
ELSEVIER Theoretical Computer Science 179 (1997) 203-2 15

Theoretical
Computer Science

Parallel product of event structures

Ilaria Castellani a, Guo-Qiang Zhang b,*

a INRIA. Sophia-Antipolis, 06560 Valbonne, France
b Department of Computer Science, The University of Georgia, Athens, GA 30602, USA

Received June 1995; revised March 1996

Communicated by P.-L. Curien

1. Introduction

Event structures were introduced by Nielsen, Plotkin and Winskel [5] as a model

for computational processes. These were essentially sets of events with relations ex-

pressing causal dependence and conflicts between them. These structures, also called

prime event structures, were shown to be connected both with a class of acyclic Petri

nets (called by the authors occurrence nets) and with a class of domains (finitary

prime algebraic coherent domains). Though a very pleasant model of computation,

prime event structures can lead to tedious definitions for more sophisticated construc-

tions such as parallel product or exponentiation. In subsequent papers [8,9], Winskel

introduced a more general class of event structures called stable event structures, for

which such constructions are defined categorically. Although stable event structures

themselves are slightly more complicated than prime event structures, constructions on

them can be defined in an elegant way. In general, category theory has proven very

useful for computer science. When constructions are formulated in categorical terms,

not only can the required universal properties provide some guideline in the defini-

tions, the associated morphisms may contain suggestions of computational interest as

well.

Moving to more general structures, however, can sometimes shield the intuitions

about the model. In the case of stable event structures, the causality relation on events

is not explicitly given, but is derived from an enabling relation on events. This makes

such event structures a little hard to visualize, and one may wonder whether a more

manageable notion could be devised. Moreover, unlike prime event structures, it is not

clear if stable event structures correspond to a class of Petri nets, in the sense of [5].

Flow event structures were proposed in [2] as an intermediate between prime event

structures and stable event structures, suitable both for graphical representation and for

an easy definition of process operators. Among these operators the critical one is the

* Corresponding author.

0304-3975/97/$17.00 @ 1997 - Elsevier Science B.V. All rights reserved
PII SO304-3975(96)00104-l

204 I. Castellani, G.-Q. Zhangl Theoretical Computer Science 179 (1997) 203-215

parallel product. A “parallel product” can be defined easily on flow event structures.

The problem is that it may not be a categorical one. This is unsettling, because if a

“product” is not categorical, we are left to wonder what it is. The aim of this note

is to show that, for flow event structures satisfying a particular constraint - which is

preserved by usual process operators - the product is indeed categorical. We mention

in passing that flow event structures do have a direct connection with a class of Petri

nets, as shown by Boudol in [l]. These nets - called flow nets - are strictly more

general than occurrence nets: they may have cycles in the flow relation although they

are still “semantically” acyclic.

Like stable event structures, flow event structures determine the same class of do-

mains as prime event structures (cf. [l]). Thus for any construction on flow (or stable)

event structures one may obtain a corresponding construction on prime event struc-

tures, by passing through their domains of configurations. In fact, direct definitions of

parallel product on prime event structures - although rather complicated - have been

given explicitly by Goltz and Loogen in [4] and by Degano, De Nicola and Montanari

in [3]. More recently a simpler definition was proposed by Vaandrager in [6].

2. Flow event structures and product

Flow event structures are a direct generalisation of prime event structures (we re-

fer to [5] for the definition of prime event structures) where the conflict relation is

not inherited and the partial ordering of causality is replaced by a local flow rela-

tion on events. Intuitively, the flow relation represents an immediate causality between

two events. However, since events may occur in different ways (as in stable event

structures) any causal dependency is merely “possible”, and makes sense only within

computations. A simple way of understanding the flow relation is by analogy with Petri

nets: a flow between two events in an event structure corresponds to the presence of

a condition between the events in a net. This point is illustrated by the example after

the following basic definition.

Definition 2.1 (HOW event structures). A flow event structure is a triple S = (E, #, +),

where

a E is a denumerable set of events,

l # c (E x E) is a symmetric conjlict relation, and

l + C (E x E) is an irreflexive $0~ relation.

It should be clear that any prime event structure S = (E,#, <) is a flow event

structure (with + given by the strict ordering <). Note that the flow relation is not

required to be transitive, nor its closure +* to be acyclic. Also, the conflict relation is

not assumed to be irreflexive. This means that there may be self-conjlicting or incon-

sistent events, and we will see that these are essential for defining some constructions

on flow event structures - namely restriction and specialised parallel products like CCS

I. Castellani, G.-Q. Zhangl Theoretical Computer Science 179 (1997) 203-215 205

parallel composition. Inconsistent events also play a crucial role in Boudol’s construc-

tions between flow event structures and flow nets [l].

The following is an example of a flow event structure, together with the “corre-

sponding” Petri net. In drawings, we represent e 4 e’ by a directed arc e - e’ and #

by a dotted line. Self-conflicts will be represented by dotted circles around events.

e3
IL

e3

This example (which typically arises when modelling CCS communication) exhibits

both a confluence after conflict, and a case where the flow + is essentially not tran-

sitive: the events es and es are indeed causally related if ei occurs, but they are

independent if e2 occurs. In other words, eo and e3 are in a different relation depend-

ing on the computation where they are considered. For more examples of flow event

structures we refer the reader to [2].

We shall now formalise this notion of computation or conjgurution for flow event

structures. A configuration is a set of events having occurred at some stage of evolution

of a process. Since flow event structures are rather general, the definition of configura-

tion is slightly more elaborated than for prime event structures. Let Cons be the set of

conflict-free (consistent) sets of events: X E Cons iff \Je,e’ E X, l(e#e’). Obviously,

an event e is inconsistent (e#e) if and only if {e} 9 Cons. For a subset X of E, let

-+ be the restriction of the flow relation to X and <X =&f +x* be the preordering

generated by -+. For simplicity, we consider here only finite configurations - see [2]

for a more general treatment of configurations.

Definition 2.2 (Conjigurations). Let S = (E,#, +) be a flow event structure. A (finite)

configuration of S is a finite subset X of E such that:

(1) X is conflict-free: X E Cons,

(2) X is left-closed up to conflicts:

e’ 4 e E X 8z e’ @ X ==+ 3 e” E X . e’ # e” 4 e,

(3) X has no causality cycles: the relation <X is an ordering.

The first two conditions are essentially the same as for prime event structures: con-

dition (2) is adapted to account for the more general, non-hereditary, conflict relation.

It states that any event appears in a configuration with a “complete” set of causes.

Condition (3) ensures that any event in a configuration is actually reachable at some

stage of computation. Note that an inconsistent event cannot appear in a configuration.

206 I. Castellani, G.-Q. Zhangl Theoretical Computer Science 179 (1997) 203-215

So, for example, the structure

I
e’

has only the trivial configuration 0. The set of (finite) configurations of a flow event

structure S will be denoted by F(S).

We have seen that prime event structures are a subclass of flow event structures. In

turn, any flow event structure S = (E,#, -x) may be described as a stable event structure

Gs = (E,#‘, Fs) such that F(Gs) = F(S). This is explained in [l, 21. We recall here

briefly the definition of Gs.

The enabling relation l-s G P(E) x E is defined as follows. Say that “e is a condition

for e’” when e 4 e’. Then F ks e holds whenever F is a maximal set of non-conflicting

conditions for e, that is:

F ks e t7’def
F U {e} is consistent : ‘de’,e” E F U {e} : l(e’ #e”)

F is closed under non-conflicting conditions for e :

e’<e &e’@F+3e”EF s.t. e’#e”+e

Note that since F U {e} must be consistent w.r.t. #, an event e which is inconsistent in

S will have no enabling set in Gs. Then the conflict #’ is just the irreflexive restriction

of #, that is #’ = # - Id, where Id is the identity relation on events. It is easy to see

that the structure Gs = (E,#‘, ks) obtained in this way is a stable event structure in

the sense of Winskel, with t-s being the minimal enabling.

On the other hand, a stable event structure cannot always be represented as a flow

event structure (cf. [l]). Hence flow event structures are strictly included between

prime and stable event structures.

We shall now define the parallel product on flow event structures. We use Winskel’s

notation * for undefined values of partial functions and write e We’ for the reflexive

closure of #, that is e We’ M&f (e#e’ or e = e’). Here and in what follows,

an assertion f(e) R f(e’) - where f is a partial function on events and R E (4

, #, =} - will imply that both f(e) and f (e’) are defined. We shall mostly write fe

for f(e).

Definition 2.3 (PurulZel product). Let SO = (Eo,#o, 40) and Si = (El,+, 41) be flow

event structures. Their parallel product (SO x Si) is the event structure S = (E,#, 3)

defined by:

(i) E =def (Eo x, EI) =def {(eo, *I I eo E Eo} U {(*, el) 1 el E EI) U {(a el) (eo E

EO & el E El),
(ii) e We’ * (noe Wnoe’) or (7tie W7c1e’),

I. Castellani, G.-Q. Zhangl Theoretical Computer Science 179 (1997) 203-215 207

(iii) e#e * (noe # rrae) or (rtie#rtie), and

(iv) e 4 e’ u (rcoe 4 rcae’) or (nie 5 rcie’).

where the projections 7ti : E -* Ei are given by rti(xo,xl) = xi, for i = 0,l.

Condition (iii) explicitly deals with self-conflicts. It states that the product inherits

self-conflicts from its components, and never introduces any new ones.

We now need the notion of a morphism to define a category of flow event structures.

Definition 2.4 (Morphisms). Let SO = (Eo,#o, -CO) and St = (El,#l, +I) be flow event

structures. A morphism from SO to St is a partial function f : EO -* El satisfying:

(i) fe = fe’ * e We’,

(ii) fe#fe’ ==+ e#e’,

(iii) fe + fe’ M e 4 e’, and

(iv) X E F(&) + f(X) E 9(g).

The intuition for morphisms is relatively well-understood, and it is similar to that

of Winskel for stable event structures. A morphism f : EO -* El on flow event

structures expresses the synchronisation of an event e E EO with the event f(e). Con-

dition (i) says that two distinct events e, e’ can synchronise with a common event f(e)

only when they are in conflict, which makes sure that this kind of synchronisation can

never happen in a computation. Condition (ii) says that the partial function f pre-

serves consistency: a morphism does not create new conflicts. In particular, it ensures

that morphisms do not create new self-conflicts: if f e # f e, this is always because e # e.

Condition (iii) says a morphism preserves causality, as well.

It needs an explanation why condition (iv) is explicitly required here, because for

stable event structures, this property follows from similar conditions to (i)-(iii). Sup-

pose X is a configuration of So. Clearly, f(X) remains conflict-free. However, to prove

that f(X) is left-closed up to conflicts, we need to show

yI + f(e) E f(x) & rl @f(x) ==+ gf(e”) E f(x). s#f(e”) 4 f(e).

Unfortunately, the given condition for f(X) does not in general translate into a similar

condition for X for us to apply the corresponding property of X, because rl may not

be in the image f (Eo). We do get the above (iv), though, if we require that f is

down-onto:

v + f(e) & 3e’ E EO . q = f (e’),

which is weaker than (iv). Since this is not the main concern of this paper, we do not

speculate further on it here.

It is now easy to establish the following:

Fact 2.5. Flow event structures with morphisms form a category with the composition

of partial functions as composition and the identity functions as identity morphisms.

208 I. Castellani, G.-Q. Zhangl Theoretical Computer Science I79 (1997) 203-215

It is natural to expect that the product construction SO x Si introduced earlier is indeed

the product in the categorical sense. Unfortunately, this is not the case, as shown by

the following counterexample.

e0 el

We let the reader verify that in (SO x Si) the set {(eo,ei)} is a complete set

of causes for (e&e’,) and that X = {(es, el),(e&ei)} is a configuration. However,

q&Y) = {eo,ek} is not a configuration of SO (and thus the projection ~0 is not

a morphism). Indeed, X should not be allowed as a configuration here, since in

SO the event eI, cannot occur unless et has occurred, and thus in (SO x Si) the

event (e&e;) should not occur unless some event involving ei has occurred. (One

might try to modify the notion of configurations to accommodate this situation, but

that will unlikely lead us anywhere because the definition of configurations is well

justified.)

The problem arises with the particular form of the structure on the left-hand side:

such a structure will be called a triangle in the rest of the paper. Formally, a triangle

is a structure with three distinct events es, ei, e2 such that es #ei + e2 and es is not

related to e2. We will show that in structures generated by usual process constructors

such triangles never occur in isolation, but are always “saturated ” by other events.

These additional events will precisely prevent sets like X in the example above to be

admitted as configurations.

For two distinct events e,e’ we write e N e’ for (e#e’ or e + e’ or e’ 4 e). In

drawings we shall represent N by an undirected arc. The structures we shall consider

are those satisfying the following structural property:

Axiom A: es#ei + e2 & ea #ez + 3es.(ei#es 4 e2) & (Ve’eq : ei Wem ez).

In picture:

eo------I ~ eo_-_--_[ce

I. Castellani, G.-Q. Zhangl Theoretical Computer Science 179 (1997) 203-215 209

This axiom says that if an event es is in conflict with event er, which is a cause

for another event, e2, then in the case that eo is not related to e2 by either conflict

or causal dependency, there must be some event e3 in conflict with el, while at the

same time being a cause for e2. Moreover, any other event in conflict with es must

be in conflict with er and, at the same time, be causally related to e2. The very

rough intuition is that when a problematic situation such as the one pictured on the

left-hand side of the previous diagram occurs, then there is a pivotal event, es, such

that any event in conflict with it must provide the “missing links” for the problematic

situation.

We show that, for structures satisfying A, our definition yields the desired product

construction.

Proposition 2.6. Let SO,SI be pow event structures satisfying Axiom A. Then (SO x
SI) is the categorical product of SO and S,.

Proof. Notation: events of S will be denoted by e,e’, etc. and events of Si by ei,ei.

Also, we shall write f e for f(e), and fe 1 to mean that fe is defined.

(1) We first show that the projections rcni are morphisms. Conditions (i), (ii) and

(iii) are obviously satisfied. Thus we only have to prove that the rci’s preserve config-

urations. Consider for example no : E -* Eo. Let X E F(S); we want to show that

no(X) E @(So).
It is obvious that Q(X) is conflict-free, since rcoe # rcae’ would imply e# e’ in X.

We show that no(X) is consistently left-closed. Let e E X, es 4 rcse & eo $ q&Y).

Then (eo, *) -X e and(eo, *) $ X. Since X is a configuration, there exists e’ E X s.t.

(es, *)#e’ + e. By (ii) it must be the case that rtoe’ 1 and rroe’ Wee. Now rcoe’ # eo

because eo $! q&X’), thus rise’ # eo.

Suppose rcse’ N rcoe. We have rcoe’ < rcoe, since otherwise X would contain a

conflict (if zoe’#noe) or a loop (if rcoe’ t rcoe, recall that e’ + e). Thus we have

e&roe’ 4 noe. Otherwise, if rrae’ # rcse, we have a triangle rcae’ #es + rcse and we

can use Axiom A to deduce the following:

3eb. (eo # et, 4 7coe) & (Ye: # ek : eo We: N noe).

Then (eb, *) + e E X. Now if eb E no(X) we have finished, since ea #eb 4 qe.

Otherwise, if eb $ z&Y), we have (e& *) 6 X, hence 3e” E X s.t. (eb, *) # e” 4 e.

Whence eb Wrcoe” and thus eb # rcoe”. By Axiom A again, we have rcoe” N rrse and

qe” Wee. Clearly, rcoe” # es, since es $ rc&X’). Also, from e,e” E X and e” 4 e, it

follows that rcoe” + noe.

It is clear that there are no loops in q(X), since these would be inherited in X. We

have thus proved that projections are morphisms.

210 I. Castellani, G.-Q. Zhang I Theoretical Computer Science 179 (1997) 203-215

(2) Second, we must show that (So x Si) is canonical, i.e. that for any diagram:

s

there exists a unique 8 : I? -* (Eo x, El) that makes the diagram commute. The

only possible candidate is (still using e, e’ for events of E) % : e H, (aoe, ale). We

show that % is a morphism. We have, for any e,e’ E 8:

%e + %e’ w&f (a#?, ale) + (cl@‘, xie’)

_ (ccoe + else’) or (ale -: ale’) (by definition of product)

===+ e < e’ (because both ai’s are morphisms)

Similarly, for any e, e’ E E:

%e w%e’M&?f (aOe,ale) w (aOe’,ale’)

w (ccoe W ccoe’) and (clie Wcxle’)

--/ e We’ (because the ai’s are morphisms)

Suppose now %e # Be’. We have:

%e#%e’e&f (aOe,ale)#(aOe’,ale’)

-I %e # Be’ & (aoe WuOe’ or clie Wale’)

%e = Be’ & (clae#aoe’ or a,e#ccie’)
(by product definition)

Now, suppose Be # %e’: then we cannot have both (aoe = cage’) and (ale = ale’).

Thus it must be (aoe # cage’) or (~1 e # clie’). This implies e # e’ since both ai’s are

morphisms.

Similarly, the case where %e = Be’ immediately implies e # e’.

It remains to check that % preserves configurations. Let X E F(s). We want to

show that e(X) =&f {(aae, ale) / e E X} E F(& x 4). Again, it is obvious that

%(X) is conflict-free.

We show that %(X) is consistently left-closed. Let k = (ko,ki) + (aoe, crie) for

some e E X and k +! 0(X). By definition of product we have ko + age or kl 5 ale.
Assume ka + crae.

If 3e’ E X s.t. cloe’ = ko, then (aae’, ale’) + (uge, crie) by definition of 4 in

the product. Moreover, (use’, CII e’) E %(X) and (cxae’, aie’)# k = (ko, kl) because

rra(c(oe’, clie’) = aae’ = ko and (cc&, ale’) # k. Otherwise, for any e’ E X we have

I. Castellani, G.-Q. Zhangi Theoretical Computer Science 179 (1997) 203-215 211

ko # cl,+?. In this case, since ko 4 ccoe E LX&Y) E .~(Eo) and ka 4 a&X’), there

must be e” E X s.t. aae” -X aoe & ko#ccoe”. Hence (aoe”,aie”) + (aoe,are), and

k # (aoe”, ule”) because ko # aoe”.
Finally, it is clear that there are no loops in O(X), since these would be reflected

inX. 0

We show now that the parallel product preserves Axiom A. The idea is that for

any triangle eo #el + e2 introduced by the product, the source el of the triangle is a

compound event, which inherits its causality relation to e2 from some atomic component

e3. This event e3 is precisely the one which is required by Axiom A.

Proposition 2.1. Let SO,& be flow event structures satisfying axiom A. Then the

structure (SO x Sl) satisjes A.

Proof. Suppose there is a triangle eo # ei + e2, e0 + e2 in (SO x Si). We want to prove

that Axiom A is satisfied. Since ei 4 ez it must be (rcoei < rcoe2) or (niet + rcte2).

Assume noei + 71082. Since eo # e2 we have rcoeo # 7coe2 and thus rroeo # rcoei. There

are then three cases left for eo # ei :

1. 7rieo = rcier,

2. noes # rroer ,

3. nteo#7rier.

Case 1: xleO = x1e1. We want to show that the triangle: eo # et + e2 satisfies

Axiom A. Take (rcoei, *) as a candidate for es in the axiom. Certainly, (rroel, *) + e2

and (rcoer,*)#ei. Thus, either (rcoer,*) fulfils Axiom A or 3e#(noei,*) for which (e +

e2) or y(e W el). Now it cannot be T(e W el) since e # (rcoet, *) implies rcse W noe1.

Then it must be e + e2, which implies noe $ rcoe2. We have now a triangle nae # rcoei 3

noe2 in SO. By axiom A , there exists e3 E Es s.t.

(e3 + 7c062 6% e3 # 710631) & (Vs# e3 : s N 710e2 6% s W7coel).

Then (e3, *) E (Eo x+ El) is such that

because
- if nor = e3 then r -X e2 & r#el;
- if qr#eg then r - e2 & r#el.

Case 2: roe0 # zoe1. Again we want to prove A for the triangle eo #ei -X e2.

This is straightforward. We have a corresponding triangle in SO : zoea # noel % 71062.

By Axiom A there exists e3 E Eo. (es 4 rtoe2 & es # rcoei) and (Vs # es : s N

rtse2 & s Wnoei). Now if we take (es, *) in(& x, El), this is such that ((e3, *) -X

e2 & (e3,*)#ei) 6% Ve#(eJ,*):
- if rcae = e3 then e + e2 & e#ei;
_ if rroe#e3 then e N e2 & e#ei.

212 I. Castellani, G.-Q. Zhang I Theoretical Computer Science I79 (1997) 203-215

Case 3: rcl eo # nl el. Take again (rcoet, *) as a candidate for es in A. We have now

(rcsei, *) + e2 and (noei, *)#ei. Now either (nsei, *) fulfils Axiom A, or 3e#(naei, *)

for which (e + e2) or l(e Wel). From e#(rroei, *) it follows that rcoe Wnoel and

thus e#ei. Then it must be e +J e2, whence rcoe # zoe2. Again we have a tri-

angle 7coe#zoel 4 zce2 in SO, and by Axiom A there exists es E EO s.t. (es <

rroe2 & es#rraei) & (‘ds#es.s N rcoe2 & s Wxoel). Then (es,*) E (Ea x, El) is such

that ((es,*) + e2 & (es,*)#ei) & t?#(e3,*):
- ifrcor=es thenr4ez&r#ei;
_ if nor#ej then r - e2 & r#el. 0

Another important operation on flow event structures is restriction. The standard

construction for restriction, as featured in CCS and in Winskel’s treatment of event

structures, operates by removing all events of a given set. In fact, this construction

may affect quite drastically the structure of a process, and, not surprisingly, it does not

preserve property A. The following is an example of a triangle introduced by usual

restriction (one may regard this structure as representing the CCS term ((a+~)) &)\c).

a c r E a r
.__________ * _...._.._. v- . _

\C

i
b b

The definition of restriction proposed in [2] for flow event structures is actually a

different one, which makes use of self-conflicting - or inconsistent - events. More

precisely, restriction of a flow event structure to a set of events E’ is modelled by

rendering inconsistent all events not belonging to E’.

Definition 2.8 (Restriction). Let S = (E, #, +) be a flow event structure and E’ C E.

The restriction of S to E’ is the structure S r E’ = (E, #‘, 4) where

e#‘e’ C (e#e’) or (e = e’ & e $E’)

It is easy to see that this operator of restriction preserves A, since it preserves

events as well as their relations with other events. Applying restriction to the previous

example gives now:

a c i- c a c 7 c ._____...._ * _._....___ . . . v- ._.......__ *
\C v

b 6

where the triangle is still saturated (like before the restriction) as required by Axiom A.

I. Casiellani, G.-Q. Zhang I Theoretical Computer Science 179 (1997) 203-215 213

3. Interpreting constructs with flow event structures

Flow event structures are well-suited to model languages like CCS. Moreover, all

CCS operators turn out to preserve property a, thus we are sure to obtain the cat-

egorical product construction. A complete definition of CCS operators on flow event

structures may be found in [2]. Here we shall just give a reformulation of CCS parallel

composition as a restricted parallel product.

Languages like CCS are parameterized on a set of actions L. To model processes

in these languages one uses event structures labelled on this set of actions. The syn-

chronization discipline of the language - which actions may combine together into a

synchronization action - is expressed by a synchronization algebra on the labels [S].

We use here a variant of Winskel’s definition of synchronisation algebra, which

seems more convenient for our purposes. We define a synchronization algebra on a set

of labels L to be of the form (L, l ,o) with just one special element w E L. Here l is

a commutative and associative operation on L, used to yield labels for pairs of events,

namely: Z(x, y) =der I(x) l Z(y). The role of w is twofold:
_ The label cc) is used for pairs of events (x, y) which represent forbidden synchroni-

sations. Such events must not occur in the parallel composition, and we express this

fact by the axiom: Z(x, y) = o ---r‘ (x, y) is inconsistent.
_ Also, o is used to label the component * of an asynchrony pair - where one of

the components is * - i.e. the labelling function I is extended by the convention

I(*) = O. We recall that * is not a real event, but just a notational device (and thus

will never occur in the set of events E of an event structure). Then an asynchrony

pair of the form (+,e) or (e, *) is allowed in the product if and only if I(e)ow # o.

This motivates the following definition:

Definition 3.1. Au L-labelledjow event structure is a structure S = (E,#, +,I) where

(E, #, +) is a flow event structure and I : E - L is a labelling function over a set L
of labels such that o E L and l(e) = w + e#e.

Note that while all o-labelled events are inconsistent, there may still be inconsistent

events whose label is different from w.

The operations of product and restriction are extended to labelled structures in the

obvious way. In the product (SO x Si), the label of an event e is defined to be

Zo(rca(e)) l Zi(rci(e)). In the restriction S 1 L’, where L’ CL, all events carrying a label

in (L - L’) are made inconsistent.

In CCS, events are labelled by a, b, . . . or their complements a, 6, . . . or by the label r.

Let A denote this set of labels and L = AU {co}. If x ranges over L the synchronisation

algebra for CCS is given by

x*co=x

z if b=ti
a*b=

(1)

w if bfa

214 I. Castellani, G.-Q. Zhang I Theoretical Computer Science I79 (1997) 203-215

The first clause needs a little explanation. If the cc) is already the label of an inconsistent

event (e.g. a forbidden synchronisation within a component), it may seem puzzling that

x l w = x rather then x l o = w. However, in this case the event labelled x l o is made

inconsistent by the definition of product, and thus its label does not really matter. We

have now the following:

Definition 3.2 (CCSproduct). Let So = (Eo,#o,-+,lo) and Si = (Et,#i,4i,li) be

labelled flow event structures. Their parallel composition in CCS, denoted (SO ((Si),

is the labelled event structure (SO x St) 1 (L - {w}).

It should be clear that the parallel composition operator 11 preserves Axiom A,

since it is defined in terms of general product and restriction. Also, one may easily

convince oneself that property A is preserved by CCS operators like prefixing and

nondeterministic sum (we refer to [2] for definition). Hence

semantics for CCS is compatible with a categorical one.

the flow event structure

4. Conclusions

It is worth noting that the triangle configuration which makes the product fail to

be categorical is a rather particular one, where the conflict # does not coincide with

the semantical conjlict #.q given by: e#.F e’ e,?J configuration X s.t. {e, e’} LX.

This problem obviously does not arise with prime event structures. Structures where

= #,F are called faithful in [l]. To be sure, one way to avoid the problem with

A would be to restrict attention to faithful event structures. Any flow event structure

may be transformed - or normalised - into a faithful one, having equal events and

configurations. However, restriction typically creates nonfaithful structures, as it may

be seen from the simple example (&)\a:

.e.
I’

/
e’

Here the restriction introduces a self-conflict a #a while the semantical conflicts a # b
and b # b are left implicit.

We remark that a function space construction can be introduced on flow event struc-

tures, so as to give a representation of stable functions on the domains determined

by these structures. One can find an example which shows that function space does

not preserve property A. This is not suggesting a weakness of A, though, because the

consideration of the stable function space leads to a very different category - the mor-

phisms are different. However, with respect to the category considered in this paper, it

is not known if A is also necessary for obtaining a categorical product.

I. Castellani, G.-Q. Zhangl Theoretical Computer Science 179 (1997) 203-215 215

Acknowledgement

We would like to thank Gtrard Boudol, Mogens Nielsen and Glynn Winskel for

their interest and suggestions.

References

[l] G. Boudol, Flow event structures and flow nets, in: Proc. LITP Spring School on Semantics of’ Systems
of Concurrent Processes, La Roche-Posay, Lecture Notes in Computer Science, Vol. 469 (Springer,

Berlin, 1990) 62-95.

[2] G. Boudol and I. Castellani, Permutation of transitions: an event structure semantics for CC’S and SCCS,

in: Proc. Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
Lecture Notes in Computer Science, Vol. 354 (1988 Springer, Berlin, 1988) 411-427.

[3] P. Degano, R. De Nicola and U. Montanari, On the consistency of “truly concurrent” operational and

denotational semantics, in: Proc. 3th Ann. Symp. on Logic in Computer Science, Edinburgh (IEEE

Computer Sot. Press, Silver Spring, 1988) 133-141.

[4] U. Goltz and R. Loogen, Modelling nondeterministic concurrent processes with event structures, Fund.
Inform. 14(l) (1991) 39-73.

[5] M. Nielsen, G. Plotkin and G. Winskel Petri nets, event structures and domains, Theoret. Comput. Sci,
13 (1981) 85-108.

[6] F.W. Vaandrager, A simple definition for parallel composition of prime event structures, Report CS-

R8903, CWI, Amsterdam, 1989.

[7] G. Winskel, Events in Computation, Ph.D. Thesis, Department of Computer Science, Univ. Edinburgh,

1980.

[S] G. Winskel, Event structure semantics for CCS and related languages, in: M. Nielsen and E.M. Schmidt,

eds., Proc. 9th ICALP, Aarhus, Lecture Notes in Computer Science, Vol. 140 (Springer, Berlin, 1982)

561-576. See also DAIMI Report PB-159, Computer Science Department, Aarhus University, 1983.

[9] G. Winskel, Event structures, in: W. Brauer, W. Reisig and G. Rozenberg, eds., Petri Nets: Applications
and Relationships to Other Models of Concurrency, Advances in Petri Nets 1986, Part II; Proc.
Advanced Course, Bad Honnef, 1986, Lecture Notes in Computer Science, Vol. 255 (Springer, Berlin,

1987) 325-392.

