
Comparison of Cross-Platform Mobile Development
Tools

Manuel Palmieri

Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden
palmierimanuel@gmail.com

Inderjeet Singh

Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden
inderjeetuiet@gmail.com

Antonio Cicchetti

Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden
antonio.cicchetti@mdh.se

Abstract—Mobiles are an integral part of daily life. With time,
customers are expecting good and very versatile applications
in less time. It is a big challenge to develop high performance
mobile applications in this competitive market that would meet
the expectation of customers. Mobile operating systems vendors
are giving their best available resources for making applications
in more convenient ways, although the development of new
applications for each mobile operating system in short time is
fairly a problem. Cross-platform mobile application development
tools contribute in solving this problem largely. This paper presents
a pragmatic comparison among four very popular cross platform
tools, which are Rhodes, PhoneGap, DragonRad and MoSync.
One of the main focuses of the comparison is to provide an
overview on the availability of application programming interfaces,
programming languages, supported mobile operating systems,
licences, and integrated development environments. Furthermore,
it also presents some critical points such as the factor of
extensibility in tools and the effects that they may bring on market
share. The comparison is aimed at supporting developers to make
the right choice with respect to their needs/constraints.

Keywords: mobile application, cross-platform development
tool, operating system, native api, smartphone.

I. INTRODUCTION

Nowadays, mobiles are more a necessity than a luxury.
Besides making calls there are many other features which
are gaining popularity like Camera, Music, Global Positioning
System (GPS), Accelerometer, etc. These kinds of built-in
features are provided by all major available mobile Operating
Systems (OS’s), such as Android, BlackBerry, iPhone Oper-
ating System (iOS), Symbian, Windows Mobile/Phone. All
these mentioned mobile OS’s are very popular in the market
because of their uniqueness, for example Android is based on
Java and freely available, iOS provides innovative features and
quality, and BlackBerry is the most known in the corporate
world. Furthermore, there are some other factors such as
licenses, libraries of support, native features, etc., which are
affecting their growth on the market [7]. The competition
among them is a heads up, both for adding new features
to OS’s and feasibility to develop additional applications.
However, although these OS’s are so rich in libraries and
built-in features, they still face the heat of the market to
match customer’s high expectations. The basic architecture and
support of programming language of OS’s is very different

from each other. Developed applications for a certain OS are
not compatible for other OS’s, indeed, they force developers
to rebuild the same applications for them.

Cross-platform mobile development tools are gaining pop-
ularity in the world due to their characteristic to compile the
application source code for multiple supported OS’s. Such
tools are mainly depending on web programming languages
like HyperText Markup Language (HTML), JavaScript and
Cascading Style Sheets (CSS) with some native wrapper code
for accessing native Application Program Interfaces (API) like
Camera, Contacts, etc. The application development is very
easy and time saving with these tools. For example, Drag-
onRad is providing Drag and Drop (D&D) features, which
require reduced programming skills to develop applications
[12]. There are plenty of such tools available now on the
market, thus creating confusion among developers on which
one to embrace and which one to skip. In the future, cross-
platform tools can bring a drastic change in the business model
of mobile OS’s, especially due to the fact of reduction of
development costs of new applications. Therefore, this paper
proposes a survey on four major available cross-platform de-
velopment tools on the market which are Rhodes, PhoneGap,
DragonRad and MoSync.

The popularity of tools demands more research on this
field and developers are expecting clear information about
these tools before opting for one of them. The information
is available at different chunks. Some books and papers in the
past have provided some information from different sources. In
[7], Dern has given some information with small comparison
among tools, whereas in [22], Allen et al have given detailed
description about mobile OS’s and four mobile development
tools. Another relevant paper by Hammershoj et al [2] provides
good comparison among different available mobile OS’s by
keeping business model as important factor. Apart from above
mentioned related works, there are books available for specific
tools, for example Beginning PhoneGap by Myer [17].

In this paper we go further providing collected information
about the four selected tools with the aim to help developers
to evaluate and understand what is the more appropriate tool
to use to match their requirements.

The structure of the paper is as follows. Section II presents

2012 16th International Conference on Intelligence in Next Generation Networks

978-1-4673-1526-5/12/$31.00 ©2012 IEEE 179

preliminary ideas about mobile OS’s, market status, effects on
existing business model and benefits using a cross-platform
development approach. Section III shows the criteria used
for tools selection and comparison. Sections IV, V, VI and
VII provide information about each specific tool. Section VIII
shows the comparison about tools that have been presented
in previous sections. At the end, Summary and Conclusion is
presented in Section IX.

II. MOBILE OPERATING SYSTEMS AND CROSS-PLATFORM
BENEFITS

The intensive growth in mobile industry is demanding high
performance for mobile OS’s, so technology giants, such as
Apple, Microsoft, Nokia, Symbian and Google are playing an
important role. Each of them has introduced its own product
to fit on the market. All OS’s are exciting and providing some-
thing unique to attract customers. Some years ago, Symbian
was very popular and one of the best OS’s for developers, but
currently Symbian’s market share is dropped to 50 percent
from an earlier share of 70 percent [12]. One reason of the
market share loss has been the introduction of other mobile
OS’s from other market giants. Most of the newly introduced
OS’s are very rich in features and convenient for developers
to create and deploy new applications. The major advantage
in these OS’s is the built-in features, such as Wi-Fi, Gallery,
Bluetooth, Contact, etc.; developers do not need to develop
these from scratch, which is a big relief and timesaving.
Although all new OS’s are very efficient, they still require
much time and investment to develop new applications. The
intensive competition does not give much space for companies
to be slowed down in launching new applications, so all these
OS’s have definitely made developers’ a life comparatively
easier, but simultaneously have arisen many challenges to be
competitive on the market [11].

Currently, the major mobile OS’s are Android, Bada,
BlackBerry, iOS, MeeGo, Symbian, webOS, Windows Mo-
bile/Phone, but globally the family of mobile OS’s is more
extended. For developers that would develop applications
on different OS’s is really problematic because each OS
has its own language, different API’s, different Integrated
Development Environments (IDE), etc. To meet the needs
of developers, cross-platform mobile development tools have
been developed with the purpose to give them the possibility to
write the application source code once and run it on different
OS’s. Benefits that these tools have brought are:

• Reduction of required skills for developers to develop
applications due to the use of common programming
languages;

• Reduction of coding, because the source code is written
once and it is compiled for each supported OS;

• Reduction of development time and long term main-
tenance costs;

• Decrement of API knowledge, because with these tools
is not needed to know the API’s of each OS, but only the
API’s provided by the selected tool;

• Greater ease of development compared to building
native applications for each OS; and

• Increment of market share for the corresponding busi-
ness model with the advantage to raise the Return On
Investment (ROI).

The business model includes all activities related to com-
mercial transaction [2]. The increased usage of cross-platform
mobile tools can have some effects on the respective business
model of each mobile OS, such as App Store for Apple,
Google Play for Android, etc. One of the bigger effects of
these tools is to expand the application sale on more markets
as much as possible with the aim to increase the gain by both
parties, business model owners and developers. Furthermore,
especially for companies that are looking for these tools, the
ROI could play a very important role. In fact, developing an
application and selling it on multiple markets with these tools
will decrease investment costs. Then the reduction in capital
investment for applications could encourage developers and
companies to invest more in developing new applications and
register them in the respective business model. Finally, also
another important variation related to the business model might
come out by the use of these tools due to the support of a
subset of OS’s.

III. CRITERIA USED FOR TOOLS SELECTION AND
COMPARISON

This section explains the reasons behind tools choice and il-
lustrates predetermined criteria decided for comparison among
them. The selection of tools was done by considering frame-
works that can generate applications at least on main mobile
OS’s, like Android, BlackBerry, iOS, Windows Mobile/Phone.
Nowadays, there are many tools available on the market, but
only few can generate applications for the defined mobile
OS’s. For example, other tools such as Corona, WidgetPad,
Sencha, Titanium, and TotalCross do not have the versatility
of supporting a wide range of mobile OS’s.

To maintain a logical thread on the comparison, criteria
that have been chosen could be helpful for developers to
understand which tool could be appropriate for their purposes.
Some of the properties provided by each tool that have been
taken in consideration are:

• Mobile Operating Systems supported to understand
possible effects on respective business models;

• Tool licences offered to evaluate the terms and conditions
of use;

• Programming languages offered to developers for build-
ing applications;

• Availability of API’s provided with the aim to get an
idea of different hardware parts accessible in the OS;

• Accessibility to native API’s to compare how it is
possible to access them from each tool;

• Architecture provided for the development process of
the application; and

• Integrated Development Environments available for
developing applications.

180

IV. RHODES

Rhodes 3.3.3 is a cross-platform mobile application tool
developed by Motorola Solutions Inc. under Massachusetts
Institute of Technology (MIT). It is developed to rapidly build
native applications for all major mobile OS’s (iOS, Android,
BlackBerry, Windows Mobile/Phone and Symbian). The main
goal of Rhodes is to provide a high level of productivity and
portability in programming. It is an open source Ruby-based
mobile development environment. Thanks to this environment,
developers can create and maintain enterprise applications and
data based on single source code across different mobile OS’s
[22].

RhoMobile suite provides an IDE called RhoStudio which
is an innovative solution dedicated to users that want to
develop applications through a hosted IDE. This solution can
be used across Linux, Mac, and Microsoft Windows OS’s.
Alternatively, RhoMobile offers the possibility to write appli-
cations with any other editor or IDE which supports HTML,
HTML5, CSS, JavaScript and Ruby. The most popular editors
are Eclipse, Visual Studio, Netbeans, IntelliJ and TextMate
[16].

Rhodes provides native device applications to improve the
end-user experience, which work with synchronized local data
and take advantage of device capabilities, such as Barcode,
Bluetooth, Calendar, Camera, Contacts, GPS, Menu, Near
Field Communication (NFC), Screen Rotation, etc. [16].

Rhodes is the only framework that uses Model View Con-
troller (MVC) pattern to develop mobile applications. The
MVC pattern creates applications that separate data definitions
(models) from business logic and (controllers) from interfaces
(views), providing at the same time a point of connection
between these elements [16]. Languages used in the view
element are HTML, CSS and JavaScript to make mobile
applications, whereas in the controller element is Ruby to
make the backend support. Moreover, with MVC approach
is also possible to write applications that use only the view
element. Obviously, it is realizable for applications or sites
that require a low level of complexity [20]. Rhodes provides
mainly three possibilities to add extendibility in its framework,
first can be done by adding external Ruby library to Rhodes,
second by creating native extensions for specific Software
Development Kit (SDK) of each OS and last by extending
the already existing views available in Rhodes.

In Fig. 1 Rhodes architecture is shown. Controller, HTML
templates and source adapter components are the parts which
developers have to implement for the creation of applications,
whereas other components are provided by Rhodes such as
Rhodes App Generator which is an IDE than can be RhoStudio
or another editor, Ruby Executor is the executor of the Ruby
code, Device Capabilities are the API’s, Rhom is a mini
database ORM (object relational mapper) which provides a
high level interface to make it quickly and easily (i.e. the
database is SQLite for all mobile OS’s except BlackBerry
that is HSQLDB), RhoSync Client is a library to add sync
data capability to your applications, and RhoSync simpli-

fies the development of connectivity to enterprise backend
applications. Moreover, performing the backend application
integration between RhoSync Client and RhoSync Server is
reduced by 50-80% the development effort [16].

Fig. 1. Rhodes interfacing architecture between the Smartphone and Rhodes
components [14].

Rhodes development files are compiled into native appli-
cations that can be executed on real or a virtual devices,
indeed, this tool offers a desktop simulator where is possible
to run applications. Applications developed with Rhodes are
compiled into Java bytecode to be executed on BlackBerry
OS, or compiled into Ruby 1.9 bytecode to be executed on all
other OS’s [22].

V. PHONEGAP

PhoneGap 1.9.0 is an open-source mobile development tool
developed by Adobe System Inc. under Apache 2.0 license.
PhoneGap allows developers and companies to build free,
commercial and open-source applications, and give them also
the possibility to use any licenses combination [19]. The
development environment is cross-platform and permits the
creation of applications for Android, Bada, BlackBerry, iOS,
Symbian, webOS and Windows Phone OS’s.

PhoneGap is a useful solution for building mobile ap-
plications using modern web programming languages, such
as HTML, HTML5, CSS, CSS3 and JavaScript, and the
functionality of SDK’s instead to use less-known languages
such as Objective-C or other languages [9]. It has the benefit
to bring many advantages to skilled developers and especially
to attract web developers [17].

Essentially, PhoneGap is a ”wrapper” that allows develop-
ers to enclose applications written in known programming
languages into native applications. Moreover, as each valid
open-source software it is composed by many components and
extensions. PhoneGap applications are hybrid, which means
that they are not purely native or web-based. The meaning of
”not purely native” comes from the layout rendering that is
done via web-view instead of the native language of the OS,
whereas ”not purely web-based” comes from the lack support
of HTML in some functions [22]. Besides, PhoneGap also

181

offers the possibility to extend the tool by developing own
plug-ins.

Adopting a cross-platform approach the applications build-
ing and maintenance can be enhanced because developers have
to write a single source code for any mobile OS supported
by the tool. PhoneGap does not provide an IDE to develop
applications, but developers have to write the source code
with an IDE and port the it on other IDE’s (e.g. Eclipse for
Android, XCode for iOS, etc.). This approach does not allow
developers to have a centralized development environment, so
the effort required to compile the source code and produce
the executable application (final product) is high. Thanks to
the use of different IDE’s for the development, PhoneGap can
be performed on different PC OS’s such as Mac, Linux and
Microsoft Windows. Unfortunately, sometimes there are some
exceptions because not all IDE’s are compatible with all PC
OS’s.

A. PhoneGap architecture

The PhoneGap’s architecture is composed mainly of 3
layers: Web Application, PhoneGap, and OS and native API’s.

Fig. 2. Interfacing layers of the PhoneGap architecture [15].

In Fig. 2 the top layer represents the application source code.
The central layer is composed by JavaScript and native API’s.
Mainly, this layer is responsible for the interfacing between
web application and PhoneGap layers. Furthermore, it also
takes care of the interfacing between JavaScript API’s that are
used by the application with native API’s that are used by
mobile OS’s. The functionality of this layer is to maintain the
relationship between JavaScript API’s and native API’s of each
mobile OS. PhoneGap provides JavaScript API’s to developers
that allow the access to advanced device functionality, such as
Accelerometer, Barcode, Bluetooth, Calendar, Camera, Com-
pass, Connection, Contacts, File, GPS, Menu, NFC, etc. [19].

In Fig. 3 is shown a more detailed architecture schema
provided by IBM. It represents all components about the web
application, HTML rendering engine, PhoneGap API’s and OS
layers. Moreover, some different interfaces are shown in detail,
such as the interfacing between PhoneGap API’s and native
API’s layers.

VI. DRAGONRAD

DragonRad 5.0 is a cross-platform mobile application de-
velopment platform by Seregon Solutions Inc. and distributed

Fig. 3. Complete schema of PhoneGap architecture and interfacing among
components [5].

under a commercial license. It allows developers to design,
manage and deploy mobile applications once and use it across
iOS, Android, BlackBerry and Windows Mobile [3]. The tool
focuses on database driven mobile enterprise applications with
easy and wide range of databases support. It provides the D&D
environment which help developers to save programming time
and to create logics. DragonRad provides their own built
IDE, that can be configured for different simulators like iOS,
Android, BlackBerry, Windows Mobile etc. As DragonRad
has host-client architecture, it is required to setup server and
database based on the needs of developers but it also comes in
complete package with all prerequisites of server and database
like Tomcat, MySql etc. DragonRad is commercial tool with
the support to its own language D&D, the possibilities of
extension in terms of adding plugins and other support to the
framework are quite limited.

DragonRad facilitates the integration and synchronization
of database system with native functions of above defined
mobile OS’s, such as Contacts, Calendar, Geolocation, Menu
and Storage. The Architecture of DragonRad mainly composed
of three major components [8]:

A. DragonRad Designer

It is a D&D visual environment or GUI for developers to
design, develop and install mobile applications. Features of
D&D are not only helping developers to design applications,
but also reduce the efforts for maintenance and coding [8].

B. DragonRad Host

DragonRad host component could be run on either Linux
or windows server which fill the gap between database of
enterprise and mobile applications. It helps to maintain the
communication with mobile device, which also includes query
of transaction during network unavailability. It also plays
the role to establish problem free connection with database

182

access and updates with synchronization. The following list
summarizes the most relevant features of DragonRad host [8]:

• Taking data query from the device;
• Executing data query on specific target;
• Sending data back to device based on request;
• Handling data updates from the devices and updating

databases; and
• Compression and data checking of data packets.

C. DragonRad Client

This component behaves like a native application on device
which helps to run and interpret code of the created appli-
cation by designer. DragonRad has the emulator to run and
debug the application. This component also has the feature
to customize application like change icon, application name,
DragonRad project and link for installation of DragonRad
host. By changing the link to DragonRad host, the application
automatically connects to the given host when it started. It
would also help in updating the project when required. One
advanced function provided by the DragonRad company is to
compile the application online [3].

Fig. 4. DragonRad architecture with the connectivity of different components
in it [8].

In Fig. 4, the area containing your network provides all
backend support such as a custom data connector that could
fit for any web service available, while Tomcat/MapDataServer
is to support for the database. This full network is connected
to mobile phone with different OS’s with the help of the Wi-
Fi. The other sub-part BlackBerry Enterprise Server (BES)
is specifically for BlackBerry products, such as PlayBook.
This tool allows creating application in very easy manner with
having only three step, which are connect, build and deploy
[8].

In DragonRad, it needs one connector that could be used
to connect data source to DragonRad host web application.
Therefore, it provides custom data connector to meet features.
To handle the data transmission between back-end and device
this connector is useful. As shown in Fig. 5 custom data
connector is responsible to make connection of DragonRad
host web application with database. DragonRad designer and

Fig. 5. DragonRad custom data connectors architecture [8].

device runtime are for respective work. There are few other
features of this custom data connector [8].

• Responsible for transferring data request and updates
form device to database with keeping synchronization;

• Receiving data queries from device;
• Processing received data queries;
• Re-query data or resend stored data based on the query;
• Receiving notification form device; and
• Sending data to device.

VII. MOSYNC

MoSync 4.0 is an open source solution developed by a
Swedish company targeted to mobile market. MoSync has
fully fledged SDK which helps developers to build and pack-
age all type of mobile applications, such as simple, advanced
and complex application that share the same code base.
MoSync SDK is proving to be very powerful tool with many
components tightly coupled together like Libraries, Runtimes,
Device Profile Database and Compilers, and so on. It provides
the full fledge Eclipse-based IDE and the use of standard
C/C++. It also added the support with web-based language
like HTML, HTML5, CSS and JavaScript. It provides well
documented API’s both in C/C++ and web-based. The idea
involved to support multiple mobile OS’s is different from
other tools and also in very isolated way from other mobile
operating code. Applications in MoSync are built to target a
device profile by using GNU Compiler Collection (GCC) and
pipetool. After writing the application, pipe-tool is used to
compile the resources present in the application. Then GCC
backend is called and path to target device profile passed to
it. GCC uses it to produce MoSync intermediate language,
which then fed in to pipe-tool. Then, pipe-tool behaves as the
bridge between MoSync applications to target device profile.
The profile database helps the application in ensuring that it
has adapted correctly to the device. Runtimes are libraries
which are bound to provide support related to all like regarding
graphics, audio, communications, input, uniform interface to
low level system API’s and other device features [1]. MoSync
is completely open source and based on the Eclipse for IDE,
so it provides to add extendibility in the same way as Eclipse
does, i.e plugins or adding external library.

A. MoSync Architecture

MoSync has mainly two architectures specific to each
C/C++ and web based languages. The idea and most of the

183

components are same except few. Architecture mainly consists
of eight components as shown in Fig. 6.

Fig. 6. MoSync Runtime Architecture, Showing the layered structured
concept use in it [4].

1) Service layer: supports many functions like file I/O,
threading, networking, memory management and many more
functions [4].

2) Application framework: is responsible for runtime entry
point. It is primarily to manage platform specific events like
event management, initialization and destruction. The size and
level of responsibilities varies across multiple platforms [4].

3) Syscalls: provides support to all features required by
OS’s, such as camera, contact, images, audio and networking
etc which is specific to multiple platform. It is also responsible
to interprets MoSync resource files and supports some like
event management, initialization and destructions [4].

4) Resource System: manages resource objects such as
images, sound and data blobs with the support of dynamic
creation and destruction of resources [4].

5) Internal Extensions: specifies the design and configura-
tion of each OS. Not all platforms contain the same type of
features except few mandatory one, so missing features are
implemented through single Syscall and known as numbered
functions. When function is not found by Syscall it throws
one error related to feature, which makes developers life little
easy to determine a non-universal API is accessible in runtime
[3].

6) Core: is responsible for the execution of MoSync pro-
grams by interoperating with Syscall and resource system,
MoSync offers mainly three different types of core, which
all share same common interface [4].

7) Virtual Machine Core: is the component that provides
the support to load, interpret and run MoSync bytecode
directly. The execution is taken care by single; small function
that allows efficient Just in time (JIT) optimization. The whole
structure is very similar to the core of Java Mobile Edition
(Java ME) [4].

8) Recompiler Core: is the component that loads MoSync
bytecode and recompiles it on the specific platform or typ-
ically Advanced RISC Machine (ARM) machine. After this
recompilation, the generated code is executed. This core has
many similarities with windows mobile and symbian [4].

9) Generated core: The core is responsible for the exhibit-
ing interface with the generated native code. At this level it
does not have any connection with the bytecode. The type of
core is like iOS core. So the reason for having three different

types of core in MoSync has versatile advantages. For example
VM core is best for debugging and its dynamic approach
makes it possible to load new code at runtime. This property
proved to be very useful for many applications. Recompiler
core is more efficient but less debugging support and its
dynamic behavior also help in fast recompilation of some code.
At last generated core have zero overhead for low end devices
which are not able to load code at run time [4].

VIII. COMPARISON OF TOOLS

This section presents the comparison made among the tools
based on the comparison criteria explained in Section III. The
parameters defined are explained here in details. Table I shows
the different kinds of mobile OS’s supported by each tool.
Furthermore, on the right side of Table I OS’s supported by
respective tool are shown [16], [21].

Tool Name Mobile OS Support OS Support

Rhodes Android, BlackBerry, iOS, Symbian, Linux, Mac,
Windows Mobile, Windows Phone Windows

PhoneGap Android, BlackBerry, iOS, Symbian, Linux, Mac,
WebOS, Windows Phone Windows

DragonRad Android, BlackBerry, iOS, Linux, Mac,
Windows Mobile Windows

MoSync Android, iOS, BlackBerry, JavaME, Linux, Mac,
Symbian, Windows Mobile Windows,

TABLE I
COMPARISON ON MOBILE PLATFORMS COMPATIBILITY AND

DEVELOPMENT ENVIRONMENTS OS’S SUPPORT.

From Table I, it is easy to understand that PhoneGap
offers more compatibility for development on different mobile
OS’s, which is optimal to gain the maximum profit for both
developers and business model owners because one built
application can be registered at all respective business models,
whereas IDE’s hosted in personal computer is the same for
each platform.

Table II describes several characteristics of the tools pre-
sented in the paper, such as supported programming languages,
accessibility to native API’s, IDE and plug-in extendibility.
Starting from the programming languages, Rhodes, PhoneGap
and MoSync are the only tools that have support for web
programming languages, such as HTML, HTML5, CSS and
JavaScript. Differently to other tools, PhoneGap provides
support for CSS3, whereas MoSync for C and C++. Instead,
DragonRad has support for its own language D&D.

As mentioned in the previous paragraph, since Rhodes,
PhoneGap and MoSync are web oriented development tools,
the access to native API’s is done through JavaScript API’s. In
Addition, MoSync also offers the accessibility through C/C++
API’s. On the other hand, DrangonRad provides its own API’s
to interface the application layer with the OS layer.

With respect to available IDE’s, Rhodes has two useful ways
to develop applications; in fact it provides some different solu-
tions as RhoStudio IDE to develop in locale and RhoHub IDE
to develop via remote connection. Furthermore, it provides the

184

possibility to use alternative IDE’s, such as Eclipse, Visual
Studio, Netbeans, IntelliJ, Textemate, etc. MoSync offers an
Eclipse based IDE, whereas DragonRad offers its own IDE
solution. PhoneGap is the only platform that has different
approaches among tools, indeed it offers an extension that
could be applied on all native IDE’s. Some examples of native
IDE’s are XCode for iOS, Eclipse for Android, Visual Studio
for Microsoft, etc. This kind of solution is fine but limits the
liberty for developers to use the IDE of their choice. A careful
reader would argue, what are the advantages of this approach
if developers have to create applications on different IDE’s.
It is worth nothing that PhoneGap, Mosync and Rhodes are
the tools that support HTML, CSS and JavaScript languages;
since these languages are not native the source code will be the
same for all platforms. The only effort required by developers
in using PhoneGap is to develop applications on an IDE and
perform a simple porting of the source code in other IDE’s
[6], [21].

Apart DragonRad, other tools provide the possibility to add
plug-ins in the IDE and also give the feasibility to develop
plug-ins from scratch and then add it to the IDE.

Name Language Accessibility to IDE Plug-in
native API’s Extendibility

RhoMoblie HTML, HTML5, JavaScript RhoStudio Yes
CSS, JavaScript, RhoHub, *

PhoneGap HTML, HTML5 JavaScript IDE native of the Yes
CSS, CSS3 mobile OS (e.g.
JavaScript Eclipse, Xcode)

DragonRad D&D na DragonRad No
Designer

MoSync HTML, HTML5, JavaScript, Based on Eclipse Yes
CSS, JavaScript C, C++

C, C++

TABLE II
COMPARISON ON DEVELOPMENT FEATURES.

* others alternative IDE’s, such as Eclipse, Visual Studio,
Netbeans, IntelliJ, Textemate, etc.

The license of tools is another helpful parameter for the
comparison. As shown in Table III, the licenses available for
these tools are MIT, Apache 2.0, GNU General Public License
2 (GPL2) and Commercial. The first two licenses are free
and moreover they offer an open-source support. This kind
of approach is much important for all developers that would
develop applications and want to provide a support to the
development platform without having commercial restriction.
On the other hand, commercial licenses could be useful for
companies that want to receive the support directly from the
manufacturer.

Unlike from other frameworks, Rhodes is the only frame-
work with MVC support. One of the most important benefits
of the MVC design pattern is the possibility to develop
applications in a distributed way by means of the model, view
and controller with the aim to separate one part from each
other; so the advantage is to modify each part independently.
Another benefit that MVC offers is the easy migration of

legacy programs, because the view is separated from the model
and controller. Furthermore it provides an environment that
embeds different technologies across different locations and
architecture that better support the scalability [10]. Rhodes
MVC framework provides support to native mobile applica-
tions, the ability to write real business logic on local native
applications. This explains the reason of so many robust
enterprise applications written with it [18], [21].

Name License Open source Architecture MVC

Rhodes MIT, Yes Local, Web Yes
Commercial

PhoneGap Apache 2.0 Yes Local, Web No
DragonRad Commercial No Translate No

MoSync GPL2, Yes Local, Web No
Commercial

TABLE III
COMPARISON OF GENERAL FEATURES.

Rhodes, PhoneGap and MoSync are the tools that provide
architecture of interfacing between JavaScript API’s Layer and
native API’s Layer. These platforms use a native language
of mobile OS to access the hardware and software resources
with the purpose to add basic functionalities to the JavaScript
Engine and make it easy to use for the application as traditional
library methods. Based on mobile OS in which the tool is in-
terfacing, the user-code will be converted in native-code, such
as Objective-C for iOS, Java for Android, etc. Some important
API’s that represent hardware and software functions are listed
in Table IV. But in MoSync, the method for interfacing
is available both though C/C++ and JavaScript API’s. The
Mosync has different library named as ”WormHole” when the
application is build in by using web technologies, wormHole
is responsible for interacting with the native applications
of the selected mobile OS [13]. In case of DragonRad, it
provides hardware integration in its own method which is
either by using different dependent libraries or by following
some sort of defined wizards. The list [18] provides more
details to understand it well according to the selected mobile
OS application.

IX. SUMMARY AND CONCLUSIONS

This paper provides the comparison between four different
cross-platform tools to develop applications on different mo-
bile OS’s. Currently, these tools are mainly used in companies
with the aim to create applications designated to be sold on
different market places, such as Apple Store, Play Store, etc.

The tools explained in this paper have been categorized
on the basis of parameters explained in Section III. The
development in DragonRad is based on D&D approach to
facilitate the application development and to make the tool
environment more user friendly, whereas in Rhodes, PhoneGab
and Mosync the development is based on web languages.
DragonRad uses API’s written with their language to interface
the application with native API’s, instead the other tools

185

API Name Rhodes PhoneGap MoSync MoSync DragonRad
JavaScript JavaScript JavaScript C, C++

Accelerometer
√ √

Barcode
√ √ √

Bluetooth
√ √ √

Calender
√ √ √ √ √

Camera
√ √ √

Capture
√ √ √ √

Compass
√ √

Connection
√ √ √

Contacts
√ √ √

Device
√ √ √ √ √

File
√ √ √ √

Geolocation
√ √ √ √ √

Menu
√ √

NFC
√ √ √ √ √

Notification
√ √ √ √

Screen Rotation
√ √ √

Storage
√ √ √ √ √

TABLE IV
COMPARISON ON MAIN SUPPORTED API’S.

use JavaScript API’s to interface the application with native
API’s. As mentioned in Section II, these tools offer many
benefits including the high-level development, but on the
other hand one of the most relevant bottlenecks of the cross-
platform development approach is the performance in execut-
ing applications that use JavaScript API’s. Lately, although
the JavaScript performance has been increased significantly is
not recommended to develop applications that implement very
complex business functionality or background services, such
as application DropBox. Other limitations of this approach
are generally the poor support of high-end graphics and 3D
technology, and lack of last features introduced by OS’s,
because for each update done in OS’s supported by the tool the
vendor should update its own tool as well. The development
of complex applications such as games, benchmarks, etc. is
dependent more on the access to built-in API’s, which is
different in all defined tools [19].

Rhodes, differently to other tools offers the support of the
MVC framework, which is a very popular and convenient
way to develop applications. By considering all these things,
we can figure out that Rhodes tool has the edge over other
three tools because it has the support for both web-based
services and MVC framework. PhoneGap offers a wrapper
that works with several IDE’s and it is very versatile with
respect to the extendibility with plug-ins and extensions.
Mosync is the tool that supports the greater number of API’s
across JavaScript and C/C++, and the greatest number of
programming languages supported. Finally, DrangonRad is the
only tool which present many differences in almost all treated
aspects, such as language, architecture, access to native API’s
and non-open source redistribution.

Future works will extend our comparison providing more
details on architectures and how each layer interacts with
each other. A more accurate analysis of the tool extendibility
with plug-ins and extensions will be provided as well as a
deeply analysis on cross-platform application performances.
Besides, another possible extension of this work could be the

comparison between development platforms.

REFERENCES

[1] M. AB. What is MoSync. http://www.mosync.com/content/mosync-
cross-platform-mobile-development-made-easy, 2012.

[2] R. T. Allan Hammershoj, Antonio Sapuppo. Challenges for Mobile
Application Development. 2010.

[3] C. Best. Seregon solutions announces support for blackberry playbook.
http://www.prweb.com/releases/DragonRAD/PlayBook/
prweb4960674.htm, January 2011.

[4] P. Broman. The runtime architecture.
http://www.mosync.com/documentation/manualpages/runtime-
architecture, June 2010.

[5] B. Curtis. PhoneGap and the Enterprice.
http://www.slideshare.net/drbac/phonegap-day-ibm-phonegap-and-
the-enterprise, July 2011.

[6] M. Dalu. Mobile Apps cross-platform development challenge:
PhoneGap vs. Titanium vs. Rhodes. http://surgeworks.com/blog/lab-
mobile/iphone/mobile-apps-cross-platform-development-challenge-
phonegap-vs-titanium-vs-rhodes, January 2010.

[7] D. Dern. Tools and Toys: IEEE Spectrum. June 2010.
[8] DragonRad. http://dragonrad.com, 2012.
[9] J. Fermoso. Seeks to Bridge the Gap Between Mobile App

Platforms. http://gigaom.com/2009/04/05/phonegap-seeks-to-bridge-the-
gap-between-mobile-app-platforms, April 2009.

[10] IBM. Benefits of the mvc design pattern.
http://publib.boulder.ibm.com/infocenter/adiehelp/v5r1m1/index.jsp?topic=2003.

[11] D. Infoway. White paper on mobile os and efforts towards open stan-
dards. http://www.dotcominfoway.com/attachments/268 white-paper-
on-Mobile-OS-and-efforts-on-Open-standards.pdf, 2012.

[12] A. Jakl. Mobile Operating System: is it PC? April 2009.
[13] M. Kindborg. The wormhole javascript library.

http://www.mosync.com/content/html5-javascript-wormhole, February
2012.

[14] Leckylao. Rhodes framework: Agile mobile web develop-
ment. http://leckylao.com/2010/06/12/rhodes-framework-agile-mobile-
web-development, June 2010.

[15] MokaByte. Applicazioni mobili negli scenari Enterprise.
http://www2.mokabyte.it/cms/article.run?articleId=O5R-R6L-HN8-
8R8 7f000001 18359738 2ff5bd55, March 2010.

[16] Motorola Solutions. http://www.motorola.com/Business/US-
EN/Business+Product+and+Services/Software+and+Applications/RhoMobile+Suite,
2012.

[17] T. Myer. Beginning PhoneGap. Wrox, November 2011.
[18] T. Paananen. Smartphone Cross-Platform Frameworks, Bachelor’s

Thesis. April 2011.
[19] PhoneGap. http://phonegap.com, 2012.
[20] RhoMobile. What is so special about the rhodes smartphone

app framework? http://rhomobile.com/blog/whats-so-special-about-the-
rhodes-smartphone-app-framework, March 2010.

[21] J. Rowberg. Comparison: App Inventor, DroidDraw,
RhoMobile, PhoneGap, Appcelerator, WebView, and AML.
http://www.amlcode.com/2010/07/16/comparison-appinventor-
rhomobile-phonegap-appcelerator-webview-and-aml, July 2010.

[22] V. G. Sarah Allen and L. Lundrigan. ProSmartphone Cross-
PlatformDevelopment. Apress, 2010.

186

