

A Mapping Study of Automation Support Tools for

Unit Testing

Master Thesis

Author: Inderjeet Singh

Email: ish10001@student.mdh.se

IDT Supervisor: Adnan Causevic

IDT Examiner: Sasikumar Punnekkat

Mälardalen University

School of Innovation, Design and

Engineering

June 2012

Sweden - Västerås

http://www.mrtc.mdh.se/index.php?choice=staff&id=0158

2

3

ABSTRACT
Unit testing is defined as a test activity usually performed by a developer for the purpose of

demonstrating program functionality and meeting the requirements specification of module. Nowadays,

unit testing is considered as an integral part in the software development cycle. However, performing

unit testing by developers is still considered as a major concern because of the time and cost involved in

it. Automation support for unit testing, in the form of various automation tools, could significantly lower

the cost of performing unit testing phase as well as decrease the time developer involved in the actual

testing. The problem is how to choose the most appropriate tool that will suit developer requirements

consisting of cost involved, effort needed, level of automation provided, language support, etc. This

research work presents results from a systematic literature review with the aim of finding all unit testing

tools with an automation support. In the systematic literature review, we initially identified 1957

studies. After performing several removal stages, 112 primary studies were listed and 24 tools identified

in total. Along with the list of tools, we also provide the categorization of all the tools found based on

the programming language support, availability (License, Open source, Free), testing technique, level of

effort required by developer to use tool, target domain, that we consider as good properties for a

developer to make a decision on which tool to use. Additionally, we categorized type of error(s) found

by some tools, which could be beneficial for a developer when looking at the tool’s effectiveness. The

main intent of this report is to aid developers in the process of choosing an appropriate unit testing tool

from categorization table of available tools with automation unit testing support that ease this process

significantly. This work could be beneficial for researchers considering to evaluate efficiency and

effectiveness of each tool and use this information to eventually build a new tool with the same

properties as several others.

Key Terms: Testing, Unit testing, Test date generation, systematic literature review, automatic unit

testing

4

5

6

ACKNOWLEDGEMENT
All thanks are due to my parents and foremost for their countless blessing. Acknowledgment is due to

Mälardalens högskola for supporting this research.

My unrestrained appreciation goes to my supervisor, Adnan Causevic, for all the help and support he

has given me throughout the course of this work and on several other occasions. I simply cannot

imagine how things would have proceeded without his help, support, and patience. I also wish to thank

my thesis Examiner, Professor Sasikumar Punnekkat, for his help, support, and contributions.

I also acknowledge my many colleagues and friends as I had a pleasant, enjoyable and fruitful company

with them.

Finally, I wish to express my gratitude to my family members for being patient with me and offering

words of encouragements throughout my thesis work.

Inderjeet Singh

7

8

CONTENTS
ABSTRACT ... 3

ACKNOWLEDGEMENT ... 6

LIST OF FIGURES .. 11

LIST OF TABLES .. 13

1. INTRODUCTION ... 15

1.1. OBJECTIVE OF THE THESIS .. 16

1.2. PROBLEM STATEMENT ... 16

1.3. ORGANISATION OF THESIS ... 16

2. RELATED WORK ... 18

3. SYSTEMATIC LITERATURE REVIEW METHODOLOGY (SLR) ... 20

3.1. RESEARCH QUESTION ... 20

3.2. REVIEW PROTOCOL .. 21

3.3. IDENTIFICATION OF PRIMARY STUDIES ... 21

3.4. DATA EXTRACTION ... 22

3.5. STUDY QUALITY ASSESSMENT .. 22

3.6. DATA SYNTHESIS .. 22

3.7. ADVANTAGES OF SLR ... 22

4. RESEARCH METHOD... 23

4.1. FUNDAMENTALS OF SLR PROCESS .. 25

4.2. PERFORMING SLR PROCESS .. 26

4.3. INFORMATION RETRIEVAL AND STORAGE (ZOTERO TOOl) .. 28

4.3.1. ZOTERO INSTALLATION AND USE.. 30

4.4. STUDY SELECTION AND DATA SCREENING .. 31

5. STATE OF ART ON TEST DATA GENERATION ... 34

9

5.1. SIMULATED ANNEALING .. 35

5.2. TABOO SEARCH .. 35

5.3. GENETIC ALGORITHMS ... 36

5.4. ANT COLONY OPTIMIZATION .. 36

6. ANALYSIS OF SLR RESULTS ... 38

6.1. PROTOTYPE TOOLS ... 40

7. VALIDITY OF SLR RESULTS .. 41

8. SLR SUMMARIZATION .. 42

9. CATEGORIZATION OF TOOLS .. 44

10. TYPE OF ERRORS .. 48

10.1 DESCRIPTIVE ANALYSIS ... 50

11. CONCLUSIONS ... 53

12. LIMITATIONS AND FUTURE WORK ... 54

13. BIBLIOGRAPHY ... 55

Abbreviations .. 60

APPENDIX A ... 61

10

11

LIST OF FIGURES
Figure 1: Systematic Literature Review Process .. 24

Figure 2: Zotero Working Environment .. 29

Figure 3: Algorithm for Ant Colony Optimization .. 36

Figure 4: Detailed View of SLR.. 43

Figure 5: Graphical Representation of Categorization of tools Based on Type of Errors........................... 52

12

13

LIST OF TABLES
Table 1: Keywords and Reasoning for Selection .. 25

Table 2: Research Data Sources ... 26

Table 3: Queries on Each Data Source .. 27

Table 4: Tags Used in Zotero for Filtering ... 30

Table 5: Exclusion Criteria .. 31

Table 6: Summary of Applying Exclusion Criteria .. 32

Table 7: Important Publications Considered ... 33

Table 8: List of Unit Testing Tools with Automation Support... 39

Table 9: List of Prototype Tools .. 40

Table 10: Developer Interaction ... 45

Table 11: Categorization of Tools ... 47

Table 12: Types of Errors.. 50

Table 13: Categorization of Tools based on Programming Language .. 51

Table 14: Categorization Based on Type of Errors .. 52

Table 15: Abbreviations Used in the Report.. 60

Table 16: Download Tools .. 62

14

15

1. INTRODUCTION

In general, software testing is the process of executing the system with the intention to find faults in it.

It is a very important phase in software development and it comprises approximately 50% of total

development cost and resources required [14]. The software testing has many different sub-phases in it,

such as: unit testing, regression testing, acceptance testing, etc. All these phases have equal importance,

but only recently, unit testing emerged as a vital part of software development process [1]. Unit testing

is a method of finding bugs in an early stage of a system development and it can eventually help in

reducing the cost and effort needed to fix the bugs later at integration or system level [1][43].

Therefore, unit testing is a method of testing a particular unit of a system when it is not integrated with

other units. Unit could be considered as any smallest testable part of an application [2]. Generally, unit

testing is a task performed by developers. Performing unit testing is sometimes considered as time-

consuming task for developers and generally it is not on their high priority list [2]. Test driver is a

program that runs automatically all unit test cases and as an end result provides a list with the

failing/passing unit test cases [43]. However, software-testing process is still heavily based on the

manual testing approach and it typically involves high efforts in the development of test driver for the

particular unit under test [43]. The construction of the test driver normally puts more burdens on the

developer to perform unit testing and development of test cases manually.

Having the pressure of covering the increasing number of lines of code to meet the quality standard in

the market, developers and test engineers are trying out different techniques, such as unit testing, to

sustain themselves in the competitive market. Lack of motivation is another potential reason for not

performing unit testing in some organizations. It is highly recommended for a project management to

create motivating environment before applying unit testing throughout the project [2]. The problems

and issues explained above, in particular about unit testing, could be sorted out to a high extent if

several process steps in unit testing could be performed automatically. There are many tools currently

available for automating the unit testing process. These tools can provide an automated support at the

unit level in many ways, for example by generating test cases, detecting known bugs in the code, etc. A

few examples of the available tools are: “DART”, “JTest”, “EXE”, etc [19][1][2]. All available tools are

different in many aspects like: programming language support, availability, output they produce. It is

difficult for a developer and a project management to decide on tool to opt, as the efficiency and

effectiveness of each tool is different. Efficiency and effectiveness of tool are two different things;

efficiency of tool is related to execution time and robustness of tool, while the effectiveness of the tool

depends on different factors such as type of errors it can find, type of test cases or output it can

generate and quality of generated output. The effectiveness of a particular tool depends on many

parameters, such as: “types of bugs found”, “testing approach used”, and “type of output produce” [73].

Therefore, this thesis work is an attempt to help developers in the process of choosing appropriate tool

based on their requirements.

This thesis aims to find currently available unit-testing tools supporting automation by using a

systematic literature review (SLR) process [3]. The SLR process is a good option to discover maximum

available literature on the specific research area and it helps in reducing the chances of a biased or

16

limited result. The result of this thesis work is consisting of two parts: one providing a list of the

available tools with proper citations and the second showing the categorization of tools based on

different parameters like availability, language support, testing technique used, etc. In summary, this

thesis work is comprised as a systematic literature review (SLR) of the relevant literature for the purpose

of investigating currently available tools with an automated support for unit testing.

1.1. OBJECTIVE OF THE THESIS

Unit testing represents one phase in software testing which can make big difference in software testing

of the system [14]. Out of several, one major advantage of unit testing is a detection of the defects in

the very early stage of the application development, eventually decreasing the complexity of bugs found

[1]. It also reduces the effort required to fix the bugs since they are detected earlier rather than in

lateral stages of software development. However, two major problems faced in performing unit testing

is time and effort required [43]. To reduce the time and effort for unit testing, many unit-testing tools

are available in the market that can automate this task to some extent. The objective of this thesis work

is concentrated towards identifying tools that can automate unit-testing process. In addition, this work

provides the characterization of tools based on domain, language, availability, testing technique and

developer interaction. This research work also explains the most common “type of error(s)” each tool

can find though reading research papers.

1.2. PROBLEM STATEMENT

Developers might find problem in performing unit testing since it is somewhat difficult for them to

manage both the development of a module and testing of it [14]. The use of automated unit testing

tools has solved this problem to some extent and provides a convenient way to perform unit testing. To

the best of our knowledge there is no work published listing the current available unit testing tools with

automated support. The lack of comprehensive study and categorization of tools based on well establish

criteria is also a problem for developers to select appropriate tool. Therefore, developer or organization

does not have any concrete work to look for such tools and their properties. The main problem for

developers in selecting appropriate tool can be solved to the extent by this thesis work. This thesis work

would provide maximum research information specific to automation of unit testing that could help

developers or organizations to find and to choose suitable tool. As a result of this thesis work, the list of

all current available automated unit testing tools is provided together with explanation of some

additional properties that can be helpful for developers or organizations.

1.3. ORGANISATION OF THESIS

The rest of thesis report is organized as follows. Chapter 2 explains existing related work on these

research topics i.e. systematic literature review and automated unit testing. Chapter 3 includes the

detailed explanation of systematic literature review that can be useful as the study material for others.

Chapter 4 presents the major sub parts of opted SLR method for this research work with the detailed

explanation of research tool used for this thesis work i.e Zotero [61] in section 4.3. Chapter 5 discusses

about some algorithms for generation of test data, which is one of the core part in developing unit-

17

testing tools with automation support. Chapter 6 is the analysis of SLR results extracted from SLR

method. Chapter 7 is about a discussion on the validity of SLR results with regard to potential threats

and possible solutions. Chapter 8 is explaining the summary of performed SLR process for this research

work. Chapter 9 explains the categorization of listed unit testing tool with automation support. This

chapter gives the detail description about the formulated criteria for categorization of tools. Chapter 10

discusses the type of error(s) that each tool can find through reading papers followed by chapter 11 and

12 that are about the conclusion and future work that can be done on this thesis further.

18

2. RELATED WORK

Since 2004, systematic literature reviews have earned enough popularity among researchers in software

engineering. Several researchers have been regularly applying it to increase the scope in different fields

of research in software engineering field [5]. During our research process we came across quite a few

papers in the field of software engineering that have used the systematic literature review [5][6][7][8].

Mostly in all the cited papers, the SLR method has followed almost all the basic steps that are present in

general SLR process such as forming research questions, search strategy used, study selection criteria,

data extraction and data analysis [3]. There is one exception in a paper by He Zhang and Muhammad Ali

Babar [5] that has used another method to collect data by interviewing persons involved in that

particular research work. Out of all the cited papers, we found two papers those were very close to our

research work.

Zulfa and Shaukat [7] have performed the systematic literature review specifically in software testing.

Paper by Shaukat [7] is a systematic review aimed at characterizing empirical studies designed to

investigate search-based test data generation cost effectiveness. This paper has followed all the basic

steps involved in SLR but slightly lacks in the qualitative analysis part; instead, it answers explicitly each

research question defined before in SLR. Second paper by Zulfa Zakaria et al [6] is a systematic review

on investigating unit-testing approaches for business process execution language (BPEL) that is very

close to our research work. The systematic review criteria have limited only to 10 years and an exclusion

criterion is quite short and general such as based on the title and abstract.

The scope and number of references covered in the mentioned two papers [6][7] were not very

comprehensive,783 and 450 respectively. Our systematic review recovered 1957 results by using eight

digital search data sources and applied to exclusion criteria. The scope covered in our research is much

higher than the respective papers [6][7]. Our motivation to use systematic literature review is to cover

as much literature as we can and provide the systematic unbiased and transparent result.

In addition, we encountered some research papers that have addressed similar research question to us

such as [1][49][74]. In research work [1], Mads and Mikael have presented a detailed survey on

automation of software testing by taking each testing phase at time. At the end they have made a

comparison between three selected tools which are Agitar, Jtest, JCute [23][10][26]. In our opinion, this

paper lacks in explaining the clear reason behind the selection of these three tools. Similar type of

comparison is presented in [49] by Smeets and Simons. Authors have applied the selected tools i.e.

Randoop, JWalk, Mujava [49] on open source named as JPacman and closely monitored the behavior of

each tool. The same drawback related to defend the selection of tools was found in this paper as well.

Jon [74] has performed the survey on various test data generation techniques for example static and

dynamic, goal oriented and path oriented. This paper covers most common test data techniques with

proper explanation with the help of examples.

In summary to related work, there is rigorous research going on in the field of automation of software

testing. Many companies and research groups are trying to take automation of software testing to great

success. The development of effective automatic test input generator and intelligent Oracle seem to be

19

biggest challenge. Various algorithms have invented and opted to build automatic test data generation

such as taboo search, genetic algorithm, ant colony optimization and simulated annealing explained in

detail in section 5. A research paper from Michael at al [69] has explained method to generate

automatic test data input system with the use of genetic algorithm. Michael at al [69] illustrates some

important problems related to test data generation and draw some connection with genetic algorithm.

Paper [68] authored by Tracey has explained the involvement of taboo search in structural testing.

20

3. SYSTEMATIC LITERATURE REVIEW METHODOLOGY (SLR)
Systematic literature review (SLR) is one of the integral parts of this thesis work. As explained in the

section 1, this research work is mainly about investigating unit testing tools with automation support

using SLR process. One major reason we opted for SLR was to provide the results based on some well-

defined process with concrete evidences. SLR has some general steps, which help others to reach on the

same result [4]. SLR is a set of guidelines or principles to identify evaluate and interpret all available

research literature relevant to the particular topic or questions defined on that topic [3]. The systematic

review is considered as a secondary study while the independent studies contributing to respective

research work are known as primary studies [3]. The one pivotal purpose of the SLR is to produce

concrete research evidence by bringing same level of existing research literature. It helps in indentifying

existing gaps in current research that can be suggested in particular area for future investigation [9]. A

systematic review as defined by Cook et al [9] is “the application of scientific strategies that limit bias by

the systematic assembly, critical appraisal and synthesis of all relevant studies on a specific topic”.

Therefore, as SLR is a well-defined methodology to carry out the research, that gives assurance towards

unbiased results, although it fails to work against publication biasing at primary study level [3]. SLR is

somewhat scientific and transparent approach that provides the “audit trial of reviewer’s decision,

procedure and conclusion”. SLR’s target stays in identifying all relevant studies by accessing their quality

and providing a comprehensive summary of high quality literature available respective to the research

work or research questions [4]. Every systematic review starts from defining a review protocol that

contains well formed “research questions” and methods to perform a review. Based on the defined

questions, the rigorous search begins to collect relevant literature or papers on it [4]. The selection of

scientific database(s) (e.g. IEEExplore, Science Direct) is depending on the field of research area. Once

the relevant literature have been collected from the defined scientific database(s), the next step is to

check the eligibility based on the inclusion/exclusion criteria defined previously in the review protocol

[3]. The result is further processed by using clear and empirical approach to reduce the biasing. Some

examples of other types of inclusion/exclusion techniques are based on editorial, reader’s letter,

interviews and article summaries to define the eligibility of a literature. The following sections describe

the general steps involved in any systematic review, which is based on the given guidelines published in

[3].

3.1. RESEARCH QUESTION

Defining research question(s) is the first step and most important part of the systematic review. The

formation of research question(s) should be focused on the main research work. Defining correct

research question(s) is very critical in SLR, because other steps solely depend on this [3][4]. It should be

formed in a way that would be relevant for both practitioner and researcher, for example, normally

researchers are more diverted to find the undetermined faults in already developed techniques while

practitioners give more emphasis on the techniques they need to adopt by considering particular

situations. Sometimes, the research question(s) are too large and out of context, and to avoid such

complications Petticrew and Roberts [3] have suggested one technique to frame the research

21

question(s) called as PICOC (population, intervention, comparison, outcome and context). Population

focuses on a specific group like testers; developers, etc. based on the research area. Intervention deals

with the specific tools, methodology, approach or similar that needs to be addressed in the research

work. Comparison depends on the research work, if research work demands any comparison among

tools, methodology, etc it is important to mention it in the question. Outcomes should be relevant to

both practitioner and researcher. It should not provide outcome out of context. Context is to define

whether the study is to be performed at an academic or an industrial setting. By following PICOC

technique the quality of research question can be improved and it is recommended by several

researchers [3][4][9].

3.2. REVIEW PROTOCOL

The review protocol deals with the methods and planning needed to perform a systematic literature

review. It is necessary to define the review protocol, as it helps in avoiding the biasing from the

researcher at the very beginning, because it is possible that the researcher will select the individual

studies based on his/her expectations. Several elements as clearly described sections should be included

in the protocol, such as the following [3][9]:

Background: The basic idea behind performing the survey

Research Question: Forming of research questions that are intended to deliver the research work.

Research Keywords: Based on the research question(s), keywords need to be extracted.

Study Selection Criteria: Deals with the inclusion/exclusion criteria for primary studies.

Study Selection Procedure: Describe how the defined selection criteria would be applied, for example

number of people included in process.

Study Quality Assessment: The researcher should have a checklist to assess the primary study literature.

Data Extraction Strategy: This includes the steps that define how the references for primary study have

been obtained.

Synthesis of the Extracted Data: This section is to identify the techniques for synthesis of the data from

selected studies.

3.3. IDENTIFICATION OF PRIMARY STUDIES

Once the review protocol is finalized, a systematic review can start with identification of primary studies

based on the defined research question. Identification of a primary study depends highly on extracted

keywords and formation of queries. If needed, queries could be modified according to the search

mechanisms of the selected scientific databases. The formation of queries relies mainly on the usage of

logical operators like “OR” and “AND”. While collecting all the scientific literature studies, it is important

to document the work consistently, as the information on data sources change very frequently. Types of

information that could be documented are: data source used, query used on database, date the search

was performed and years covered by query search [3][4].

22

3.4. DATA EXTRACTION

This part of the systematic literature review deals with searching of relevant data among primary

literature collection. All the literature collected as primary study, undergo proper extraction phase and

in order to meet the selection criteria defied in the research protocol. Selection criteria could be

performed manually or by using some research tool. Purpose of the extraction phase is to bring more

precision in the collected literatures. The references left after going through selection criteria normally

represent the final set of papers that require thorough reading[3][4].

3.5. STUDY QUALITY ASSESSMENT

The quality assessment is related to the selection criteria used for obtaining primary studies. There are

mainly three types of quality concepts defined, which are as follows [3][9]:

Bias: This is a dodgy technique of diverting the results systematically from the true set of results.

Internal validity: This is mostly related to the design of systematic review, as it shows the extent to

which the design and conduct can prevent the review from systematic errors.

External validity: It is also referred as applicability or generalizability and defines the extent to which the

studies are applicable in the broader research area.

3.6. DATA SYNTHESIS

Once the collected literature is precisely filtered through the selection criteria, it is time to summarize

the results obtained from it. Data synthesis includes the literature study based on population, context,

and outcomes. It is used to find and maintain the consistency between the results [3].

3.7. ADVANTAGES OF SLR

The sections above described the general steps involved in the SLR process. Some major advantages of

SLR process are as follows [3]:

1. The well-formed methodology avoids the biasing in concluding results.

2. This approach can help to give the consistent results with evidence and help to find the issues

about the phenomena.

3. This approach covers broader view of the research area.

23

4. RESEARCH METHOD
This thesis work comprises a systematic literature review (SLR) of relevant literatures on empirical

studies for the purpose of investigating currently available tools with automated support at the unit

testing level. The basic steps involved in the SLR process are already explained in the section 3. The

approach we have chosen is very similar to the one defined in section 3, but in a way that is more sorted

and manageable. SLR process consists of various steps like designing review protocol, defining the

research questions, selection of keywords, identification of scientific database(s), search strategy, study

selection criteria, etc. The following sections describe in detail the modified SLR steps we specifically

defined in the context of our study based on the guidelines given in papers by Keele and Cook et al

[3][9]. The main aim of adopted SLR process was to gather maximum primary literature, to our research

area. The other steps of adopted SLR process are shown below:

1. Fundamentals of SLR Process

2. Performing SLR process

3. Information Retrieve & Storage (Zotero Tool)

4. Study Selection and Data Screening

5. Analysis of SLR Results

6. Validity of SLR Results

The pictorial representation of our adopted SLR process is shown in figure 1. It shows the selected steps

with their sub parts in our SLR process from its beginning to the end. In figure 1, the hierarchy starts

from fundamental of SLR process, which contains sub steps like forming research question(s) and then

formulating keywords from question(s) that are explained in more detail in section 4.1. After keywords

formulation, these keywords need to be applied on the selected research databases. The selected

research databases for opted SLR process, explained in detail in section 4.2, are seven in total and all are

related to the software engineering field. The literature has been collected from all the databases by

designing respective query for each database specifically. This full process comes under the section

performing SLR process. The literature was saved on the local hard drive with the help of research tool

Zotero, that is explained more in detail in section 4.3 i,e. information retrieve & storage. This section is

introducing this tool and explaining all aspects of this tool used in this research work. Study selection

and data screening section performs exclusion criteria with the aim to remove irrelevant references

from the collected literature. The exclusion criteria are explained in details in section 4.4. Once exclusion

criteria have performed, analysis of SLR results starts which is about to read all the relevant literature to

find unit testing tools with automation support. Section 6 explains the found results after reading papers

and the discussion about them in detail. The last step in our SLR process is to check the validity of

obtained results in SLR. Section 7 speaks in details about the potential threats to the validity of SLR

results and the solution to overcome these threats.

24

Figure 1: Systematic Literature Review Process

25

4.1. FUNDAMENTALS OF SLR PROCESS

This section discusses establishing of the research questions and extraction of keywords out of it. The

most important phase in SLR process is to define very accurately the research question(s) with the

strong focus on the research area [3]. Therefore, our research work aims to search for the automation

supported tools in unit testing and the question(s) should be concentrated to find such tools ultimately.

While forming the research question(s) we found that our research would be concentrated to answer

only one valid question, by targeting this question we will try to cover maximum primary literature.

Therefore, by keeping PICOC [3] in our mind we concluded on this research question:

Can we identify and list currently available testing tools that can provide automation support

during the unit-testing phase?

After the formation of such a research question, we need to define keywords based on it. Based on the

question we extracted our main keywords that we will use on all the selected scientific database(s)

listed in table 2. Generally, the reason behind forming keywords from question is to cover all aspects of

the question and to maintain the consistency. The formulated keywords and the reasons to select them

are explained in table 1 that is as follows:

Input Search Keyword Reason(s) for Selecting Input Search Keyword

Test data generation Test data generation is core element in developing testing tools with

automation support, this keyword would help us to identify all such papers

that are discussing this technique.

Automated unit

testing

To target the unit phase of software testing with automation support,

Test generation tool To identify tools that can generate the tests, so it covers two important things

from our research question, first test generation and second is specifically

finding “tools” for it.

Automated test case To identify literature talking about generating automatic test cases at any

phase of testing

Table 1: Keywords and Reasoning for Selection

Table 1 explains the keywords with the reason(s) behind their selection, and it shows that the chosen

keywords are covering wide scope in our research work. Defined keywords cover most of the important

elements need to develop unit-testing tools with automation support such as test generation, automatic

test generation, unit testing phase and so on. The keywords designed with close consultation with

primary reviewer. It can be concluded form the table 1 that defined keywords are covering research

question comprehensively.

After defining the keywords, the next integral part is to commence the searching of all relevant data on

different scientific databases. The search keywords are more motivated towards two terms “Test

generation” and “automated test”, even though the search question has more emphasis on unit testing.

26

The reason for not using “unit testing” explicitly in all keywords was to avoid limiting our search scope.

Therefore, we made the combination of keywords in such a way that can result with maximum coverage

in this field. The specific reason to select each keyword is explained in the table 1.

In this SLR process, in total three persons were involved, primary reviewer (Adnan Causevic) and

secondary reviewer (Sasikumar Punnekkat), have reviewed the SLR process. One student (Inderjeet

Singh) was in charge for performing SLR process. However, student took the initiative in all defined steps

in SLR process under guidance of the senior reviewers. Completion of each step was reported to the

primary reviewer for cross checking. Some key steps like forming keywords and search strategy were

done by student under full consultation of primary reviewer. Other steps in SLR process were mainly

performed by student such as including establishment of the research question, identification of

scientific database(s) and study selection criteria. At the same time, senior reviewer (supervisor) was

responsible for the work with monitoring and validating the review protocol, eligibility of selection

criteria and search process itself. On several occasions, senior reviewer checked the implemented

queries on some of the defined scientific databases for cross check of results and to minimize the

random mistakes from the student.

4.2. PERFORMING SLR PROCESS

The commencement of our research started at looking at various high quality digital scientific databases

listed below:

IEEE Xplore

ACM Digital Library

Academic search Elite

Google Scholar

Science Direct

Ingenta-Connect

Wiley web library

Springer Link

Table 2: Research Data Sources

Search keywords were used individually on each research database. Our goal was to include maximum

number of the relevant scientific databases related to our research area i.e. software engineering and

computer science. Therefore, after researching a bit on the available options for databases, we selected

databases based on the accessibility through the Mälardalens University library. Using specified

keywords, queries were designed according to each database search capabilities. The use of queries on

respective databases obtained a number of results from each database which were saved on the local

hard drive with the help of Zotero tool [61]. The collected literature from each database was analyzed

and the maximum number of results was obtained from Google scholar, which almost contained all the

http://www.mrtc.mdh.se/index.php?choice=staff&id=0158

27

result from ACM digital library and IEEE Xplore. The further analysis showed that the results obtained

from Google scholar were not of very high quality, because it contained many references, which were

not recoverable from provided link and many papers which were not written in English. The papers

found in ACM digital library and IEEE Xplore were more centric towards the keywords we defined. The

scientific database Wiley Web Library mostly gave the references for books on this research area. The

query used on all the mentioned scientific sources was same with the logical operator “OR” between the

keywords and with some minor modifications to accommodate specific search mechanism. The table 2

shows the query used on each data source with the number of results found:

Scientific

data Sources

Query Found

results

Search Date

IEEE Xplore TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where Metadata only = true

382 13th Feb

2012

ACM Digital

library

TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where timeSpan= “all year” and

Publication = “All”;

56 13th Feb

2012

Academic

search Elite

TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where Selected field = optional

32 13th Feb

2012

Google

Scholar

TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where Search= title and abstract

760 14th Feb

2012

Science

Direct

TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where Timespan= All Year And

Publication type = all;

In Expert search

414 14th Feb

2012

Ingenta

Connect

TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where Search= “In article title,

keyword or abstract”

27 14th Feb

2012

Wiley web

library

TS= ((“Test data generation”) OR (“automated test case”) OR (“automated

unit testing”) OR (“ test generation tool”)) where Search= “ In all fields”;

201 14th Feb

2012

SpringerLink TS= ((“Test data generation”)OR(“automated test case”)OR(“automated

unit testing”)OR(“ test generation tool”))where Search=”Title & Abstract”;

85 13thFeb201

2

Table 3: Queries on Each Data Source

The total numbers of references collected from all the scientific databases by using queries were 1957.

Out of which the maximum was gained from Google scholar database, 760 references. The collection of

28

literature was performed on two days i.e. 13th and 14th of February of 2012. There were few references,

from which no papers were obtained. Query designed for IEEE xplore was only targeting search filed as

“Metadata” because with the option “Full Text & Metadata” was giving over 2000 results which were a

lot by considering time allocated for this research work, so we decided to fix it on metadata. However,

the results from IEEE Xplore did not have any limitation based on year and type of publications. Similarly

for ACM Digital Library, we kept timespan and publication respectively to “ALL YEAR” and “ALL”. In

Academic Search Elite, query was designed in such a way that can give results without any limitations of

search fields such as “metadata”, “title”, “abstract” etc. This was achieved by leaving search field section

to “optional”. Google Scholar query has search field to “Title and Abstract”, which eventually returned

maximum references i.e. 760 out of all databases. The scientific database Science Direct has returned

the second maximum number of results that were 414 with the query having “ALL” for both timespan

and publication type. Query derived for Ingeta Connect database has set the search area field to “In

Article Title keyword and Abstract”. This database found the minimum references i.e. 27, although there

were not constraint related to year and publications. Wiley Web library has retuned 201 references

with search area targeting “In All Field”. In the end, query for Springer Link generated 85 results

targeting search area “Title and Abstract”. Consequently, it can be concluded that all queries for all

databases were designed in a way to generate the results without any limitations on the date of

publication and type of publications. Search area is different for almost all queries which were selected

solely by considering the time constraints.

4.3. INFORMATION RETRIEVAL AND STORAGE (ZOTERO TOOl)

The study selection described in the section 4.2, is done using the tool called as Zotero [61]. Zotero is a

tool for collecting, citing and sharing research purpose work. The installation and use of Zotero is quiet

simple and is free available which focused on research work that automatically identify the contents to

add or download directly to the hard drive [61]. The Zotero is available in different formats such as plug-

in for browsers (Chrome, Firefox) and stand-alone application for system. Once you installed the plug-in

in browser, it senses the content available on web page and offers to download the references from that

page just by button click. The best part in the Zotero is that the downloadable contents can be saved on

their web server as well, so there are no issues for losing data even the system crashes down. Zotero

provides various features to make the work easier for researcher like creating folders, filtering papers

based on some criteria by using “tag”, “titles” and “adding notes” respective to each paper.

29

Figure 2: Zotero Working Environment

In this thesis work, we used both the plug-in version for chrome and stand-alone application. Zotero

saved a lot of time to collect the paper but there were minor issues while collecting paper from all

scientific databases, for example Zotero failed to collect papers from Springer link and also missed few

papers from other scientific databases. The management of papers in Zotero is very easy and time

saving. The figure 3 shows user interface of the stand-alone application.

The figure 3 shows, some features that we used during our research work, which are as follows:

1. Detection of duplicate references

2. Adding tags to separate reference from all other references

3. Addition of notes to add relevant information related to respective reference

4. Generation of bibliography with Zotero in doc file.

The study selection described in section 5, the exclusion criteria has applied with the use of “tags” in the

Zotero. It helped a lot to filter papers systematically. The tags used for the filtering process was as

follows:

Folders

Filters

Notes

30

TAG NAME SIGNIFICANCE OF TAG

N_ENG Paper which are not in English

Less_4 Papers contain less than 4 pages

Book_link References for book, thesis

N_CS_SE_Pub Publications do not belongs to computer science and software engineering

Re_Con Papers to reconsider

Title_Context_Out Paper’s title not relevant to our research area

ABS_Context_Out Paper’s is not relevant to our research area after reading abstract

Table 4: Tags Used in Zotero for Filtering

Zotero provides an option to add “tag” for each reference. Based on the added “tag” for each reference,

it allows to create the new folder containing all the references with that “tag”. All this process is

automatic in the Zotero, which is very timesaving. After performing, the automatic filtering based on

defined tags in table 6, the final papers that are 112 was downloaded on the hard drive and started

reading each of them for finding the automated unit testing tools. However, reading papers in Zotero

also helped in a way to add the notes related to each paper. The figure 3 shows the way to add the

notes to the reference.

4.3.1. ZOTERO INSTALLATION AND USE

Zotero is new and still developing tool for research related work. It is very easy to install and configure

on system even for new researchers. Zotero team provides very good documentation with separate

forum to discuss current issues in Zotero. It is available for all three major operating system e.g. Linux,

Mac and Windows. The basic step for installation and use of Zotero that was performed by us are

defined below:

1. Download Zotero plug-in for chrome and standalone application from given link,

http://www.zotero.org/support/3.0.

2. Register yourself on Zotero website to obtain user name and password. It will help you for

synchronization with web server of Zotero and Zotero version on your system.

3. Open standalone application and go to tools->options…->Advanced, to assign the local directory

on for system. This step is not mandatory.

4. In same window which was used in step 3, select sync option now and give your credential that

you made while registration.

5. Now the standalone and plug-in application is sync with Zotero web server and it is ready to

download content from web pages.

http://www.zotero.org/support/3.0

31

4.4. STUDY SELECTION AND DATA SCREENING

After collecting all the references in Zotero [61] explained in section 4.3. It was time to perform the

selection process on all the references. In selection process, the exclusion criteria formulated include

nine steps in total shown in table 5 below. Student under the proper guidance of primary reviewer

performed the exclusion criteria.

Exclusion Criteria

Duplicate paper should be removed

Research paper should not be less than 4 pages

Exclude papers published in non-English language

Publications related to non-software engineering or computer science

Books and thesis work should be excluded

Title not appropriate to automation test data , testing and software tool should be excluded

Interviews, discussion should not be considered

Exclude papers not related to automation support of test data at unit testing level after reading abstract

Exclude Papers based on reading full text

Table 5: Exclusion Criteria

Table 5 shows the exclusion criteria used to filter out the irrelevant literature from the collected data. In

this process, some steps were easy to perform with the use of Zotero [61] like removing duplicates,

book links and thesis work links because Zotero provides the inbuilt feature to detect the duplicates and

book links. Except these few steps, other steps were quite time consuming because it was needed to go

through from all the collected literature. The steps for removing the references based on the title,

publication and abstract were the core part of the exclusion criteria. In particular, the step to filter

papers based on title was bit complicated, because sometimes the title is not very informative and clear

that creates confusion in deciding to include the paper or to exclude it. The step related to publication

was also bit complex and time consuming, because of having some mixed publications of some software

and non-software fields. It was tough to decide on some publication to opt it and needed to check the

details about each doubted publication on other resources on internet. The final step in exclusion

criteria is to select papers after reading full text, but that would be achieved only after removing papers

based on abstract reading. The table 6 below shows the papers reduction hierarchy based on the

exclusion criteria explained above in table 5.

32

Exclusion Criteria

Change in number of papers

Before After

Remove Duplicates 1957 1545

Remove non- English papers 1545 1463

Remove papers less than 4 pages 1463 1400

Remove all the book links 1400 1248

Remove non CS_SE publication 1248 896

Remove papers based on title 896 378

Remove papers based on abstract 378 112

Remove papers based on full reading 112 42

Table 6: Summary of Applying Exclusion Criteria

The total number of references collected from all scientific databases was 1957 including all types

including duplicates copies, books chapters, non-English and interviews, etc. According to the exclusion

criteria defined in table 5, student started filtering the papers in the tool Zotero [61]. In the collection,

412 papers found to have duplicate copies, after removal of duplicate papers; number came down to

1545 that had no duplicate copy of any reference. Out of 1545 paper, 63 references were not in the

International language i.e. English, the reason for choosing English was not to limit our research to any

specific language. Next step was to remove the references that have less than four pages in the article.

Exclusion of such papers took the number down to 1400. After discussing with primary reviewer, we

decided to remove all the references that include the books, bachelor or master thesis work and

interviews. Removal of books and thesis work took the number to 1248. Then, we started researching at

the publications for each reference, by inquiring all the publications; we removed all the references that

were not related with software engineering, software testing, computer science and software

verification and validation field. We found 378 references were not related to the publications

mentioned above and number reduced to 896. Until here, the filtering was considered to be in phase

one, because until this level we actually did not read any paper thoroughly. The final and second phase

consist of filtering papers based on title ,reading abstract and reading full text that were involved

reading the papers to the extent. Removal of paper after reading title took the number to 378. The

abstract reading of 378 papers and exclude them were time consuming task, but it benefited later and

number reduced to 112. This set of papers need full reading and then removing unrelated papers from

them. The real focus would be on these papers to find the tools and approaches related to automated

unit testing. During all this process, we found that some papers were not recoverable, either few were

33

not available for Mälardalens University library or paper were not available on that link. We put them

aside in another folder named as “Reconsider *”.

In the exclusion criteria explained above in table 5, we mentioned a step related to publication in

exclusion criteria. There were many publications which were not related to our research work. So we

decided to exclude them, due to the reason of having the high number of unrelated publications, we are

showing the publications we included in our research work. The table 7 below shows the major

publications we included in our research work.

Publication Name Type of Publication Number of References

Collected

IEEE Transactions on Software

Engineering

Journal 29

ACM SIGSOFT Software Engineering

Notes

Annual Conference 10

Software Testing, Verification and

Reliability

International Journal 9

International Conference on Software

Engineering

International Conference 9

Software Testing, Verification, and

Validation

International Conference 5

Information and Software Technology Journal 4

Journal of Systems and Software Journal 4

Software: Practice and Experience International Journal 3

Theoretical Aspects of Software

Engineering

Conference 2

Secure Software Integration and

Reliability Improvement

Annual Conference 2

Quality Software Journal 2

Others 33

Table 7: Important Publications Considered

Table 7 above shows the major included publications with their type of publications in the research

work. The major contributors in terms of number are ACM and IEEE. Type of journal field in table is to

show whether the publication belongs to conference or to journal. Publications with the contribution of

only 1 reference have added to the “Other” section, because the number was very high to show all the

publications in the table 5.

*Recoverable folder is containing all the references of literature that were not available to be studied.

34

5. STATE OF ART ON TEST DATA GENERATION
This section is to create the basis for discussing the results in section “Analysis of results”. The results we

found have strong connection with test data generation; most of the results use various test data

generation algorithms to develop the tool. Test data generation is a method to find relevant set of data

that can satisfy the testing cases [72]. As all the results found are testing tools with automation support,

this test data generation becomes more important for such tools. There are many algorithms available

to generate automatic test data, based on different techniques such as Taboo search, simulated

annealing, function minimization methods and dynamic data flow analysis. All the found tools are either

using directly or indirectly any of these algorithms as basis for the development.

Test data generation is the core part to build automatic testing tool [67]. Our research area is unit

testing which is heavily similar to white box testing. The first step is to select the test adequacy criteria

like branch coverage or statement. Followed by this, next is to search a set of test data that can satisfy

selected test adequacy criteria. Generating test adequacy data manually is time consuming and effort

intensive process [66][67]. This problem has attracted researchers and companies to build automatic

test data generator. As a result, for this problem a few automatic test data generation techniques have

been introduced. In the year of 1996 Ferguson and Korel [66] divided these techniques into three classes

which are random test data generator, structured test data generator and goal oriented test data

generation. This was considered as most appropriate classification related to test data generations [68].

Random test data generator is a simplest technique; it selects random inputs for test data specific to the

program that could be integer, string, heap, etc [66][69]. For example, a function is using integer as

argument, this technique could provide random number of integers to pass. Structured test data

generator technique is considered as strongest among all [69]. It provides the specific test data based on

the specific path. It is consequently resulted in better solutions but its bit tough to find the test data.

Goal oriented is the technique similar to structured test data generator. Instead of random selection, it

generates input for unspecific path, because it is much better to get the input for any path than any

random input [66][67][68].

After this, the problem is to search set of inputs from specified domain all possible input data that can fit

in for test adequacy criteria [66]. This is known as search problem for automatic software testing. In the

beginning, the most of the test data generator were based on gradient descent algorithm, but it was

considered as very inefficient and time consuming [71]. So to overcome this problem meta- heuristic

search algorithm has introduced for developing test data generator. Few search algorithms defined

were as follows:

1. Simulated annealing

2. Taboo Search

3. Genetic algorithm

4. Ant colony optimization

35

5.1. SIMULATED ANNEALING

Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi invented it in the year of 1983.The idea was taken

from the annealing and metallurgy, which has the concept of heating and then cooling the material to

increase the size of its crystal that reduces the defects[62]. In simple words, it is a strategy for finding

solution for combinatorial optimization problems. Simulated annealing is kind of protocol that has the

property of iterative improvement, it does not stick in local optima. The necessary characteristics of SA

are as follows:

1. Configuration model

2. Move Set

3. Cost function

4. Cooling Schedule

Configuration model is basically a model having all feasible configurations, where model is called as

design space. This model should have all the legal design but it surly contains some base design as well.

In the move set phase, the property of iterative improvement exists. This approach evaluates the

current design for the improvements. Then in the design perturbations are applied randomly and it is

called as move. So eventually it should reach at move set which contains all feasible design in the model.

Later in third stage cost function, it evaluates the goodness of a design. This phase is actually for finding

the effectiveness of the perturbations applied in previous step. This phase helps in covering all the

alternative design and finds the best. The last phase is cooling schedule, which is to choose the best

design. The designs with the decrease in the cost function at any level will be accepted and vice versa

[62][63].

5.2. TABOO SEARCH

The taboo search is a simple and efficient approach for solving optimization problem to overcome from

the limitations from linear search functions. It was invented by Fred W. Glover in the year of 1986 and

1989 [64]. It has proven to be very fruitful for the improvement in performance of techniques using

memory structure [64]. There are some other methods also with memory less design such as semi-

greedy heuristics, prominent genetic and simulated annealing [65]. In general, Taboo search starts by

looking into local minima and fresh moves in one or more taboo lists, and then these moves are marked

as taboo. This information is very useful in retracing the previous steps applied. One of the uniqueness

in taboo search is not to prevent the repetition of applied moves rather to confirm that it is not missed.

Sometimes in taboo search, some attractive moves are needed to be missed as to maintain the

stagnation in searching process. At the end, the searching criteria stops when the condition is fulfill.

There are a few general steps consist in the taboo search that are as follows [64][65]:

1. Defining a representation of possible solutions

2. Defining the neighborhood

3. Chose the objective to evaluate neighborhoods

36

4. Defining the taboo list with aspiration criteria and termination criteria.

These are the key issues that involve in the taboo search for searching.

5.3. GENETIC ALGORITHMS

John Holland invented genetic algorithms (GA) in the year 1960 at university of Michigan. GA gets the

popularity very early and gain the interest of researchers very fast. As a result, lot of work has started

towards GA regarding either the specific behavior of GA or application of GA targeting particular

purpose [66]. Some of GA’s application includes are automatic programming, optimization, machine

learning and social systems. Generally the GA begins with the random collection of solutions, then with

the recombination and mutation process the optimum solution extracted out of population. In the

whole process, the first process is to evaluation of fitness of solution in existing population that can be

acted as parent for next solution. In the evaluation many solutions are matched and the solution having

high fitness values would be expected to be in it. After it, the parent generates the offspring’s by

recombining and mutation, which results in new population. There are some general steps that are as

follows [66][67]:

1. Identify the minimization problem

2. Choose the genetic encoding to maintain the sequence among operations and their parameters.

3. Design the fitness of each population based on the problem

4. Check the iteration limit, if it does not reach upper limit, proceed next step otherwise repeat.

5. Apply the standard evaluation, crossover and mutation operator.

These steps of GA are valid for solving general optimization problem.

5.4. ANT COLONY OPTIMIZATION

Ant colony optimization (ACO) is a technique that was introduced by Marco Dorigo in 1992 in his PhD

thesis. The idea has inspired from the behavior of ant colonies for finding the optimized path. It is very

popular nowadays and included in many problems like train scheduling, time tabling and shape

optimization, etc, but this approach has great importance in telecommunication, especially in routing

and load balancing. The Ant colony optimization can be illustrated by simple algorithm that is explained

below [70]:

Figure 3: Algorithm for Ant Colony Optimization

37

Therefore, to perform this algorithm, some notations are as follows

C, denoted for all the possible solution components and used to construct graph GC(V,E). The construct

graph is associated with components and set of edges E.

A pheromone trails values tij would be associated to each C. Pheromone values defines the probability

distribution of the solution that can be modeled. These values can also get update by ACO algorithm

during the search.

So as it is shown in the figure 4, the meta heuristic started with the activation of three activities by the

SCHEDULE_ACTIVITIES construct. This activity will be repeated until termination happens [70].

5.4.1. Construct ant Solution

In this step, it is mainly to construct the artificial ant solution from elements of finite set of solution

components C. The process to construct the solution eventually leads to building graph GC (V,E). The

choice of a solution would be done probabilistically at each construction level. The rules for probabilistic

approach change on ACO variant [70].

5.4.2. DaemonActions

After the construction of solution, some problem specific actions need to apply which are known as

Daemon actions. The most common daemon action includes the local search on the constructed

solution, that local search is to find the pheromone value to be updated [70].

5.4.3. UpdatePheromones

The aim of this step is to keep the values of pheromones which are associated to good solution and

while removes the pheromones values which are not related to bad solution. This can be achieved by

two process one by decreasing the pheromone values which is called as pheromones evaporation and

other by increasing the pheromones values [70].

38

6. ANALYSIS OF SLR RESULTS

This section evaluates the data collected from the systematic literature review process. The final list of

papers collected through SLR process has aimed to find the unit testing tools with automation support

available in the market. The table 8 contains the list of tools available in the market with the respective

cited paper(s). This table is divided into three columns tool name, primary citation and secondary

citation. The primary citation denotes that either the tool is introduced in the paper or the paper

presents a detailed comparison of the tool. Secondary citation contains the papers that have very brief

explanation of tool or have cited the tool name to draw some comparison. As mentioned in the table 8,

the total number of tools found is 24, which includes all the domain, type of availability, etc. There are

some tools mentioned in the table 8 that do not have any primary citation(s), those are normally

commercial tools and are not freely available. In summary, it is found that 42 papers are talking about

automated unit testing tools and are shown in the table 8.

Tool name Primary citation Secondary citation

Agitar [23]

Austin [26], [37]

CAUT [40]

CREST(Successor

of CUTE)

 [26]

CUTE [26], [37] [11], [22], [30],

[40], [41]

DART [28] [11], [26], [30],

 [41]

Eclat [42] [23]

EXE [11], [41]

Findbugs [16]

Jcrasher [23] [38], [43], [47]

Jcute [26], [37]

Jtest [10], 12],[18],[20],

[23], [29],[34], [43],

[46]

39

Tool name Primary citation Secondary citation

JUB(Junit test

case builder)

[23]

Jtst [24], [51]

Jwalk [49]

KLOVER [19]

Korat [18]

PathCrawler [41] [11], [13], [22]

Palus [60], [52]

PEX [22], [26], [38],

[39], [41]

Randoop [49]

SMART (Extension

of DART)

 [11], [40]

SOATest [20]

TestGen4j [23] [38]

Table 8: List of Unit Testing Tools with Automation Support

Table 8 shows, the list of found results in alphabetically order, but this table does not give any more

details about the tools. It contains all the tools irrespective of defining any boundaries such as

Programming Language support or domain etc. It can be drawn that Jtest has referenced most of the

time in the secondary citation column but it does not have any primary citation, one reason behind it

could be that Jtest is a commercial tool that was developed by company Parasoft. Among non-

commercial tools DART, CUTE and PEX are the three tools which found to have maximum citations.

JCrasher is also quiet popular but it is now enhanced to new version called as Randoop. The output

generated by each tool is also interesting point as not all the tools generate automatic test cases but the

percentage of tools that can generate test cases is quite higher. There other ways to give output are like

showing errors in the code line-by-line, providing code coverage etc.

40

6.1. PROTOTYPE TOOLS

During the search process for automation supported unit testing tools, we encountered some prototype

tools developed by some educational group or researchers. In total, we found 11 prototype tools; most

of them are based on the techniques explained in above section 5. The mentioned tools in the table 9,

most of them are not available for public use; because these tools are not completely developed to

launch in the market. The main purposes of these tools are to test the new techniques developed for

test data generation. These prototype tools only involve the idea to build the new tool.

Prototype tool name Primary citation Secondary citation

AutoGen [31]

DiffGen [15]

Gozilla [21], [48] [23], [35],[36]

Juta [25]

SimC [30]

Slueth [44], [50]

Symclat [23]

Symstra [39],[40]

TAO [32]

TestGen [45] [10], [17]

Tgen [33] [14], [27]

Table 9: List of Prototype Tools

In the table 9, it can be seen that almost all the tools have the primary citation field filled, which is

somewhat necessary for prototype tools. Only two papers do not have the primary citation, but it could

be possible that our keywords defined in section 4.1 did not match with it and failed to recover any

paper. Among all the tools, Slueth and Godzilla are only tools with two primary citations, which show

the popularity of these prototype tools. Prototype tool, TAO is based on the algorithm explained in

section 5 i.e. genetic algorithms.

41

7. VALIDITY OF SLR RESULTS
This section explains the possible threats to the validity of SLR results in our research work. We

identified mainly two potential threats to the validity of results in this research work, first was identified

as the publication biasing in the collected literature. Second, was related to the quality check for the

collected papers. In order to overcome from these threats, a well-defined review protocol has been

developed containing research questions and extracted keywords out of research question(s). The

keywords were formulated by close consultation of primary reviewer. To achieve the maximum results,

queries have formalized under the proper consultation of primary reviewer and modified regularly as

per their feedback. Primary reviewer was continuously crosschecking the usage of formed queries on

respective databases that helped us in recognizing the random errors and the quality of literature.

Review protocol included proper study selection and data extraction criteria in order to remove the

irrelevant literature from the collected literature. Therefore, the precisely defined data extraction

criteria played a big role in reducing the biasing at this level. Review protocol was well reviewed by both

primary and secondary reviewers, which added more value in it and helped us in achieving maximum

literature with minimum biasing. In addition, our strict exclusion criteria, played important factor in

controlling the limits and not letting us to consider any irrelevant literature. The qualities of identified

research papers were evaluated for their results. The quality of results is totally based on the relevant

research papers obtained for this research work, so it was very important to perform quality check on

the identified papers. The correctness of research papers were checked by considering many factors

such as the authors, published in the publication organization (IEEE, ACM, SpringerLink), standard of

conference or workshop, reputation of universities, research and development departments where the

paper has been published. The removal of literature based on publications was important parameter in

identify both the quality and biasing of the paper. As this criteria required us to study each selected

publication organization in detail. In summary, the strictly performed SLR process, well defined question

and keywords and continuous cross checking of process helped us in recognizing the biasing in

publication. However, quality of collected paper has been assessed based on the criteria defined above.

42

8. SLR SUMMARIZATION

This section is about to summarize the SLR process we performed for our research work. Figure 4 shows

all the opted steps from the beginning to the end in detail. Each big block in the figure represents each

phase of our SLR process and the boxes inside showing some major task involved in each phase. The

small box on each big box is showing the name of the SLR phase. Therefore, our SLR starts with defining

research question and keywords, which comes under fundamental of SLR phase. It shows the selected

keywords that are four in number. The queries have made out of keywords to apply on selected

databases with some minor modifications in queries respective to each database. The figure 4 is also

showing the number of references obtained from each database and it shows that maximum collected

references are from Google Scholar (760). The process of selecting scientific databases and defining

queries came under the phase performing SLR process. The collected literature from all eight databases

has been saved on the local drive with the use of research tool named as Zotero. This process came

under the information retrieval and storage, in total the number reached to 1957 and all references

were collected by using Zotero. Once the collection of all reference is finished, the exclusion criteria

have applied which is shown in the figure 4 in the phase “study selection and data screening”. There

were eight steps in exclusion criteria and application of each step reduced the number of references. In

last step, 112 papers were identified that were needed thorough reading. After the thorough reading of

relevant papers, the “analysis of results” phase came which showed that we found 42 research papers

discussing 24 automated support unit testing tools and 11 prototype tools. Once we found our results, it

was important to perform the validity check on the result found and collected relevant research process.

“Validity of results” was the last step of our SLR process, this step was about to identify potential

possible threats to our derived results and the measures we took to overcome these threats. The core

solution we found was to check the quality of publications such as author, recognization of research

department etc.

It can be concluded from the discussion above and from figure 4, that the SLR opted for this research

work was very simple and sorted out, so that anybody can understand and perform it to achieve same

set of results. It was our one of the aim to design simple SLR methodology in order to achieve the

highest quality result and succeeded to some extent.

43

Figure 4: Detailed View of SLR

44

9. CATEGORIZATION OF TOOLS
Once we collected all the automation supported unit-testing tools, shown in the table 8. It is time to

categorize them and put them into groups. This is second phase of this research work and one of the

most important one. Therefore, before starting the categorization of tools, it is important to formulate

well-defined categorizing criteria. The categorizing criteria becomes more important to define on

collected list of tools because this list contain all the tools regardless saying anything about their

domain, language support etc. There are few points we decided to include in the categorizing criteria

that are discussed below.

9.1.1. Based on Domain

This section categorizes the found tools based on the domain it belongs. This list collected in table 8

contains tools irrespective of any domain such as desktop, web or server. Accurately, domain defines as

the type of application that is possible to test with the tool. The most common domains identified are

Desktop, web based and server based. From table 11, most of the tools support only desktop-based

applications. Only one tool is found to support web based services i.e. SOATest.

9.1.2. Programming Language Support

This part helps to categorize the tools based on the programming language supported. Each tool has the

support for at least one specific programming language but few tools have the support for multiple

languages. The most common programming languages concluded form the table 11 are Java and C. In

the table 11, only one tool PEX has the support for Microsoft C#. All other’s either support Java or C.

CUTE is only tool with the support of both C/C++.

9.1.3. Testing Technique

There are many testing technique exist such as white-box, black box, path testing [71]. All these

collected tools in table 8 are directly or indirectly based on any of them. This part will helps us to

categorize the tools based on the testing techniques used by that particular tool. It is interesting to see

in table 11, that tools are based on many different type of testing technique, there is not any one testing

technique that has dominated the list of tools. Some testing techniques were found to be used by few

tools such as “concolic testing” and symbolic execution.

9.1.4. Availability of Tools

The availability of the tools is also one of the important criteria to categorize tools. Availability of tool

makes big difference for someone who wants to use. In the table 11, it can be seen that there are 3-4

commercial tools available such as Jtest, Agitar, etc. Most of the tools are open source but

unfortunately, some of them are not even available. There are few examples of academic and licensed

tools also like Eclat, PEX.

45

9.1.5. Developer Interaction

Developer interaction means the level of interaction needed by the developer to use that tool. This part

actually has two important things to explain one is setting up environment for respective tool and other

is the actual use of tool on module. The setting up is required for all the tools and the level of efforts

required in this is different for each one. The setting up could take more time but it would be only one

time effort. However, this section is more about latter part i.e. interaction. In the interaction part,

developer needs to apply tool on the module. We decided to set the level on the scale of 0-2. Each value

from 0-2 has some specific criteria defined, that is shown below in table 10:

Level on Scale Type of interaction

“0” Selecting unit or module in tool

“1” Writing set of commands to use it on unit or module

“2” Writing scripts for applying code on module

Table 10: Developer Interaction

Based on the criteria defined above, some fields are empty in the table 11, as the information found for

these tools was not sufficient which is mainly because of availability of the tool.

Tool Name Language

supported

Testing

Technique used

Domain

belongs

Availability Level of

Developer

Interaction

Agitar Java Observation

driven testing

Desktop Commercial 0

Austin C Search based

technique

Desktop Open source

CUTE C/C++ Concolic testing Desktop Free 1

CAUT C Symbolic and

concrete

execution

Desktop Not available

Crest C Systematic

dynamic test

generation

Desktop Open source

46

Tool Name Language

supported

Testing

Technique used

Domain

belongs

Availability Level of

Developer

Interaction

DART C Concolic testing Desktop Open Source 2

Eclat Java Classification

technique

Desktop Academic 1

EXE C Concolic testing Desktop Open Source 2

Findsbugs Java Static analysis Desktop Open source 0

Jtest Java White box

testing

Desktop and

Server edition

Commercial

from Parasoft

0

JCrasher Java Robustness

testing or

random testing

Desktop Open source 1

JUB(Junit test

case builder)

Java Builder pattern Desktop Open source 1

Jtst Java Black box

testing

Desktop Not available 2

JWalk Java Specification

based testing

Desktop Academic 1

JCute Java Search based

and Concolic

testing

Desktop Open source 0

KLOVER C++ Symbolic

execution

Desktop Not available 1

Korat Java Constraint

based

generation

Desktop Open source

PathCrawler C Concolic testing Desktop Online Server 0

PEX C# Dynamically

Symbolic exec

Desktop License from

Microsoft

1

47

Tool Name Language

supported

Testing

Technique used

Domain

belongs

Availability Level of

Developer

Interaction

Palus Java dynamic and

static program

analysis

techniques

Desktop MIT License 1

Randoop Java Feedback-

directed

random testing

Desktop Open source 1

SMART C Concolic testing Open Source

SOATest Web Services Web based

applications

Commercial

from Parasoft

0

TestGen4j Java Boundary level

testing

Desktop Not Available

Table 11: Categorization of Tools

48

10. TYPE OF ERRORS

This section deals with the type of error(s) that each tool can find. The aim was to find the type of

error(s) for each tool by reading the research papers instead of by trying them on some source code. We

successfully found the most common errors for 15 tools out of 24, only by reading the papers. The

reason we could not find the type of errors for other nine tools was the lack of research papers available

on them. The type of error(s) mentioned for each tool is not the only errors that they can find, these are

some most common errors that they can find and regularly discussed in the respective research papers.

Table 12 shows the type of error(s) we found for 15 tools.

Tool Name Type of Error(s)

Agitar [56] 1. Error in mathematical calculation even inside nested statements

2. Unnecessary calls of same method

3. Results comparison with expected values

4. Null point exception and out of bound in array

5. Unused code Specialized rules (J2EE)

6. Formatting in the code

CUTE [26][53] 1. Unbounded loops

2. Constraints involving memory location

3. Transform non- linear expression

4. Pointer aliasing constraints

CAUT [40][60] 1. Array out of bound

2. Pointer aliasing and constraints

3. Static analysis and run time exceptions

DART [28] 1. Program crashes

2. Assertion violation

3. Non termination

4. Memory allocation detect with collaboration with other run time

checking tool

EXE [11] 1. Constraint Solving

2. Independent constraint optimization

3. Bit-victor arithmetic

49

4. Tracking indirect memory symbolically

Eclat [56] 1. Out of bound Exception

2. Pre/post condition violation

3. Illegal inputs

JCrasher [23] 1. Robustness failure

2. Undeclared run time exception

3. Pre/Post condition violation Out of memory error

4. Analysis of exception for error

JCute [37] 1. Deadlocks

2. Uncaught Exceptions

3. Infinite loop

JWalk [49] 1. Unexpected interaction among methods such as dead ends on the fly,

broken pre condition

2. Interleaved constructor

Korat [18] 1. Violating pre conditions

2. Assertion to the problem of test generation for particular statement

Klover [19] 1. Out of bound in array

2. Infinite loop

3. Run- time exception

Path Crawler [41] 1. Infinite loop detection

2. Pre/Post condition violation

3. Handling floating point numbers and arithmetic operations

4. Aliasing and pointer arithmetic

PEX [53][54][55] 1. Argument exceptions

2. Out of bound in array

3. Arithmetic specification

4. Missing pre/Post conditions

5. Buffer overflow or Resource leak

6. Syntactic programming error

50

7. Violation of assertion

8. Exhaustion of memory

Palus [59] 1. Run time exception

2. Out of bound error

3. Empty collection

4. Checking type compatibility before casting

5. Null pointer error

Randoop [49][58] 1. Run time assertion violation

2. Runtime access violation

3. Missing messages in resource file and state of resource file

4. Memory management errors

5. Concurrency error such that related to test input

Table 12: Types of Errors

From table 12, it is visible that the most common errors that can find by maximum tools are “out of

bound” and “exception related errors”. The pre/post violation is another common error that most tools

can find. PEX is the tool that can find maximum number of errors i.e. eight. It is interesting to notice that

many tools are targeting memory related errors that shows the quality of the tools as it is always

difficult to find the errors related to memory usage and blocks. In summary, it can be concluded that the

tools are covering wide domain of errors.

10.1 DESCRIPTIVE ANALYSIS

This section is related to provide the descriptive analysis of collected and categorized data above in

section 8 and 9. Table 13 shows, the grouping of tools based on the support to the programming

languages. It is visible from table 13, Java programming language is supported by maximum number of

tools i.e. 13 and then followed by C language i.e. 8. It can be concluded from the table, that the interest

of developer for test data generation tools is more tilted towards the open source languages such as

Java and C.

51

Language Support by tool Number of tools

Java 13

C Language 8

C++ language 2

Web Services 1

C# 1

Table 13: Categorization of Tools based on Programming Language

The table 14 shows interesting combination between the types of errors and number of tools. We made

this table to find the most common error(s) that can be found by highest number of tools. It is

interested to see that exception related errors are covered by seven tools out of 15 which is good

percentage. At the same time, unused code and check for program crashes seem to be at least priority

by the tool developers. Whereas, the assertion violation and constraint solving are also seem to be very

important that is targeted by six tools. Assertion violation is a predicate like true/false statements. The

constraint solving is kind of relation between variable values. By considering the total number of tools

with the support of C/C++ language, the errors related to null pointer and pointer aliasing also look

common.

Type of Errors Number of tools Percentage (%)

Infinite Loops 5 33%

Pre/Post Conditions Violations 5 33%

Program Crashes 2 13%

Assertion violation and constraint solving 6 40%

Memory Related Errors Memory allocation defects 5 33%

Indirect memory symbolically

Memory leaks

Exhaustion of memory

Out of memory

52

Out of bound and null point 6 40%

Exceptions Run time exceptions 7 46%

Uncaught exception

Analysis of exception or error

Undeclared run time exception

Argument exceptions

Unused code 2 13%

Pointer aliasing and null pointer error 4 28%

Illegal Inputs 3 20%

Table 14: Categorization Based on Type of Errors

The figure 14 shows the summary for the categorization of tools based on the type of errors. The blue

bars denotes the number of tools on left part of Y-axis and red line dot graph shows the percentage of

tools out of total on the right side of Y- axis. The X-axis denotes the type of errors extracted from the

table 12.

Figure 5: Graphical Representation of Categorization of tools Based on Type of Errors

53

11. CONCLUSIONS

This section presents a summary of our major contributions in this research work to the software testing

fraternity. This research work mainly contributes to unit testing phase in software testing. The problem

to automate the unit testing is still a big concern in the software testing community. As per our best

knowledge, there is no work published so far, which provides the list of such tools to refer. To solve this

problem, we used the systematic literature review process to find the unit testing tools with automated

support, through this process we collected all the distributed papers related to this field regardless the

year of publication of papers. We collected 1957 primary studies paper and found 24 tools after

applying the well-defined exclusion criteria on the collected papers. List contains the tools of all kind and

domain such as different programming language support, domain, testing techniques, developer

interaction and availability. This list of tools and categorization table could be very useful for someone

who wants to choose automated unit testing tool. We also provide the list of prototype tools i.e. that

are either underdeveloped or presents the idea to build tool.

The other major contributions of this research work are the categorization of all found tools and it also

explains the type of error(s) that can be found by some tools. We categorized the tools based on five

criteria that are Language support, availability, domain, testing technique used and level of effort

needed to use the tool. The table 11 for categorization would be very useful in selecting the tool for

industrial use. The table 12 tries to explain the type of error(s) that can be found by some tools. It gives

more deep knowledge related to tools and to judge their effectiveness. We grouped the tools based on

language and type of error(s), which is summary of the tools.

This research work contains the well defined systematic literature review process, which can be very

useful for someone who wants to apply SLR in another research work. The SLR process has already

explained in detail and with the support of another research tool named as Zotero in section 6. To

conclude this research work, here is the summary of research question(s) and respective answers:

RQ1: Can we identify and list currently available testing tools that can provide automation support

during the unit testing phase?

A1: Yes, we have identified successfully almost all tools that can provide automation support at unit

testing phase. We have used well-defined process to identify tools and to our understanding, we

successfully followed each defined step correctly. In total, we gathered 24 tools and eight prototype

tools that can provide automation support at unit testing. The list of found tools and prototype tools are

available in tables 8 and 9 respectively with proper citation.

54

12. LIMITATIONS AND FUTURE WORK

This section talks about the limitations and possibilities of taking this research work to next step. Due to

the time and access to some resources, we encountered some limitations in our work. The following are

the limitations in the research work:

1. The detailed information related to each found tool. Currently we only provide the

categorization of tools; the next step could be to take each tool explicitly and explain the

detailed information of each one.

2. This list contains some commercial tools, because of accessibility problem to these tools we

could not provide the detailed information about them and especially type of error(s) that they

can find.

3. The aim to provide the detailed comparison of some selected tools by applying them on open

source could not achieved because of time constraint.

4. The idea to develop new tool by merging two three tools of similar kind that can find more

range of errors.

Future work will try to address the above limitations, moreover for point one our research work is good

platform to start because there is no need to apply rigorous search and categorization for tools. The

categorization table i.e. 12 would be very helpful for the future researcher to look in and get the high-

level idea about the each tool. Second limitation has great possibilities to be good research topic; some

good-looking commercial tools such as agitar, Jtest and so on that deserve more research. One

possibility is to ask for trial version of each tool from respective company so that student can perform all

tests and utilize it to maximum. For third limitation, there are some key points that need to be

considered such as:

1. Selection of tools by defining specific criteria, most appropriate would be based on Language.

Student can take categorization table i.e. 12 as a reference.

2. Select appropriate open source to apply tools. Few suggestion are for “Java”:- Ant, Javaassist,

for “C”:- VLC music player, Harbour etc.

3. Draw detailed comparison among selected tools by giving emphasis on type of error(s).

We tried to investigate point four also and found that this work is possible to achieve. This thesis work

provides very good platform to group the tools based on types of errors and start with developing the

new efficient and effective tool. Therefore, these are some possibilities with brief description to take

this research work to next level.

55

13. BIBLIOGRAPHY

[1] Mads Bach-Sørensen, Mikael Malm, “Automated Unit Testing, A Survey of Tools and Techniques,”
in Department of Computer Science, Aalborg University 2007. Master thesis, Proceedings, Chapter
1.

[2] Rodney Parkin, “Software Unit Testing,” in IV & V Australia: The Independent Software Testing
Specialist , 1997.

[3] Keele staff, “Guidelines for performing Systematic Literature Reviews in Engineering,” in EBSE
Technical report, 9th July 2007.

[4] Hamid Riaz & Nidesh Tyagi, “Component- Models Classification: Life cycle dimension: A Systematic
review,” Master Thesis in School of innovation, Design and Engineering, Mälardalens högskola,
2012.

[5] Muhammad Ali Babar and He Zheng,“Systematic Literature Reviews in software engineering:
Preliminary Results from Interviews with Researchers”, in Third International Symposium on
Empirical Software Engineering and Measurement, IEEE, 2009.

[6] Zulfa Zakaria, Rodziah Atan, Azim Abdul Ghani , Nor Fazlida Mohd. Sani, “Unit Testing Approaches
for BPEL: A Systematic Review,” in 16th Asia-Pacific Software Engineering Conference, 2009.

[7] Shaukat Ali, Lionel C. Briand, Hadi Hemmati and Rajwinder K . Panesar , “A Systematic Review of
the Application of Empirical Investigation of search based test case generation” in IEEE
Transactions on Software Engineering, 2010.

[8] Emilia Mendes, “A Systematic Review of Web Engineering Research” in IEEE International
Symposium on Empirical Software Engineering, 2005

[9] Cook DJ, Sackett DL and Spitzer WO “Methodlogies Guidelines for Systematic Reviews of
Randomized Control Trails in Health Care from Potsdam Consultation on Meta- Analysis,” J Clin
Epidemiol 1995;45: 167-171.

[10] S. Khor and P. Grogono, “Using a genetic algorithm and formal concept analysis to generate branch
coverage test data automatically,” in 19th International Conference on Automated Software
Engineering, 2004, pp. 346–349.

[11] P. Mouy, B. Marre, N. Williams, and P. Le Gall, “Generation of All-Paths Unit Test with Function
Calls,” in 2008 1st International Conference on Software Testing, Verification, and Validation, pp.
32–41.

[12] Yao Chen, Wei-Zheng Cai, and Yu Zhang, “The research and implementation of automatic unit test
recording framework,” in 2010 2nd International Conference on Software Technology and
Engineering, pp. V2–395–V2–399.

[13] M. Papadakis and N. Malevris, “A Symbolic Execution Tool Based on the Elimination of Infeasible
Paths,” in 2010 Fifth International Conference on Software Engineering Advances (ICSEA), pp. 435–
440.

[14] S. H. Aljahdali, A. S. Ghiduk, and M. El-Telbany, “The limitations of genetic algorithms in software
testing,” in 2010 IEEE/ACS International Conference on Computer Systems and Applications
(AICCSA), pp. 1–7.

56

[15] K. Taneja and Tao Xie, “DiffGen: Automated Regression Unit-Test Generation,” in 23rd IEEE/ACM
International Conference on Automated Software Engineering, 2008, pp. 407–410.

[16] Xun Yuan and A. M. Memon, “Using GUI Run-Time State as Feedback to Generate Test Cases,” in
29th International Conference on Software Engineering, 2007, pp. 396–405.

[17] B. Korel, “Automated test data generation for programs with procedures,” in ACM SIGSOFT
Software Engineering Notes, 1996, vol. 21, pp. 209–215.

[18] T. Xie and D. Notkin, “Tool-assisted unit-test generation and selection based on operational
abstractions,” Automated Software Engineering, vol. 13, no. 3, pp. 345–371, 2006.

[19] G. Li, I. Ghosh, and S. Rajan, “KLOVER: a symbolic execution and automatic test generation tool for
C++ programs,” in Computer Aided Verification, 2011, pp. 609–615.

[20] H. M. Sneed and Shihong Huang, “WSDLTest - A Tool for Testing Web Services,” in Eighth IEEE
International Symposium on Web Site Evolution, 2006, pp. 14–21.

[21] R. A. DeMilli and A. J. Offutt, “Constraint-based automatic test data generation,” IEEE Transactions
on Software Engineering, vol. 17, no. 9, pp. 900–910, Sep. 1991.

[22] A. Gotlieb, “Euclide: A Constraint-Based Testing Framework for Critical C Programs,” in
International Conference on Software Testing Verification and Validation, 2009, pp. 151–160.

[23] Shuang Wang and J. Offutt, “Comparison of Unit-Level Automated Test Generation Tools,” in
International Conference on Software Testing, Verification and Validation Workshops, 2009, pp.
210–219.

[24] K. Z. Zamli, N. A. M. Isa, M. F. J. Klaib, and S. N. Azizan, “A tool for automated test data generation
(and execution) based on combinatorial approach,” International Journal of Software Engineering
and Its Applications, vol. 1, no. 1, pp. 19–35, 2007.

[25] Y. J. A. Guo, “JUTA: An automated unit testing framework for Java,” Jisuanji Yanjiu yu
FazhanComputer Research and Development, vol. 47, no. 10, pp. 1840–1848, 2010.

[26] K. Lakhotia, P. McMinn, and M. Harman, “An empirical investigation into branch coverage for C
programs using CUTE and AUSTIN,” Journal of Systems and Software, vol. 83, no. 12, pp. 2379–
2391, Dec. 2010.

[27] A. A. Sofokleous and A. S. Andreou, “Automatic, evolutionary test data generation for dynamic
software testing,” Journal of Systems and Software, vol. 81, no. 11, pp. 1883–1898, 2008.

[28] A. Chakrabarti and P. Godefroid, “Software partitioning for effective automated unit testing,” in
Proceedings of the 6th ACM & IEEE International conference on Embedded software, 2006, pp.
262–271.

[29] M. Harman, F. Islam, T. Xie, and S. Wappler, “Automated test data generation for aspect-oriented
programs,” in Proceedings of the 8th ACM international conference on Aspect-oriented software
development, New York, NY, USA, 2009, pp. 185–196.

[30] Z. Xu and J. Zhang, “A test data generation tool for unit testing of C programs,” in Quality Software,
QSIC 2006. Sixth International Conference on, pp. 107–116.

[31] P. Bokil, P. Darke, U. Shrotri, and R. Venkatesh, “Automatic test data generation for c programs,” in
Secure Software Integration and Reliability Improvement, 2009. Third IEEE International
Conference on, pp. 359–368.

57

[32] S. Lapierre, E. Merlo, G. Savard, G. Antoniol, R. Fiutem, and P. Tonelia, “Automatic unit test data
generation using mixed-integer linear programming and execution trees,” in Software
Maintenance, 1999, Proceedings. IEEE International Conference on, pp. 189–198.

[33] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using genetic algorithms,”
Software Testing and Verification Reliability., vol. 9, no. 4, pp. 263–282, 1999.

[34] M. Polo, S. Tendero, and M. Piattini, “Integrating techniques and tools for testing automation,”
Software Testing and Verification Reliability., vol. 17, no. 1, pp. 3–39, 2007.

[35] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduction procedure for test data generation,”
Software-Practice and Experience, vol. 29, no. 2, pp. 167–194, 1999.

[36] A. J. Offutt, “A practical system for mutation testing: help for the common programmer,” in Test
Conference, 1994. Proceedings., International, pp. 824–830.

[37] K. Lakhotia, P. McMinn, and M. Harman, “Automated Test Data Generation for Coverage: Haven’t
We Solved This Problem Yet?,” in Testing: Academic and Industrial Conference-Practice and
Research Techniques, 2009, pp. 95–104.

[38] C. Wiederseiner, S. Jolly, V. Garousi, and M. Eskandar, “An open-source tool for automated
generation of black-box xunit test code and its industrial evaluation,” Testing–Practice and
Research Techniques, pp. 118–128, 2010.

[39] T. A. Majchrzak and H. Kuchen, “Automated test case generation based on coverage analysis,” in
Theoretical Aspects of Software Engineering, 2009. Third IEEE International Symposium on, pp.
259–266.

[40] Z. Wang, X. Yu, T. Sun, G. Pu, Z. Ding, and J. L. Hu, “Test data generation for derived types in c
program,” in Theoretical Aspects of Software Engineering, 2009. Third IEEE International
Symposium on, pp. 155–162.

[41] B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov, P. Mouy, M. Roger, and N. Williams,
“Automating structural testing of C programs: Experience with PathCrawler,” in IEEE ICSE
Workshop on Automation of Software Test, 2009, pp. 70–78.

[42] Carlos Pacheco and Michael D. Ernst, “Eclat: Automatic Generation and Classification of Test Input,
“in Lecture Notes in Computer Science ,” ECOOP 2005.

[43] Y. Cheon and C. E. Rubio-Medrano, “Random test data generation for Java classes annotated with
JML specifications,” Technical Report, in University of Texas at El Paso,UTEP-CS-07-11, 2007.

[44] T. Figliulo, A. von Mayrhauser, M. Shumway, and R. Karcich, “Experiences with automated system
testing and sleuth,” in IEEE Aerospace Applications Conference , 1996, vol. 4, pp. 335–349.

[45] K. Ghani and J. A. Clark, “Automatic Test Data Generation for Multiple Condition and MCDC
Coverage,” in IEEE Fourth International Conference in Software Engineering Advances, 2009, pp.
152–157.

[46] Z. J. Li, J. Zhu, L.-J. Zhang, and N. M. Mitsumori, “Towards a practical and effective method for Web
services test case generation,” in IEEE Workshop on Automation of Software Test, 2009, pp. 106–
114.

[47] S. Mani, V. S. Sinha, S. Sinha, P. Dhoolia, D. Mukherjee, and S. Chakraborty, “Efficient Testing of
Service-Oriented Applications Using Semantic Service Stubs,” in IEEE International Conference on

58

Web Services,2009, pp. 197–204.

[48] A. J. Offutt, “An integrated system for automatically generating test data,” in IEEE First
International Conference on System Integration, 1990, pp. 694–701.

[49] N. Smeets and A. J. H. Simons, “Automated Unit Testing with Randoop, JWalk and muJava versus
Manual JUnit Testing.”, in Department of Mathematics and Computer Science in University of
AntWerp, 2009.

[50] A. Von Mayrhauser, J. Walls, and R. Mraz, “Sleuth : a domain based testing tool,” in IEEE
International Test conference, 1994, pp. 840–849.

[51] D. Zamli, K. Zuhairi, D. Mat Isa, and N. Ashidi, “Development Of An Automated Unit Testing Tool
For Java Program,” Project Report in Universiti Sains Malaysia, 2009.

[52] S. Zhang, “Palus: A Hybrid Automated Test Generation Tool for Java,” in IEEE 33rd International
Conference on Software Engineering, 2011, p. 1182.

[53] Michael Ziller, “PeX – Parameterized Unit tests in Visual Studio,” in Formal Software
Development Seminar,University of Karlsruhe, 2008.

[54] Nikolai Tillmann and Jonathan de Halleux, “Parameterized Unit Testing with Microsoft PeX”, Long
Tutorial in Citeseer, 2010.

[55] Nikolai Tillmann and Jonathan de Halleux, “Pex- White Box test Generation for .Net” in Tests And
Proofs, Lecture Notes in Computer Science, 2008.

[56] Jonathan Aldrich, “Evaluation of AgitarOne,” Analysis of Software Artifacts, Final Project Report, in
Carnegie Mellon University, School of Computer Science, 2007.

[57] Carlos Pacheco and Michael D. Ernst, “Eclat: Automatic Generation and Classification of Test
Inputs,” Technical Report MIT-LCS-TR-968, in MIT Computer Science and Artificial Intelligence Lab,
2005.

[58] Carlos Pacheco, Shuvendu Lahiri and Thomas Ball, “Finding errors in .Net with Feedback- directed
random testing,” in Proceeding of the International Symposium on Software Testing and Analysis,
2008.

[59] Sai Zhang, David Saff, Yingyi Bu and Michael D. Ernst “Combined Static and Dynamic Automated
Test Generation” University of Washington, Google Inc and University of California, 2011.

[60] Tao Sun, Zheng Wang, Geguang Pu, Xiao Yu, Zongyan Qiu and Bin Gu “Towards Scalable
Compositional Test Generation” in 9th International conference on quality, 2009

[61] Rmzelle, “Zotero Documentation”, http://www.zotero.org/support/, 10th June, 2012

[62] Dimitris Bertsimas and John Tsitsiklis, “Simulated Annealing”, in Institute of Mathematical
Statistical, 1993.

[63] Tobiah E. Smith and Dorothy, “Using Stimulated Annealing to Synthesize Resource- Bounded
Software”, in Automated Software Engineering, 1994.

[64] J. Rajesh, V. K Jayaraman and B.D Kulkarni, “Taboo Search Algorithm for Continuous Function
Optimization”, in Chemical Engineering Research and Design, 2000, pp 845-848, ISSN 0263-8762.

[65] Filomena Ferrucci, Carmine Gravino, Rocco Oliveto and Federica Sarro, “Using Tabu Search to
Estimate Software Development Efforts”, Software Process and Product Measurement in Lecture

59

Notes in Computer Science, 2009

[66] Tom V. Mathew, “Genetic Algorithm”, Department of Civil Engineering, Indian Institute of
Technology, Bombay, 2005.

[67] Sarfraz Khurshid,” Testing an Intentional Naming Scheme Using Genetic Algorithms”, Tools and
Algorithms for the Construction and Analysis of System in Lecture Notes in Computer Science, 2001.

[66] Korel, B. Automated Software Test Data Generation. IEEE Transactions on Software
Engineering, Volume 16, No. 8, pp. 870-879, August, 1990.

[67] A. J Offutt, Jin, Z., and Pan, J. The dynamic domain reduction procedure for test data generation.
Software Practice and Experience, Volume 29, No. 2, pp. 167-193. 1999.

[68] Tracey, N.J., Clark, J., Mander, K., and McDermid, J. An Automated Framework for Structural Test-
Data Generation. In Proceedings 13th IEEE Conference in Automated Software Engineering,
Hawaii, October 1998.

[69] Michael, C.C., McGraw, G.E., Schatz, M.A., and Walton, C.C. Genetic algorithms for dynamic test
data generation. In Proceedings of the 12th IEEE International Automated Software Engineering
Conference (ASE 97), pp. 307-308, Tahoe, NV, 1997.

[70] Marco Dorigo, “Ant Colony Optimization”, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium,
scholarpedia, 2(3): 1461, 2007

[71] Irman Hermadi, “Genetic Algorithm Based Test Data Generator” in IEEE Conference of Congress on
Evolutionary Computation, Dec 2003

[72] Bogdan korel, “Automated Software Test Data Generation” in IEEE Transactions on Software
Engineering, Vol 16, August 1990.

[73] Iyengar .V and Chakrabarty. K “A set of benchmarks for modular testing of SOCs” in IEEE
International Test Conference, proceedings, 2002.

[74] Jon Edvardsson, “A Survey on Automatic Test Data Generation” in Proceeding of 2nd Conference on
Computer Science, 1999.

http://www.scholarpedia.org/article/User:Marco_Dorigo

60

Abbreviations
The Abbreviations used in the research work is shown in the table below:

Abbreviation Meaning

SLR Systematic literature review

BPEL Business process execution language

PICOC Population, intervention, comparison, outcome

and context

MDH Mälardalens högskola

ACM Association for Computing Machinery

IEEE Institute of Electrical and Electronics Engineers

SA Simulated annealing

TB Taboo Search

GA Genetic Algorithms

ACO Ant colony optimization

Table 15: Abbreviations Used in the Report

61

APPENDIX A

Appendix A contains the list of links to download the found tools. The table 15 has two fields one for the

name of tool and second for the link to download the tool.

Name of tool Link to Download Last

Accessed

Date

Jtest https://www.parasoft.com/jsp/customers/customer_login.

jsp?caller=%2Fjsp%2Ftrial_request.jsp%3FitemId%3D303

2012/06/16

PathCrawler http://pathcrawler-online.com/doTestYourCode 2012/06/16

DART http://code.google.com/p/dart/wiki/GettingTheSource?tm

=4

2012/06/16

EXE Not Available N.A

CUTE http://cute-test.com/ 2012/06/16

SMART Not Available

Findsbugs http://findbugs.sourceforge.net/downloads.html 2012/06/16

KLOVER Not Available N.A

SOATest https://www.parasoft.com/jsp/customers/customer_login.

jsp?caller=%2Fjsp%2Ftrial_request.jsp%3FitemId%3D303

2012/06/16

PEX http://research.microsoft.com/en-us/projects/pex/ 2012/06/16

JCrasher http://ranger.uta.edu/~csallner/jcrasher/ 2012/06/16

TestGen4j http://testertools.com/java-testing-tools/testgen4j-2/ 2012/06/16

JUB(Junit

test case

builder)

http://sourceforge.net/projects/jub/ 2012/06/16

Agitar http://www.agitar.com/ 2012/06/16

Eclat http://groups.csail.mit.edu/pag/eclat/ 2012/06/16

Jtst Not Available N.A

https://www.parasoft.com/jsp/customers/customer_login.jsp?caller=%2Fjsp%2Ftrial_request.jsp%3FitemId%3D303
https://www.parasoft.com/jsp/customers/customer_login.jsp?caller=%2Fjsp%2Ftrial_request.jsp%3FitemId%3D303
http://pathcrawler-online.com/doTestYourCode
http://code.google.com/p/dart/wiki/GettingTheSource?tm=4
http://code.google.com/p/dart/wiki/GettingTheSource?tm=4
http://cute-test.com/
http://findbugs.sourceforge.net/downloads.html
https://www.parasoft.com/jsp/customers/customer_login.jsp?caller=%2Fjsp%2Ftrial_request.jsp%3FitemId%3D303
https://www.parasoft.com/jsp/customers/customer_login.jsp?caller=%2Fjsp%2Ftrial_request.jsp%3FitemId%3D303
http://research.microsoft.com/en-us/projects/pex/
http://ranger.uta.edu/~csallner/jcrasher/
http://testertools.com/java-testing-tools/testgen4j-2/
http://sourceforge.net/projects/jub/
http://www.agitar.com/
http://groups.csail.mit.edu/pag/eclat/

62

Austin http://code.google.com/p/austin-sbst/ 2012/06/16

JCute http://cute-test.com/ 2012/06/16

Randoop http://code.google.com/p/randoop/downloads/list 2012/06/16

JWalk http://staffwww.dcs.shef.ac.uk/people/A.Simons/jwalk/do

wnload.html

2012/06/16

Korat http://korat.sourceforge.net/downloads.html 2012/06/16

Crest Not Available N.A

CAUT Not Available N.A

Palus http://code.google.com/p/tpalus/downloads/list 2012/06/16

Table 16: Download Tools

http://code.google.com/p/austin-sbst/
http://cute-test.com/
http://code.google.com/p/randoop/downloads/list
http://staffwww.dcs.shef.ac.uk/people/A.Simons/jwalk/download.html
http://staffwww.dcs.shef.ac.uk/people/A.Simons/jwalk/download.html
http://korat.sourceforge.net/downloads.html
http://code.google.com/p/tpalus/downloads/list

