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Abstract. We study a notion of observation for concurrent processes which allows 
the observer to see the distributed nature of processes, giving explicit names for the 
location of actions. A general notion of  bisimulation related to this observation 
of distributed systems is introduced. Our main result is that these bisimulation 
relations, particularized to a process algebra extending CCS, are completely 
axiomatizable. We discuss in detail two instances of  location bisimulations, namely 
the location equivalence and the location preorder. 

1. Introduction 

A distributed system may be described as a collection of computational activities 
spread among different sites or localities, which may be physical or logical. Such 
activities are viewed as being essentially independent from each other, although 
they may require to synchronize or communicate at times. We have argued in 
previous work [Call89, Cas88, Kie89, BCHgla] that the standard interleaving 
approach to the semantics of  concurrent systems may not be adequate to model 
such distributed computations: more precisely, it may not be able to express 
naturally properties of distributed systems which depend on their distribution in 
space, like e.g. a local deadlock in a specific site of the system. 

Most non-interleaving semantics proposed so far in the literature for algebraic 
languages such as CCS [Mi180, Mi189] are based on the notion of  causality 
between actions, or on the complementary notion of causal independence or 
concurrency. In this paper we pursue a different approach, developing a semantic 
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theory for CCS which takes the distributed nature of processes into account, along 
the lines of  [Call89, Cas88, Kie89]. The first two of these papers do not deal with 
the restriction operator of CCS, and it appears from [Kie89] that it is technically 
difficult to generalize the original definition of distributed bisimulation to full 
CCS. This motivates the the use of a different formalisation, introduced already 
in [BCH91a]: we shall deal with processes with explicit localities or locations, 
extending CCS with a construct of location prefixing l :: p, which denotes the 
process p residing at location I. Intuitively, locations will serve to distinguish 
different parallel components. Let us illustrate our approach with a concrete 
example. We may describe in CCS a simple protocol, transferring data one at a 
time from one port to another, as follows: 

Protocol ~ (Sender [ Receiver)\~,fi 

Sender ~ in. ~. fl. S ender 

Receiver ~ ~. out. ft. Receiver 

where ~ represents transmission of a message from the sender to the receiver, 
and fi is an acknowledgement from the receiver to the sender, signalling that 
the last message has been processed. In the standard theory of weak bisimulation 
equivalence, usually noted ~, one may prove that this system is equivalent to the 
following specification: 

PSpec ~ in. out. PSpec 

That is to say, PSpec ~, Protocol. The reader familiar with the weak causal 
bisimulation of [DAD89], which we denote ~c, should also be readily convinced 
that PSpec ~c Protocol : intuitively, this is because the synchronizations on a, fl in 
Sys create "cross-causalities" between the visible actions in and out, constraining 
them to happen alternately in sequence. In our theory, on the other hand, we 
would like to distinguish PSpec from Protocol, because PSpec is completely 
sequential and thus performs the actions in and out at the same location l, what 
can be represented graphically as follows: 

in Spec 

I : :  

out 

while Protocol is a system distributed among two different localities 11 and 12, 
with the actions in and out occurring at ll and 12 respectively. Thus Protocol may 
be represented as: 

in Sender 

11 :: 
. . . . . . . . . . . . . . . . . . . . .  

Receiver 

12 :: 
. . . . . . . . . . . . . . . . . . . . .  

out 
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Here the unnamed link represents the communication lines c~, fi, which are private 
to the system. Although PSpec and Protocol will not be equated in our theory, 
we will be interested in relating them by a weaker relation, a preorder that orders 
processes according to their degree of distribution. 

Consider another example, taken from [BCH91a], describing the solution to 
a simple mutual exclusion problem. In this solution, two processes compete for a 
device, and a semaphore is used to serialize their accesses to this device: 

Proc ~ -p. enter, exit. v. Proc 

Sere ~ p.~.Sem 
Mutex ~ (Proc l Sem l Proc)\{p,v} 

Take now a variant of  the system Mutex, where one of the processes is faulty 
and may deadlock after exiting the critical region (the deadlocked behaviour is 
modelled here as nil). This system, FMutex, may be defined by: 

FProc ~ ~.enter.exit. (v.FProc + v. nil) 

FMutex ~ (Proc ] Sem [ FProc)\{p,v} 

In the standard theory of weak bisimulation the two systems Mutex and FMutex 
are equivalent. In fact they are both equivalent to the sequential specification: 

MSpec ~ enter, exit.MSpec 

that is Mutex ~ MSpec ~ FMutex. Note that both Mutex and FMutex are globally 
deadlock-free. On the other hand FMutex has the possibility of entering a local 
deadlock in its faulty component, which has no counterpart in Mutex. More 
precisely, consider the following distributed representation of Mutex: 

enter 

exit 

r -  . . . . . . . . . . . . . . . . . .  i 

Proc ~ - -  

11"" " ,, 

Sem - - ~  P roc 

: 12"" 
. . . . . . . . . . . . . . . . . . . . .  

enter 

exit 

The faulty system FMutex has a similar representation, with FProc in place of 
the second occurrence of Proc. In this distributed view Mutex and FMutex have 
different behaviours, because FMutex may reach a state in which no more actions 
can occur at location 12, while this is not possible for Mutex. Note that again the 
causal approach would make no difference between Mutex and FMutex: it may 
be easily checked that Mutex ~c Spec ~ FMutex. 

In the rest of this introduction, we present our formalisation of  distributed 
systems as CCS processes with explicit locations. Let us be more precise about 
the nature of locations, and the way they are assigned to processes. Since the 
distributed structure of a system may evolve dynamically (because of the nesting 
of parallelism and prefixing in CCS terms), the notion of location will have to be 
structured itself. For example a process of the form a. p will be initially considered 
as having just one location 1. Suppose now that p -- q I r, for some nontrivial 
processes q and r. Then the locations of the subprocesses q and r should be 
distinguished, to reflect the fact that q and r are independent components; at the 
same time, they should be both sublocations of the location 1. In our formalisation 
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we will take locations to be words u, v,. . .  over atomic locations l, l!,..., and define 
v to be a sublocation of u whenever u is a prefix of  v. Then the subprocesses 
q and r in the above example will have locations Ill, resp. 112, for some atomic 
locations 11 and 12. 

As regards the attribution of  locations to CCS processes, there are at least 
two possibilities. The most intuitive approach consists in assigning locations 
statically to the components of  a process, using the construct u :: p along the lines 
suggested by the examples above. However, such a static assignment leads to some 
difficulties in finding an appropriate definition of equivalence, since for instance 
we would like to identify the two processes a. nil and ((a+~) [ ~. a)\c~. Nevertheless, 
this static approach has been studied successfully by L. Aceto lace91] for nets 
of  automata,  a subset of  CCS where parallelism may only appear  at the top 
level. Here we will adopt  the different approach of [BCH91a], where locations 
are dynamically generated as the execution - or the observation - of  a process 
goes on. The two approaches are in some sense equivalent (see [Ace91]), though 
the dynamic view is more convenient for obtaining technical results, since the 
definitions of  location equivalence and preorder are much simpler than in the 
static case. In both views, a process with locations is described operationally as 
performing location transitions of the form: 

a ! p - - ,  p 
U 

which differ from the standard transitions of  CCS in that any (observable) action 
a has associated with it a particular location u. In the dynamic approach adopted 
here, these locations are introduced when actions are executed. In fact, such 
locations could be considered as "access paths" for these particular actions. The 
essence of  our semantics is expressed by the transition rules for action prefixing 
a. p and location prefixing u ": p. The rules' for the remaining operators of  CCS 

------+ a are formally identical to the standard ones (with a replacing ~ ). The rule for 
U 

action prefixing is: 

a 

a. p T l :: p for any atomic location l 

This says that the process a. p may be observed to perform an action a at any 
atomic location 1. All subsequent actions of  the process will be observed within 
this location: this is expressed by the fact that the residual of  a.p is l :: p, the 
process p residing at location I. The rule for the location prefixing operator u :: p 
is now: 

a ! a ! p ---* p ~ u " p  ~ u : :p  
Ul) 

Thus any action of u ": p is observed at a sublocation of u. Note that the process 
u " ' p  retains the location u throughout its execution, in other words location 
prefixing is a static construct. 

We will mainly be interested in the weak location transition system associated 

with the transitions ~ . We assume that r-actions, and in particular communi-  
U 

cations, have unobservable locations: thus ~-transitions will have the usual form 

-% and simply pass over existing locations without introducing any new ones. 
We should point out here that our "observers" have more power than processes; 
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in particular processes cannot have any knowledge of the locations of other, 
concurrent processes. 

In a previous paper [BCHgla] we used a similar notion of  location transition 
system to give a non-interleaving semantics for CCS. The work presented here 
differs from that of [BCHgla] in several respects. First, the transition rule given 
here for action prefixing is slightly different, in that it associates with an initial 
action an atomic location l instead of a general location u. We shall see in the 
appendix that this difference is significant, and that the semantics proposed here 
is more in line with our intuition about spatial distribution. For instance, the two 
CCS processes (a. ~ [ ~. b)\c~ and (a. (ct + b) ] ~. b)\c~ are equivalent according to 
[BCH91a], while we shall distinguish them here, because in the second process 
the b action may be at the same location as the a action. Moreover, we shall be 
interested now in a more general notion of  bisimulation on location transition 
systems, which we call parameterised location bisimulation. 

A parameterised location bisimulation (plb) is a relation ~(R)  on processes 
with locations, parameterised on a relation R on locations. Roughly speaking, two 
processes are related by N(R) if they can perform the same actions at locations 
u, v related by R. Our main result is a complete axiomatisation, over the set of finite 
CCS processes, of parameterised location bisimulations satisfying some general 
conditions, which we call sensible. This is achieved by introducing an auxiliary 
prefixing construct < a at ux >. p. Intuitively, the construct < a at ux >. p prefixes 
the term t by an "action with locality". Here u represents the access path to 
the component performing the action a, while x is a location variable that 
is instantiated to some actual location 1 when the action is performed. The 
operational behaviour of such a process is given by the rule: 

< a at ux >. p ul p [1/x] 

This prefixing construct is used to define normal forms, which are terms of the 

form ~ <  ai at uixi >. Pi + ~-~z. q j, and an essential part of our proof  system for 
icI j6iJ 

sensible plb's consists of  laws for converting terms into such normal forms. For 
instance a basic law is the following, which is used to replace ordinary prefixing 
by the new prefixing construct: 

a.p = < a  at x > . x  ::p 

In [BCH91a] we gave a logical characterisation for location equivalence, using a 
Hennessy-Milner logic. This could be easily adapted to the location equivalence 
presented here, and in fact to all sensible parameterised location bisimulations. 

We shall study in some detail two instances of sensible parameterised location 
bisimulation, the location equivalence ~ l  and the location preorder ~ ~. Location 
equivalence is obtained by taking the relation R on locations to be the identity: 
then two processes are equivalent when they can perform the same actions at 
the same locations. The equivalence ~ :  formalises the idea that two processes 
are bisimilar, in the classical sense, and moreover they have the same parallel 
structure. We will compare the relation ~ with the earlier version proposed in 
[BCH91a], and show that ~E is a stronger notion. We shall also compare ~ / w i t h  
the distributed bisimulation equivalence ~d of [Call89, Cas88, Kie89] and show 
that the two notions coincide on finite restriction-free processes. 

The other example of  sensible plb we shall consider, the location preorder r- 
relates two processes when they are bisimilar but one is possibly less distributed 
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than the other. The relation ~ e is strictly weaker than ~ t ,  in the sense that 

~ /  c ~ z. For instance, looking back at the protocol example of  p.166, we will 
have the following relations between the the protocol and its specification: 

PSpec ~ Protocol but PSpec ~ ~ Protocol 

whereas the two systems Mutex and FMutex in the mutual exclusion example 
shown on p.167 are related neither by ~ /  nor by E 

To conclude this introduction, let us say a few words about  related work. 
We already mentioned the work by L. Aceto [Acegl], which provides static 
characterisations of  the relations ~z and ~ ~ for a general class of  CCS processes, 
the so-called nets of  automata.  This is interesting not only from an intuitive point 
of  view, but also because it yields an effective version of our theory (the reader may 
have noticed that the location transition system determined by the simple process 
a. nil is infinitely branching). The notion of  explicit locality is used by A. Kiehn 
in [Kie91] to bring together in the same framework the causal and distributed 
views of concurrent systems. A similar idea motivates the work [MoY92] by 
U. Montanari  and D. Yankelevich, where the notion of  locality is extracted from 
the proofs of  transitions. Their approach provides another effective version of  
location equivalence for behaviourally finite processes - but not in general for 
regular systems, such as the nets of  automata.  

2. Parameterised Location Bisimulations 

In this section we introduce a new kind of transition system, called the loca- 
tion transition system, to specify processes whose actions may occur at different 
locations. CCS, Let us explain the intuition for the location transition system. 
The general idea is that processes consist of  parallel components which reside at 
different locations and thus may be observed independently. Then instead of a 
single global observer for a system we assume a set of  observers, one for each 
parallel component. At each stage of evolution of the system, an observer - or 
parallel component  - has a current location, which we represent as a word u over 
a set of  atomic locations Loc. This location may be seen as the "access path" to 
that component. In this section we are not concerned with the way these access 
paths are generated; we simply assume that they exist. 

Let us now define our transition system, formalising the notion of  process 
with locations. We assume an infinite set of  atomic locations Loc, ranged over 
by k , l ,m . . . ;  we then define general locations, ranged over by u,v ,w. . . ,  to be 
sequences of  Loc*. As usual we denote concatenation by uv, and the empty word 
by e. The set of  non-empty locations is Loc +. Processes will have transitions 

p ~ p', where a is an action and u is the location where it occurs, as well as un- 
u 

observable z-transitions; the locations of  z-transitions are themselves considered 
"c ! 

to be unobservable, so these transitions will have the usual form p --* p .  

Definition 2.1. A Location Transition System is of  the form 

(S,A, Loc, { ~ l a ~ A ,  u c Loc*}, 2~) 
1l 

where S is a set of  processes with locations, A is a set of  actions, Loc is the set 
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of atomic locations and each a , ~ is a subset of  (S • S), called an action 
u 

relation. The union of action relations forms the transition relation over S. [] 
a_% p, Based on the transitions p u and p ~ pt, we define the weak transitions 

p ::~ p' and p u  p a  , in the standard way: 

'c n =~ to denote (--*) , n > 1. Then the a 
u 

a ! I 
P ~ P  r162 3q, q 

we let =~ = (-*) , n _> O. We will also use 

are given by: 

a 1 ~ l 

�9 p ~ q  ~" q ~ P  

On the resulting (weak) location transition system we define now the notion of  
parameterised location bisimulation (plb). A plb is a relation on processes with 
locations, parameterised on a relation R on locations. Informally, two processes 
are related if they can perform the same actions, at locations which are related 
by R. Intuitively, R is a requirement on the way corresponding transitions should 
be reached in related processes. 

Definition 2.2. Let R c (Loc* x Loc*) be a relation on locations. A relation 
G c_ (S x S) is a parameterised location bisimulation (plb) parameterised on R, or 
R-location bisimulation, iff G c__ CR(G), where (p, q) E CR(G) iff 

(i) p ~ p' implies q ~ q' 

(ii) q ::~ q' implies p ::~ p' 

(iii) p ~ p l  implies q ~ q '  
u /) 

(iv) q v ' implies p u  1 

for some q' E S such that (p', q') E G 

for some p' E S such that (pl, q,) E G 

for some q' E S and v E Loc* 

such that (u, v) E R and (p', q') E G 

for some p' E S and u E Loc* 

such that (u, v) E R and (p', q') E G. 

The function CR is monotonic and therefore, from standard principles, it has a 
maximal fixpoint which we denote by N(R). As usual 

= U {  G I G =_ CR(G) } 

Other properties of  N(R) depend on corresponding properties of  the underlying 
relation R. For instance we have: 

Property 2.3. I f  R is reflexive (resp. symmetric, transitive) then so is ~(R).  

Also, it should be clear that if R _~ R' then any R-location bisimulation is also 
an RMocation bisimulation, therefore: 

Property 2.4. R ~ R' => ~(R)  ~_ ~(R ' )  

I f  for instance we take R to be the universal relation U = Loc* x Loc*, we 
obtain an equivalence relation, ~ (U) ,  which is the largest parameterised location 
bisimulation. R Intuitively, letting R = U amounts to ignore the information on 
locations. In the next section we will see that indeed for the location transition 
system associated with the language CCS the relation N(U) coincides with the 
standard weak bisimulation equivalence of [Mi189]. 

Another  significant instance of parameterised location bisimulation is N(/d) ,  
whe re /d  is the identity relation on locations. 



172 G. Boudol et al. 

Again this is an equivalence relation, which we call location equivalence and 
denote by ~e. This equivalence, which equates processes with the same degree of  
distribution, will be studied in detail in sections 4 and 5. We shall see that in some 
sense location equivalence is the strongest "reasonable" parameterised location 
bisimulation. In section 5 we will discuss another example of  parameterised 
location bisimulation, the location preorder ~ l '  a preorder formalising the idea 
that a process is less distributed than another. 

3. Language and Operational Semantics 

We propose now a location transition system semantics for an extension of  
Milner's language CCS, and discuss the resulting parameterised location bisim- 
ulations. We should point out that the semantics presented here is very similar, 
but not identical, to the one given in [BCH91a]. The reasons for introducing a 
new, more discriminating semantics are both technical and intuitive; they will be 
explained in the next sections. 

The language we consider is essentially CCS, with some additional constructs 
to deal with locations. As usual we assume a set of  actions of  the form Act = AUA, 
where A is a set of  names ranged over by a, fl . . . . .  A the corresponding set of  co- 
names {~ [ c~ E A}, and - is a bijection such that ~ = c~ for all ~ e A. The symbol 
% not belonging to Act, denotes the invisible action. We use a, b, c . . . .  to range 
over Act and #, v . . . .  to range over Act~ -- Act u {z}. We will use p, q, . . .  to denote 
terms of our language. The set of  process variables, ranged over by P, Q .... is 
denoted PVar. The operators we consider are all those of  CCS, namely nil, action 
prefixing #. p, nondeterministic choice +, parallel composition l, relabelling [f], 
restriction \ct and recursion rec P. p. We shall often omit the process nil when it 
occurs within a prefix, writing for instance a. b instead of a. b. nil. 

In addition we shall use the construct of  location prefixing u :: p (already 
introduced in [BCH91a]) to represent an agent p residing at the location u. 
We recall from the previous section that locations u, v, w. . .  are words of  Loc*. 
Moreover we shall assume, for axiomatization purposes, an infinite set of  location 
variables LVar, ranged over by x ,y . . . ,  and introduce a new form of  prefixing, 
< a at ax >. p, where a is a location word possibly containing variables, that is 
a E (Loc U LVar)*. Intuitively, the construct < a  at a x > . p  prefixes a term by 
an "action with locality". The meaning of this operator will be specified more 
precisely when we give the formal semantics of  our language. Because of location 
variables, we will need a more general location construct of  the form a :: p ,  
where ~ E (Loc ULVar)*; thus u ::p will be a particular case of  o- : :p .  To sum 
up, our language IL is given by: 

p ::= nil I #.P I P + P  I PIP  ] P[f] t p \~ { 
P ] recP. p I 

::p [ < a a t ~ x > . p  

Here rec P. p is a binding operator for process variables, which leads to the 
usual definition of free and bound occurrences of  variables and of substitution 
[p/P] of terms for process variables. Similarly, < a at ax  >. p is a binding operator 
for location variables, which binds all free occurrences of  the variable x in p. 
However, x may still occur free in a. Once more, this leads to standard definitions 
of  free and bound occurrences of  location variables and of substitution [u/x] 
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of locations for location variables. We will use the notation p[p] to denote an 
instantiation of both process and location variables in p. Similarly, we shall 
use ~r[p] to represent an instantiation of an "open" location word o-. Thus we 
have for example: ( < a  at crx>.p)[p]  = < a  at ~[p]y >. (p ly~x])[p]  where y is 
a fresh variable. In general we will be only interested in closed terms, where all 
occurrences of  both kinds of  variables are bound. We take IP to denote the set 
of  such closed terms, also called processes in the following. We do not introduce 
specific symbols to range over IP. We shall still use p, q .... , and we shall specify 
whether we deal with closed or open terms when this is not clear from the context. 
Note that if < a at o-x >. p is a process then ~ must be a word over location 
names only, i.e. o- 6 Loc*. For any process p, we shall denote by loc(p) the set of  
location names l ~ Loc occurring in p. The set of  f inite processes, that is those 
not involving the recursion construct, will be denoted 1PT. 

We define now the location transition system for IP, specifying its operational 
semantics. The transition rules are given in Fig. 1. As we said in the previous 
section, the idea is that actions are observed at particular locations. Initially, some 
locations may be present in processes because of the location construct u :: p. 
Pure CCS processes contain no locations: one may regard them as having all 
components at the empty location e. Subsequently, when an action is performed 
by a component  at some location u, an atomic location 1 is created, which is 
appended to u to form the new location ul. The word u may then be understood 
as the access path to the component  performing the action. For the prefixing 
operator a. p of  CCS the "access path" is empty, and we have the following 
transition rule: 

a 

a.p -i ~ l :: p for any atomic location l c Loc 

Here the action a may be observed at an arbitrary location l c Loc. The only 
difference with the semantics given in [BCH91a] is that here the location where 
the action occurs is atomic, i.e. it is a letter l of  Loc instead of a word u of  Loc*. 

For the new prefixing construct < a at ux >. p the access path is given by 
u, while x is a variable which is replaced by an arbitrary location l when a is 
executed. Thus the rule for this operator is: 

a 
< a  at u x > . p  ul p[ I /x]  for any atomic location l E Loc 

Note that for u = e and p = x  : :q  the process < a  at u x > . p  has the same 
behaviour as a. q : 

< a at x >. x :: q ~ 1 ": q for any atomic location 1 c Loc 
1 

The remaining rules of  Fig. 1 are modelled on the standard ones for CCS. They 
are exactly the same as those in [BCH91a]. For example p + q can perform any 
of the moves of  either p or q while u :: p has all the moves of p with locations 
prefixed by u. 

By inspecting the rules one can easily check that: 

p' P v ~ 3 u c l o c ( p ) *  3 1 E L o c .  v = u l  

a 

Thus in what follows we will often write transitions explicitly in the form p u~, p', 

and refer to u as the "access path", and to 1 as the "actual location" of  the action 
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For  each a c Act let 
u 

following axioms and rules. 

a 
(LT1) a.p -~ l " p  

(LT2) < a at ux >. p ~1 p [ 1/x] 

a pt  (LT3) P T 

p' (LT4) P u 

a pl (LT5) P T 

q(LT6) 

(LT7) 

(LT8) 

a ! p - - - ~ p  
t l  

I1 ! p - - - ~ p  
u 

p[recP, p/P] @ p' 

_c (IP x IP) be the least b inary  relat ion satisfying the 

V l E Loc 

V l E Loc 

a . ,  ! 
:=~ V : : p  ----" V p 

Ubl 

a t p + q  ~ p 
N 

a pt 
q + P  

a pl 
P l q ~ '  [q 

pt 
q l P  , q] 

p[f] ~ p'[f] u 

p\c~ @ p'\c~, a q~ {~,~} 

a ! 

=~ rec P. p ~ p 

Fig. 1. Loca t ion  t rans i t ions  for IP. 

a. One m a y  show the following property,  stating that  the actual  locat ion l can be 
chosen arbi trar i ly at each step: 

Proper ty  3.1. For  any te rm p and L such tha t  loc(p) _~ L ~ Loc, if putp~ t then 

Vk ~ L 3p ' .  p ~uk p" and p" [k --* l] = p', and p ~uh p" [k ~ h] for any h E Loc. 

The transit ions p ~ pt, whose location is not  observable,  are defined through 
a simple adap ta t ion  of  the s tandard  transit ion system for CCS to our  extended 
language,  which is described in Fig. 2. Note  that  in order  to infer the transi t ion 

"c a 

(a. p ] a. q) ~ (p ] q) we have to use the s tandard  transi t ions a. p ~ p and a. q --+ q. 
The only new rules are the ones for the constructs  u :: p and < a at ux >. p; in 
these rules the locations are in fact ignored. In  part icular,  for the second construct  
we use the nota t ion  p[ x,/]  to represent  the te rm p where all free occurrences of  x 
have been erased, that  is p [ x~/] = p [ e /x  ] ; for instance (x :: p) [ x~/] = e :: (p [ x,/1), 
and (<  a at xx >. p)[ x, /]  = < a at x >.  p because the first occurrence o f  x is free 
and  the second occurrence of  x binds this variable in p. The weak transi t ions 
p ~ p r  are then derived as explained in the previous section. 
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For each/2 6 AcG let ~ ~ (lP x ll?) be the least binary relation satisfying the 
following axiom and rules. 

(ST1) /2.p ~ p 

a 

(ST2) < a a t u x > . p ~ p [ x , / ]  

(ST3) p --* 

(ST4) p --* 

p, (ST5) p --* 

(ST6) 

(ST7) 

(ST8) 

(ST9) 

p, p ~  

# pr p--, 

p[rec P. p/P] ~ p' 

a t a q, p --* p , q --~ 

::ff u ::p----~ U 

p + q  ~ pl 

q + p ~-~ p' 

p p q L p ' ] q  

q l p ~ q l p '  

f(#) 
pff] , p'[f] 

,u t 

=~ rec P. p ~ p~ 

p [ q ~ p l ] q ,  

Fig. 2. Standard Transitions for IP. 

We establish now a result that will be used in the next section, which relates 
the location transitions and the operation of substitution of locations for location 
variables, denoted p[p]. 

Lemma 3.2. 
e pt 1) p [p] 
a pt 2) p [p] =~ 

For any term p: 

implies 3p" such that ff = p" [p] and 

implies 3 a, p ' .  u = o- [p], p' -= p" [p] 

and Vp'. p [p'] ~ pl, co']~ [P'] 

vp'. p[p'] =~ p" [p'] 

Proof We prove the first point by induction on the definition of p [p] ~ p'. 
Clearly it is enough to prove this statement for "strong" arrows. More precisely, 
we show 

p [ p ]  f l~p '  ~ 3 p " . p '  = p ' [ p ]  & V p ' .  p [p ' ]  ~ p ' t [p ' ]  

by induction on the definition of the transition. The case of ST2 is the only one 
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deserving some consideration. I fp[p]  = < a at ux >. q then there exist ~ and r such 
that p = < a at az >. r with u = o-[p] and q = r [ x / z  ] [p] where x, which is obtained 
by e-conversion, does not occur free in r, and is not affected by p. Then # -- a and 
p' = q[x,/] = (r[z~/])[p]. For any p' we have P[P'I = < a at ~Lo']y >. r[y/z][p']  

a 

for some fresh variable y, and p[p'] ~ ( r [y / z ] [p ' l ) [y4]  = (r[z~/])[p'], therefore 
we may let p" = r[z,/].  

Regarding the second point, we have by definition p [p] ~ p' if and only if 
ul 

a 8 p , ,  
there exist P0 and Pl such that p [p] ~ p0 -~ pl => Then, using the previous 

a p, .  point, we only have to prove the statement for "strong" transitions p [p] u--T 

One proceeds by induction on the inference of this transition. We omit the proofs. 
Just note that the case of  LT2 is very similar to the case of  ST2 in point 1), and 
that in the case of  LT3 we have p [p] = v :: q, therefore p = ~ "" r with v = ~ [p] 
a n d q = r [ p ] .  [] 

On the location transition system we have introduced over IP we may now 
apply the definition of  parameterised location bisimulation to obtain a family of  
relations N(R) over IP. These relations are extended to open terms in the standard 
way: for terms p,q involving process and location variables we let p N ( R ) q  if 
p [p] N(R)q [p] for every closed instantiation p of  both process and location 
variables. 

We already mentioned in the previous section the case where R is U =- 
Loc* x Loc*, the universal relation on locations. In N(U) the locations are 
completely ignored and therefore one expects it to coincide with the usual (weak) 
bisimulation equivalence ~.  The bisimulation equivalence ~ is defined on our 

extended language in the standard way, using the weak transitions => associated 

with the transitions ~ of Fig. 3 (p. xx). We may then show the following: 

Proposition 3.3. For all processes p, q" (p, q) E N(U) if and only if p ~ q. 

Proof  For any term r let pure(r) be the CCS term obtained by removing all 
locations from r, e.g. pure (< a at ~rx >. s) = a. pure(s) and pure(a "" s) = pure(s). 

Let now p, q E IP. Obviously p ~ p' implies pure(p) ~ pure(p'), and conversely if 

pure(p) ~ p', then there exists p" such that p ~ p" and p' = pure(p"). Therefore 
p ~ pure(p) and thus it is sufficient to establish 

pure(p) ~ pure(q) if and only if (p, q) E N(U) 

The proof  of  this fact depends on relating the two different types of  transitions 
a 12 

=> and ~ .  One can show that 
U 

�9 a l 

1. if p ~ p  then pure(p) & pure(p') 

2. if pure(p) ~ r then there exist u E Loc* and p' E IP such that p u  p ~  t and 

r = pure(p') 

3. p =~ p' if and only if pure(p) =~ pure(p') 

Now let 

G = { (p, q) I pure(p) ,~ pure(q) } 
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Using the previous facts one shows that G ~_ Cv(G) and therefore pure(p) 
pure(q) implies (p, q) E N(U). Conversely let 

B = { (pure(p),pure(q))[(p,  q) E ~ ( U ) }  

Once more facts 1,2,3 can be used to show that B is a standard bisimulation and 
therefore (p, q) E N(U) implies p ,~ q. [] 

We have seen in the previous section that for any R, the relation N(R) is included 
into ~(U).  Therefore: 

Corollary 3.4. For any relation R and processes p,q: (p,q) E ~)(R) implies 
p ~ q .  

We also mentioned the plb obtained by taking R = Id, the identity relation 
on locations. This relation, the location equivalence ~ ,  will be studied in detail 
in section 5. By Corollary 3.4 we know that this equivalence is at least as 
discriminating as bisimulation equivalence ~. We give now an example showing 
that ~ is strictly finer that ~. Let p and q denote respectively the CCS processes 
(a. e. c I b. ~. d)\e and (a. ~. d I b. ~. c)\e. Since in p the actions a and c are in the 

a b c 
~ ' ~ u ll' for some l', whereas same parallel component we have p T k u p = 

this is not the case for q. Therefore p ~ t  q, while it is easy to check that p ~ q. 
Let us consider another example of plb, which is a preorder but not an 

equivalence. Let <~ suf be the plb induced by the inverse of the suffix relation 
on words, defined by: u R v *:, 3 w s.t. u = wv, that is v is a suffix of u. The 
relation R is obviously a preorder, and thus the corresponding plb ~(R) = <~ suf 

is also a preorder. However < suf has a drawback, namely it is not preserved 
by location prefixing, and therefore neither by action prefixing. For example if 
r = (a.b.nil + b.a.nil) and s = (a.nil ] b.nil) then c.r ~ suf c.s because this would 

require, after one execution step, that 1 ": r <~ suf 1 :: s, which is not true. Essentially 

l " ' r  ;~ suf l " s  because the underlying relation on locations is not preserved by 
concatenation on the left. 

The above examples show that if we want N(R) to have a reasonable algebraic 
theory then R must enjoy certain properties. For instance we have the following: 

Proposition 3.5. If  R is reflexive and compatible with concatenation on the left, 
that is u R v  =~ w u R w v ,  then N(R) is preserved by all the operators in the 
language except +. 

Proo f  The reflexivity of R is used in showing that N(R) is preserved by the prefix- 
ing constructs a. p and < a at o-x >. p. The compatibility of R with concatenation 
plays a role in proving that ~(R) is preserved by location prefixing u :: p and by 
the prefixing construct a.p. We examine these two cases, leaving the others, which 
follow the standard pattern, to the reader. 

Let G be the set { (w  "" r ,w "" s), (a.r ,a.s)  [ (r,s) E ~(R)}.  Then one can 
check that G c_ CR(G). For example any possible observable move from w " ' r  

a r t  a t must be of the form w "" r o w  :: where r o r .  Since (r,s) E N ( R )  there 
WU tl 

a I must be a move from s of the form s o s  where u R v  and ( / , s ' )  E N(R) .  
/J 

a St  But then the move w :: s ~ w  :: matches the original move from w :: r 
W/) 

since also wu R wv. This shows that G is an R-location bisimulation, therefore 
(p,q) EN(R)  ~ (w ::p,w ::q) E~(R) .  [] 
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Consider now the preorder < pref induced by the inverse of the prefix relation 

on words, defined by: u R v ~:~ ~ w s.t. u = vw. This relation R is preserved 
by concatenation on the left; however the associated preorder < pref lacks an 

algebraic property that we would like to ensure, namely: 

uRv ~ u : : p  ~(R)  v : : p  

We have for instance 1 "" a. nil y~ pref a. nil. A sufficient condition for this property 

to hold is the following: 

Proposition 3.6. If  R is compatible with concatenation on the right, that is 
u R v  =~ uw Rvw ,  then N(R) satisfies the property: uRv =~ u "'p N(R)  v ":p. 

In what follows we shall also make use of propert ies of plb's with respect to 
the operation of location renaming. A location renaming is determined by a 
mapping ~ from Loc to Loc*, which is extended to words in the obvious way: 
~(e) = e and rc(lu) = ~(l)rc(u). Further, rc is transferred homomorphically to 
a mapping between processes: for example we have rc(u :: p) = ~(u) :: ~(p) 
and ~z(< a at ux >. p) = < a at rc(u)x >. ~(p). For a renaming affecting only one 
location we will use the notation p[l ~ u], meaning the result of applying to p 
the renaming rc defined by 

u if k = /  
~(k) = k otherwise 

Then we have: 

Lemma 3.7. Let R c_ Loc* x Loc* be a relation on locations compatible with 
location renaming, that is u R v ~ ~(u)Rrc(v). Then N(R) is compatible with 
location renaming on processes, that is p ~ ( R ) q  =~ n(p) .~(R)~(q) .  

Proof  One shows that the relation { (n(p),~r(q)) I p ~ ( R ) q  } is an R-location 
bisimulation. To this end one proves the following properties of transitions w.r.t. 
location renaming: 

1. rc(p) =~ p' ~ 3p'. p=~ p" & p' = rffp') 
g 

2. p & p' ~ re(p) ~ rc(p') 
Q ! 

3. r c ( p ) ~ p  ~ 3vVk ~ loe(p)3p'.  ~ " re(v) & p' P vk p ' u = = rc'(p') where 

r2(n) = { 1 i f n = k  
rffn) otherwise 

4. q vk ~ q '  & k ~ loc(q) ~ V~Vl. ~(q) ~@~trc'(q')t ~ where re' is defined as in the 

previous point. 

The details are left to the reader (see [BCH91a]). [] 

Since Id is obviously compatible with location renaming, we have in particular: 

Corollary 3.8. p ~ ,  q ~ re(p) ~ t  7r(q) 

In order to develop an equational theory for parameterised location bisimulations, 
we need to turn them into substitutive relations, that is relations which are 
preserved by all the operators of the language. This is done in the standard way. 
For any plb ~ ( R )  we define ~C(R) to be the closure of ~(R) w.r.t, all contexts : 
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Definition 3.9. p ~C(R) q if for every context (g [ ] �9 cg [p] ~(R) cg [q]. [] 

It is a standard result that the relation ~ ( R )  so defined is the largest relation 
compatible with the constructs of the language which is included in ~)(R). 
This relation is a precongruence if R is a preorder, and a congruence if R is 
an equivalence relation. As usual for weak bisimulations, when the relation R 
satisfies the hypotheses of the Proposition 3.5, that is R is reflexive and compatible 
with concatenation on the left, sum-contexts are the only relevant ones in the 
definition of ~C(R), and we have the following characterisation: 

Property 3.10. If  R is reflexive and compatible with concatenation on the left, 
then p ~C(R) q iff for any action a not occurring in p, q, p + a ~(R) q + a. 

On processes of IP, we also have the standard behavioural characterisation for 
~ ( R ) :  

Property 3.11. Let p, q E ]P. If R is reflexive and compatible with concatenation 
on the left, then p ~ ( R ) q  if and only if 

ql ql 1. p _L~ p, implies q =~ for some such that (p~, q') E ~(R) 

2. q _5, q, implies p ~ p' for some p' such that (p', q') c ~(R) 

' for some q' and v such that (p~, q') E ~(R) and u R v 3. p ~ pl implies q ~ q 
u 

4. q a ql implies ~ ~forsomep '  p u p and u such that (p', q') E ~(R) and u R v. 

We end this section by showing that NO(R) is well-behaved w.r.t, the recursion 
operator. 

Proposition 3.12. If  R is a preorder (i,e. reflexive and transitive) and (s, t) E NO(R) 
then (rec P. s, rec P. t) c N~(R). 

Proof The proof follows the lines of that of Propositions 7.8 and 4.12 of [Mi189] 
and therefore we only give the outline here. Suppose for convenience that s, t 
contain no free location variables and no free process variable other than P. Let 

G = { (r[recP. s/P],r[recP, t /P] ) i r  contains at most P free } 

then one can prove by structural induction on r, as in Proposition 4.12 of [Mi189], 
that for any (p, q) E G 

1. p 2~ p, implies q ~  q' for some q' and p" such that p' Gp"N(R)q '  
a , . ct ! 

2. p ~ pl lmplaes q ~ q for some ql, v and p" such that p' G p" ~(R) q' and u R v 

3. similarly with p and q interchanged. 

Since R is transitive this is sufficient to establish that G ~ ~(R) and therefore 
that if (p, q) E G then (p, q) E ~(R). By virtue of the characterisation of ~ ( R )  
given above (Property 3.11), we have now (p,q) E ~ ( R ) .  If  we choose r to be 
simply P, we have then (rec P. s, rec P. t) E ~(R). [] 

Another property we expect of the recursion construct is that unfolding preserves 
the semantics. Since the actions of recP. p and p[recP, p/P] are identical this 
result is straightforward, but it does presuppose that R is reflexive. 

Proposition 3.13. If  R is reflexive then rec P. p ~C(R) p[rec P. p/P]. 
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Finally we show that recursion induction is sound for our semantics when 
applied to guarded and sequential recursive definitions. Recall from [Mi189] that 
P is guarded in a term t if every occurrence of P in t appears within a guarded 
subterm, i.e. one of the form a.t' or < a at o-x >. t'. Also, P is sequential in t if 
every subterm of t which contains P, apart from P itself, is guarded or has the 
form tl + t2. 

Proposition 3.14. If  R is reflexive and transitive, P is guarded and sequential 
in t and t contains at most the variable P free, then s ~C(R) t[s/P] implies 
s NC(R) rec P. t. 

Proof The proof is based on that of Proposition 7.13 of [Mi189], so we only 
give an outline here. Let p,q be any two terms such that p NC(R) t[p/P] and 
q ~C(R) t[q/P] and let 

G = { (t'[p/P], t ' [q /P])Le  is sequential in t' } 

Then one can show, for any (to, tx) c G, that 

' "Gt~ " such that tl ~ t 1 and t~ ~(R) t 1 1. to --+ t~ implies 3 t~, t 1 

' @ '  "Gt] a n d u R v  2. to ~ t o implies ~ t] and t~ such that tl t 1 and t~ ~(R) t 1 

3. similarly with to and tl interchanged. 

As in Proposition 3.12 this is sufficient to establish that if (to, h) E G then 
to ~ ( R )  tx. Taking p to be s, t' to be t and q to be recP. t it follows that 
s ~C(R) recP. t. [] 

4. Axiomatisation 

We have just seen that some interesting features of parameterised location bisimu- 
lations N(R) depend on specific properties of the underlying relation on locations 
R, as for example reflexivity, transitivity, and compatibility with concatenation. 
In this section we propose an axiomatisation, over the set of finite terms of IL, for 
parameterised location bisimulations N(R) based on particular relations R that 
we call sensible, or more accurately for their substitutive closure NO(R). Formally: 

Definition 4.1. A relation R on locations is called sensible if and only if it is of the 
form R = {(ul, vl) luRv ,  l E Loc } for some relation on locations R satisfying: 

1. R is a preorder 

2. R is compatible with concatenation on the left and on the right: 

u R v ~ wu R wv and uw .R vw 

3. R is compatible with location renaming: 

u R v  ~ n(u)Rn(v) for any n :  Loc--~ Loc* [] 

Let us briefly comment on this definition. The prerequisite that R should be of 
the form { (ul, vl) I uRv, l c Loc } essentially translates into a requirement for the 
resulting plb N(R), namely that R-bisimilar processes should mark corresponding 
actions with the same location name I. to This requirement will be used in our 
axiomatisation. However, it is not strictly necessary for defining meaningful plb's: 
for instance it is possible to show that the location equivalence ~ defined as 
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N(Id) on our language could also be obtained as the plb induced by the relation 
R = { (ul, uk) I u ~ Loc*, l, k ~ Loc }, which is not of the required form. On the 
other hand, we will see that the requirement that R relates pairs of locations 
ending with the same letter is essential for defining the location preorder ~ / i n  
section 5. 

Properties 1 and 2 for R imply the same properties for R, and we saw in 
the previous section that such properties are natural if we want the resulting plb 
N(R) to be well-behaved. Property 3 expresses the fact that the particular choice 
of location names is irrelevant. Note that if R satisfies property 3 then N(R) 
is compatible with location renaming, since the proof of Lemma 3.7 essentially 
refers to R's (rather than R's) compatibility with location renaming. 

Let us consider some examples. The identity relation Id on non-empty loca- 
tions is obviously sensible, and is the strongest sensible relation. On the other 
hand (the inverses of) the suffix and the prefix relations, discussed in the pre- 
vious section, are not compatible with concatenation, resp. on the left and on 
the right, and therefore are not sensible relations (nor may be used as the 
generating sensible relations). As another example, the relation Ur given by 
u Ut v r 31 E Loc 3u', v'. u = u'l & v = v'l is also a sensible relation, and in fact 
the weakest one. One can show that for processes of IP the equivalence N(Ue) 
coincides with N(U) and thus with the bisimulation equivalence ~:  

Lemma 4.2. For all processes p, q: (p, q) 6 N(U~) if and only if p ~ q. 

Proof The "only if" part results from Proposition 3.3 
and Property 2.4. For the "if" part we show that ~ is an UE-location bisim- 

a I ulation. If  p ~ q and P~ut p~ then there exist v, k and q~ such that q ~k q and 

p' ~ q'. Let h f~ loc(p) u loc(q). Then by Property 3.1 there exists q" such that 
q~qa  "[h ~ 1], and q' = q'[h --. k]. To conclude it is enough to note that 

q' ~ q'[h--~ l]. [] 

Since a sensible relation R is a preorder, the corresponding parameterised location 
bisimulation N(R) is also a preorder: it will then be denoted by ~ R, and the 

E c associated precongruence by ,,~ R" However, we shall maintain the notation ~e 
for N(ld). In this section we propose an axiomatisation for any parameterised 

~ c  
location precongruence ,,~ R based on a sensible relation R, over the set ILf of 
finite terms of IL, i.e. terms built without process variables and recursion. We 
should point out however that our axiomatisation also holds for slightly less 
restricted relations R, where Property 2 is replaced simply by compatibility with 
concatenation on the left. 

We show now a property which will be used in the axiomatisation, namely 
~ c  

that a relation ~ R induced by a sensible relation R treats free location variables 
essentially as fresh location names: 

Lemma 4.3. (Generalisation lemma) Let R be a sensible relation, and p, q be 
two terms with Lvar(p) t J Lvar(q) ~_ {xl . . . .  , x~}. Let kl . . . .  , k~ be distinct location 
names not occurring in p and q. Then: 

p [ k l / X l  . . . .  ,kn/xn] ~ R  q [ k l / X l  . . . . .  kn/xn] "r p E~, R q 

Proof  In one direction, namely " ~ " ,  this is obvious. Conversely, let G be the 
relation on closed terms given by: p [p] G q [p] if for some kb . . . ,  k, satisfying the 
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hypothesis of the lemma one has p [kx/xl , . . . ,kn/x~] ~ R  q [kl/Xl""'kn/Xn]" 
We prove that G is an R-location bisimulation. For this proof we shall abbreviate 

& ,  r [k l /X l , . . . , k , / x , ]  to r [[c/2]. I f p  [p] ul p then by lemma 3.2 there exist p" and 
a a 

= ~ p" [fc/2]. Then q [[c/2]~.l q' a such that u = o [p], p' p" [p], and p [k/2] ~[~/~]l 

for some v and q' such that a [ [c/2 ] R v and p" [ [c/2 ] ~ g q'. By lemma 3.2 again, 

there exist q" and a' such that v = o' [fc/2], q' = q" [[c/2], and q [plo,[p]z q [p]. 

Since the ki's are distinct and do not occur in p and q, they will not occur in o and 
a' either, therefore we have o- Lo] R o' [p] because R is compatible with location 

renaming. Moreover p" [p] G q" [p]. Similarly a move p [p] ~ p' is matched by a 
move of q [p]. This shows that G is an R-location bisimulation. [] 

For the rest of this section we only consider sensible relations R ~_ Loc* x Loc*. 
C 

Our proof  system for p U R q will consist of a set of  axioms and inference rules 
dealing with formulae of the form p __ q. We will use implicitly some standard 
axioms and inference rules, namely the ones expressing reflexivity, transitivity, 
and compatibility with the constructs. Also, we shall use equations p = q to 
stand for the pair of inequations p _U q and q r- p. For terms involving location 
variables, we have an inference rule corresponding to the generalisation lemma: 

S1. If Lvar(p)ULvar(q) c_ {Xl . . . . .  xn} and kb . . . ,  k~ are distinct location names 
not occurring in p and q then: 

p[k l / xb . . . , kn / xn]  U q[k l / xb . . . , kn / xn]  ~ pU_ q 

The first step of the axiomatisation consists as usual in reducing processes to 
normal forms, which are essentially notations for the transition systems used in 
the operational semantics. Here the normal forms will be terms built with + 
and the prefixing construct < a at ax >. p. They are in fact a special kind of head 
normal form. More precisely: 

Definition 4.4. A head normal form is a term (defined modulo axioms A1, A2, 
A3, see Fig. 3) of the form: 

p-~  ~ %ai at ffixi>.pi + ~ z.p} 
icl jcJ 

By convention this head normal form is nil if I -= 0 = J. A normal form is a 
head normal form whose subterms are again normal forms. [] 

We introduce now the axioms that will allow us to transform terms of lLf into 
normal forms. From now on, the laws will be given for closed terms; by virtue 
of SI, these laws can then be turned into similar statements on open terms. The 
basic transformation, replacing ordinary prefixing by the new prefixing construct, 
is the following: 

L1. a.p = < a  at x > . x  ::p 

We recall that the meaning of < a at x >. q is that action a occurs at some 
location l, instantiation of x, giving rise to the process q where x is replaced 
by I. Note that since p is closed, no variable capture may occur in applying L1. 

The law L1 introduces a new location variable in front of the subterm p. We 
give now a set of laws to push locations through subterms. In particular we will 
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have an axiom, L2, which will allow us to remove a location u on top of the 
prefixing construct < a at vx >. q,  incrementing by u the access path v for the 
action a. 

L2. u : : < a a t v x > . p  = < a a t u v x > . u : : p  

L3. u : : r .p  = r.  u ::p 

L4. u :: nil = nil 

L5. u : : ( p + q )  = u : : p  + u : : q  

Using laws L2, S1, we may infer e.g. y : : < a  at a x > . p  = < a  at y a x > . y  ::p. 
Note however that this only holds for y ~ x, since the variable x is bound in 
< a at o-x >. p. Indeed we need a kind of a-conversion rule: 

$2. < a a t u x > . p  = < a a t u y > . p [ y / x ]  , y not free in p 

Note that c~-conversion is also involved in the substitution operation, which occurs 
for instance in applying rule S 1. Let us now see an example of  application of  the 
laws L1 and L2 - where we also use implicitly some congruence laws. For the 
process a .b .p  we obtain: 

a . b . p = < a a t x > . x : : < b a t y > . y : : p  = < a a t x > . < b a t x y > . x : : y : : p  

So far we have seen how prefixing < a at trx > . p  and location variables are 
introduced. In order to obtain normal forms, we also need to get rid of  the 
static operators occurring in terms. The idea is as usual to eliminate the parallel 
operator by means of an expansion theorem (while the other static operators will 
be taken care of  by standard laws, listed as R1-R4,  U I - U 4  in Fig. 3). In our 
case the expansion theorem will be as follows, where we use the notation p[ x,/] 
introduced previously: 

Expansion theorem: Let p, q be closed head normal forms: 

Z ' Z Z ' p = < ai at uix i >.pi + z.pj  , q = < bk at vkyk >. qk + r.qt .  
iEI j~J  kEK IEL 

Then the following law is sound for any parameterised location precongruence: 

p [ q  = ~ ' < a i a t u i x i > . ( p i l q )  + ~ < b k  a t v k y k > . ( p [ q k )  + 
iEI kcK 

z . ( p i [ x i # ]  I qk[yk~/]) + ~ r . ( p ~ [ q )  + ~ z . ( p [ q ; )  
gzi=bk j@J l~L 

Note: The proof  of  soundness is given below, as part  of  the proof  of  Property 4.5. 

Consider now the sets of  equations ~ and 5r in Figs. 3 and 4. The equations 
o r are more or less the standard expansion laws, adapted to account for the 
new prefixing construct. Together with the laws L~, which express properties of  
locations, these equations are used to reduce terms of ILl to (essentially) location 
transition systems. For instance these equations allow one to reduce the process 
(1 :: ~ [ ~b)\ct to r. < b at x >. nil, while (1 :: (c~ + b) [ ~b)\~ can be shown equal to 
< b  at l y> .n i l  + z . < b  at x > .n i l .  

Similarly, the laws ~-- in Fig. 5 are an adaptation of  Milner's r-laws to 
our language. To deal with the particular relation R on which the parameterised 

c 
location precongruence ~ R is based, we have in addition a parametric inequation 
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(A1) p + ( q + r )  = ( p + q ) + r  
(A2) p + q  = q + p  
(A3) p + nil = p 
(14) p + p = p 

(R1) nil\a = nil 

(R2) (< a at ux >.p)\b = I <nila at ux >. (p\b) 
k 

(R3) (~.p)\b = ~.(p\b) 
(R4) (p + q)\a = p\a + q\a 

i fa@b,b  
otherwise 

(U1) n i l [ f ]  = nil 
(U2) ( < a a t u x > . p ) [ f ]  = <f(a) atux>.p[f] 
(U3) (~.p)[f]  = ~.(p[f])  
(U4) (p + q)[f]  = p[ f ]  + q[ f ]  

(EXP) If: 

p = ~ < a i a t u i x i > . P i  + ~ v.p}, q = ~ < b k a t V k Y k > . q k  + ~ z'ql 
iEI j c J  kEK IEL 

then: 

Plq  = ~-'<ai at uixi>.(pi l q) + ~ <bk at VkYk >.(P l qk) + 
iEl kcK 

~.(Pi[Xi4] I qk[Yk4]) + ~--]~ ' (P~lq)  + ~ ~.(P 
~i=bk jEJ lEL 

ql) 

Fig. 3. Equations g, standard expansion laws. 

GENR; note that this is the only place where R intervenes in the axiomatisation. 
This inequation may be seen as an absorption law, expressing the fact that a 
location word may be subsumed by another one in the relation R, where q is 
said to be absorbed by p w.r.t, a relation G if (p + q) Gp. Then an equivalent 
formulation of the axiom GENR is, with the hypothesis u R v: 

< a a t u x > . p  E_ < a a t u x > . p  + < a a t v x > . p  E_ < a a t v x > . p  

Let now JR  be the set of all the laws and rules considered so far, including S1, 
$2. We write p E_R q if p r-- q is provable in this proof  system, and similarly 
for p =R q. We want to show that on terms of ILf the parameterised location 

E c precongruence ~ R coincides with __a. We start by proving that the laws JR  
are sound for E c 
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(L1) a.p = < a  at x > .  x ::p 
(L2) u : : < a a t v x > . p  = < a a t u v x > . u : : p  
(L3) u : : r . p  = z .u : :p  
(L4) u ::nil = nil 
(L5) u::(p+q)  = u::p + u::q 

Fig. 4. Equations s location laws. 

(T1) p + z . p  = z.p 
(T2) < a a t u x > . p  = < a a t u x > . z . p  
(T2)' r.p = z.z.p 
(T3) < a a t u x > . ( p + z . q )  = < a a t u x > . ( p + z . q )  + < a a t u x > . q  

Fig. 5. Equations 3-, the z-laws. 

(GENR) If  (u,v) E R then" < a a t u x > . p  E < a a t v x > . p  

Fig. 6. GENR, the parametric law. 

Proposition 4.5. (Soundness of the laws) The laws ~'~R are sound for the param- 
C 

that is p _ R  q ~ P ~R  q" eterised location precongruence ~ R' 

Proof The implicit axioms and rules (for reflexivity, transitivity, and so on) 
are clearly sound. For the z-laws, the proof of soundness is the usual one. The 
soundness of S1 is shown by taking terms p + a and q + a in the generalisation 
Lemma 4.3. For the other laws it is enough to show that they are sound with 

r-c (which is a precongruence satisfying the respect to the strong version of ~ R 
generalisation Lemma 4.3 for any sensible relation R), defined in terms of "strong" 
arrows p ~ p' and p 2+ p'. We omit the proof regarding the standard equations 

ul 

(as well as S1); also the soundness of GENR is very easy to check. So we 
only prove here the soundness of the expansion theorem. Let G be the relation 
consisting of the identity pairs (s, s) and the pairs ((p ] q), r) where: 

P = Z < a i a t u i x i > ' P i  + Z z'P~i' q = Z < b k  atvkYk>.qk + Z r'q~ 
icI jEJ kEK 1cL 
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r = ~- '~<aia tu ix i> . (p i lq )  + ~ < b k a t V k y k > . ( P l q k )  + 
icI kEK 

z . (pi[xi , / ]  [ qk[yk,/]) + ~_, ~ . (P}lq)  + ~_, ~-(Plql)  
ai=bk jCJ IcL 

We show that G is a (strong) R-location bisimulation, for any reflexive relation 

a~. a~. (Pi [ q)[1/Xi] is the R on locations. If  (p [ q) ud (pi[I/xi] ] q) then r ud 

matching move of r , since q is closed and thus (Pi ] q)[1/xi] = (pi[1/xi] I q). If  

(p ] q) & (pi[xi,/] ] qk[Yk,/]) with a / =  bk by the transition law ST2, we obviously 

have the corresponding transition r _L, (pi[xi~/] ]qk[Yk,/]) for r. The remaining 
cases are obvious. [] 

c 
Let us turn now to the proof  of completeness, that is p ~ R q =~ p ER q. We 
show first that any term of ILl may be transformed into a head normal form, 
and then into a normal form, using the laws g and ~ (indeed the reduction 
to normal forms is independent of the choice of the relation R). To prove the 
normalisation result, we will use the notion of norm of a term p, noted II p I[, 
defined as follows: 

nil II = 0 
a.pl[ = I I < a a t a x > . p l l  = [Iz.p[I = 1 + Ilpll 

p lq l l  = Ilpll + Ilqll 
p + Nil = max{ ]lpll, Ilql]} 
p\bll = I[pll 

p [ f ] l l  = IIpll 

o - : : p ] l  = IIpll 

Thus ]] p j] is an upper hound on the length of a transition sequence ofp. Moreover, 

a ff p, . it can easily be shown that if p -~ p' or p -2" then 11 [I < ]1P ]] We are now 

ready to prove the following: 

Lemma 4.6. (Head normalisation) For each term p of ILI, there exists a head 
normal form hnf (p) such that p =R hnf  (p) and I] hnf (p) II -< IIp II. 

Proof. First we show that it is enough to prove the statement for p closed. 
Assume that this has been done, and let p be an open term. Let Yb...,Y~ be the 
location variables occurring free in p, and let kb . . . ,  k~ be distinct location names, 
not occurring in p. We write r[k/]y] for r[kl /y l  . . . . .  kn/y~]. Then p[k/]v] =e q for 
some (closed) head normal form q. By a-conversion we may assume that the yi's 
are not bound in q. We let hnf  (p) be the term we obtain from q by replacing 
the ki's by the y~'s. Clearly hnf  (p) is a head normal form, where the ki's do not 
occur, and q = hnf(p)[lc/)]. Therefore p =R hnf(p) by $1. Moreover it should 

be obvious that ][hnf(p)11 _< liP ]l since 11 hnf(p)1[ = 11 q ]l-< 11Pffc/Y] I1 = lip I]. 

We prove now the lemma for closed terms, by structural induction (one could 
check that we do not need the induction hypothesis on open subterms). The proof  
makes use of all axioms in g and ~ - except for the idempotence law A4. As 
usual, we will use axioms A1, A2, A3 without mentioning them. 
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1. for p = nil we let hnf  (p) = nil. 
2. p = a .q .  We define hnf (p) = < a at x >. x '" q. Then we have p =R hnf  (p) 

by l a w L l ,  and ][hnf(p)[] = 1 + ]]x"ql[  = 1 + ]]ql] = ][Nil. 
3. f o r p  = z.q or p = < a a t u x > . q  we l e t h n f ( p ) = p .  
4. p = u "" q. By induction there exists hnf(q) such that q =R hnf(q) and 

11 hnf(q)II  -< II q II. Now if hnf(q)  = nil, we let hnf(p) = nil. Then we have 

P =R nil by L4. Otherwise let hnf(q) = E <ai at vixi>.qi -1- E z.q). 
icI ]EJ 

We define now 

E ' - '  hnf  (p) = < ai at uvixi >. u :: qi + ~. u .. qj 
iel j eJ  

Then using laws L2, L3, L5 we obtain 

Z E ' P =R U "" < ai at vix i >. qi -? u "" z. qj 
icI jcJ  

E Z "" ' = hnf(p) =R < a~ at ul)ix i >. u :: q~ + z. u .. qj 
iEI jGJ 

Since [[Pl] = Ilql] by definition, and it is easy to see that Ilhnf(p) l] = 
II hnf(q)II,  we may conclude that II hnf(p)l] < 1] P II. 

5. p = r I q. By induction there exist hnf ( r ) ,  hnf(q) ,  such that r =g  hnf(r)  
and q =R hnf  (q), with [Ihnf(r)[[ < flrl[ and [[hnf(q)]] _< [[qll. If  hnf ( r ) ,  
hnf  (q) are respectively: 

Z <ai atuixi>'ri  + Z z.r), and E < b k  atvkyk>.qk + E ~'q~ 
icI jcJ  kcK IcL 

we let: 

hnf  (p) = E < ai at uix i >. (ri ] q) + E < bk at VkYk >. (r ] qk) + 
iEl kcK 

E v . ( r i [ x i , / ] ] q k [ Y k , / ] ) +  E z.(r)  lq) + E v . ( r lq~)  
~i=bk jcJ  1cL 

Then we have p =R hnf  (p) by induction and by the expansion theorem. 
Note now that: 

Ilhnf(p) ll = 1  + max{l l r i l l+l lq l l ,  [Irll+l[qkll ,  Ilr) l l+ l lq l [ ,  Ilrl[+llq~]]} 
< II r II + II q II = lip I[ 

6. p = r + q. By induction r,q have head normal forms hnf  (r), hnf(q) ,  such 
that r =R hnf(r)  and q =R hnf(q). Define hnf(p) = h n f ( r ) +  hnf(q) .  
Then hnf  (p) is already a head normal form, since hnf 's are defined modulo 
axioms A1, A2, A3, and [] hnf(p)II -< II p II follows easily by induction. 

7. p = q\b. By induction there exists hnf(q) such that q =R hnf(q) and 
Hhnf(q)]l _< IPql[. If  hnf(q)  =R nil let hnf(p) = nil. Then p =R hnf(p) 
by law R1, and it is obvious that II hnf (p ) I I  < [I P IF. Otherwise, if hnf(q) = 

E < a i a t u i x i > ' q i  + Z z . q j , w e l e t  h n f ( p ) =  E <aiatuix i>.(qi \b)  + 
iEI jEJ ai@b,1) 

Z ~'(q)\b)" Then we obtain p =R hnf(p) by laws R2, R3, R4, and by 
j cJ  
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induction II hnf  (p) ]l < II P ll- In particular if there is an i E I such that ai = b, b 
then Iq hnf  (p) II < I[P ]l : this is the only case where the norm decreases. 

8. The case p = q [f] is similar to 7). It makes use of laws U1,U2,U3,U4. 

[] 

Proposition 4.7. (Normalisation) For each term p of IL/, there exists a normal 
form nf(p) such that p = e  nf(p) and ]qnf(p)ll < Ilpll. 

Proof The proof  uses the previous lemma, and proceeds by induction on the 
norm II P if. If  liP tl = 0, we have hnf  (p) = nil since II hnf  (p) II < [IP II. In this 
case we let nf(p) = nil. Otherwise, either hnf(p) = nil (e.g. if p = a. nil\a), in 

, 
which case we let nf (p) = nil, or hnf (p) = < ai at aixi >. Pi + z. pj. 

iEI j cJ  

Here tl pi II < I[ hnf  (p) II < IIp l] for any i E I, and similarly for the p}'s, therefore 
by induction these subterms have normal forms nf(pi) and nf(p)). We let then 

nf (p) = ~ < ai at aixi >. nf (Pi) + ~ z. nf (p}). 
iEl jEJ 

Clearly the norm cannot increase during the normalisation process, since 
normalisation is nothing but recursive head normalisation. [] 

The proof  of completeness requires in addition two absorption lemmas, similar to 
those used for weak bisimulation in [HEM85]. 

L e m m a  4.8. (z-absorption lemma) If  p is a closed normal form then: 

p =~ p' implies p + z. p~ =R P 

Proof By induction on the length of p ~ p', using axioms A4 and T1. [] 

Lemma 4.9. (General absorption lemma) If p is a closed normal form then: 

p ~ p '  implies 3p". p =R p + < a a t u x > . p ' t a n d  p , r [ i / x ] = p ,  
ul 

p' (or more precisely, on the number Proof By induction on the length of p u t  

of z~s preceding the observable action). The proof uses axioms A4, T1, T3, as 

well as the above z-absorption lemma. If p = Z < ai at uixi >.pi -+- Z z.p}, 
iEI jEJ 

there are two possibilities for p ~ p'. 
ul 

i) P a p, because a = ai, u = ui and < ai at uixf >. Pi ~ Pi [l/xi ] =~ p' 
ul ul 

for some i ~ I. Now if p~ = Pi [1/xi], we take p'~ = Pi and we get p =R 

p + < ai at uixi >.p" using law A4. Otherwise we have Pi [1/xi] ~ pq Now 

by Lemma 3.2 there exists p" s.t. p' = p" [I/xi] and Vk. pi [k/xi] =~ p" [k/xi]. 
Then we have pi [k/xi ] =R Pi [k/xi ] + z .p"  [k/xi ] by the z-absorption lemma. 
We may thus apply $1 to infer p~ =R Pi Jr- z .p•. We now deduce, using A4, T1, 
T3: 
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P =R p + <ai at uix i>.pi 

=e p -+- < ai at uixi >. (Pi + z . P') 

=R p + < a i a t u i x i > . ( p i + ' c . p ' )  + < a i a t u i x i > . p "  

=e  P + < a i a t u i x i > . p "  
! a 

a p~ because for some j E J we have pj ~ pr. Then we may ii) Otherwise p ul 

apply induction to get p) =R P~- + < a at ux >. p" for some p" s.t. p" [1/x] = pP. 
We now deduce, using T1, A4: 

P =R p + z . p )  
=R p + ~.p) + p) + < a a t u x > . p "  

=R p + < a a t u x > . p "  
[] 

We should point out here that it would be possible to show a similar absorption 
lemma for our semantics of [BCHgla] - where we allow the actual location I of an 
action (in rules LT1 and LT2) to be a word instead of an atomic location. However 
such a lemma would not be sufficient for establishing a completeness result. This 
is a technical justification for considering the different way of observing localities 
adopted here. 

We may now establish the announced completeness result. In the proof  we 
will use the following characterisation for ~ R' an adaptation of a similar char- 
acterisation for weak bisimulation ~:  

c 

p ~ e c q  
P ~ e  q "*~ or ~.p ~ R  q 

o r  

V-c 
Theorem 4.10. (Completeness) For any p,q E ILl: p ,,~ e q ~ p -ZR q' 

Proof. We show first that it is enough to prove the statement for closed terms. 
Let p, q be open terms with free variables xl , . . . , xn ,  and let kl , . . . ,k~ be distinct 

C "+ [ - -  C 
location names not occurring in p and q. If  p ~ R q then p [k/2] ~ R q [k/2] 
and thus, assuming that we have proved completeness for closed terms, we have 
p [k/2] Z_e q [k/21, therefore p _ e  q by S1. 

We prove now the theorem for closed terms. By virtue of the normalisation 
lemma and the soundness of the axioms, it is enough to prove the result for normal 
forms p, q. We will use implicitly in the proof the fact that terms obtained by 
transitions from normal forms are again normal forms. We proceed by induction 
on the sum of norms o f p  and q. We show p Z_e q by proving that p r-e 
p + q and p + q r-e q. We start by proving p + q _ER q. Suppose that 

p = E <  ai at uixi >.Pi -t- E z. p). We prove separately: 
iEI jEJ  

i) q + z. p} [-R q Vj E J 
ii) q -[- < ai a t  uixi >. Pi UR q gi E I 

V-c ' Correspondingly, since p ,-~ R q ' there exists Proof of  i). We have p ~ pj. 

q' s.t. q & q' and p) ~ R q'' We know that II p) II < II p II and II q' LI < II q II. 
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, ~ c q'. Then by There are now three cases to consider. Suppose first that z. pj ,,~ R 
induction z.p~ E_R ql (note that here it is necessary to use an induction on 
the sum of norms), and thus, prefixing both terms by z and using axiom TT, 
we obtain z.P~ ---R z.q'. We may now use the z-absorption lemma to get: 

r- c qt , E c  q' and r z. we q + z. p} [--R q + z. ql : R  q.  For the c a s e s  p j  ,,~ R PJ "~ R 
proceed similarly. 

ai 
Proof  o f  ii). Let l ~ loc(p)Uloc(q). We have p .=:~ Pi [ I /xi  ]. Since p ~ R q '  there 

a~ q'. Again we know that mus tex i s t v ,  q' s.t. q ot q'' with u i~Rvandp i [ l / x i ]  ~ R  

]lpi[1/xi] II < lip II and II q' II < II q II. Now by the generalised absorption lemma 
there exists q" such that qr = q,  [1/x~] and q =R q + < ai at vxi >. q". Again 

c q" [l/xi] Then by induction there are three cases. Suppose r .p i [ l / x i ]  ~ R 

r .pi[1/x i]  E_R qrI[1/xi]. Since I ~ loc(p)Uloc(q) by S1 we have v.Pi E_R q".  
Then prefixing both terms by z and applying TT, we get z. Pi r--R z. qtl. We 
thus obtain, using T2 and the parametric law GENR: 

q + < ai at uix i >.pi =e  q + < ai at vxi >. q" + < a~ at uix i >.pi 
=R q + < ai at vxi >. z. q" + < ai at u~x~ >. z. p~ 
['-R q -t- < ai at vxi >. z. q" + < ai at NiX i >. "c. q" 
E_R q + < a i a t v x i > . z .  qt~ =R q 

c 
E c  q' and pi[ I / x i ]  ~ R  z.q'  we proceed similarly. For the cases Pi [l /xi]  ~ R  

This ends the proof of p + q  _ER q. The proof of p E_R p + q is symmetric. 
[] 

This concludes our axiomatisation for parameterised location bisimulations N(R) 
based on a sensible relation R. In the next section we will examine two particular 
instances of plb's axiomatizable in this way, namely the location equivalence ~ 
and the location preorder E 

5. Location Equivalence and Preorder 

We start by discussing the generalized location bisimulation N(R) obtained by 
instantiating R as the identity relation Id. We recall that this is an equivalence 
relation, called location equivalence and denoted ~t .  Clearly the identity relation 
on locations is sensible, therefore our axiomatisation result of the previous section 
holds for ~ ,  or more accurately for the associated congruence ~}. Note that the 
parametric absorption law GENR is trivial in this case. 

We already saw in section 3 that location equivalence is strictly finer than 
bisimulation equivalence ~. The example we gave, namely 

p=(a . c~ . c [b .  6.d)\c~ , ~  (a.a. d l b .  6. c ) \c~=q 

also shows that location equivalence is different from Darondeau and Degano's 
(weak)  causal bisimulation [DAD89, DaDg0] (which is known to coincide with 
the weak version of "history preserving bisimulation" [vGG90] and with an 
instance of "NMS equivalence" [DdNm87]). We denote this causal bisimulation 
by ~c. Then p ~c q since, roughly speaking, in both processes actions c and d 
causally depend on a and b. On the other hand p ~ q since in p the d action 
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is not spatially dependent upon the a action. One can see that in a distributed 
view, the "cross-causalities" induced by communication are observed as purely 
temporal dependencies, while in the causal approach they are assimilated to 
"local causalities", that is causalities induced by sequential composition. We can 
also give examples not involving the restriction operator to show that the two 
equivalences ~ and ~c are incomparable: let r = (a. c~ + b. fl ] ~. b + ft. a). Then 

r + (a t b) ~,r r ~r r + a. b 
~c ~'c 

Note also that 

(alb) ~ t  (r\:~,fi) ~c a .b+b.a  
These absorption phenomena, resp. of (a [ b) in r w.r.t. ~ l ,  and of a. b in r w.r.t. 
,%, clearly show the difference between the two equivalences: the former equates 
processes with the same parallel structure, while the latter equates processes with 
the same causal structure. However, for a language without communication (and 
restriction) the two equivalences coincide, because in this case causal dependency 
coincides with spatial dependency. This is formalised in [Kie91], where the two 
equivalences are characterised as instantiations of  the same general transition 
system: the two instantiations are equal if the restricted language is considered. 
We refer to this paper for a precise study of the relation between causal and 
location equivalences. 

The equivalence ~e is very similar to what was also called "location equiva- 
lence" in [BCH91a] : in both cases, equivalent processes have to perform the same 
actions at the same locations. In fact all motivations and examples given there to 
justify the introduction of this equivalence apply to the definition given here as 
well. For instance, we showed in [BCH91a] that a "two place bag" Bag2 given 
by: 

Bag2 ~ (Bagl I Bagl) 
Bagl ~ in. out.Baga 

can be distinguished from a "two place buffer" Buff 2 given by: 

Buff 2 ~ (Bagl[7/out] b Bagl[c~/in])\e 

These are also distinguished by ~t .  For instance the sequence of transitions: 

Bag2 i~ i~ (l"out.Bagl ] k"out.  Bagl) 
l k 

cannot be matched by a similar sequence from Buff 2. As a matter of fact, we 
shall see that the location equivalence ~,~ is more discriminating than the one 
proposed in [BCH91a], which we call here "loose location equivalence". On 
the other hand, there are some examples showing that ~ t  is to be preferred 
to its "loose" version. This discussion is reported in the appendix, where we 
also give a comparison with another equivalence based on spatial distribution 
of processes, distributed bisimulation (see [CaH89], [Cas88], [Kie89]). We can 
summarise the results as follows: for finite and restriction-free CCS processes the 
three equivalences coincide; on the whole language CCS, distributed bisimulation 
equivalence and loose location equivalence are incomparable, while location 
equivalence is finer than both of them. 

Let us now come back to the protocol and mutual exclusion examples given 
in the introduction. Recall that Protocol was given by 
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Protocol ~ (Sender lReceiver)\~,fl  

Sender ~ in. 8. ft. Sender 

Receiver ~ ~. out. ft. Receiver 

Clearly the sequence of transitions 

in ~ (I "" Sender ] k '"  Receiver)\~,fl Protocol T k 

cannot be matched by the sequential specification PSpec ~ in. out. PSpee. Simi- 
larly, one easily verifies that Mutex ~ MSpec ~ FMutex. On the other hand, one 
could show that Protocol is location equivalent to an "implementation" where 
the messages are transmitted through some medium: 

Impl ~ ( Sender [send~e, ack/fl] ] Medium ] Receiver [deliver~e, done/fl] ) \ I  

where I = {send, deliver, done, ack} 

Medium ~ send. deliver, done. ack. Medium 

Clearly we could apply the same argument to more interesting situations, where 
the medium is not fully reliable, and the sender and receiver have to perform a 
more elaborate task. In any case, Protocol could serve as an abstract distributed 
description of  the resulting system. 

The last point we wish to note concerning location equivalence is this: in 
[BCH91a] we said that "introducing locations adds discriminations between 
processes only as far as their distributed aspect is concerned". This is still true 
here: let CCSseq be the set of sequential processes of CCS, that is processes 
built without the parallel operator. Then all location bisimulations induced by a 
reflexive relation R collapse to weak bisimulation on CCaseq: 

Proposition 5.1. For any reflexive relation R on locations, and any finite processes 
p, q E CCSseq : 

p~ (R)  q ~=~ p ~ q  

For a proof, see [BCH91a, BCH91b]. 
In the rest of this section, we study another instantiation of the general 

definition of N(R), intended to yield a preorder taking into account the degree 
of parallelism of  processes. Roughly speaking, we seek a relation R such that if 
p N(R) q then p and q have similar behaviour but p is possibly more sequential 
or less distributed than q. Let us consider an example. Let p, q be the processes: 

p = a.a.a.a.nil q = a.a.a.nil ] a.nil 

Intuitively, p is a sequential shuffle of q, and we wish to find a sensible R, of the 
form R = { (ul, vl) luRv, l ~ Loc }, such that p ~(R) q. The following sequence 
of transitions from q: 

~ a , (li "'13 ::a.nil 112 "'nil) a q, 
q ll 12 l113 Ii 13--~ 

can only be matched by the following sequence from p: 

a a a a p !  
p -- '  ' ' ll :: 12 :: 13 :: a.nil 

11 1112 111213 lll213k 
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This shows that neither the inverse of the prefix relation nor the inverse of the 
suffix relation are appropriate choices for R. On the other hand, the superword 
relation on locations can be taken here as R. Indeed, this relation accounts for 
the intuition that if p is a sequentialized version of q, then any component of p 
corresponds to a group of components of q ; hence, the location u of  an action 
emanating from a component of p will always be a shuffle of locations from the 
corresponding components of q. 

Let >> denote the superword relation on Loc*. This is the inverse of the 
subword relation, which we note <% Recall that v is a subword of u, written v << u 
, if v = vl.../)k and u = wtvl . . .  Wkl)kWk+l, for some collection of words vi, wj. Now 

it is easy to check that the relation R generated by R = >>, which we denote >>~, 
is a sensible relation on locations. 

Property 5.2. The relation >>e = { (ul, vl) ] u >> v, l c Loc } is sensible in the 
sense of  Definition 4.1. 

Clearly N(>>~) is a preorder. This is the preorder we shall be interested in for the 
rest of this section. We will call it the location preorder and denote it by ~ ~. By 
virtue of the results of  the previous section we have a complete axiomatisation of 

r-c 
the location precongruence ~ ~ over finite terms. The axiom (or more accurately 

C 
the axiom schema) which is specific to ~ ~ is: 

(GEN>>~) If u>>v  then" < a a t u x > . p  E_ < a a t v x > . p  

Let us examine some more examples. 

Example 5.3. For any processes p, q : a.(p ] b.q) + b.(a.p I q) ~ ~ a.p ] b.q 

Example 5.4. rec x. a.P ~ ~ rec x. a.P I rec x. a.P 

To establish this it is sufficient to note that the relation G, consisting of all pairs 

(u ::recx. a.e, (Ul ::recx. a.P I u2 ::recx. a.e)) 

where the word u is a shuffle of the words Ul and u2, satisfies G __ C>>t(G ). 

Example 5.5. If ~ is different from a and does not appear in p, q then 

a.(p I q) ~ ~ (a.~.p ] ~.q)\c~ 

Note that the process (a.7.p ] ~.q)\~x could also be expressed as a.prq, where r 
is the leftmerge operator used in papers such as [BeK85], [Hen88], [Call89]. So 
if we were to have I in our language, with its standard operational semantics 
adapted in the obvious way, that is: 

a pr P --'u ~ Plq  @ prlq  

p L p '  =,. p lq  ~-~p'lq 

the semantic preorder ~ ~ would then satisfy 

a.(x [ y) ~ ~ a .x ly  
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However, while in the interleaving theory presented in [BeK85] one has the 
semantic equality a.x IY = a.(x I Y), in our case we would have: 

a . x l y  ~ t a . ( x  l Y) 

because r is a left-paralM operator, and thus in our semantics it would give 
precedence to the left component but assign independent locations to its two 
components. 

Example 5.6. We have seen above that the two terms (a. c~ I 6. b)\~ and (a. (c~+b) ] 
6. b)\a are loosely location equivalent but not location equivalent. These two 
processes are related by the location preorder as follows: 

(a. (e + b) [ 6. b)\c~ ~ t (a. c~ I 6. b)\a and (a. ~ ] 6. b)\7 ~ e (a. (~ + b) I 6. b)\e 

Example 5.7. Let us see why using >>~ instead of  >> is important. This will 
explain why in the definition of sensible relations R we require that if u R v 
then u and v end with the same location name (this fact was also used in 
the completeness theorem of section 4). Let p = a. ((b. ~ [ 6. c)\~ + b. c) and 
q = (a. c~ ] 6. b. c)\~. These processes could also be written as p = a. ((b I c) + b. c) 
and q = ( a l b .  c). Then p ~ e  q since the only way q can match, up to >>r 

a b 
the sequence of moves p T ~ l "" (k "" nil [ c)\c~ ~ I "" c, is by doing 

a b 
q T T (l :: nil [ k "" c)\c~ ~ t  k "" c, and clearly 1 :: c ~ t  k "" c if 1 :~ k. On the 

other hand, q can match the moves o fp  up to >>, since q ~ b (1 "" nil [ l "" c) \a.  
l l 

Indeed we have p N(>>)q, but intuitively we do not want to regard p as less 
parallel than q since in p the action c is not necessarily spatially dependent on b. 

Let us now reconsider the protocol example. We saw that PSpec  ~ Protocol.  
On the other hand it is easy to check that the specification is more sequential 
than the system, namely that PSpec  ~ ~ Protocol.  This is done by showing that 
the relation: 

{ (u :: PSpec,  (v :: Sender I w :: Receiver)\c~, ~ , 
(u :: out. PSpec,  (v :: 6./3. Sender I w :: Receiver) \e ,  ~ , 
(u :: out. PSpec,  (v ::/L Sender I w :: out. ~. Receiver)\c~, ~ , 
(u:: PSpec,  (v ::/3. Sender l w :: ~. Receiver)\e , t~ I u is a shuffle of v and w } 

is a >>~ - l o c a t i o n  bisimulation. 

To our knowledge there are not many notions of preorder expressing that one 
process is more sequential than another. An earlier definition of  such a preorder 
was proposed by [Ace92] for a subset of  CCS. This preorder is based on a pomset 
transition semantics for the language: essentially one process is more sequential 
than another, in notation p ~ c q' when the pomsets labelling the transitions of p 
are more sequential than those labelling the transitions of q (this "more sequential 
than" ordering on pomsets was introduced by Grabowski and Gischer). Thus the 
intuition underlying Aceto's preorder is somewhat different from ours, in the same 
way as the causal equivalences, aimed at reflecting causality, are different from 
the location equivalence ~t ,  which is designed to reflect distribution in space. 
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Indeed we saw previously that equivalences based on causality and equivalences 
based on distribution are incomparable in general. 

For the preorder we have a similar situation: in fact, the causality-based 
preorder ~ ~ and the distribution-based preorder ~ ~, turn out to be different 
even on the small sublanguage without communication and restriction. The 
following is an example, suggested by Aceto, showing that ~ c q~ ~ l" Let: 

p = a.b.c  + c.a.b + (a [ b l c) 
q = p + a ,  b l c  

Then p ~ c  q but p ~ t  q (while we have both q ~ c  p and q ~ p). To see 
a 

why p ~ t  q consider the move q T l " 'b  I c, due to the summand a.b I c 
a 

of q. Now p has two ways of doing an a-transition, namely p T l :: b. c and 
a 

P T l :: nil [ b l c, but neither of them is appropriate. It would still be plausible 

that on the sublanguage, p ~ ~ q implies p ~ ~ q. 

Having introduced the preorder ~ ~, it is natural to consider the associated 

equivalence, i.e. the kernel -~t =def ~ E O ~ ~,. All the examples given for ~ also 

hold for --~t. In fact it is clear that ~ t  ~-~-t since we have both ~e ~ ~ ~ and 

~e ~_ ~ ~. On the other hand, as could be expected, the kernel of the preorder is 
weaker than location equivalence, that is -~t N ~ .  An example is: 

a.a.a + ( a l a l a )  and a.a.a + a. a l a  + ( a l a t a )  

These two processes are obviously not equivalent w.r.t. ~l ,  but they are equivalent 
w.r.t. --~ because a. a. a ~ ~ a. a la  ~ ~ a l a la. 

We have seen previously that on sequential CCS processes all the plb's based 
on sensible relations collapse to weak bisimulation. For the preorder ~ ~ we have 

a stronger result, similar to that given in [Ace92] for the causal preorder E 
~,~a C , 

namely that for p ~ t q to imply p ~ q it is enough that the first process p be 
sequential: 

Proposition 5.8. I f p  E CCSseq and q E CCS, then p ~ q  r p ~ q .  

The proof is given in the appendix. 
In most of the examples considered so far to illustrate the preorder ~ t - or at 

least in the "concrete" examples - the process on the left in p ~ e q was actually 

a sequential process. As a result of  the above proposition, proving p ~ ~ q in this 
case reduces to showing p ~ q. For a concrete example where the specification is 
not a sequential process we refer the reader to [Ace92]. 

Appendix 

In this appendix we show how the location equivalence relates to the equivalence 
introduced in [BCHgla], and we give a comparison with another equivalence 
based on spatial distribution of processes, distributed bisimulation (see [Call89], 
[Cas88], [Kie89]). The proofs of the results are omitted; they can be found in the 
technical report [BCH91b]. 
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We start by comparing the location equivalence ~ with that of [BCH91a]. 
While the definition of the two equivalences is formally the same, the underlying 
location transition systems are slightly different. Transitions in [BCHgla] are 
more general in that the location allocated at each step is a word u E Loc* 
instead of an atomic location l ~ Loc. To avoid confusion we will call the 
transitions of [BCHgla], adapted to our new language, loose location transitions, 

noted --%. For this transition system the rule (LT1) of Fig. 1 is replaced by 
u 

(LLT1) a.p - '% u "" p u C Loc* 
l l  

The rule LT2 for < a at ux >. p is relaxed in the same way. The rules concerning the 
other process constructors, the v-transitions and weak transitions are the same for 

the two transition systems. We denote the weak loose transitions by p ~ p'. The 
u 

location equivalence based on loose transitions will be called here loose location 
equivalence and denoted ~te. We choose this name because the loose transition 
system gives more freedom to relate the behaviours of processes. In the location 
equivalence ~z, based on atomic allocation (i.e. LT1), we implicitly require the 
equality of the last allocated locations, while this is not true for loose location 
equivalence. The latter can introduce more than one atomic location within one 
move and thus is able to fill up "missing locations". The following example shows 
that in this way loose location equivalence ~te can equate processes which are 
distinguished by location equivalence ~f.  Let p and q represent respectively the 
processes (l "" ~ I ~. b)\c~ and (1 :: (c~ + b) [ ~. b)\c~. Then the move of q 

(l '" (~ + b) I ~. b)\c~ b (l :: k :: nil I ~. b)\ct 
lk 

which is also a loose move, can only be matched by a loose move of p, introducing 
the location lk in one step 

b 
( l : : a  ~ . b ) \ ~ l k  ( l : :ni l  [ I k : :n i l ) \ a  

Indeed we have p ~ee q but p # t  q. This also shows that the CCS processes 
(a.a f ~. b)\a and (a. (c~ + b) I ~. b)\c~ are loosely location equivalent but not 
location equivalent, and intuitively we want to distinguish these two processes 
since in the first the b action is not spatially dependent upon the a action. 

From this example we see that the two location equivalences are different for 
CCS terms. However the property of filling up "missing locations" only comes 
into play when processes containing restrictions are considered. We shall see 
now that for finite restriction-free processes the two equivalences coincide. A first 
result is that location equivalence is finer than loose location equivalence. 

Proposition 6.9. P ~ q ~ P ~t~ q. 

Proof  One shows that ~ t  is a loose location bisimulation, relative to the identity 
relation on Loc, see [BCH91b]. [] 

The converse of this proposition may be proved to hold for finite processes without 
restriction, and more generally for processes which are dynamically generated by 
executing finite and restriction-free CCS processes. To establish this point, let us 
introduce specific subsets of IP that consist of terms representing nets o f  agents. 
These terms are built on top of given agents using the static constructs of the 
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(SL1) 
(SL2) 
(SL3) 
(SL4) 
(SL5) 
(SL6) 
(SL7) 
(SL8) 

rls 
r ( s l q )  

P 
u :  ( r l s )  

u :: (v :: r) 
(r I s)[ f ]  

(u :: r)[f] 
(u :: r) \b  

= s i r  
: ( r l s )  lq  
=- 8 : : p  
= u : : r l u  ::s 

UV : : r  

= r [ f ]  I s t f  ] 
= u : : (r[f])  
= u :: (r\b) 

Fig. 7. Some static laws. 

language. More precisely, given a subset Ag of IP, we denote by IN(Ag) the set of 
terms given by the following grammar: 

r ::= p ] u : : r  ] ( r [ r )  k r[f] f r \a  

where p is any process of  Ag. This syntax extends Milner's one for flowgraphs 
[Mi179]. The same syntax is used by [Ace91] to define what he calls "states", 
which include the nets of automata. Obviously this IN(Ag) is only interesting for 
a set Ag of agents which is not closed for the static constructs. For instance if we 
take the CCS processes as agents, then the terms a. (u :: p) and p + u :: q are not 
in IN(CCS). We shall also use the notation INr(Ag) for the set of terms built on 
top of agents of Ag using the static constructs except restriction. It is easy to see 
that the static structure of  the nets is preserved by transitions, that is: 

Lemma 6.10. Let Ag be a subset of  IP closed w.r.t, transitions, that is satisfying 

(i) if p E Ag and p ~ p' then p, E Ag 
-% p' p' (ii) if p E Ag and p u then E Ag 

Then IN(Ag) is closed w.r.t, transitions. 

Obviously the same result holds for INr(Ag). It will be useful to abstract to 
some extent from the static structure of a net, by considering it up to some 
reorganisation that preserves transitions. More precisely let = be the congruence 
over IN(Ag) (regarded as the algebra of terms generated by Ag using the static 
constructs) induced by the equations SL1-SL8 given in Fig. 7. Then it is easy to 
show that - is a "strong (/d-location) bisimulation" that is: 

Lemma 6.11. Let Ag be a subset of IP closed w.r.t, transitions. Then for any 
p, q E IN(Ag) 

(i) if p --- q and p ~ p' then there exists q' such that q ~ q' and p' - q' 
a pt (ii) if p -- q and p 7+ then there exists q' such that q ~ ,  q' and p' - q'. 

The proof  is left as an exercise. [] 
It should be clear that if R is a reflexive relation on locations, then 

p - = q  ~ p:~(R) q 

Now we show that for processes of  lgr(CCSrf), where CCSrf is the set of fi- 
nite restriction-free CCS processes, the loose location equivalence coincides with 
location equivalence. Clearly CCSrf  is closed by transitions. 
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Using the equations SL1-SL7 given in Fig. 7 it is easy to convert a term 
of INr(CCSrf) to a parallel form, or parform in short, that is a term of the 

form I-Iui :: Pi (defined up to the laws SL1 and SL2) where pi E CCSrf and 
ic1 

i ~ j ~ ui =P uj. Then one can show a "decomposition lemma", analogous to 
the Proposition 3.15 of  [BCH91a]: 

Lemma 6.12. Let p = I-[ui :: Pi and q = I-Ivj  :: qj be two parforms. If  p ~l~ q 
icl jEJ 

and Pk ~ nil then there exists h such that uk = Vh and Pk "~fE qh, and I I u i  :: 

Pi ~ t t  I I v j  :: qj. 
js~h 

Proof. one first shows that if Pk ~ nil then there exists h such that qh ~ nil 
and uk = VhW. Then the lemma is proved by induction on the cardinality of 
Ik = { i l Pi ~ nil & Uk = UiV } (see [BCH91b] for the details). [] 

Now we can prove that for finite restriction free processes the two location 
equivalences coincide: 

Theorem 6.13. For any p,q C INr(CCSrf) p ~ q ~ p ~t~ q. 

Proof. The " ~ "  direction is given by Proposition 6.9. To establish the converse, 
one uses the previous lemma to show that ~ t t  is a location bisimulation. [] 

We now turn to the relationship between ~ l  and distributed bisimulations. 
Distributed bisimulations are the first attempt of a semantics for CCS taking 
the distributed nature of processes into account. They have been introduced in 
[CaH89] and [Cas88] and further studied in [Kie89]. We shall not elaborate 
on this notion here, and refer the reader to the above mentioned works for 
further information. In [BCH91a] we have shown that the distributed bisimulation 
equivalence ~'d coincides with the (loose) location equivalence ~ t l  for finite 
CCS terms written without relabelling and restriction (in fact one could allow 
relabelling without affecting this result). As a corollary, the three distribution 
based equivalences ~e, ~eE and ~d are the same on this language. Another 
corollary is that we gain another axiomatisation for location equivalence on this 
language, see [Kie89, BCH91a]. 

In [BCH91a] we gave an example of two processes that are distributed bisimu- 
lation equivalent but not loose location equivalent. Exactly the same example can 
be used to show that distributed bisimulation equivalence differs from location 
equivalence. Thus ,~d ~ " ~  and ~d ~ ~ .  Moreover, the example we gave 
previously to distinguish loose location equivalence from location equivalence 
may also be used to show that --~lt N ~d. On the other hand it may be shown 
that ~ l  - ~d. Hence we have the following picture for the relationships of  the 
three distribution based equivalences: for finite and restriction-free processes they 
all coincide; on the whole language CCS, distributed bisimulation equivalence 
and loose location equivalence are incomparable, while location equivalence is 
finer than both of them. 

The last point of this appendix is the proof  of Proposition 5.8. A first step 
is a lemma showing that processes derived from CCSseq are always of the form 
u :: p, where p E CCSseq, up to the congruence - (more precisely up to the laws 
SL5, SL7, SL8). 
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L e m m a  6.14. Let p E CCSseq and u E Loc*. Then:  

p' then ~ r C CCSseq s.t. p' =-- ul :: r. (1) I f  u : : p  ul 

# pt = U  r. (2) I f  u : :p--+ then 3r E CCSseq s.t. p' " 

----+ a pit a pt is inferred f rom a transit ion p ---+ Proof  (1) The transit ion u :: p ul I 

such that  p' = u "" fit. Thus all we have to show is that  there exists r E CCSsoq 
such that  p" = 1 ": r, since then we will have p' = u :: l :: r -= ul "" r by SL5. 
To show that  3 r ~ CCSseq s.t. p" = 1 :" r, we use induct ion on the p roof  o f  

a 

P T fit. Note  that  all the transit ion rules in Figure 3 preserve the form of  the 

derivative except for LT1, LT6, LT7. Thus we only have to consider these three 
cases, since for the others We have the result immediately by induction. 
- Suppose the last rule applied is LT1. Then  p is o f  the form a. q and p" = l "" q. 
Moreover  q E CCS~q because p E CCSse q. 

- Suppose now the last rule applied is LT7. Here p = q[f] ,  and q[f]  ~ q ' [ f ]  
a 

is inferred f rom q 7 '  q ' '  By induct ion ~ s E CCaseq s.t. q' =~ l "" S. Then 

q ' [ f ]  = (l "' s)[f] ---- l "" (sir]) by SL7. The case o f  LT6 is treated similarly, using 
law SL8. 
(2) This is trivial since p ~ p' can only be proved using ST3, and obviously 

CCaseq is closed w.r.t the transitions --+. [ ]  

N o w  let Oloc(p) be the set o f  (immediately) observable locations of  p, defined as 
follows: 

& t  
Oloc(p) =def { g E Loc* [ ~ f t .  p ul p } 

Note  that  for any process p E IP we have Oloc(p) c_ loc(p)*. For example, if 
p E CCS we have Oloc(p) ___ { e}, while for p E IN(CCS) we have the following 
proper ty:  

F a c t  6.15. I f  p E IN(CCS) then p & p' =~ Oloc(ff) ~_ Oloc(p) U {ul} 
ul 

For  X ~ Loc*, we will use the nota t ion u >> X to mean:  Vv c X. u >> v. Note  
that, as a consequence o f  the L e m m a  6.11, we have - _  . . ~ : . c  r- We may  now prove 

our  result, that  is p ~ r q ~=> p ~ q for p E CCSseq and q E CCS.  

Proof  of  Proposition 5.8. The implication p ~ : q ~ p ~ q is true in general. 

We show that  if p is sequential we also have p ~ q => p ~ t q" To this purpose  
we use the fact that  ~ = N(U~) (cf L e m m a  4.2). We prove that  the relation: 

S = {(u ::p, q) ] u " p  ~(U~) q, p E CCSseq ,q E IN(CCS) and u >> Oloc(q)} 

is a >>t - - loca t ion  bisimulation up to the equivalence -=. 
a l More precisely we show that  if u "" p ~ p t  then 3v, q',p" s.t. q ~ q  , with 

ul 

u >> v and p' --= p" S q' (and similarly for e-moves). Suppose u :: p ~ p'. Then  by 
ul 

L e m m a  6.14 3 r E CCSseq such that  p' =-- ul "' r. Since u :: p N(U~)q,  there must  

exist v,q' such that  q ~ q ' ,  with p'N(U~)q ' ,  and u >> v because u >> Oloc(q). 
vl 

Then also ul :: r JJ(Ut)q' ,  since - _c N(UI).  N o w  Oloc(q') c_ Oloc(q) U {vl} by 
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Fact 6.15 above, and obviously ul >> Oloc(q) (since u >> Oloc(q)) and ul >> vl, 
8 pt. thus ul >> Oloc(q ~) and therefore p~ =- ul "" r S q'. Suppose now u :: p =~ By 

Lemma 6.14 3r  E CCSseq such that p' = u ::r.  Then, since u ::p ~ ( U t )  q, we 

have q ~ q' with p' N(UI) q', and thus p' S q'. 
In particular f o r p  ~ CCSseq and q 6 CCS we have p ~ q  ~ e : : p S q ,  

t h e r e f o r e p ~ q  ~ p ~ q .  [] 
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