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1. Introduction 

Event structures were introduced by Nielsen, Plotkin and Winskel [5] as a model 

for computational processes. These were essentially sets of events with relations ex- 

pressing causal dependence and conflicts between them. These structures, also called 

prime event structures, were shown to be connected both with a class of acyclic Petri 

nets (called by the authors occurrence nets) and with a class of domains (finitary 

prime algebraic coherent domains). Though a very pleasant model of computation, 

prime event structures can lead to tedious definitions for more sophisticated construc- 

tions such as parallel product or exponentiation. In subsequent papers [8,9], Winskel 

introduced a more general class of event structures called stable event structures, for 

which such constructions are defined categorically. Although stable event structures 

themselves are slightly more complicated than prime event structures, constructions on 

them can be defined in an elegant way. In general, category theory has proven very 

useful for computer science. When constructions are formulated in categorical terms, 

not only can the required universal properties provide some guideline in the defini- 

tions, the associated morphisms may contain suggestions of computational interest as 

well. 

Moving to more general structures, however, can sometimes shield the intuitions 

about the model. In the case of stable event structures, the causality relation on events 

is not explicitly given, but is derived from an enabling relation on events. This makes 

such event structures a little hard to visualize, and one may wonder whether a more 

manageable notion could be devised. Moreover, unlike prime event structures, it is not 

clear if stable event structures correspond to a class of Petri nets, in the sense of [5]. 

Flow event structures were proposed in [2] as an intermediate between prime event 

structures and stable event structures, suitable both for graphical representation and for 

an easy definition of process operators. Among these operators the critical one is the 
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parallel product. A “parallel product” can be defined easily on flow event structures. 

The problem is that it may not be a categorical one. This is unsettling, because if a 

“product” is not categorical, we are left to wonder what it is. The aim of this note 

is to show that, for flow event structures satisfying a particular constraint - which is 

preserved by usual process operators - the product is indeed categorical. We mention 

in passing that flow event structures do have a direct connection with a class of Petri 

nets, as shown by Boudol in [l]. These nets - called flow nets - are strictly more 

general than occurrence nets: they may have cycles in the flow relation although they 

are still “semantically” acyclic. 

Like stable event structures, flow event structures determine the same class of do- 

mains as prime event structures (cf. [l]). Thus for any construction on flow (or stable) 

event structures one may obtain a corresponding construction on prime event struc- 

tures, by passing through their domains of configurations. In fact, direct definitions of 

parallel product on prime event structures - although rather complicated - have been 

given explicitly by Goltz and Loogen in [4] and by Degano, De Nicola and Montanari 

in [3]. More recently a simpler definition was proposed by Vaandrager in [6]. 

2. Flow event structures and product 

Flow event structures are a direct generalisation of prime event structures (we re- 

fer to [5] for the definition of prime event structures) where the conflict relation is 

not inherited and the partial ordering of causality is replaced by a local flow rela- 

tion on events. Intuitively, the flow relation represents an immediate causality between 

two events. However, since events may occur in different ways (as in stable event 

structures) any causal dependency is merely “possible”, and makes sense only within 

computations. A simple way of understanding the flow relation is by analogy with Petri 

nets: a flow between two events in an event structure corresponds to the presence of 

a condition between the events in a net. This point is illustrated by the example after 

the following basic definition. 

Definition 2.1 (HOW event structures). A flow event structure is a triple S = (E, #, +), 

where 

a E is a denumerable set of events, 

l # c (E x E) is a symmetric conjlict relation, and 

l + C (E x E) is an irreflexive $0~ relation. 

It should be clear that any prime event structure S = (E,#, <) is a flow event 

structure (with + given by the strict ordering <). Note that the flow relation is not 

required to be transitive, nor its closure +* to be acyclic. Also, the conflict relation is 

not assumed to be irreflexive. This means that there may be self-conjlicting or incon- 

sistent events, and we will see that these are essential for defining some constructions 

on flow event structures - namely restriction and specialised parallel products like CCS 
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parallel composition. Inconsistent events also play a crucial role in Boudol’s construc- 

tions between flow event structures and flow nets [l]. 

The following is an example of a flow event structure, together with the “corre- 

sponding” Petri net. In drawings, we represent e 4 e’ by a directed arc e - e’ and # 

by a dotted line. Self-conflicts will be represented by dotted circles around events. 

e3 
IL 

e3 

This example (which typically arises when modelling CCS communication) exhibits 

both a confluence after conflict, and a case where the flow + is essentially not tran- 

sitive: the events es and es are indeed causally related if ei occurs, but they are 

independent if e2 occurs. In other words, eo and e3 are in a different relation depend- 

ing on the computation where they are considered. For more examples of flow event 

structures we refer the reader to [2]. 

We shall now formalise this notion of computation or conjgurution for flow event 

structures. A configuration is a set of events having occurred at some stage of evolution 

of a process. Since flow event structures are rather general, the definition of configura- 

tion is slightly more elaborated than for prime event structures. Let Cons be the set of 

conflict-free (consistent) sets of events: X E Cons iff \Je,e’ E X, l(e#e’). Obviously, 

an event e is inconsistent (e#e) if and only if {e} 9 Cons. For a subset X of E, let 

-+ be the restriction of the flow relation to X and <X =&f +x* be the preordering 

generated by -+. For simplicity, we consider here only finite configurations - see [2] 

for a more general treatment of configurations. 

Definition 2.2 (Conjigurations). Let S = (E,#, +) be a flow event structure. A (finite) 

configuration of S is a finite subset X of E such that: 

(1) X is conflict-free: X E Cons, 

(2) X is left-closed up to conflicts: 

e’ 4 e E X 8z e’ @ X ==+ 3 e” E X . e’ # e” 4 e, 

(3) X has no causality cycles: the relation <X is an ordering. 

The first two conditions are essentially the same as for prime event structures: con- 

dition (2) is adapted to account for the more general, non-hereditary, conflict relation. 

It states that any event appears in a configuration with a “complete” set of causes. 

Condition (3) ensures that any event in a configuration is actually reachable at some 

stage of computation. Note that an inconsistent event cannot appear in a configuration. 
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So, for example, the structure 

I 
e’ 

has only the trivial configuration 0. The set of (finite) configurations of a flow event 

structure S will be denoted by F(S). 

We have seen that prime event structures are a subclass of flow event structures. In 

turn, any flow event structure S = (E,#, -x) may be described as a stable event structure 

Gs = (E,#‘, Fs) such that F(Gs) = F(S). This is explained in [l, 21. We recall here 

briefly the definition of Gs. 

The enabling relation l-s G P(E) x E is defined as follows. Say that “e is a condition 

for e’” when e 4 e’. Then F ks e holds whenever F is a maximal set of non-conflicting 

conditions for e, that is: 

F ks e t7’def 
F U {e} is consistent : ‘de’,e” E F U {e} : l(e’ #e”) 

F is closed under non-conflicting conditions for e : 

e’<e &e’@F+3e”EF s.t. e’#e”+e 

Note that since F U {e} must be consistent w.r.t. #, an event e which is inconsistent in 

S will have no enabling set in Gs. Then the conflict #’ is just the irreflexive restriction 

of #, that is #’ = # - Id, where Id is the identity relation on events. It is easy to see 

that the structure Gs = (E,#‘, ks) obtained in this way is a stable event structure in 

the sense of Winskel, with t-s being the minimal enabling. 

On the other hand, a stable event structure cannot always be represented as a flow 

event structure (cf. [l]). Hence flow event structures are strictly included between 

prime and stable event structures. 

We shall now define the parallel product on flow event structures. We use Winskel’s 

notation * for undefined values of partial functions and write e We’ for the reflexive 

closure of #, that is e We’ M&f (e#e’ or e = e’). Here and in what follows, 

an assertion f(e) R f(e’) - where f is a partial function on events and R E (4 

, #, =} - will imply that both f(e) and f (e’) are defined. We shall mostly write fe 

for f(e). 

Definition 2.3 (PurulZel product). Let SO = (Eo,#o, 40) and Si = (El,+, 41) be flow 

event structures. Their parallel product (SO x Si ) is the event structure S = (E,#, 3) 

defined by: 

(i) E =def (Eo x, EI ) =def {(eo, *I I eo E Eo} U {(*, el) 1 el E EI) U {(a el) ( eo E 

EO & el E El), 
(ii) e We’ * (noe Wnoe’) or (7tie W7c1e’), 
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(iii) e#e * (noe # rrae) or (rtie#rtie), and 

(iv) e 4 e’ u (rcoe 4 rcae’) or (nie 5 rcie’). 

where the projections 7ti : E -* Ei are given by rti(xo,xl) = xi, for i = 0,l. 

Condition (iii) explicitly deals with self-conflicts. It states that the product inherits 

self-conflicts from its components, and never introduces any new ones. 

We now need the notion of a morphism to define a category of flow event structures. 

Definition 2.4 (Morphisms). Let SO = (Eo,#o, -CO) and St = (El,#l, +I) be flow event 

structures. A morphism from SO to St is a partial function f : EO -* El satisfying: 

(i) fe = fe’ * e We’, 

(ii) fe#fe’ ==+ e#e’, 

(iii) fe + fe’ M e 4 e’, and 

(iv) X E F(&) + f(X) E 9(g). 

The intuition for morphisms is relatively well-understood, and it is similar to that 

of Winskel for stable event structures. A morphism f : EO -* El on flow event 

structures expresses the synchronisation of an event e E EO with the event f(e). Con- 

dition (i) says that two distinct events e, e’ can synchronise with a common event f(e) 

only when they are in conflict, which makes sure that this kind of synchronisation can 

never happen in a computation. Condition (ii) says that the partial function f pre- 

serves consistency: a morphism does not create new conflicts. In particular, it ensures 

that morphisms do not create new self-conflicts: if f e # f e, this is always because e # e. 

Condition (iii) says a morphism preserves causality, as well. 

It needs an explanation why condition (iv) is explicitly required here, because for 

stable event structures, this property follows from similar conditions to (i)-(iii). Sup- 

pose X is a configuration of So. Clearly, f(X) remains conflict-free. However, to prove 

that f(X) is left-closed up to conflicts, we need to show 

yI + f(e) E f(x) & rl @f(x) ==+ gf(e”) E f(x). s#f(e”) 4 f(e). 

Unfortunately, the given condition for f(X) does not in general translate into a similar 

condition for X for us to apply the corresponding property of X, because rl may not 

be in the image f (Eo). We do get the above (iv), though, if we require that f is 

down-onto: 

v + f(e) & 3e’ E EO . q = f (e’), 

which is weaker than (iv). Since this is not the main concern of this paper, we do not 

speculate further on it here. 

It is now easy to establish the following: 

Fact 2.5. Flow event structures with morphisms form a category with the composition 

of partial functions as composition and the identity functions as identity morphisms. 
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It is natural to expect that the product construction SO x Si introduced earlier is indeed 

the product in the categorical sense. Unfortunately, this is not the case, as shown by 

the following counterexample. 

e0 el 

We let the reader verify that in (SO x Si) the set {(eo,ei)} is a complete set 

of causes for (e&e’,) and that X = {(es, el),(e&ei)} is a configuration. However, 

q&Y) = {eo,ek} is not a configuration of SO (and thus the projection ~0 is not 

a morphism). Indeed, X should not be allowed as a configuration here, since in 

SO the event eI, cannot occur unless et has occurred, and thus in (SO x Si) the 

event (e&e;) should not occur unless some event involving ei has occurred. (One 

might try to modify the notion of configurations to accommodate this situation, but 

that will unlikely lead us anywhere because the definition of configurations is well 

justified.) 

The problem arises with the particular form of the structure on the left-hand side: 

such a structure will be called a triangle in the rest of the paper. Formally, a triangle 

is a structure with three distinct events es, ei, e2 such that es #ei + e2 and es is not 

related to e2. We will show that in structures generated by usual process constructors 

such triangles never occur in isolation, but are always “saturated ” by other events. 

These additional events will precisely prevent sets like X in the example above to be 

admitted as configurations. 

For two distinct events e,e’ we write e N e’ for (e#e’ or e + e’ or e’ 4 e). In 

drawings we shall represent N by an undirected arc. The structures we shall consider 

are those satisfying the following structural property: 

Axiom A: es#ei + e2 & ea #ez + 3es.(ei#es 4 e2) & (Ve’eq : ei Wem ez). 

In picture: 

eo------I ~ eo_-_--_[ce 
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This axiom says that if an event es is in conflict with event er, which is a cause 

for another event, e2, then in the case that eo is not related to e2 by either conflict 

or causal dependency, there must be some event e3 in conflict with el, while at the 

same time being a cause for e2. Moreover, any other event in conflict with es must 

be in conflict with er and, at the same time, be causally related to e2. The very 

rough intuition is that when a problematic situation such as the one pictured on the 

left-hand side of the previous diagram occurs, then there is a pivotal event, es, such 

that any event in conflict with it must provide the “missing links” for the problematic 

situation. 

We show that, for structures satisfying A, our definition yields the desired product 

construction. 

Proposition 2.6. Let SO,SI be pow event structures satisfying Axiom A. Then (SO x 
SI) is the categorical product of SO and S,. 

Proof. Notation: events of S will be denoted by e,e’, etc. and events of Si by ei,ei. 

Also, we shall write f e for f(e), and fe 1 to mean that fe is defined. 

(1) We first show that the projections rcni are morphisms. Conditions (i), (ii) and 

(iii) are obviously satisfied. Thus we only have to prove that the rci’s preserve config- 

urations. Consider for example no : E -* Eo. Let X E F(S); we want to show that 

no(X) E @(So). 
It is obvious that Q(X) is conflict-free, since rcoe # rcae’ would imply e# e’ in X. 

We show that no(X) is consistently left-closed. Let e E X, es 4 rcse & eo $ q&Y). 

Then (eo, *) -X e and(eo, *) $ X. Since X is a configuration, there exists e’ E X s.t. 

(es, *)#e’ + e. By (ii) it must be the case that rtoe’ 1 and rroe’ Wee. Now rcoe’ # eo 

because eo $! q&X’), thus rise’ # eo. 

Suppose rcse’ N rcoe. We have rcoe’ < rcoe, since otherwise X would contain a 

conflict (if zoe’#noe) or a loop (if rcoe’ t rcoe, recall that e’ + e). Thus we have 

e&roe’ 4 noe. Otherwise, if rrae’ # rcse, we have a triangle rcae’ #es + rcse and we 

can use Axiom A to deduce the following: 

3eb. (eo # et, 4 7coe) & (Ye: # ek : eo We: N noe). 

Then (eb, *) + e E X. Now if eb E no(X) we have finished, since ea #eb 4 qe. 

Otherwise, if eb $ z&Y), we have (e& *) 6 X, hence 3e” E X s.t. (eb, *) # e” 4 e. 

Whence eb Wrcoe” and thus eb # rcoe”. By Axiom A again, we have rcoe” N rrse and 

qe” Wee. Clearly, rcoe” # es, since es $ rc&X’). Also, from e,e” E X and e” 4 e, it 

follows that rcoe” + noe. 

It is clear that there are no loops in q(X), since these would be inherited in X. We 

have thus proved that projections are morphisms. 



210 I. Castellani, G.-Q. Zhang I Theoretical Computer Science 179 (1997) 203-215 

(2) Second, we must show that (So x Si) is canonical, i.e. that for any diagram: 

s 

there exists a unique 8 : I? -* (Eo x, El) that makes the diagram commute. The 

only possible candidate is (still using e, e’ for events of E) % : e H, (aoe, ale). We 

show that % is a morphism. We have, for any e,e’ E 8: 

%e + %e’ w&f (a#?, ale) + (cl@‘, xie’) 

_ (ccoe + else’) or (ale -: ale’) (by definition of product) 

===+ e < e’ (because both ai’s are morphisms) 

Similarly, for any e, e’ E E: 

%e w%e’M&?f (aOe,ale) w (aOe’,ale’) 

w (ccoe W ccoe’) and (clie Wcxle’) 

--/ e We’ (because the ai’s are morphisms) 

Suppose now %e # Be’. We have: 

%e#%e’e&f (aOe,ale)#(aOe’,ale’) 

-I %e # Be’ & (aoe WuOe’ or clie Wale’) 

%e = Be’ & (clae#aoe’ or a,e#ccie’) 
(by product definition) 

Now, suppose Be # %e’: then we cannot have both (aoe = cage’) and (ale = ale’). 

Thus it must be (aoe # cage’) or (~1 e # clie’). This implies e # e’ since both ai’s are 

morphisms. 

Similarly, the case where %e = Be’ immediately implies e # e’. 

It remains to check that % preserves configurations. Let X E F(s). We want to 

show that e(X) =&f {( aae, ale) / e E X} E F(& x 4). Again, it is obvious that 

%(X) is conflict-free. 

We show that %(X) is consistently left-closed. Let k = (ko,ki) + (aoe, crie) for 

some e E X and k +! 0(X). By definition of product we have ko + age or kl 5 ale. 
Assume ka + crae. 

If 3e’ E X s.t. cloe’ = ko, then (aae’, ale’) + (uge, crie) by definition of 4 in 

the product. Moreover, (use’, CII e’) E %(X) and (cxae’, aie’)# k = (ko, kl) because 

rra(c(oe’, clie’) = aae’ = ko and (cc&, ale’) # k. Otherwise, for any e’ E X we have 
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ko # cl,+?. In this case, since ko 4 ccoe E LX&Y) E .~(Eo) and ka 4 a&X’), there 

must be e” E X s.t. aae” -X aoe & ko#ccoe”. Hence (aoe”,aie”) + (aoe,are), and 

k # (aoe”, ule”) because ko # aoe”. 
Finally, it is clear that there are no loops in O(X), since these would be reflected 

inX. 0 

We show now that the parallel product preserves Axiom A. The idea is that for 

any triangle eo #el + e2 introduced by the product, the source el of the triangle is a 

compound event, which inherits its causality relation to e2 from some atomic component 

e3. This event e3 is precisely the one which is required by Axiom A. 

Proposition 2.1. Let SO,& be flow event structures satisfying axiom A. Then the 

structure (SO x Sl) satisjes A. 

Proof. Suppose there is a triangle eo # ei + e2, e0 + e2 in (SO x Si ). We want to prove 

that Axiom A is satisfied. Since ei 4 ez it must be (rcoei < rcoe2) or (niet + rcte2). 

Assume noei + 71082. Since eo # e2 we have rcoeo # 7coe2 and thus rroeo # rcoei. There 

are then three cases left for eo # ei : 

1. 7rieo = rcier, 

2. noes # rroer , 

3. nteo#7rier. 

Case 1: xleO = x1e1. We want to show that the triangle: eo # et + e2 satisfies 

Axiom A. Take (rcoei, *) as a candidate for es in the axiom. Certainly, (rroel, *) + e2 

and (rcoer,*)#ei. Thus, either (rcoer,*) fulfils Axiom A or 3e#(noei,*) for which (e + 

e2) or y(e W el). Now it cannot be T(e W el) since e # (rcoet, *) implies rcse W noe1. 

Then it must be e + e2, which implies noe $ rcoe2. We have now a triangle nae # rcoei 3 

noe2 in SO. By axiom A , there exists e3 E Es s.t. 

(e3 + 7c062 6% e3 # 710631) & (Vs# e3 : s N 710e2 6% s W7coel). 

Then (e3, *) E (Eo x+ El) is such that 

because 
- if nor = e3 then r -X e2 & r#el; 
- if qr#eg then r - e2 & r#el. 

Case 2: roe0 # zoe1. Again we want to prove A for the triangle eo #ei -X e2. 

This is straightforward. We have a corresponding triangle in SO : zoea # noel % 71062. 

By Axiom A there exists e3 E Eo. (es 4 rtoe2 & es # rcoei) and (Vs # es : s N 

rtse2 & s Wnoei). Now if we take (es, *) in(& x, El), this is such that ((e3, *) -X 

e2 & (e3,*)#ei) 6% Ve#(eJ,*): 
- if rcae = e3 then e + e2 & e#ei; 
_ if rroe#e3 then e N e2 & e#ei. 
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Case 3: rcl eo # nl el. Take again (rcoet, *) as a candidate for es in A. We have now 

(rcsei, *) + e2 and (noei, *)#ei. Now either (nsei, *) fulfils Axiom A, or 3e#(naei, *) 

for which (e + e2) or l(e Wel). From e#(rroei, *) it follows that rcoe Wnoel and 

thus e#ei. Then it must be e +J e2, whence rcoe # zoe2. Again we have a tri- 

angle 7coe#zoel 4 zce2 in SO, and by Axiom A there exists es E EO s.t. (es < 

rroe2 & es#rraei) & (‘ds#es.s N rcoe2 & s Wxoel). Then (es,*) E (Ea x, El) is such 

that ((es,*) + e2 & (es,*)#ei) & t?#(e3,*): 
- ifrcor=es thenr4ez&r#ei; 
_ if nor#ej then r - e2 & r#el. 0 

Another important operation on flow event structures is restriction. The standard 

construction for restriction, as featured in CCS and in Winskel’s treatment of event 

structures, operates by removing all events of a given set. In fact, this construction 

may affect quite drastically the structure of a process, and, not surprisingly, it does not 

preserve property A. The following is an example of a triangle introduced by usual 

restriction (one may regard this structure as representing the CCS term ((a+~) ) &)\c ). 

a c r E a r 
.__________ * _...._.._. v- . _ 

\C 

i 
b b 

The definition of restriction proposed in [2] for flow event structures is actually a 

different one, which makes use of self-conflicting - or inconsistent - events. More 

precisely, restriction of a flow event structure to a set of events E’ is modelled by 

rendering inconsistent all events not belonging to E’. 

Definition 2.8 (Restriction). Let S = (E, #, +) be a flow event structure and E’ C E. 

The restriction of S to E’ is the structure S r E’ = (E, #‘, 4) where 

e#‘e’ C (e#e’) or (e = e’ & e $E’) 

It is easy to see that this operator of restriction preserves A, since it preserves 

events as well as their relations with other events. Applying restriction to the previous 

example gives now: 

a c i- c a c 7 c ._____...._ * _._....___ . . . v- ._.......__ * . . . . . . . . . . . . . 
\C v 

b 6 

where the triangle is still saturated (like before the restriction) as required by Axiom A. 
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3. Interpreting constructs with flow event structures 

Flow event structures are well-suited to model languages like CCS. Moreover, all 

CCS operators turn out to preserve property a, thus we are sure to obtain the cat- 

egorical product construction. A complete definition of CCS operators on flow event 

structures may be found in [2]. Here we shall just give a reformulation of CCS parallel 

composition as a restricted parallel product. 

Languages like CCS are parameterized on a set of actions L. To model processes 

in these languages one uses event structures labelled on this set of actions. The syn- 

chronization discipline of the language - which actions may combine together into a 

synchronization action - is expressed by a synchronization algebra on the labels [S]. 

We use here a variant of Winskel’s definition of synchronisation algebra, which 

seems more convenient for our purposes. We define a synchronization algebra on a set 

of labels L to be of the form (L, l ,o) with just one special element w E L. Here l is 

a commutative and associative operation on L, used to yield labels for pairs of events, 

namely: Z(x, y) =der I(x) l Z(y). The role of w is twofold: 
_ The label cc) is used for pairs of events (x, y) which represent forbidden synchroni- 

sations. Such events must not occur in the parallel composition, and we express this 

fact by the axiom: Z(x, y) = o ---r‘ (x, y) is inconsistent. 
_ Also, o is used to label the component * of an asynchrony pair - where one of 

the components is * - i.e. the labelling function I is extended by the convention 

I(*) = O. We recall that * is not a real event, but just a notational device (and thus 

will never occur in the set of events E of an event structure). Then an asynchrony 

pair of the form (+,e) or (e, *) is allowed in the product if and only if I(e)ow # o. 

This motivates the following definition: 

Definition 3.1. Au L-labelledjow event structure is a structure S = (E,#, +,I ) where 

(E, #, +) is a flow event structure and I : E - L is a labelling function over a set L 
of labels such that o E L and l(e) = w + e#e. 

Note that while all o-labelled events are inconsistent, there may still be inconsistent 

events whose label is different from w. 

The operations of product and restriction are extended to labelled structures in the 

obvious way. In the product (SO x Si), the label of an event e is defined to be 

Zo(rca(e)) l Zi(rci(e)). In the restriction S 1 L’, where L’ CL, all events carrying a label 

in (L - L’) are made inconsistent. 

In CCS, events are labelled by a, b, . . . or their complements a, 6, . . . or by the label r. 

Let A denote this set of labels and L = AU {co}. If x ranges over L the synchronisation 

algebra for CCS is given by 

x*co=x 

z if b=ti 
a*b= 

(1) 

w if bfa 
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The first clause needs a little explanation. If the cc) is already the label of an inconsistent 

event (e.g. a forbidden synchronisation within a component), it may seem puzzling that 

x l w = x rather then x l o = w. However, in this case the event labelled x l o is made 

inconsistent by the definition of product, and thus its label does not really matter. We 

have now the following: 

Definition 3.2 (CCSproduct). Let So = (Eo,#o,-+,lo) and Si = (Et,#i,4i,li) be 

labelled flow event structures. Their parallel composition in CCS, denoted (SO (( Si), 

is the labelled event structure (SO x St) 1 (L - {w}). 

It should be clear that the parallel composition operator 11 preserves Axiom A, 

since it is defined in terms of general product and restriction. Also, one may easily 

convince oneself that property A is preserved by CCS operators like prefixing and 

nondeterministic sum (we refer to [2] for definition). Hence 

semantics for CCS is compatible with a categorical one. 

the flow event structure 

4. Conclusions 

It is worth noting that the triangle configuration which makes the product fail to 

be categorical is a rather particular one, where the conflict # does not coincide with 

the semantical conjlict #.q given by: e#.F e’ e,?J configuration X s.t. {e, e’} LX. 

This problem obviously does not arise with prime event structures. Structures where 

# = #,F are called faithful in [l]. To be sure, one way to avoid the problem with 

A would be to restrict attention to faithful event structures. Any flow event structure 

may be transformed - or normalised - into a faithful one, having equal events and 

configurations. However, restriction typically creates nonfaithful structures, as it may 

be seen from the simple example (&)\a: 

.e. 
I’ 

/ 
e’ 

Here the restriction introduces a self-conflict a #a while the semantical conflicts a # b 
and b # b are left implicit. 

We remark that a function space construction can be introduced on flow event struc- 

tures, so as to give a representation of stable functions on the domains determined 

by these structures. One can find an example which shows that function space does 

not preserve property A. This is not suggesting a weakness of A, though, because the 

consideration of the stable function space leads to a very different category - the mor- 

phisms are different. However, with respect to the category considered in this paper, it 

is not known if A is also necessary for obtaining a categorical product. 
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