
alternative inequalities that carry spectral information.

Similar questions to those addressed here have recently been investigated in
[27], where general conditions for empty essential spectrum for hypoelliptic gen-
erators are put forward. However, these conditions are not easily applicable to
the cases of special interest to us, i.e. when the potential U in (1.2) is defined in
terms of a natural distance function on the group. This is because of the singular-
ities possessed by such distance functions, and hence our approach is necessarily
different.

The layout of this paper is as follows. After presenting the necessary definitions
and notation, we start by proving a generalisation of a classical result in the
setting of the Heisenberg group, which gives some conditions on the growth and
smoothness of the potential U that ensure that the operator has empty essential
spectrum. Since these conditions do not cover cases of particular interest to us and
the methods are not easily generalised to all H-type groups, we then take a different
approach, and investigate functional inequalities for the associated measures that
contain spectral information. This section is split into two subsections: the first
concentrates on the situation when the potential U is defined in terms of the
Carnot-Carathéodory distance, while the second tries to overcome some of the
extra difficulties encountered when the Carnot-Carathéodory distance is replaced
by the Kaplan distance. These difficulties are perhaps rather surprising, and it is
interesting that they result in operators with differently structured spectra.

2 Definitions and notation

In this section we briefly give the basic definitions and results that will be used
throughout the rest of the paper. We refer the reader to [6] for a comprehensive
review of this material.

Definition 2.1 (H-type group). Let g be a finite-dimensional real Lie algebra
equipped with Lie bracket [·, ·] : g × g → g. Let z denote the centre of g, that is
z = {X ∈ g : [X, Y ] = 0 ∀ Y ∈ g}.

The Lie algebra g is said to be of H-type if it can be endowed with an inner
product 〈·, ·〉 such that [z⊥, z⊥] = z, and moreover, for every fixed Z ∈ z, the map
JZ : z

⊥ → z defined by

〈JZ(X), Y 〉 = 〈Z, [X, Y ]〉 ∀Y ∈ z
⊥

is an orthogonal map.
An H-type group is a connected and simply connected Lie group G whose Lie

algebra is of H-type.
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In addition to this abstract definition, we have the following characterisation
result (Theorem 18.2.1 of [6]):

Theorem 2.2. G is an H-type group if and only if G is (isomorphic to) Rn+m

with the group law

(w, z) ◦ (ω, ζ) =

(

wi + ωi, i = 1, . . . , n
zj + ζj + 1

2
〈U (j)w, ω〉, j = 1, . . . , m

)

, (2.1)

for w, ω ∈ Rn, z, ζ ∈ Rm and where the matrices U (1), . . . , U (m) have the following
properties:

(1) U (j) is an n×n skew-symmetric and orthogonal matrix for every j ∈ {1, . . . , m};

(2) U (k)U (j) + U (j)U (k) = 0 for every k, j ∈ {1, . . . , m} with k 6= j.

Thus, without any loss of generality, we will henceforth assume that any H-type
group G is of this form. For an H-type group G and x ∈ G, we will therefore use
the notation

x = (w, z) = (w1, . . . , wn, z1, . . . , zm),

for w ∈ Rn and z ∈ Rm. It is clear that the point (0, 0) is the identity in G and
the inverse operation is (w, z)−1 = (−w,−z).

There is a natural family of dilation operators on an H-type group G:

Definition 2.3. The family of operators δλ : G → G for λ > 0 defined by

δλ(w, z) = (λw, λz)

for (w, z) ∈ G is called the family of dilations on G. The map δλ is a group
homomorphism, in the sense that δλ(x ◦ y) = δλ(x) ◦ δλ(y), ∀x, y ∈ G.

We can identify g with the space spanned by the left-invariant vector fields
{X1, . . . , Xn, Z1, . . . , Zm} on G, where

Xi =
∂

∂wi
+

1

2

m
∑

k=1

n
∑

l=1

U
(k)
il wl

∂

∂zk
, Zj =

∂

∂zj
, (2.2)

for i ∈ {1, . . . , n}, j ∈ {1, . . . , m}. One can calculate that

[Xi, Xj] =

m
∑

k=1

U
(k)
ji Zk, (2.3)

from which it follows that span {Xi, [Xj, Xk] : i, j, k ∈ {1, . . . n}} = g. This is
equivalent to saying that the H-type group G is a Carnot group of step 2.
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Definition 2.4. The second order differential operator ∆G =
∑n

j=1X
2
i is the

canonical sub-Laplacian on G. The vector-valued operator ∇G = (X1, . . . , Xn) is
the canonical sub-gradient on G.

We will treat a general H-type group G as a metric space, and we can do this
in two natural ways. Despite the fact that both metrics are equivalent (in fact all
homogeneous metrics on an H-type group are equivalent — see Proposition 5.1.4
of [6]), it turns out that the the choice of metric will make a big difference to the
spectrum of the associated operator.

The first, and perhaps most common way to define a metric on an H-type group
G is to exploit the structure of the group:

Definition 2.5 (Carnot-Carathéodory distance). Let γ : [0, 1] → G be an ab-
solutely continuous path. We say that γ is horizontal if there exist measurable
functions a1, . . . , an : [0, 1] → R such that

γ̇(t) =

n
∑

i=1

ai(t)Xi(γ(t))

for almost all t ∈ [0, 1] i.e. γ̇(t) ∈ span {X1(γ(t)), . . . , Xn(γ(t))} almost every-
where. For such a horizontal curve γ, we define the length of γ to be

|γ| :=

∫ 1

0

(

n
∑

i=1

a2
i (t)

)
1

2

dt.

We then define the Carnot-Carathéodory distance d(x, y) between two points x, y ∈
G to be

d(x, y) := inf {|γ| such that γ : [0, 1] → G is horizontal and γ(0) = x, γ(1) = y} .
We will write d(x) := d(x, 0).

It should be noted that the Carnot-Carathéodory distance is well-defined by
Chow’s Theorem (see for example [4, 24]).

The second natural distance function that will be of interest to us arises from
the fundamental solution of the the sub-Laplacian ∆G. This was discovered by A.
Kaplan in [15] on general H-type groups, extending the work of G.B. Folland [11]
on the Heisenberg group.

Definition 2.6 (Kaplan distance). Define the function N : G → [0,∞) by N(x) =

(|w|4 + 16|z|2)1/4
for x = (w, z) ∈ G. Then N is a symmetric homogeneous norm,

which we will call the Kaplan distance. Moreover, F = N2−Q is a fundamental
solution of ∆G, where Q = 2m+ n is the homogeneous dimension of the group, in
the sense that F is smooth out of the origin and

∆GF (x) = 0 in G\{0}.
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An important difference between the two distance functions is that N is smooth
everywhere outside the origin, whilst d has points of non-smoothness on the centre
of the group:

Proposition 2.7. (i) d : G → [0,∞) is smooth on the set {x = (w, z) ∈ G :
w 6= 0}, and |∇Gd(x)| = 1, for all x = (w, z) ∈ G such that w 6= 0.

(ii) N : G → [0,∞) is smooth on G\{0}, and |∇GN(x)| = ‖x‖/N(x), for all

x = (w, z) ∈ G such that x 6= 0, where ‖x‖ := |w| = (
∑n

i=1w
2
i )

1

2 .

Proof. Part (i) is found in [19], whilst part (ii) can be calculated directly.

Example 2.8 (The Heisenberg group). The main example of an H-type group to
keep in mind is the Heisenberg group H. In fact H-type groups were introduced as
a generalisation of the Heisenberg group. H can be realised as R2+1 with the group
operation

(w1, w2, z) ◦ (ω1, ω2, ζ) =

(

w1 + ω1, w2 + ω2, z + ζ +
1

2
(w1ω2 − w2ω1)

)

for w = (w1, w2), ω = (ω1, ω2) ∈ R2 and z, ζ ∈ R. The left-invariant vector fields
on H are given by

X1 = ∂w1
− 1

2
w2∂z, X2 = ∂w2

+
1

2
w1∂z, Z = ∂z,

and one can easily calculate that [X1, X2] = Z and [X1, Z] = [X2, Z] = 0. Higher
dimensional Heisenberg groups can similarly be defined, and all have the common
characteristic of a one-dimensional centre.

3 Generalisation of a classical result to the Heisen-

berg group

We begin our investigation into the spectrum of sub-elliptic operators of the form
(1.2) by working in the Heisenberg group, H. The aim of this section is to prove
a direct analogue of the following classical result for Schrödinger operators on Rn

(see for example Theorem XIII.67 of [21]): consider the operator H = ∆ + V on
Rn, where ∆ is the standard Laplacian on Rn and V ∈ L1

loc(R
n) is a potential

which is bounded from below. Then, if V (x) → ∞ as |x| → ∞, it follows that H
has a purely discrete spectrum.

6



We will utilise a useful representation of the sub-Laplacian ∆H on H given in
[13]. Indeed, denote by F3 the partial Fourier transform with respect to the third
variable:

F3f(w1, w2, ζ) := (2π)−1/2

∫ ∞

−∞
e−izζf(w1, w2, z)dz,

for x = (w, z) ∈ H. Then it can be shown that

F3(−∆Hf)(w, ζ) = (i∇w + ζA(w))2 F3f(w, ζ),

where where w = (w1, w2) ∈ R2, ∇w = (∂w1
, ∂w2

) and A(w) = 1
2
(−w2, w1). For

fixed ζ the operator (i∇w + ζA(w))2 has been well studied, since it corresponds
to the Hamiltonian of a particle moving in a magnetic field (see [16]). Indeed, we
have the following spectral decomposition:

F3(−∆Hf)(w, ζ) =
∞
∑

k=0

λk(ζ)PkF3f(w, ζ), w ∈ R
2, ζ ∈ R

where λk(ζ) := |ζ |(2k+1), k ∈ {0, 1, . . .}, and Pk is the orthogonal eigenprojection
given by

Pkf(w) =

∫

R2

f(w′)πk(w,w′)dw′,

for w ∈ R2, where

πk(w,w′) =
|ζ |
2π
e−

|ζ|
2

i(w1w′
2
−w2w′

1
)− |ζ|

4
|w−w′|2Lk

( |ζ |
2
|w − w′|2

)

and Lk is the k-th Laguerre polynomial. If we then define f̂(ζ, k) := ‖PkF3f(w, ζ)‖L2(dw)

for any f ∈ L2(H), one can calculate that

∫

H

f(x)(−∆Hf)(x)dx =

∞
∑

k=0

∫

R

|ζ |(2k + 1)
∣

∣

∣
f̂(ζ, k)

∣

∣

∣

2

dζ. (3.1)

Moreover, by the spectral theorem we can define a functional calculus for the
operator ∆H. Indeed, for any Borel function α : [0,∞) → R, we define

ϕ(−∆H) = ϕ (λk(ζ)) , (3.2)

where the right hand side represents the operator F∗
3

∑

k ϕ(λk(ζ))PkF3, and we
have that

∫

H

f(x)ϕ(−∆H)f(x)dx =
∞
∑

k=0

∫

R

ϕ
(

|ζ |(2k + 1)
)
∣

∣

∣
f̂(ζ, k)

∣

∣

∣

2

dζ. (3.3)

7



Finally, for a self-adjoint operator H on L2(H), let θm(H), m ∈ N∪{0} be as in
the Min-Max principle i.e. either θm(H) is the m-th eigenvalue below the bottom
of the essential spectrum of H , or θm(H) is the bottom of the essential spectrum
and θm(H) = θm′(H) for m′ ≥ m (see for example Theorem XIII.1 of [21]).

Theorem 3.1. Suppose V is in L1
loc(H) and is bounded from below. Suppose also

that for every L > 0 there exists RL > 0 such that V (x) ≥ L whenever d(x) ≥
RL. Then the operator L = −∆H + V on L2(H) has empty essential spectrum. In
particular it has a purely discrete set of eigenvalues and a complete set of eigen-
functions.

Proof. Suppose W is a bounded function, supported in a compact set Ω ⊂ R3, so
that

sup
x∈Ω

|W (x)| ≤M,

for some M ∈ R. For ε > 0 consider the operator

Wφε(−∆H),

where φε(t) = (εt2 + t + 1)
−1

for t ∈ R. Using the above observations, and follow-
ing [13], we have that

Tr(W 2φ2
ε(−∆H)) ≤M2 1

2π

∫

Ω

∫ ∞

−∞

∞
∑

k=0

φ2
ε(λk(ζ))πk(w,w)dζdw

= M2 |Ω|
4π2

∞
∑

k=0

∫ ∞

−∞
φ2

ε(λk(ζ))|ζ |dζ

= M2 |Ω|
2π2

∞
∑

k=0

∫ ∞

0

|ζ |
(ε|ζ |2(2k + 1)2 + |ζ |(2k + 1) + 1)2dζ <∞.

Since Wφε(−∆H) is positive and self-adjoint on L2(H), we thus have that
Wφε(−∆H) is Hilbert-Schmidt for all ε > 0. Moreover,

(

ελk(ζ)2 + λk(ζ) + 1
)−1 → (λk(ζ) + 1)−1 ≡ φ0(λk(ζ))

in L∞(R) × l∞(N ∪ {0}) as ε → 0. Therefore Wφ0(−∆H) is a norm-limit of
Hilbert-Schmidt operators:

‖W (φ0 − φε) (−∆H)ψ‖2
2 ≤ M2

∞
∑

k=0

∫

R

(φ0 − φε)
2 (λk(ζ))

∣

∣

∣
ψ̂(ζ, k)

∣

∣

∣

2

dζ

≤ ε2M2

∞
∑

k=0

∫

R

∣

∣

∣
ψ̂(ζ, k)

∣

∣

∣

2

dζ

= ε2M2‖ψ‖2
2.
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We can thus conclude that Wφ0(−∆H) is a compact operator, or in other words
that W is relatively compact with respect to −∆H.

Since Wφ0(−∆H) is compact, by Weyl’s Theorem (see Corollary 2 of Theorem
XIII.14 of [21]),

σess(−∆H +W ) = σess(−∆H) = [0,∞).

Therefore by the Min-Max principle θm(−∆H +W ) ≥ −1 for m sufficiently large.
Now, given a > 0, define Va by

Va(x) = min{V (x), a+ 1} − a− 1.

Then Va has compact support, since V (x) → ∞ as d(x) → ∞. Thus, by the above
considerations, θm(−∆H + Va) ≥ −1 for large m. Finally, since

θm(L) ≥ θm (−∆H + Va) + a + 1,

we see that θm(L) ≥ a for large m. Since a is arbitrary we reach the desired
conclusion.

As mentioned in the introduction, we are actually interested in probability
measures of the form µU(dx) := Z−1e−U(x)dx on H, where Z =

∫

H
e−U(x)dx < ∞,

with which we can associate a positive and self-adjoint operator L = −∆H +
∇HU.∇H on L2(dµU).

Corollary 3.2. Suppose that V = 1
4
|∇HU |2− 1

2
∆HU is in L1

loc(H), is bounded from
below, and is such that V (x) → ∞ as d(x) → ∞. Let L = −∆H + ∇HU.∇H, so
that L is a positive self-adjoint operator on L2(µU). Then σess(L) = ∅.

Proof. Follows from Theorem 3.1 and the identity

∫

H

f(−∆H + ∇HU.∇H)fdµ =

∫

H

g (−∆H + V ) gdx, g = fe−
1

2
U .

Following a recent trend (see [14] and references therein), for the rest of this
paper we will concentrate on the case when U is given as a power of one of the
natural distance functions i.e. U(x) = −αdp(x) or U(x) = −αNp(x) with p ∈
(1,∞) and α > 0, where d and N are the Carnot-Carathéodory and Kaplan
distance functions respectively. We can therefore try and apply Corollary 3.2 in
both these cases. However, this is not straightforward in either case. Indeed, when
U = αdp we have that

1

4
|∇HU |2 −

1

2
∆HU =

α2p2

4
d2(p−1) − αp(p− 1)

2
dp−2 − αp

2
dp−1∆Hd, (3.4)
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but we must understand this expression in the sense of distributions since ∆Hd is
not defined on the centre of the group. Moreover, when U = αNp we have

1

4
|∇HU |2 −

1

2
∆HU =

α2p2

4
N2p−4(x)‖x‖2

−
(

αp(p− 1)

2
+

3αp

2

)

Np−4(x)‖x‖2,

where ‖x‖2 = w2
1 + w2

2 as usual, so that it is certainly not true that V (x) → ∞
as |x| → ∞ (V (x) = 0 for all x = (0, z) ∈ H). We therefore look for alternative
methods to investigate these interesting cases.

4 Spectral information via functional inequali-

ties

The relationship between functional inequalities and the spectrum of operators is
a very interesting and much studied one. Indeed, if (Ω, µ) is a probability space
and (L,D(L)) is a positive self-adjoint operator on L2(µ), then it is well-known
that L has a gap at the bottom of its spectrum if and only if there exists a constant
c0 > 0 such that

µ (f − µ(f))2 ≤ c0E(f, f),

where (E ,D(E)) is the Dirichlet form associated to L. More recently this relation-
ship has been further illustrated by the work of F. Cipriani ([7]) and F. Y. Wang
([25]) in which functional inequalities are introduced that characterise the essential
spectra of operators under very general conditions. In this section we aim to use
functional inequalities to overcome the problems encountered at the end of section
3 in the more general setting of H-type groups.

4.1 Super-Poincaré inequalities

To state the results of Wang and Cipriani in full generality, we first need the
following two technical definitions.

Definition 4.1. A topological space Ω is a Lusin space if Ω is homeomorphic to
a Borel subset of a compact metric space.

Remark 4.2. It should be noted that, as shown in Theorem 82.5 of [22], every
complete metric space is a Lusin space. In particular, any H-type group G is a
Lusin space.
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Definition 4.3. Let Ω be a Lusin space, and µ a positive Radon measure on
Ω having full topological support. A positive, self-adjoint operator (L,D(L)) on
L2(µ), with associated closed Dirichlet form (E ,D(E)) defined by

E(f, g) = µ(fLg), f, g ∈ D(L),

is called a Persson operator if inf σess(L) = sup {Σ(K) : K ⊂ Ω is compact}, where

Σ(K) := inf

{E(f, f)

‖f‖2
2

: f ∈ D(E), supp(f) ⊂ Kc

}

.

This class of operator was introduced by A. Persson in [20]. The result below
is a combination of the independent work of Wang and Cipriani, and is explicitly
stated in [26].

Theorem 4.4 (Wang/Cipriani). Let Ω be a Lusin space, µ a positive Radon mea-
sure on Ω having full topological support, and (L,D(L)) a Persson operator on
L2(µ). Then the inequality

µ(f 2) ≤ rµ(fLf) + β(r)(µ|f |)2, ∀r > r0, f ∈ D(L), (4.1)

for some decreasing function β : (r0,∞) → (0,∞) and r0 ≥ 0 holds if and only
if σess(L) ⊂ [r−1

0 ,∞). In particular, (4.1) is satisfied with r0 = 0 if and only if
σess(L) = ∅.

Inequality (4.1) is known as a super-Poincaré inequality. In a similar way
to the generalisation of the standard logarithmic Sobolev inequality to the LSq

inequality (see [5]), we can generalise the super-Poincaré inequality to a q-super-
Poincaré inequality :

Definition 4.5. Let (Ω, µ) be a probability space, equipped with a metric d : Ω ×
Ω → [0,∞). For q ∈ (1, 2], we say that µ satisfies a q-super-Poincaré inequality,
or SPq for short, with constant r0, if

µ|f |q ≤ rµ |∇f |q + β(r)
(

µ|f | q
2

)2

, ∀r > r0, (SPq) (4.2)

for all locally Lipschitz functions f and some β : (r0,∞) → (0,∞), where |∇f |(x) ≡
lim supd(x,y)→0 |f(x) − f(y)|/d(x, y).

Remark 4.6. In an H-type group G equipped with the Carnot-Carathéodory dis-
tance d, |∇Gf |(x) = lim supd(x,y)→0 |f(x) − f(y)|/d(x, y).
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4.2 Potentials defined by the Carnot-Carathéodory dis-

tance

Let G be an H-type group as usual, equipped with the Carnot-Carathéodory dis-
tance d. Let µp be the probability measure on G defined by

µp(dx) :=
e−αdp(x)

Z
dx (4.3)

where Z =
∫

e−αdp(x)dx is the normalisation constant, and p ∈ (1,∞), α > 0.
Define

Lp := −∆G + ∇G(αdp) · ∇G = −∆G + αpdp−1∇Gd · ∇G (4.4)

as a positive self-adjoint operator acting on L2(µp). The associated Dirichlet form
Ep(f, g) is then given by

Ep(f, g) = µp(fLpg) =

∫

G

∇Gf · ∇Ggdµp. (4.5)

We aim to prove the following:

Theorem 4.7. For any p > 1 the positive self-adjoint operator Lp on L2(µp) given
by (4.4) has a purely discrete spectrum i.e. σess(Lp) = ∅.

The idea is to use Theorem 4.4. It is clear that we first need to show that Lp is
a Persson operator. We make use of the following very general result stated in the
setting of Dirichlet forms, proved by G. Grillo in [12] (and also stated explicitly in
[7]).

Theorem 4.8 (Grillo). Let (Ω, µ) be a locally compact, separable metric space,
and (E ,D(E)) a regular, strongly local Dirichlet form on L2(Ω), with associated
positive self-adjoint operator (L,D(L)).

Define the associated intrinsic pseudo-metric ρ on Ω by

ρ(x, y) := sup {|f(x) − f(y)| : f ∈ D(E) ∩ C0(Ω),Γ(f, f) ≤ 1}

where for f ∈ D(E), Γ(f, f) is such that
∫

Ω

gΓ(f, f)dµ = E(gf, f) − 1

2
E(f 2, g), f, g ∈ D(E) ∩ C0(Ω).

Suppose ρ is a true metric generating the original topology of Ω. Then the operator
(L,D(L)) is a Persson operator.

Corollary 4.9. The operator Lp given by (4.4) acting on L2(µp) is a Persson
operator.

12



Proof. The intrinsic pseudo-metric associated to Lp is given by

ρ(x, y) = sup
{

|f(x) − f(y)| : |∇Gf |2 ≤ 1
}

,

which is nothing more than the Carnot-Carathéodory distance (by definition).

The next result we prove on route to Theorem 4.7 is that the measures µp

satisfy certain super-Poincaré inequalities.

Theorem 4.10. Let µp be the probability measure on G given by (4.3).

(i) Suppose p ≥ 2. Then µp satisfies an SPq inequality with constant r0 = 0 i.e.

µp|f |q ≤ rµp|∇Gf |q + β(r)
(

µp|f |
q
2

)2

, ∀r > 0,

where 1
p

+ 1
q

= 1, for some function β : (0,∞) → (0,∞) and for all locally
Lipschitz functions f .

(ii) Suppose p ∈ (1, 2]. Then µp satisfies an SP2 inequality with constant r0 = 0
i.e.

µp(f
2) ≤ rµp|∇Gf |2 + β(r) (µp|f |)2 , ∀r > 0,

for some function β : (0,∞) → (0,∞) and for all locally Lipschitz functions
f .

Proof. The idea is to pass from a logarithmic Sobolev inequality for the measure
µp, which is true by Theorem 4.1 of [14], to a super-Poincaré inequality by adapting
the methods of [25].

We first deal with the case p ≥ 2. Without loss of generality we may assume
that f ≥ 0. By Theorem 4.1 of [14], we have that there exists a constant c such
that

µp

(

f q log
f q

µpf q

)

≤ cµp|∇Gf |q (4.6)

where 1
p

+ 1
q

= 1. Let g : (0,∞) → R be given by g(ξ) = tξ − ξ log
(

ξ2

a

)

for any

t, a > 0. We then have that

max
{ξ>0}

g(ξ) = 2
√
aet−2. (4.7)

Suppose that µp(f
q
2 ) = 1, and set a = µp(f

q). Then by (4.7), for all t > 0,

tf
q
2 − f

q
2 log

(

f q

a

)

≤ 2
√
aet−2

⇒ µp

(

f q log
f q

a

)

≥ ta− 2
√
aet−2, (4.8)

13



using the fact that f ≥ 0 and µp(f
q
2 ) = 1. Setting b = µp|∇Gf |q, by (4.6), we then

have

ta− 2
√
aet−2 − cb ≤ 0.

Solving this quadratic inequality gives

√
a ≤ 2

√
et−2

2t
+

√
4et−2 + 4tcb

2t

for t > 0, so that a ≤ 2c
t
b+ 4 et−2

t2
. Thus

µp(f
q) ≤ 2c

t
µp|∇Gf |q + 4

et−2

t2
,

for all t > 0 and f such that µp(f
q
2 ) = 1. Replacing f by f

µp(fq/2)2/q yields

µp(f q) ≤ 2c

t
µp|∇Gf |q + 4

et−2

t2

(

µp(f
q
2 )
)2

for all t > 0. Taking r = 2c
t

we see that SPq holds, proving part (i).
In the case where p ∈ (1, 2), we no longer have an inequality of the type (4.6).

However, by Theorem 4.3 of [14] there exists a constant c ∈ (0,∞) such that

µp

(

f 2
[

log(1 + f 2)
]θ
)

≤ cµp|∇Gf |2 + (log 2)θ, µp(f
2) = 1, (4.9)

where θ = 2(p−1)
p

. In this case we instead let g : (0,∞) → R be given by g(ξ) = tξ−
ξ
[

log
(

1 + ξ2

a

)]θ

for t, a > 0, so that sup{ξ>0} g(ξ) ≤ t
√

a(et1/θ − 1). Proceeding

now in a very similar way as in the proof of part (i), we arrive at an SP2 inequality.

The final result we need is that SPq inequalities are stronger than SP2 inequal-
ities (at least when the dimension of the underlying space is finite).

Lemma 4.11. Suppose an arbitrary probability measure µ on G satisfies an SPq

inequality with q ∈ (1, 2] and constant r0 = 0. Then µ also satisfies an SP2

inequality with constant r0 = 0.

Proof. As usual, without loss of generality we may suppose f ≥ 0. Let q < 2

(there is nothing to prove if q = 2). Applying the SPq inequality to f
2

q yields,

µ(f 2) ≤ rµ
∣

∣

∣
∇Gf

2

q

∣

∣

∣

q

+ β(r) (µf)2 , ∀r > 0.

14



Therefore for all r > 0, we have by Hölder’s inequality followed by Young’s in-
equality,

µ(f 2) ≤ 2qr

qq
µ
(

f 2−q|∇Gf |q
)

+ β(r) (µf)2

≤ 2q−1r

qq−1
τ

2−q
q µ|∇Gf |2 +

2q−1r(2 − q)

qq
τ−1µ(f 2) + β(r) (µf)2

for all τ > 0. Taking τ = 2qr(2−q)
qq we see that

1

2
µ(f 2) ≤ 2q−1r

qq−1
τ

2−q
q µ|∇Gf |2 + β(r) (µf)2

=
2q−1

qq−1

(

2

q

)2−q

(2 − q)
2−q

q r
2

qµ|∇Gf |2 + β(r) (µf)2

⇒ µ(f 2) ≤ 4

q
(2 − q)

2−q
q r

2

qµ|∇Gf |2 + 2β(r) (µf)2 .

Taking s = 4
q
(2 − q)

2−q
q r

2

q then yields the result.

Proof of Theorem 4.7. We can now combine all of the above results to arrive at
Theorem 4.7. Indeed by Theorem 4.10 and Lemma 4.11, we have that the measures
µp satisfy a super-Poincaré inequality with constant r0 = 0 for all p > 1. Moreover,
by Corollary 4.9, Lp is a Persson operator, so that we may conclude by applying
Theorem 4.4.

Remark 4.12. Since the main result we use to prove Theorem 4.7 is that the
measure µp satisfies a logarithmic Sobolev inequality, we can greatly extend the
class of measures for which these results remain valid when p ≥ 2. Indeed, if we
define

µ̃p =
e−W−V

Z ′ dµp

with W a differentiable potential satisfying |∇GW |q ≤ dγ +K for constants K and
γ ∈ (0, p), and V a measurable function such that maxV − min V < ∞, then all
the above results remain true for µ̃p. This follows from Corollary 4.1 of [14].

Corollary 4.13. Let ρt(x, y) be the heat kernel at time t on an H-type group G

i.e. ρt(x, y) is the function (smooth by Hörmander’s theorem) such that

et∆Gf(x) =

∫

G

ρt(x, y)f(y)dy.

Let ρ(x) := ρ1(x, e) and define

LH := −∆G + ∇G log ρ · ∇G.

15



Then LH is a positive self-adjoint operator on L2(µH), where µH(dx) := ρ(x)dx,
and σess(LH) = ∅, so that LH has a purely discrete spectrum.

Remark 4.14. LH can be regarded as the natural Ornstein-Uhlenbeck generator on
G, as suggested in [3], and the resulting Markov process is the natural OU-process
associated to the hypoelliptic diffusion on G.

Proof. It follows exactly as above, once we have recalled that µH satisfies a loga-
rithmic Sobolev inequality (see [1, 14] and [17]).

4.3 Potentials defined by the Kaplan distance

An interesting question to ask is whether one can replace the Carnot-Carathéodory
distance with the Kaplan distance in the above work. At first glance such a
question might seem simple, since all homogeneous metrics on G are equivalent.
However, as we will see, this is not the case, and there are some fundamental
differences between the two situations which arise from the different smoothness
properties of the two distance functions.

To proceed, suppose now that we are working in an H-type group G as before,
but now equipped with a probability measure and associated self-adjoint operator
given by

νp(dx) :=
e−αNp(x)

Z
dx, Tp = −∆G + αpNp−1∇GN · ∇G (4.10)

respectively, where p ∈ (1,∞), α > 0 and Z =
∫

e−αNp(x)dx.
Trying to apply the functional inequality approach of section 4.1, we immedi-

ately immediately come up against a problem in the form of Theorem 6.3 from
[14]:

Theorem 4.15 (Hebisch-Zegarliński). The measure νp on G given by (4.10) with
p > 1 satisfies no LSq inequality with q ∈ (1, 2].

Thus we cannot simply follow the proof of Theorem 4.7 to conclude that the
operator Tp given by (4.10) has empty essential spectrum. Theorem 4.15 illustrates
a major difference in the behaviour of the measures defined with the Carnot-
Carathéodory distance and those defined with the Kaplan distance.

In view pf this, it seems that the problem of gaining spectral information about
the operator Tp given by (4.10) is an interesting one. We therefore start by asking
whether such operators have a spectral gap. This question is completely answered
by Theorems 4.16 and 4.19 below.

Theorem 4.16. If p < 2, then the measure νp given by (4.10) does not satisfy a
spectral gap inequality. In particular the operator Tp given by (4.10) does not have
a spectral gap, and hence it does not have empty essential spectrum.
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To prove this, we make use of the following result, quoted from [14] (Lemma
6.3), and we refer the reader to this work for the proof.

Lemma 4.17. Let f be a smooth function on G and d the Carnot-Carathéodory
distance as usual. Then at points x0 ∈ G such that (∇Gf)(x0) = 0 we have

|f(x) − f(x0)| ≤ O
(

d2(x, x0)
)

for all x ∈ G.

Proof of Theorem 4.16. Let p < 2 and suppose for a contradiction that there exists
a constant c0 such that

νp(f 2) − (νpf)2 ≤ c0νp|∇Gf |2 (4.11)

for all locally Lipschitz functions f .
Fix x0 = (0, z) ∈ G for z ∈ Rm\{0}. Then |∇GN(x0)| = ‖x0‖

N(x0)
= 0 by

Proposition 2.7, so that ∇GN(x0) = 0. Similarly ∇GN(−x0) = 0. Let r0 > 0 be
small enough so that 0 6∈ Br0

(x0) = {y′ ∈ G : d(y′, x0) ≤ r0}. Then N is smooth
on Br0

(x0), and by Lemma 4.17 there exists a constant C1 such that

|N(y) −N(x0)| ≤ C1r
2
0, (4.12)

for all y ∈ Br0
(x0). The same holds for y ∈ Br0

(−x0). We now dilate by a factor
of t > 0. Since N is homogeneous, we have that

|N(y) −N(δt(x0))| = t|N(δt−1(y)) −N(x0)| ≤ C1tr
2
0

for δt−1(y) ∈ Br0
(x0) ⇔ y ∈ Btr0

(δt(x0)), where (δt)t>0 is the natural family of
dilations given by Definition 2.3. The same holds for y ∈ Btr0

(δt(−x0)).
Let r = tr0. We have for y ∈ Br(δt(x0)) or y ∈ Br(δt(−x0))

|Np(y) −Np(δt(x0))| ≤ C2N
p−1(δt(x0)) |N(y) −N(δt(x0))|

≤ C3t
p−1tr2

0 = C3t
pr2

0

for some constants C2, C3, using the mean value theorem. Thus if we take t large
enough so that r0 = t−

p
2 , we have

|Np(y) −Np(δt(x0))| ≤ C3, ∀y ∈ Br(δt(x0)) ∪Br(δt(−x0)),

so that
∣

∣

∣

∣

e−βNp(y)

e−βNp(δt(x0))

∣

∣

∣

∣

≈ 1 (4.13)
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for all y ∈ Br(δt(x0)) ∪ Br(δt(−x0)). Now define

ϕ(y) = max

{

min

{

2 − N(y, δt(x0))

r
, 1

}

, 0

}

− max

{

min

{

2 − N(y, δt(−x0))

r
, 1

}

, 0

}

. (4.14)

Then ϕ is a Lipschitz function supported on balls of radius r centred at δt(x0) and
δt(−x0), which is equal to 1 on balls of radius r/2 around these two points and
decays to zero linearly in between r/2 and r. We can note that by construction,
and since the measure νp is symmetric about the origin,

∫

G

ϕ(y)dνp(y) = 0.

Applying the spectral gap inequality (4.11) to the function ϕ, then yields

∫

Br(δt(x0))∪Br(δt(−x0))

ϕ2(y)dνp(y) ≤ c0

∫

Br(δt(x0))∪Br(δt(−x0))

|∇Gϕ(y)|2dνp(y).

(4.15)
Now, using (4.13), there exist positive constants C4 and C5 such that

∫

Br(δt(x0))∪Br(δt(−x0))

ϕ2(y)dνp(y) ≥ 2

∫

B r
2
(δt(x0))

dνp(y) ≥ C4r
Qe−βtpNp(x0),

and
∫

Br(δt(x0))∪Br(δt(−x0))

|∇Gϕ(y)|2dνp(y) ≤ 2r−2

∫

Br(δt(x0))

dνp(y) ≤ C5r
−2+Qe−βtpNp(x0),

where Q = n + 2m is the homogeneous dimension of the group. Using these
estimates in (4.15) yields

C4 ≤ c0C5r
−2,

where r = tr0 = t1−
p
2 . Since p < 2 and t can be taken arbitrarily large, this is a

contradiction.

Remark 4.18. Theorem 4.16 provides another illustration of a fundamental dif-
ference between the operators Lp defined by (4.4) with the Carnot-Carathéodory
distance and the operators Tp defined by (4.10) with the Kaplan distance. Indeed,
with p ∈ (1, 2), by Theorem 4.7, Lp has empty essential spectrum, while Tp does
not even have a spectral gap.
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Theorem 4.19. If p ≥ 2, the measure νp given by (4.10) satisfies a q-spectral gap
inequality, i.e. there exists a constant c0 such that

νp|f − νpf |q ≤ c0νp|∇Gf |q

for all locally Lipschitz functions f , where 1
q

+ 1
p

= 1. In particular, for p ≥ 2 the

operator Tp associated to νp given by (4.10) has a spectral gap.

To prove this we adapt the methods of Hebisch and Zegarliński in [14], and
proceed through an intermediate inequality which is similar to the U -bound studied
there.

Lemma 4.20. For p ≥ 2 there exist constants A,B such that

νp(f qNp−2‖ · ‖2) ≤ Aνp|∇Gf |q +Bνp|f |q (4.16)

for all locally Lipschitz functions f , where 1
p

+ 1
q

= 1, and ‖x‖ = |w| for x =

(w, z) ∈ G = Rn × Rm.

Proof. We can suppose as usual that f ≥ 0 and moreover that f ∈ C∞
0 (G). We

can write

(∇Gf)e−αNp

= ∇G

(

fe−αNp)

+ αpfNp−1(∇GN)e−αNp

.

We now take the inner product of both sides of this equation with N
‖x‖∇GN and

integrate over G to arrive at
∫

N

‖x‖∇GN · ∇Gfe
−αNp

dx =

∫

N

‖x‖∇GN · ∇G

(

fe−αNp)

dx

+ αp

∫

f
Np

‖x‖|∇GN |2e−αNp

dx.

By the Cauchy-Schwarz inequality, we then have
∫

N

‖x‖|∇GN ||∇Gf |e−αNp

dx

≥
∫

N

‖x‖∇GN · ∇G

(

fe−αNp)

dx+ αp

∫

f
Np

‖x‖|∇GN |2e−αNp

dx,

so that by Proposition 2.7 and integration by parts,
∫

|∇Gf |e−αNp

dx ≥
∫

N

‖x‖∇GN · ∇G

(

fe−αNp)

dx+ αp

∫

fNp−2‖x‖e−αNp

dx

= −
∫

f∇G ·
(

N

‖x‖∇GN

)

e−αNp

dx+ αp

∫

fNp−2‖x‖e−αNp

dx.

(4.17)
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Note that

∇G ·
(

N

‖x‖∇GN

)

=
|∇GN |2
‖x‖ +

N

‖x‖∆GN − N

‖x‖2
∇GN · ∇G‖x‖

=
‖x‖
N2

+ (Q− 1)
‖x‖
N2

− N

‖x‖2
∇GN · ∇G‖x‖. (4.18)

Moreover, denoting x = (w, z) ∈ G and recalling the results from Section 2, it can
be calculated that

∇GN · ∇G‖x‖ =
‖x‖3

N3
.

Using this in (4.18) yields

∇G ·
(

N

‖x‖∇GN

)

= (Q− 1)
‖x‖
N2

. (4.19)

Putting (4.19) in (4.17) then gives

αpνp(fNp−2‖ · ‖) ≤ νp|∇Gf | + (Q− 1)νp

(

f
‖ · ‖
N2

)

.

Replacing f by f‖ · ‖, we see that

αpνp(fN
p−2‖ · ‖2) ≤ νp (‖ · ‖|∇Gf |) +Qνp (f) , (4.20)

using the fact that ‖x‖ ≤ N(x) and |∇G‖x‖| = 1. Now, by replacing f by f q with
1
q

+ 1
p

= 1 in (4.20), we then arrive at

αpνp(f qNp−2‖ · ‖2) ≤ qνp

(

‖ · ‖f q−1|∇Gf |
)

+Qνp (f q)

≤ 1

εq−1
νp|∇Gf |q +

q

p
ενp (‖ · ‖pf q) +Qνp (f q) ,

for all ε > 0, using Young’s inequality. Thus

αpνp(f qNp−2‖ · ‖2) ≤ 1

εq−1
νp|∇Gf |q +

q

p
ενp

(

Np−2‖ · ‖2f q
)

+Qνp (f q) ,

so that, by taking ε < p2

q
α, we see that

νp(f qNp−2‖ · ‖2) ≤ Aνp|∇Gf |q +Bνp (f q) ,

with A = ε−q+1(αp− q
p
ε)−1, and B = Q(αp− q

p
ε)−1.
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We are now in a position to prove Theorem 4.19.

Proof of Theorem 4.19. First note that

νp|f − νpf |q ≤ 2qνp|f −m|q, (4.21)

for all m ∈ R. Now, for R > 0 and L > 1,

νp|f −m|q = νp

(

|f −m|q1{‖·‖2Np−2≥R}
)

+ νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≤L}
)

+ νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≥L}
)

. (4.22)

We treat each of the three terms of (4.22) separately.

First term of (4.22): This can be estimated using Lemma 4.20. Indeed

νp

(

|f −m|q1{‖·‖2Np−2≥R}
)

≤ 1

R
νp

(

|f −m|qNp−2‖ · ‖2
)

≤ A

R
νp |∇Gf |q +

B

R
νp|f −m|q. (4.23)

Second term of (4.22): We have

νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≤L}
)

≤ νp

(

|f −m|q1{N≤L}
)

=
1

Z

∫

{N≤L}
|f(x) −m|qe−αNp(x)dx

≤ 1

Z

∫

{N≤L}
|f(x) −m|qdx.

Take

m =
1

|BL1
|

∫

BL1

f(x)dx.

Then, since all homogeneous norms on G are equivalent, by the Poincaré inequality
in balls (see for example Theorem 5.6.1 of [23]) there exist constants P0, L1 such
that

νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≤L}
)

≤ P0e
αLp

1νp|∇Gf |q. (4.24)

Third term of (4.22): Set f̄ = f−m andAL,R := {x ∈ G : ‖x‖2 ≤ R,N(x) ≥ L}.
Note that since L > 1 we have

{

x ∈ G : ‖x‖2Np−2(x) ≤ R,N(x) ≥ L
}

⊂ AL,R.
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Thus

νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≥L}
)

≤
∫

AL,R

|f̄(x)|qdνp(x).

Recall that we can write x = (w, z) ∈ G for w ∈ Rn and z ∈ Rm. For e ∈ {0, 1}m,
set

Se :=
{

x = (w, z) ∈ G : (−1)e1z1 ≥ 0, . . . , (−1)emzm ≥ 0
}

,

so that G = ∪e∈{0,1}mSe. The reason for introducing these sets is so that in a
particular Se, the signs of zj ∈ R for j ∈ {1, . . . , m} are known. By above, we
then have

νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≥L}
)

≤
∑

e∈{0,1}m

∫

Se∩AL,R

|f̄(x)|qdνp(x). (4.25)

We consider
∫

Se∩AL,R
|f̄(x)|qdνp(x) with e = (0, . . . , 0) (the other cases are similar).

Let h ∈ G be such that ‖h‖ = 2
√
R. Then we may write

∫

Se∩AL,R

|f̄(x)|qdνp(x) ≤ 2q−1

∫

Se∩AL,R

|f̄(x) − f̄(xh)|qdνp(x)

+ 2q−1

∫

Se∩AL,R

|f̄(xh)|qdνp(x). (4.26)

Let γ : [0, t] → G be a horizontal geodesic from 0 to h such that |γ̇(s)| ≤ 1 for
s ∈ [0, t]. Then, by Hölder’s inequality,

∫

Se∩AL,R

|f̄(x) − f̄(xh)|qdνp(x) =

∫

Se∩AL,R

∣

∣

∣

∣

∫ t

0

d

ds
f̄(xγ(s))ds

∣

∣

∣

∣

q

dνp(x)

≤ t
q
p

∫ t

0

∫

Se∩AL,R

|∇Gf(xγ(s))|qdνp(x)ds. (4.27)

Using this estimate in (4.26), we arrive at

∫

Se∩AL,R

|f̄(x)|qdνp(x) ≤ 2q−1d
q
p (h)

∫ t

0

∫

Se∩AL,R

|∇Gf(xγ(s))|qdνp(x)ds

+ 2q−1

∫

Se∩AL,R

|f̄(xh)|qdνp(x). (4.28)

Since we have chosen h such that ‖h‖ = 2
√
R, we have for x ∈ AL,R

‖xh‖ ≥ ‖h‖ − ‖x‖ ≥ 2
√
R−

√
R =

√
R. (4.29)
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We now claim that, for fixed R, we can choose h depending only on R, with
‖h‖ = 2

√
R, such that for large enough L

Np(xh) ≤ Np(x), ∀ x ∈ Se ∩ AL,R (4.30)

i.e. translation by h shifts points of Se ∩AL,R closer to the origin (with respect to
the distance N).

Proof of claim (4.30): For x = (w, z) ∈ Se ∩ AL,R, we have

‖x‖ = |w| ≤
√
R, N(x) ≥ L, and z1 ≥ 0, . . . zm ≥ 0.

Let h = (2
√
R, 0, . . . , 0, h1, . . . , hm) ∈ G = Rn+m, for h1, . . . , hm only depending

on R to be chosen later. Then, by the definition of the group law (see Theorem
2.2),

xh =
(

w1 + 2
√
R, . . . , wn,

z1 + h1 +
√
R

(

n
∑

j=1

U
(1)
1j wj

)

, . . . , zm + hm +
√
R

(

n
∑

j=1

U
(m)
1j wj

)

)

,

so that

N4(xh) −N4(x)

=
(

(w1 + 2
√
R)2 + w2

2 + . . . w2
n

)2

+ 16

(

z1 + h1 +
√
R

(

n
∑

j=1

U
(1)
1j wj

))2

+ · · · + 16

(

zm + hm +
√
R

(

n
∑

j=1

U
(m)
1j wj

))2

−
(

w2
1 + · · · + w2

n

)2 − 16(z2
1 + · · · + z2

m).

After expansion and cancellation, since we are taking x such that ‖x‖ = |w| ≤
√
R,

we can bound all the remaining terms in the above expression that only involve
w1, . . . , wn from above in terms of R. This will leave us with

N4(xh) −N4(x) ≤ K(R) + 32z1

(

h1 +
√
R

(

n
∑

j=1

U
(1)
1j wj

))

+ · · · + 32zm

(

hm +
√
R

(

n
∑

j=1

U
(m)
1j wj

))

23



for some constant K depending on R and the matrices U (i) for i ∈ {1, . . . , m}.
Now, for i ∈ {1, . . . , m} let Ki(R) be the constant such that

√
R

∣

∣

∣

∣

∣

n
∑

j=1

U
(i)
1j wj

∣

∣

∣

∣

∣

≤ Ki(R)

for all w ∈ Rn such that |w| ≤
√
R (so that Ki also depends on the matrix U (i)).

Then, since zi ≥ 0 for i ∈ {1, . . . , m} by assumption, we have

N4(xh) −N4(x) ≤ K(R) + 32z1 (h1 +K1(R)) + · · · + 32zm (hm +Km(R)) .

Let ε > 0, and take hi = −Ki(R) − ε for i ∈ {1, . . . , m}. Then

N4(xh) −N4(x) ≤ K(R) − 32εz1 − · · · − 32εzm. (4.31)

Now, since we are assuming that N(x) ≥ L and |w| ≤
√
R, it follows that

|z|2 ≥ 1

16
(L4 − R2).

Thus zj ≥ 1
4
√

m
(L4 − R2)

1

2 for at least one j ∈ {1, . . . , m}, so that by (4.31) we
have

N4(xh) −N4(x) ≤ K(R) − 8ε
1√
m

(L4 −R2)
1

2 . (4.32)

For big enough L the right-hand side of (4.32) is negative, which proves the claim
(4.30).

We now use (4.29) and (4.30) to estimate the terms of (4.28). Indeed, using
(4.29) we have that

2q−1

∫

Se∩AL,R

|f̄(xh)|qdνp(x) ≤ 2q−1

R

∫

Se∩AL,R

|f̄(xh)|q‖xh‖2dνp(x)

≤ 2q−1

R(L−N(h))p−2

∫

Se∩AL,R

|f̄(xh)|q‖xh‖2Np−2(xh)dνp(x) (4.33)

for L large in comparison with N(h). By (4.30) we also have

dνp(x) = Z−1e−αNp(x)dx ≤ Z−1e−αNp(xh)dx = dνp(xh)

on Se ∩ AL,R, so that we can continue (4.33) to see that

2q−1

∫

Se∩AL,R

|f̄(xh)|qdνp(x) (4.34)

≤ 2q−1

R(L−N(h))p−2

∫

Se∩AL,R

|f̄(xh)|q‖xh‖2Np−2(xh)dνp(xh)

≤ 2q−1A

R(L−N(h))p−2
νp|∇Gf |q +

2q−1B

R(L−N(h))p−2
νp|f −m|q (4.35)
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where we have used the translational invariance of the Lebesgue measure, and
Lemma 4.20 again.

For the first term of (4.28), note that there exists a constant K̃ = K̃(h) de-
pending only on h (and hence only on R) such that

Np(xγ(s)) −Np(x) ≤ K̃(h), ∀x ∈ Se ∩AL,R, s ∈ [0, t].

This is because Np(xγ(s))−Np(x) → 0 as N(x) → ∞ by the mean value theorem.
Then
∫ t

0

∫

Se∩AL,R

|∇Gf(xγ(s))|qdνp(x)ds ≤ eK̃(h)

∫ t

0

∫

Se∩AL,R

|∇Gf(xγ(s))|qdνp(xγ(s))ds

≤ d(h)eK̃(h)νp|∇Gf |q. (4.36)

Using (4.36) together with (4.34) in (4.28) yields
∫

Se∩AL,R

|f̄(x)|qdνp(x) ≤ 2q−1

(

d
q
p
+1(h)eK̃(h) +

A

R(L−N(h))p−2

)

νp|∇Gf |q

+
2q−1B

R(L−N(h))p−2
νp|f −m|q. (4.37)

The key point is that the coefficient 2q−1B
R(L−N(h))p−2 can be made as small as we wish

by taking R large enough, provided L remains large in comparison. Although we
have done the calculations for a specific e ∈ {0, 1}m, the same may be done for
arbitrary e (with a different choice of h). Thus, by (4.25), we see that there exist
constants C(R,L) and δ(R,L) such that

νp

(

|f −m|q1{‖·‖2Np−2≤R}1{N≥L}
)

≤ C(R,L)νp|∇Gf |q + δ(L,R)νp|f −m|q,
(4.38)

where δ(L,R) may be made as small as we wish by taking L and R large enough.
This completes the estimate of the third term of (4.22).

It remains to insert the estimates (4.23), (4.24) and (4.38) into (4.22). Doing
this we arrive at

νp|f−m|q ≤
(

A

R
+ P0(L1)eαLp

2 + C(R,L)

)

νp|∇Gf |q +

(

B

R
+ δ(R,L)

)

νp|f−m|q,

where R and L may be taken large enough so that B
R

+ δ(R,L) < 1. Upon rear-
rangement, this inequality, combined with the observation (4.21), proves Theorem
4.19.

Conjecture 4.21. Although our current techniques do not allow us to conclude
that Tp given by (4.10) has empty essential spectrum, we conjecture that this will
be true for p > 2. This is a clear direction for further investigation.
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