A Reputation System for Multirole Sessions®

Viviana Bond, Sara Capecchillaria Castellarfi, and
Mariangiola Dezani-Ciancaglihi

1 Dipartimento di Informatica, Universita di Torino, corsuifzera 185, 10149 Torino, Italy
2 INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, e

Abstract. We extend role-based multiparty sessions with reputatioraspoli-
cies associated with principals. The reputation assatiaith a principal in a
service is built by collecting her relevant behaviour asrigipant in sessions of
the service. The service checks the reputation of pringipefore allowing them
to take part in a session, also according to the role they tegity. Furthermore,
principals can declare policies that must be fulfilled by ditieer participants of
the same service. These policies are used by principalsttkdhe reputation of
the current participants and to decide whether or not totjaérservice. We illus-
trate the use of our approach with an example describinglaverdd protocol.

Keywords: concurrency, communication-centred computing, sessaauli, session
types, reputation systems.

1 Introduction

Building on [8] and [10], where flexible role-based multifyesessions were introduced,
we address the question of accomodating dynamic interaptificies in sessions with
multiple roles and a varying number of participants for esalh, taking into account
the histories of principals. Thiistory of a principal is a trace of its past interactions
with other principals within service sessionssgkviceis an abstraction for a multiparty
interaction point, where partners play predefined rolesdve according to a precise
communication protocol. Aession is an activation of a service. Histories are used to
build principals’reputations. For each service, only the principal’s history relative to
that service is significant for her reputation in the servitigis reputation is checked
against the service access policy, before that principatimitted in a new session of
the service with a given role. It is also checked by other pidé participants before
they engage in a session involving that principal.

Our aim is to provide an enriched role-based session caalle to deal with prin-
cipals’ reputations, together with a type system ensutiiag ¢lassical session proper-
ties, such as communication safety and progress, continhelt in the presence of
these new features. While borrowing most constructs anithdyples from [8], and
notably thepolling operator that allows a principal to concurrently interadthvall
principals playing a given role in an ongoing session, oleutas departs from [8] in

* Work partially funded by the ANR-08-EMER-010 grant PARTOWRd by the MIUR Projects
DISCO and IPODS.



that it distinguishes between the notiorsafvice and that ofession, allowing multiple
sessions for a single service. We believe this may help rfindekal-world scenarios.
Think, for example, of an online shop, where there are ppalsiwho play the role of
sellers and principals who play the role of buyers (noti@ #ach principal may play
both roles). The online shop is a service with two roles,léséland “buyer”. These
two roles are of different nature. Sellers should in prife@ways be available for a
transaction with a buyer. Therefore they join the servica stable way, in order to be
present for several successive sessions. We call téble join. Buyers, instead, might
want to join a service only for a single session, to purchasgegific item from some
seller. We call this @ne-shot join. To fix ideas, one may view the initialisation of the
service as the start-up of the online shop, the stable joia bgller as the opening of
her activity in the online shop, the one-shot join by a buyghar connection to the
online-shop site, the initialisation of a session as the sfaan interaction among the
sellers and buyers which are currently present in the oslirog.

Other points of departure of our calculus with respect toh&Ve to do with the
introduction of histories. Thus, some constructs of [8] ade refined in order to
account for histories and reputations. For example, in aloutus there are two kinds
of sending constructs. The first, denoted !, is the standasgsage send, while the
second, denoted, represents eelevant message send, whose content must be stored
in the history of the sender. Moreover, we offectaice primitive for selecting one
principal among the best ones for a given role (accordingdiven policy), if any.

Histories are exploited at various stages of the interactio

— at service join, to allow the service to select the princpaho will take part in future
sessions and to allow a principal wishing to join the sertaogvaluate the reputation
of the current participants and proceed or not with the jatoadingly;

— at session initiation, to allow the service to select amdegstable participants those
who will take part in the session, by testing if they satisfyne condition;

—in a poll operation, to allow a participant to interact onljttwparticipants which
satisfy some condition;

—in a choice operation, to allow a participant to select on¢hefbest participants
according to some criterion.

As regards the type system, the main novelties with respg@]tare the addition
of an existential quantification for the choice operatod arvariation of the universal
quantification for the polling operator, as in our case pgliiloes not collect all princi-
pals in a given role, but only those verifying some conditiased on their reputations.

An interesting feature of our calculus is its ability to rége a principals’ partic-
ipation in a service according to her reputation: if a piatibehaves “badly” as a
participant in some service, this may result in a restrictibthe possible session roles
offered by the service to that principal.

The paper is organized as follows. In Section 2 we introdugeapproach by a
motivating example. In Sections 3 and 4 we present the syartdxhe semantics of our
calculus. Section 5 defines the type system. Section 6 &gtablthe properties of our
calculus. In Section 7 we draw some conclusions and diseles®d work.



2 Example

Let us take a closer look at the online shop example intradlic&Section 1. At any
time, a buyer can choose among the current sellers accdadsmgne criterion, in order
to purchase a specific item. For instance, the buyer may asefiers who are fast in
delivering their products. This selection can be done byenting the past behaviour of
sellers, that is, their history, assuming that the shoprd=call histories in a dedicated
registry. The selected seller then sends to the buyer tlve pfithe item. The buyer
sends back either a positive or a negative answer, repsgsbgtthe label9K or X0,
which become part of the buyer history. In case of a positiaxneer, the seller sends to
the buyer the delivery time, which is recorded in the histafrihe seller and is liable to
be tested in future interactions. In case of a negative ansheetransaction aborts.

In this scenario, there can be an arbitrary number of buyesallers, joining the
online shop dynamically (this join is subject to an accepgarondition imposed by the
service, and depending on the histories of the applicast®r a number of buyers and
sellers have joined the service, a shopping session canistahich all the present buy-
ers and sellers may interact concurrently. Therefore, tiie@shop may be seen as the
concurrent execution of several buyer-seller conversatieach of which is abstractly
specified by thaylobal type G of Figure 1. The global typ& starts with a universal
quantification over buyers, followed by an existential difaration over sellers satis-
fying the criterionfast. The former represents the spawning of a separate intenacti
for each buyer, while the latter represents the choice obbitee best sellers according
to the criterionfast, i.e. one of the fastest sellers (for this choice to be ptessibe
assume that for each criterion, there exists an orderingputations parametrised on
this criterion). Hence, interactions only occur betweemge and the selected fastest
seller, and each of these interactions proceeds in pavdtlethe others.

For simplicity, we only consider send actions to be relefanthe reputation here.
One may argue that this restriction is reasonable sincedhe\of a message is pro-
duced by the sender and the receiver does not have any conénoit. Note however
that, in some practical cases, a received value could bearglér the reputation of the
receiver (for instance, a notification from a bank could drgysent to trusted clients).

Buyers and sellers can participate in the online shop seixidifferent ways. The
participation can be one-shot: usually buyers join the shlogn they want to buy some
item and leave it when they have completed their purchaseoBlrast, sellers are likely
to have a more stable presence. As long as they want to selptioelucts, they are part
of the service and they replicate their behaviour for eaadpping session. However,
nothing prevents the shop to include stable buyers and looiessllers. In other words,
stability is a property of the join operation, not of the mthemselves.

Possible processes describing the buyer and the selleivareig Figure 2.

Proces® describes a principall who wants to join just one session of servige

playing the buyer rolet1 : buyer). Once the session starts, asks (using channg)

G=V1:buyer.3i": fast(seller). 1 — 1’(Item);
1" — 1{Price);
1 —*1'{0K.I" —»* 1 (Deliver); end,
K0.end}

Fig. 1. Global type for buyer-seller interaction

3



B = ab1 : buyer](y). { y3(1 : fast(seller)). {y! (1, item);y1, (X).
if OK(X) then y!*{1,0K);y?(1,(x1).0)
else y!*(1,K0);0)}}
S =3a[s1: sdler](y). { yv(1 : buyer) {y?(1,(X).y!(I,price);
y2(1 {OK.y!*(1,deliver);0,
K0.0}))}}

Fig. 2. Buyer and seller processes

for one of the fastest sellers. This is done via the choicetrooty3(1 : fast(seller)),
which chooses among the participants in a given role one@b#st according to a
particular criterion. The selection over sellers is parfed by inspecting their histories
(that is, their delivery times), sinca records them in a dedicated registry. After the
selection, the buyer sends a request for a specific item aitd foa the price of the
item from the seller. Then, according to the price, she wilvaer eitheiOK or K0: in
the first case, she expects one further input (the delivarg)tiwhile in the latter the
conversation ends immediately.

Process describes a principall who wants to join the servicain a stable way
playing the role of a sellers( : seller) (the act of joining a servicain a stable way is
expressed b, to distinguish it from the act of joining only for one session). Once
the seller has joined the service, she waits for the reqdestitem from all the present
buyers. This is realised by the poll construgta(: : buyer), which spawns in parallel a
copy of the seller for each buyer, where the variakilereplaced by the buyer identity.

Note that the send construétdorresponds to the arrows*® in the global type and
represents a relevant send whose content must be storeadhiistbry of the sender.

This example can be extended by adding two rajekdBuyer andgoldeller. Gold
buyers can decide whether to buy an item or to ask for assistabold sellers offer
additional assistance and sell the same items with an egfito cover assistance.
Gold sellers may want to interact only with gold buyers whadtéo respond positively
(i.e., who accepted the proposed price most of the time iin inevious interactions),
qualified as keen gold buyers. Gold buyers must select eitledabelBUY or the label
AST to indicate the kind of interaction requested. If a gold buyants assistance, she
selects one of the fastest available gold seller and semdsA&T label to ask for help,
then specifies her problem and waits for the response. FRjgiees the global type
G’ for gold buyers and gold sellers, starting with a universadmification on buyers
satisfying the conditioiteen, and Figure 4 shows the incarnations of principaland
sy as gold buyer and gold seller, respectively.

/ =V 1 : keen(goldBuyer,1).31" : fast(goldSeller).r — 1’{ BUY. | — 1’ (Item);
1" — 1 (Price);
1 —*1"{0K.
1" —* 1 (Deliver);end
K0.end}
AST. 1 — 1'(Problem);
1" — 1(Solution);end}

Fig. 3. Global type for gold buyer and gold seller interaction
4



GB = a[b1 : goldBuyer](y). { y3(i : fast(goldSller)).
{ if alright then y!(1,BUY);y!({1,item);y?(l,(X).
if OK(X) then y!*(1,0K);y?(1,(x1).0)
else y!*(1,K0);0)
else y!{1,AST);y! (1, problem);y?(1,(X).0)} }

GS =a[s1: golddler](y). { yv(i : keen(goldBuyer,1)).
{y?(1 {BUY. y2(1, (X).y!{I,price);
y?(1,{0K.y!*(1,deliver);0,
K0.0}))
AST.y?(1,(X).y!{1,solution);0)})} }

Fig. 4. Gold buyer and gold seller processes

Consider the following process, where the componBnfs GB, andGS are defined
in Figures 2 and 4:
a(G| G rel) |B|S|GB|GS

Here procesa(G | G',rel) represents a service with naméhe name of the online
shop), global typ& | G’ and join conditiorrel. The global type§ andG’ are given in
Figures 1 and 3, respectively, and the conditien (standing for “reliable”) expresses
different requirements for the join of a principal in thefdient roles:

— any principal can join a session of the service as an ordimayegr or seller;
— only principals which have a long enough record of succéssinsactions can join
sessions as gold buyers and gold sellers.

We notice that even if we collect in the histories ol/K0 answers for buyers
and delivery times for sellers, this information is enougltheck interesting proper-
ties. Indeed, histories are evaluated in different waysheyconditionkeen andfast
expressed by participants and by the condittelh associated with service

— rel checks the number of successful transactions of gold biuike keen checks
the percentage of successful transactions over the totaberr;

— rel checks the total number of transactions completed by a gdlier gthat is, the
number of values in her history, no matter whether singleeslare good or bad),
while fast checks the average time of delivery.

At runtime, the initialisation of a service will create a d=ted registry for record-
ing the relevant behaviour of principals, thus building kbgit history in the service.

In the first session, principats ands; can only play the roles of buyer and seller,
respectively, so principa; can only buy, without requesting assistance. After some
successful sessioms ands; will be able to play the roles of gold buyer and gold seller
too. Then, principab; will have the possibility to ask for assistance.

After being promoted to gold buyer, a principal must keep apreputation: only
gold buyers who continue to satisfy tkeen condition are allowed to interact with
gold sellers. After a “bad” behaviour, in order to play agéia role of a gold buyer, a
principal must rebuild herself a “good” reputation as a buye

The above system only includes one buyer-seller pair, aadjoltl buyer-seller pair.
In a more realistic scenario, there would be several pp#dits for each role, differing
from the processes, S, GB andGS only for the id b1, s1) and the exchanged values.

3 Note that it is possible to compute the percentage of failedsactions only for buyers, and
not for sellers (because the lal®®/K0 is sent by the buyer, and only received by the seller).



3 Syntax

We assume the following setglue variables, ranged over by, y, z.. ., service names,
ranged over bya,b, ..., principals, ranged over byid, id’, ..., principal variables,
ranged over by, I’,..., roles, ranged over by,r’, ..., sessions, ranged over bg s, .. .,
andlabels, ranged over by, l’, .. ..

The syntax of processes is given in Table 1. It uses the auxifiefinitions of Table
2 and the types of Table 3. The syntax occurring only at ruatippear shaded

As hinted in the previous section, participants can eithar & service in atable
modality and be present in all the sessions of the servicefwgtart after they join and
end before they leave), or join a service for exactly oneigeds aone-shot modality.

A new service is always opened by an initialiser of the faft, ¢), whereG
is a global type andp is a mapping from histories and roles to truth values, repre-
senting the condition a principal must satisfy in order toalbeepted as a participant
with a given role in servica. The initialisation of servica creates a service registry
a7, 01,05, @], where thehistory set .77 records the current mapping between princi-
pals and their historieg7; and &, are (initially empty) parallel compositions offers,
representing the participants who joined the service irablstor one-shot modality,
respectively.

Once the servica has been initialised, principakl can join the service in role
usingalid: r, % (f)](x).{P} oralid : r, % (F)](x).{P}, becoming respectively a stable or
a one-shot offer. The join is only allowed if the principal does not already appear
with the same role among the current offers, and if the his$@ssociated with the other
principals present in the service satisfy the set of com#t¥’ () expected by d, what
we call thepolicy of id. Moreover, the history of principald in the service registry
must satisfy the acceptance conditigrfor the required role (in order to get started
and allow fresh participants, some conditions must befgatiby the empty history).
Indeed, when a principal joins a service, her history is maiessarily empty, since she
could have already joined and quit the service before. Fabietjoin, the acceptance
condition will be checked also at the start of each sessiacdll P the body of the
join.

The join is implemented by registering the participant ie #ession registry as
the offer[id : r](x).P. The servicea can be abandoned by the stable participaby
quit(a,p).

P:= Processes | PP Sequential
| a(G, o) Service Init | if ethenPelseP Conditional
| T[id:r,%(F)](x).{P} Stable Join | 0 Nil
| ulid:r,€(F)](x).{P} OneShot Join | X Recursion variable
| quit(u,p) Service Quit | uX.p Recursion
| quit(c) Session Quit | (va:G)P Service restriction
| c*(p,I{(7)(e)) Send | (vs)P Session restriction
I c’><(p7{l X gg??)?if’? Recs:;/”e | s:# Message buffer
| ¢ B(r) {P} ' Choice | a7, 0,0,q Service registry
| PIP Parallel | a(s,2) Session registry

Table 1.Processes



u =x|alb]... Service Id. 1 - h-(1L7 0 1) Histor
p u=ddir|icr Participant = 0 1 h-({A)w,n) I y
g u=0|.7Uid| s Ul Princ. Set £ =0 | A#'U(id,h) History Set
c =x]| 9p| Channel Z =0 | LuU(id:r) Part. Set
Vv i=true|...|a| gid:r] Value -~
e =x|v]enre]... Expression Conditions .
I C(p,r,t) = (plt,r) Single
m = (id:rid : ' I{#)(v)) Message cr)  n=Ap. (o) Poll
B = []|%-m Buffer Cp.f) = Basic
o = Offer Set vi.c(p,ri) | ref
. Jr.C(p,r,t) | refr
| O Nil - .
o c1(p,F) ANC2(p,T) |
| [ld . r](X)P Offer %1(P,|7) \/sz(Pf)
| 0|0 Parallel EcF) =Ap.F(pf) Join

Table 2. Auxiliary definitions

A service registna|.s¢, 01, 0>, @] can initiate a session by creating a new session
names and a session registg(s, ), whereZ? records the session participants. The
offersin’; whose histories satisfy the predicgtéor the required role (evaluating each
offer’s reputation) and all the offers i, will join that session. A session represents a
particular instance or activation of a service. Sessiotiatinn replaces the variable
in the body of each offefid : r](x).P with the corresponding session channel. Session
channels are temporary channels created at the start ofi@rseand their lifetime is
that of the session. Each participant has just one sessemmehand this is her only
means for interacting with the other participants withireasson.

The output process*(p,1{.#)(e)) sends tg on channet the value of expression
e labelled by the constattand the set of principals and principal variablgs The
symbol ¥ stands for two different kinds of send, ! arfd ! is used for standard send,
while !* is used to send a message which will be registered in therhisfdhe sender
within the service register. The input procegp, {l;{-%)(x).R }icl) expects fromp
on channet a message with a labélin {li}ic; and a set of principals and principal
variables# in {.4 }iqi. If | =1j and.¥ = .4, the value of the message will be replaced
for the variableq, which is bound irR.

Pollingev(1 ¢ .# : ¢(r,1)).{P} allows interaction betweenand all the principals
not belonging to# that instantiate the roleand whose history satisfies the condition
C(r,1). Proces® (thebody of the poll) is replicated for each such participant.

n= = Local Types
© | p—* p{li{Ui).Gi}iel GlﬁgzlelTyl\?lzzs | (o, {1 () (Ui) - Ti Yier) Selectic_)n
| Vig.7 )G Unv.Quant. | ZP{i{#)UiTikiq)  Branching
| 31:B(r).G Exist. Quant. | Yig.s:c(ri).T Univ. Quant.
| GIG|G; G paral, Seq. | 2'1:BOT Exist. Quant.
| ux.G|x Rec., Var. | TITIT:T Paral., Seq.
| €]end Inact., End | puxT]x Rec., Var.
U:=S|T Message Types | €] end Inact., End
i S = (G) | bool |string |... Sorts

Table 3.Global and local types

7



Choicec3(r : B(r)).{P} returnsP wherei is replaced by one of the best principals
with respect to criteriorB among those playing role in the session, that is, one of
those enjoying the best reputation with respeds td any. For instance, if is seller
andB(r) is fast(seller), the choicec3(1 : B(r)).{P} returnsP where! is replaced by
one of the fastest sellers, unless there is no seller. Thisupposes that for each rale
of a service, and for each criteri@applicable ta, there exists a partial ordéry on
histories, parametrised an For instanceh C¢... ' means that the average delivery
time recorded irh is less than or equal to the average delivery time recordgd in

Messages have the forfid : r,id’ : r',1{.#)(v)), including sender, receiver, la-
bel, set of transmitted participants and value as in [8]. 94ges exchanged (asyn-
chronously) in sessiosare stored in the message bufe®.

Parallel and sequential composition, conditional and n&on are standard. The
restriction(va: G)P creates a shared service name that can be used as a refereace f
service specified b, while (vs)P represents a new session instance.

Historiesh are built by recording some of the labels and values thatentls/ the
principals, together with the roles the principals beloagA history set’# is a set
of pairs @id, h) associating a history with a principadl. Histories are used to measure
principals’ reputation, that is, to check if principalsisbt the conditions and the criteria
expressed in join, poll and choice operations. We projestbhy sets on principals as
follows:

Hlid = .
() otherwise

{h if (id,h) € 2,
Therefore, ifp is a history set variablep(p[1, r) expresses a conditiosi(gle condi-
tion) on the history of principal in the history sep relative to the role. We denote
by C(p,r, 1) a single condition and bg(r,1) the abstraction with respect poof a single
condition. We us&’(p,f) for conditions pasic conditions) obtained from single condi-
tions by universal or existential quantification on priradipariables and by closure un-
der conjunction and disjunction. Lastly(F) is the abstraction of a basic condition with
respect tgp. For example'(r1,r2) could beA p.3i1.@i(pl11,r1) AViz.@(pli2,r2). For
processes we adopt the following simplifications, alreaslduin the example of Sec-
tion 2: we omit empty sets of principals, we omit labels ifrthés a unique branch
(i.e., we writec!*(p,v), c?(p, (x).P)), we omit empty values (i.e., we wrig*(p,I},
c?p,{li.R}ia)), we use:r as short fon:C(r,1) whenc(r,1) holds always true, and we
omit roles for quantified principal variables (i.e., we writin the body of a quantifica-
tion oni:C(r,r) or 1:B(r)). The writing of types is simplified in a similar way.

A process ignitial if it does not contain free variables and runtime syntax.

To sum up, the syntax of our calculus differs from that of [8t the following
features:
1. we distinguish services and sessions, allowing mulipisions for a single service;
2. we associate histories with principals participatingenvices;
3. we associate acceptance conditions with services, ialipthem to filter out “bad”
principals;
4. we associate policies with principals, allowing themdnja service only if the
reputation of the other principals already present in theice satisfies the policies;



5. we add conditions to quantifications, allowing a partcipto interact only with
selected partners;

6. we offer a choice primitive, allowing a participant to cise one of the best principals
(according to some specified criterion) among those plagigigen role in a session.

4 Semantics

As usual, the operational semantics is defined modulo atatalequivalences. We
assume the standard structural rules for processes [1&}ngmie rules for buffers, we
have one for swapping independent messages, i.e., messalefifferent sender or
receiver. Moreover, the following rule
(vs)(a(s, &) |s:[]) =0

is useful to garbage collect ended sessions.
The reduction rules are given in Tables 4, 5, 6 and 7. We briefilgment on them.

Rule [Servicelnit] initialises a service by reducirggG, ¢). It creates germanent
session registr/0, 0,0, @] where the history set is empty, and two (initially null) gpsu
of offers are created: the first is the parallel compositibmalbstable offers, that is,
offers by participants who will be present in all sessionghaf service, unless they
behave “badly” or decide to leave the service. The secorgiparallel composition of
all one-shot offers, that is, offers by participants wha yain one session only of the
service and then leave it.

[Servicelnit]
a<Gy (p> — a[07 07 07 (p}

[StableJoin]
alid: r, ¢ (N)(y).{P} | a7, 01, Os, 0] — a|bid, 01 | [id : r](y).P, 02, @]
if €(F)s7 and(id:r) & 01| Or and@(s[id,r)
[OneShotJoin]
alid:r,¢()|(y).{P} | a[s#, O1, O, @] — a|#hid, O, 0> | [id : r](y).P, @]
if €(F)s7 and(id:r) & 01| Or and@(H[id,r)
[Sessionlnit]
a[st, Mg [id; - ri)(Vi)-B | Mjealid; :rjl(yj)-Pj, Mkex [1dk - 1 (V) -Pe, @] —
(vs)(afs {idi : rili € |UKY) | Mok P{siidi i) /yi} [ s:[]) |
al A Thici[1di 1 ri](yi)-R | Mjealid; :rj](y;)-Py.0,¢]
if Vi € l.@(o[idj,ri) andVj € J.~@(J[idj, 1)

[ServiceQuit]
quit(aid:r)|aJ, 01,02, — alH, 01\(id 1), 02, ¢

[SessionQuit]
quit(sid:r]) |a(s,ZU(id:r)) — a(s,P)

Table 4.Reduction rules |

Rules|StableJoin] and [OneShotJoin] perform the registration of a participant as
an offer associated with a service, in a stable or one-shatneapectively. The appli-



[Send]
slid:r]tEad v, W)Y | s B — st B-(id:rid 1 () (V)

[SendR]
slid:rt*{(id 1 v/ [{F)(v)) | N a7 U (id,h- (I{#){V),r)), 01,0, ¢ |
a7’ U(id,h),01,05,¢] | s: A s: B-(id:rid 11/ 1{F)(V))

[Receive]
slid:r]?2id it/ {li(A)(%).Plicl) | s: (id v/ id  n e (ANV)) - B — B{V/X} | s B
wherek € |

Table 5. Reduction rules Il

cant specifies: i) her identityd, ii) which roler she wants to play and iii) her policy,

i.e. which conditions£'(f) must be satisfied by the histories of the principals that are

already present. The join is successful if:

1. the histories associated with the principals alreadggmtin the service satisfy these
conditions, checked by’ (f).7#;

2. the participant is not already present as an offer, (i€l; r) ¢ &1 | 0>, where we
define:

(id:r)e 0 & 0= 0" | [id:r|(y).P for somed’, P

3. the principatid has a history satisfying the predicagdor roler, i.e., (27 [id, r)
holds.

In the resulting service registryd will have exactly one history since the update of a

history set with a new principal is given by:

H00U{(id,())} ifidg (1),

H otherwise

where2 () = {id | (id,h) € 5}.

Notice that, for preserving the order of communicationschannel occurring in
the bodies of the joins should occur in the processes whiltbmfdhe joins. This is
assured by the typing rules for the join constructors (ri&msJoIiN| and | OSDIN|
in Table 10). For example usiri@neShotJoin] and[Par| (see Table 7) we could get:

a[ids :ra)(y).{ s[idy:rq]!(ido:rp,true) };s[idy :rq]!(ida:r2,5) |
a[0,0,0, ] — s[idy : rq]!'(id2: r2,5) |
al{(id1,())},0,[idq : r3](y).g[idy : r1]!{idy : ra, true), ¢
In this way, the participantd; : r, could receive first 5 and thetrue from id; : ry,
instead of receiving firstrue and then 5, as expected.

In case of stable joins, we cannot allow free channels aiallexplained below
when rule[Sessionlnit] is discussed.

Notice that our double join mechanism, with possibly mudtipessions associated
with a single service, prevents new participants from irgaing in the middle of an
ongoing session. In this way, we avoid the need for a lockigyp as required in [8]
to assure safe synchronisation.

Rule [Sessionlnit] initiates a session by reducias2’, 1, 02, @). It creates a fresh
session nams, a session registrgi(s, &) and an empty message buffét nameds,
like the new session. The participant sétcontains:

Hbid = {

10



[Poll]
Miciglid : r]!{id; : r', YES) |
slid : r]?(id; : r', {YES.P{id;/1 },N0.0}) |
— MMjeasid:r]!(id; : r',N0O) |
s[id:r]?(id;: r’,{YES.O,N0.0}) |
a(s, 7) | al ', 01,02, 9|
where{id; |i€l}={id | (id' :r") € @ A C(r',id)# A id' ¢ ¥}
and{idj|jeJ} ={id'|(id :r') e Z A (=C(r',id ) v id € .¥)}
if 1 11’ occurs as subject iR

slid:r\v(i ¢ .7 :¢c(t',1)).{P} |
a(s, ) | al#, 01,05, ¢)

[PassivePoll]
SHd: V(1 g 7 1) (P | &ls ) — Mg saq.sPlid /1)
if 1 :r" occurs only as object iR
[Choice]
slid:r)'{id’ : r’,YES) |
slid : r]?(id’ : ', {YES.P{id'/1},N0.0}) |
— Mjeyslid:r]l(id; : r’,NO) |
s[id:r]?id;:r’,{YES.0,N0.0}) |
a(s, ) | al A, 01,02, 9]
where{idj | j€J} ={id" | (id" :r') € 2 A id" #id'}
if B(r') s & = id’

slid: r]3(1 :B(r")).{P} |
a(s, 2) | al#, 01,05, ¢)

[NoChoice]
slid:r]3(1 :B(r")).{P} | a(s, ) — a(s. #) if A(id' :r')e P

Table 6. Reduction rules Il

1. the identities and roles of all the offersdn; whose histories satisfy;

2. the identities and roles of all the offers é&rp. We do not check the reputations of
participants in, since they were good at the moment of the service join aneéthes
participants may be active for one session only.

The new session activates the offergin| ¢, listed in & by replacings[id : r] for the
private channel of the offer with identityd and roler. The resulting session registry
does not have one-shot offers and it has the same stabls.dffete that iffid : r](y).P
is a stable offer with a good history, then we @ts[id : r]/y} for all s created by
reducing the service registry. Therefore, in order to presehannel linearity, our type
system requires thatis the only free channel iR (see rulel STAJOIN | in Table 10).
Rules[ServiceQuit] and[SessionQuit] allow a participant to leave a service or a ses-
sion, respectively. When quitting a service, the partictpa cancelled from the stable
offers (if among them), but she remains in the session méggsivhen present. When
quitting a session, the participant is cancelled from tlssisa registry.
In both cases the participant’s history remains in the serxégistry. The cancella-
tion from the stable offers is defined by:

o\(id: 1) o' if 0=0"|[id:r](y).P for some&’, P
ia. =
¢ otherwise

Rule [Send] describes the standard asynchronous send, implementadtingghe
message in the message buffer

Rule[SendR] describes the asynchronous send of a relevant messagé, it be
registered in the history of the sender. Again, the messapatiin the message buffer

11



s. The intention of recording the message sent is expressttblprogrammer by using
the symbol ?. The historyh of principalid is extended by the pait(.#)(v),r).

Rule [Receive] specifies the reception of a matching message from the baffer
the selection of the corresponding continuation.

The most subtle rules are those for the poll and choice opsrdefore examining
these rules in detail, we start with some observations. Rictethat, in a global type,
each communication occurs between two participants ofdtma f: r andi’ : r’, whose
principal variables andi’ are both quantified, either universally or existentiallyur-
versal quantification on in role r may either be simple, as in [8], @onditional, i.e.,
controlled by a conditiog(r, 1) on the history of, which will hold only for some of the
session participants (possibly none). Its effect is to spiavparallel all participants sat-
isfying that condition. An existential quantification oim roler is always conditional,
i.e., guided by some criterid(r) on the history of . Its effect is to spawn exactly one
participant among those best satisfying that criterioanyf. Now, if both the principal
variablesi andi’ are conditionally quantified, this means that each role sepsome
condition on the other, and hence some potential intenastietween the two - possibly
all - should be filtered out. Only the “good pairs” of partiaigs, where each partner
satisfies the condition required by the other, should bevaktbto interact. Now, the fact
that a condition is satisfied by a participant can only be kbeéby the partner requiring
that condition. Hence a cross-checking is necessary. oreson, in the rules for poll
and choice, each participant sends a mes3&g¢o all participants that are “good” in
her view (because they comply with her policy) and a mes¥ag® all participants
that are “bad”. Symmetrically, she waits for eith#®s or NO from both good and bad
participants. For example, suppose thatindb2 are the onlygoldBuyers in sessiors,
and thab1 is akeen goldBuyer andb2 is not. In this case, goldSdller s1 who wants
to interact with allkeen goldBuyers will sendYES to b1, NO to b2 and wait for either
YES or NO from bothb1 andb2. The interaction betweest andb1 will start only if
s1 receivesYES from b1. For this reason, the bod¥of the poll withb1 replaced fon
must be guarded by the receptiony@s from b1.

UsinggB andgSas short folgoldBuyer andgoldSeller we get:

s[s1:g9!(b1:gB,YES) |
S[s1:99?(b1: 9B, {YES.P{b1/1},N0.0O}) |
s[s1:g9!(b2: gB,NO) |
s[s1:99?(b2: gB, {YES.O,N0.0})
For instance, ifo1 only wants to interact witlfast goldSellers, ands1 is notfast,
thenb1 will reply NO and the interaction will not take place.

This discussion explains the “agreement protocol” in thieiotion rule[Poll]. How-
ever, there is a further subtlety to take into account. Notiat a quantified principal
variabler may be sent in the content of a message, as part of the¢' séks explained
in [8], this is essential to avoid ambiguity in the routingméssages. A paradigmatic
example is a forwarder:

Vip:r.Vi1p:C(rg,12).011 — 12 0K;V 131 C'(r3,13).12 — 13 0K{I1)

§[s1:g9V(! : keen(gB,1).{P} —

If the message sent by would not contain, and there would be more than one princi-
pal in rolery, then the participants in rokg could not predict the number of messages

12



they should receive, which is; x ny, wheren; is the number of principals in rolg
andn; is the number of principals in role satisfying conditiorc(rz, 12).

Now, we want to argue that if a principal identifier is traned in a message inside
the body of a universal quantification, then this quantifisatannot be conditional.
Indeed, since such a quantification would occur both in theisg and in the receiving
process, and the history of the transmitted principal cablahge between the time of
sending and the time of receiving, a mismatch could arishdfquantification were
allowed to be conditional, thus invalidating the propeommunication safety. For
example, ifbl : buyer sends tosi : seller all the names oteliable couriers, and
cl:courier is reliable whenbl sends the message, but no mesd iable when
s1 receives it, then the message would remain forever in thieibiéor this reason the
typing rules of Section 5 guarantee that all principal Valga which occur in messages
are universally quantified without conditions.

To formalise these concepts, it is useful to distinguishtthe ways in which a
principal variabla may occur in a proced$a We say that occurs inP:

— assubject, if for some roler, P contains a subprocess! (1 :r,—(—)(—))— or a
subprocess-?2(i 1 r,{—(—)(—).—});

— asobject, if P contains a subprocesd*(—,—(.#)(—)) such that € ., or a sub-
process—?(—,{— (%) (—).— }iel) such that € .4 for somei € .

Clearly, the cross-checking described above is sensitijeifotne quantified prin-
cipal variable occurs as subject in the body of the quantifinaThis is always true
for well-typed processes in the case of existential quaatifin. For this reason, in rule
[Choice] participants[id : r] sendsYES to a principal of£? playing roler’ and having
one of the best histories according to the criterdr’), andNO to all the remaining
principals of 22 playing roler’, and then she waits faiES or NO from all of them. Rule
[NoChoice] is used when there is no principal in rale

Similarly, if the quantified principal variable occurs adct in rule[Poll], par-
ticipants[id : r] sendsYES or NO to all principals ofZ? playing roler’, according to
whether their histories satisfy the conditiofr’, 1) or not, and waits fo¥ES or NO from
all of them. Instead, if only occurs as an object in the body of an universal quantifi-
cation, we apply rul¢PassivePoll], which simply spawns in parallel copies of the body
with identifiers replaced for the principal variable, as8 [

A last observation is that a quantification of a participahick does not occur in
the body is useless and for this reason our type system doefowe it.

In the contextual rulgPar] the evaluation contexts are defined by:

IF—T] [If —F
if true then Pelse Q — P if false then Pelse Q — Q
[Par] [Congr]
PIQ—PI|Q P=P —Q'=Q
sP1Q—&P]IQ P—Q

Table 7.Reduction rules IV

13



Ex=[-]1€|IP|&P|(va:G)& | (ve)& | slid:r]t*(id : r',I{F)&))
| if & thenPelseP|&Ae|VAE | ...
We assume that bound name<irand free names i@ are disjoint in rulgPar]. Notice
that the standard contextual rule:
P—P
EP] — &[P]
is derived from rule$Par] and[Congr].

5 Typing

5.1 Types

The syntax of global and local types is given in Table 3. Théxmavelty with respect
to [8] is the addition of the existential quantification. Mower, our universal quantifi-
cation is different, as our polling construct does not atedipprincipals in a certain
role, but only the ones verifying a given condition basedhmirthistory. Therefore, we
concentrate on these two kinds of global and local types efedt the reader to [8] for
the other kinds.

The projection from global types to local types is definedg8] but for the case
of quantifiers, which is given in Table 8.

Vi g 7:c(r1).G) I (id:r)=G{id/t} [ (id:r) | (VI € FU{id}:C(r,1).G) | (id:r)
if id¢ .7
Vi g Z:c(r1).G) | (id:r)=Vi g7 :C(r1).G(id:r)ifr' £roride .¥
(F1:B(r).G) [ (id:r)=G{id/1} [ (id:r)
(31:B(r).G) [ (id:r')=31:B(r).G [ (id:r') if r' £r

Table 8. Projection of quantified global types

Well-formed global types must satisfy all conditions giverj8], i.e., they must be
syntactically correct, projectable and linear.

5.2 Typing rules

As usual, to type sessions we use a session environmengdangr byA, which
associates local types with channels, as well as a standeirdement, ranged over by

+-eg:bool (i=1,2)

|BooL|
I + true,false : bool I+e; Ve : bool LOR]
res r-s t1:rel
—— |PSH |PSI| [PSV]
r-o r+.7u{id} r=sufi}
r:refl
— [PA] |PaV |
rHid:r FEr:r

Table 9. Typing rules for expressions and participants

14



A end rX:AFijgP>A

— |RVAR]
— |Ni| _ L —  [Rec]
[ Fig0>A [X:AFia X>A I i UX.P>A

Frui(G) IkigP>y:Gl(id:r)
[ FiqUlid:r, g (F)(y).{P}>0

| STAJOIN]

FFu:(G) rItigP>Ay:Gl(id:r) ns(A)
I igu[id:r,2(M)](y){P}>A

|OSDIN]|

A end A:end

| SERQUIT| | SESQUIT|
I,a:(G)tFiqquit(a,id:r)>A [ Fiq quit(c)>A,c:end

F=p r=Js rre§ [IkFigP>Ac:T jel
I Fiac™(p1j(#)(€);Pe>A,c:t*(p {li(A)S) - Titier)
Fr'ep re.4 rx:SFiaP>ACc: T Viel
I Fia c(p, {1i (A1) (%).R}ier) > A, ¢ 2p, {li (H)(S) Ti}ier)
F=p r=J rkFiaPsAcCT jel
I g €(p,1(F)(c));PA,c:"(p, {li (A)(T). Ti}icar), "= T

| VSEND|

[VRcv|

| CSEND]

rep re4 FaPoACc:T,x:T Viel
I Fia (P, {Ii{4) ()R }Yicr) > A, ¢ 2p, {li (A)(T). Tiier)
F:rkigPec: T ubi(T,1)Anoo(T,1)
MgV g 7:c(r)){Pt>c:Vig.7:c(r).T

|CRcv|

|PoLL |

Fa:irkigPoc: T ubi(T,1)
MgV g 7)) {Pt>c:Vig 71T

|POLLALL|

FirkigPc: T sub(T,1)Anoo(T,1)

|CHOICE]
I Fiqac3(1:B(r)){P}>c:31:B(r).T

I'}—idP1>A1 Fl—idP2|>A2 I +e: bool I—'_idP1I>A r}_idPZDA
[SEQ] LIF]
[ia PP > A1 47 [tigif ethen P else R>A

Mg Pi>Ay T EigPo>4p ra:(GyFiaP>A4A
[PAR;q] |RESia)
[FiaPL P4y | 4 [Fig (va:G)P>A

Table 10.Type systent-iq4

15



e P>A rra:(G)

[INOid] ————— [INIT]
r-PA r-a(G,o)>0
Fr-P>4A; TFR>A [a: (G FP>A
PAR|] —— | RES|
FEPL P4 |4 I+ (va:GP>A

Table 11.Type systent-

I, which associates sorts with value variables, global seitts service names, roles

with principal variables, and session environments witttpss variables.
A:=0|c:T F2=0|r,x:sla:(G) |r,i:r|r,X:A

Table 9 gives the typing rules for expressions and partitgaaken from [8].

Our typing for processes assures that the joins and quitgaélifferent principals
cannot besequentialised. This condition means that if there is an order among the ac-
tions of different principals, this must be made explica $bme communications, and
should not be hidden by a sequentialisation (for instancthe example of Section 2,
we want to allow the same principal to perform some actioss &is aseller and then
as agoldSeller, but we do not want the actions of principal to depend on the actions
of principals1, without informing them both).

There are two kinds of typing judgments for processes. Th&t fitmeral judgment
isl P> A: it says that under the assumptiongirthe channels in the proceBdave
the local types prescribed . The judgment ;4 P> A assures also that is the
only principal occurring irP. This is used to guarantee the condition discussed above.

Table 10 contains the rules for the systera, which we briefly comment.

The session environments f@i(rule | NIL |) can only contain the typesand end:
this is enforced by the premige: end, which means that all types occurringdrare
eithere or end. Ruleg RVAR | and| REC] for recursion are standard.

As usual, ruled StaJoIN| and |[OSDIN| check that the local type of the partic-
ipant channel coincides with the projection of the globgletyfor the required role.
Moreover, to type a stable service join we require that th#igigant channel is the
only channel in the body of the join. This is necessary in ptdassure that the appli-
cation of rule[SessionlInit] preserves the linearity of channels, see page 11. Peculiar t
our system is also the condition in rul®SDIN |, stating that all channels bytin P
have types terminating by end or by a recursion variable.réason for this restriction
is to prevent channels i from being used in processes followiRdsee the discussion
at page 10). To this aim we define the prediaat€l ), letting T range ovef?,!*}:

ns(t(p, {li{(A4)(Ui) Titier)) = Aierns(Ti)  ns(T | T') =ns(T) Ans(T')
ns(Vi1' ¢ #:C(r,t').T)=ns(3 1 :B(r).T) =ns(ux.T) =ns(T"; T) =ns(T)
ns(X) =ns(end = true ns(€)=false
We then extend this predicate to session environmentstydets (A) = Actcans(T).

A participant may ask to quit a service (rul8ErQuIT]) at any point. She will
cease to take part in the service starting from the first sesnitiated after her with-
drawal. Instead, ruléSESQUIT | prescribes that a session may be quit only after the
participant has terminated her task.

16



true if p=1:r for somer or
ubi (H(p, {li (A) (Ui} Ti}icr), 1) = 1€ Zforalliel
false otherwise
ubi(Vi' € .7 :C(r,1’).T, 1) =ubi(3 1" :B(r).T,1) = ubi(ux.T,1) =ubi(T,1)
ubi(T | T/,1) =ubi(T ; T',1) = ubi(T,1) Aubi(T’,1)
ubi(X,1) =ubi(g,1) =ubi(end!) = true
true if1 ¢ #foralliel,
moo(H(p, (S (L) Tikier) 1) = false otherwise
noo(V 1’ ¢ .7 :C(r,1').T,1) =noo(3 1" : B(r).T,1) = noo(Ux.T,1) =noo(T,1)
noo(T | T/,1) =noo(T ; T',1) =noo(T,1) Anoo(T’,1)
noo(X,1) =noo(g,1) =noo(end 1) = true
true if p=1:r for somer,
sub(T(P, 1 (S5 () Titien), ) = false otherwise
sub(V1' & .7 :C(rt").T,1) =sub(3 1’ : B(r).T,1) = sub(ux.T,1) = sub(T,1)
sub(T | T/,1) = sub(T ; T',1) = sub(T,1) Vsub(T',1)
sub(X, 1) = sub(&,1) = sub(end () = false

Table 12.The predicateabi, noo andsub

The system types communications on charmelith participantp allowing dif-
ferent labels, sequences of participants, values andre@tions (rules VSEND| and
|[VRcvV]). Also the exchange of channels can be typed (rU@&SenD| and|CRcV |).
Notice that the type system does not allow sending a chanitiel tsince there is no
meaning in putting a channel name in the history of a priricidareover, the session
names occurring in channels are restricted and therefoceder to do that, we should
enlarge the scope of these restrictions, making it impéesgituse the current structural
equivalence to cancel exhausted sessions.

The typing of a quantification requires a unique channelésission environment
(rules|PoLL |, |PoLLALL | and| CHOICE]). As argued in the previous section, partic-
ipants that occur in messages (i.e., that occur as objegmtesses) should be uni-
versally quantified without conditions on their histori®@sere is another condition that
must be satisfied in order to avoid message ambiguity: fjgeitits who are universally
quantified should appear (either as a subject or as an olijeetlery communication
occurring in the body of the quantification. In order to chéol above conditions, it
is handy to define three predicates on local types and pehegriables. The predicate
ubi(T,1) is true if all selections/branchings i containi. The predicateoo(T,1) is
true if no selection/branching i hasi as object. The predicateab(T,1) is true if
there is at least one selection/branching ihaving: as subject. More precisely, letting
T range ovef?,!1*}, these predicates are defined by the clauses in Table 12.

To type the poll (rulegPoLL | and|PoOLLALL ]) in such a way that we avoid am-
biguous messages, it is necessary thatcurs in all selections/branchingsdf con-
dition assured bybi(T,). Moreover, if the poll is conditional (rulePoLL |), thent
cannot occur as an objectTh For this reason we requieso(T,) too.

In rule | CHOICE] sub(T,1) assures thatoccurs at least once as a subjectirand
noo(T, 1) assures thatdoes not occur as an objectTn

17



r=pPesA r+=Ar>end
——— |SESRES] ———— | EBUFF|
= (vs)P>A reEs:[>A

r=PoAy:T 0101 'O A
OFF | PAROFF|

I +[id:r)(y).P>A F+01| G0y By

r-s:4A tv:U

|SMESS|
MEs:(id:nid r ,1{F)V) - B {gid:r]1Ed v, (2 U} A

[Trh 17005 |SERREG| — -~ | SESREG|
,—Fa[%7ﬁl7027(p]>Al‘A2 rlia<s7=@>|>0

Table 13.Typing rules for runtime processes

For typing the sequential composition of processes, in [8EQ| we use the se-
guential composition of session environments defined by:

L[4 =A\9(A)YUA'\ D2(A)U{c:Ac);A(c)|ce 2(A)n2(A")}

Rule |PAR;i4 | (as well as ruld Par | in Table 11) uses the following parallel com-
position of session environments:

A|A =A\29(A)UA'\P(A)U{c:(A(c) |A'(c))|ce 2(A)n2(A")}

Notice that a service initialisation cannot be sequersgalj since it cannot be typed
in the systent-;4, but only in the systeri (rule [ INIT] in Table 11).

The rules of Tables 10 and 11 are enough for typing user psesesor typing
runtime processes, we extend the syntax of local typesmetisage types of the shape
I{id: r,1{#)(U)) and use all the rules in the tables above plus the rules oETHR
We notice that the rules for typing the registries are simgblan the corresponding rule
in [8], thanks to our distinction between services and sessi

6 Properties

Our calculus enjoys type safety, which is obtained from ttogprties of subject reduc-
tion (Subsection 6.1) and progress (Subsection 6.2). Merethere is an interesting
relation between the local types and the possible futuretatipns (Subsection 6.3).

6.1 Subject Reduction

In order to state the subject reduction property, we neectimel a reduction relation
on session environments, which describes how these eméots evolve during pro-
cess execution. Table 14 gives this relation, which mintiesgending and receiving
of values and channels. The sets of identifiers in the redluctiles for quantifiers are
arbitrary. In this table, we consider typesirmodulo an equivalence relation reflecting
the equivalence relation on buffers, and we define type gtsité as:

T o=-11Z|T|T|T|T;T
We need to start from a well-typed initial process in ordeassure that participants

respect the prescriptions of some global type. We say thabe@epsP is reachable if
there is a well-typed initial proce$® such thafy —* &'[P].

18



{gid:r] P Ed v {{(F)Up).Titie)} = {s[id:r] P Ed v/ Ik (F)Uk)); T} kel
{sfid: ] (1’ (A (Ui, i’ 1] 2(ad s {1 ()W) Thien) } =
{slid:r]: €, s[id : r']: Ty} kel
{did:r]:Vig.7:c(r',1).T}=
{slid:r]: Mici!(id; : r',YES); 2(id; : r',{YES.T{id;/1 },NO.€}) |
Mjest(id; : r'/,NO); 2(id; : ', {YES.,NO.£} }
whereVi € UJ.id; ¢ &
{did:r]:Vi ¢ .7 :v'T}={did:r]: MaT{idi/1}} whereVi € |.id; ¢ ¥
{glid:r]: 31 :B(r").T}=  {gid:r]:1(id :r',YES); Xid’ :r',{YES.T{id'/1},NO.€}) |
Mjest(id; : r'/,NO); 2(id; : ', {YES.,NO.€} }
{slid:r]: T}UA = {slid:r]: T'}UA’ implies
{did:r]: F[T]}UA = {s[id:r]: T[T'|}ua’
A= A'impliesaud” = A'uA”

Table 14.Reduction of session environments

As usual for session calculi, the reduction of processessgige to the reduction of
session environments.

Theorem 1. If Pisareachableprocessand I - Pr>A and P —* P/, then " - P > A/
for some A’ suchthat A =* A'.

6.2 Communication Safety and Progress

As usual, communication safety assures that every recuiilefind an appropriate
message in the buffer and, conversely, that every messapge buffer will be fetched
by a matching receiver.

Definition 1. A process P iscommunication safd:
—P=&[gid : r]?(dd : v/, {li{#)(%).B tier )] implies that

&0 —* &'[s: (id 1/ id  r I (FA) (V) - B] withk € [;
—P=¢&Js: (id :r',id: Ik (H)(v)) - B] impliesthat

&0 —* &'[glid : r]?(id ' {li () (%).Rtie)] withk € 1.

Itis well known [1] that interleaving different servicesrcdestroy communication
safety also in sessions without roles. In the present asdalso nested joins can destroy
communication safety, since joins can fail when one of tlgiired conditions is not
satisfied. So we will only consider processes that use aesseglice and which can be
typed with a derivation where:

1. session environments which appear in premises or caonkisf the systent;4
contain at most one association between a local type andmeha

2.in rule | SEQ], if the session environment of the first premise is emptyn tte
session environment of the second premise must be empty too.

The first condition assures that communications on two wffechannels can only oc-

cur in two parallel threads. The second condition forbidstee joins, since the first

19



condition assures that the session environments for tyjoing are empty. It allows
instead sequentialisation of joins (when both sessiorrenmients are empty), sequen-
tialisation of communications on the same channel (wheh bession environments
assign types to this channel), and communications on ommeth#&llowed by one join
(when the first session environment assigns a type to thimehand the second session
environment is empty). We denote by such kind of derivations.

The calculus of [8] requires a locking/unlocking mechanisransure that a service
is “well-locked”, i.e., that it does not allow a principal jmin an ongoing session. Our
distinction between services and sessions makes all ssrwiell-locked without having
to synchronise joins, as hinted previously.

Lemma 1. Let P be an initial process not containing restrictions. If a: (G) H* P> 0
and P —* P/, then P’ is communication safe.

In session calculi, progress does not only ask for the alesefrgervice interleaving,
but also for the presence of all required participants. Jtd8, progress is assured under
the condition that the needed principals can join. In oucdals:

— polls can properly reduce also when no principal satisfieseluired condition;

— choices always reduce.
This means that we can avoid to add processes in parallel défexing progress.

The most important peculiarities of our calculus are:

— service registries are permanent and they can always régutee [Sessionlnit];

— service joins can require conditions which are not satisfied
The standing availability of ruléessionlnit] implies that reducibility by this rule can-
not be considered to assure progress.

Definition 2. A process P hasthe progress propertif P —* P’ implies that either P’
does not contain runtime channels, or there exists P” such that P — P” using arule
different from [SessionInit] and P” has the progress property.

According to this definition a process with progress can cedo a parallel composi-
tion of service registers and service joins with unsatisfiedditions, which can only
reduce by ruldSessionlinit] to itself (modulo structural equivalence), since the gener
ated sessions have no participants and so they can be gadikgted.

The progress proof essentially uses communication safetithe observation that,
starting from an initial process with a single service, thguired registries and named
buffers will be present for sure.

Theorem 2. Let P = a(G, @) | P, be an initial process not containing restrictions. |f
a: (G) +* P> 0, then P has the progress property.

6.3 Local Types for Reputations

We now discuss how to take advantage from local types to grrpdssible future repu-
tations of principals. To this end, it is handy to define raahuns which activate at most
one session for each service.

20



Definition 3. Areductionisone-sessioif rule [Sessionlnit] can be applied to a session
registry for service a only if the current process does not contain a(s, 42) for some's,
P.

Note that in [8] a service contains only one session, so diicgons are one-session.

Let h be the history of a principaild at the end of the execution of a session in a
one-session reduction. Then, in the next session for the samvice, principald is
allowed to play a role only if @(h,r).

The local type of a role in a service, together with the nundfgparticipants in
a session, allows us to compute an upper bound to the numbmrcofrences of a
fixed label in the possible histories - of principals playithgt role - which can be
generated by executing the session, provided the labelrdmexcur under recursion.
More precisely, ifn; is the number of principals playing rotein the session, then the
number of occurrences of lablein the histories of a role with local typE is bounded
by #(T,I) defined by:

max{#(Tig,|) + L#T, 1) [i 1\ {io}} ifl=1,&

#(1°(p, {li(A) (Ui) Ti}ier),1) io€l,
max{#(T;,l) |i e} otherwise

#((p, {1i(#) (Vi) Titier), 1) = max{#Ti,I) [iel}  #uxT1) =0

#2(p, {li(A)(Ui) Titier), 1) = max{#Ti,1) [ie 1} #x1) =0

#(V1 ¢f c(r,1).T,I) =#T,1) xn #(e,l) =0

#31:B(r).T,I) =#T,l) #endl) =0

(T1|Tz, ) =#T0,1)+#(T2,1)  #(Ta; To,l) = #(To, 1) +#(T2,1)

We can exploit this information to choogebounding the number of occurrences of
labell in (part of) the histories, when using one-session rednctias enough to set
@(h,r) tom+#(T,l) <M, wheremis the number of occurrencesloh the considered
part ofh, typeT is the local type of andM is the desired bound.

For example, we can modify thrgoldBuyer of Figure 3 by recording in her history
the labelBUY andAST. The local typeT of thegoldBuyer then contains

I*(1 : goldeller, {BUY....,AST.....})

and #T,AST)=1. Therefore, if we want to limit to 3 the number of assistanalls in
the last 20 transitions, the joining condition for thaldBuyer can hold true only if in
the last 19 transitions the numberiHT is less than or equal to 2.

7 Conclusions and related work

In this paper, we studied a role-based multiparty sessilmoics that takes into account
the history of principals, in order to measure their repataand regulate accordingly
their participation in future conversations. Histories dynamically built by collecting
actions performed by principals, in such a way that, if aipgrnt “behaves badly” in
a service, this will hinder her further attempts to join tleevice with particular roles
and her possibilities to be chosen by other participantsyall or a choice operation.

Since in our setting the reputation associated with a padds objective and not
subjective (i.e., it is based on real interactions and nobther principals’ opinions),
one of the major problems arising in reputation systamfir ratings, is avoided.

21



We managed to model the regulation of a principal's behavilepending on her
reputation: in Section 2, we showed how a principal’s “balddséour” may restrict the
range of session roles offered by the service to that prahciphis is our main result.

However, our solution still suffers from some limitatioms particular we can only
type a limited form of delegation, the same as in [8], thatsdoet allow general sce-
narios to be modelled. The limitation is due to the fact tleasgn environments in the
typing rules for poll and choice must contain exactly onencted, while the session en-
vironments for typing delegation have at least two chanriéisrefore it is impossible
to create a channel to be delegated before a poll or a choimeofily way out is to
create and discharge it afterwards, unused, by means af @ight before sending it.

Session calculi were proposed in the mid-nineties to modelmunication proto-
cols among concurrent and mobile processes. We refer tnmf®]®7] for overviews.
Since the original proposal of [12], such calculi have bedersively studied and en-
riched with various features. Initially dealing with biygsrotocols (often representing
an interaction between a user and a server), session daémdibeen subsequently ex-
tended tamultiparty sessions [13], involving several principals interactimgam equal
footing. More recently, multiparty sessions have beenreded with design by contracts
[2], dependent types for parametricity [18], upper boundbuffer sizes [7], exception
handling [5], access and information flow control [4] and ribors [3]. The present pa-
per mainly builds on theole-based multiparty calculus of [8], as previously discussed.

The study and formalisation afputation has similarly attracted a great deal of
interest in recent years. We refer to existing surveys [45]1] for a general introduc-
tion toreputation systems. It is interesting to notice that the reputation system eissed
with our calculus can be classified, according to [15], asrammbabilistic experience-
based system, where principals are evaluated by inspebiighistory, which is built
by recording their past interaction with other principals.

As itis grounded on tha-calculus, our proposal may be directly compared with the
Calculus for Trust Managemenit(m) [6], a process calculus for modelling trust based
systems. Principals iatm have two components: the protocol and the policy. Protocols
arerr-calculus style processes. Policies are made of two pagg formulae (similar
to our single conditions), which describe the rules for ngkdecisions on the basis
of past experiences; experiences (similar to our histhrisich collect the messages
exchanged in interactions between principals. The treatroi[6] differs from ours
in that policies and histories are local and associated ®edith principal, while we
store them in a registry which is global for all participaimtsa given service. In our
calculus, histories are made of sent values and may be athéskboth services and
other principals involved in the same servicecitm, histories are made of received
values and are checked locally before granting access &b tesources. Moreover,
in ctm the focus is on barbed equivalences among principals, widleare mainly
concerned with supplying a type system to check commupicatfety.

Acknowledgments. We would like to thank Nobuko Yoshida and Pierre-Malo Demigl
for useful comments.

22



References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-@ncaglini, and N. Yoshida.
Global Progress in Dynamically Interleaved Multiparty Sless. In F. v. Breugel and
M. Chechik, editorsProc. CONCUR 08, volume 5201 of.NCS pages 418-433. Springer,
2008.

. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A Theory @sign-by-Contract for Dis-

tributed Multiparty Interactions. In P. Gastin and F. Lagsimie, editorsProc. CONCUR' 10,
volume 6269 oLNCS, pages 162-176. Springer, 2010.

. S. Capecchi, I. Castellani, and M. Dezani-Ciancaglimfodmation Flow Safety in Multi-

party Sessions. In B. Luttik and F. Valencia, editdXPRESS 11, volume 64 ofEPTCS,
pages 16-31, 2011.

. S. Capecchi, I. Castellani, M. Dezani Ciancaglini, an@R@zk. Session Types for Access

and Information Flow Control. In P. Gastin and F. Laroussieiditors Proc. CONCUR' 10,
volume 6269 oLNCS, pages 237-252. Springer, 2010.

. S. Capecchi, E. Giachino, and N. Yoshida. Global Escap®lutiiparty Sessions. In

K. Lodaya and M. Mahajan, editorBroc. FSTTCS 10, volume 8 ofLIPIcs, pages 338-351.
Schloss Dagstuhl-Leibniz-Zentrum fir Informatik, 2010.

. M. Carbone, M. Nielsen, and V. Sassone. A Calculus of Mastagement. In K. Lodaya and

M. Mahajan, editorsProc. FSTTCS 04, volume 3328 olLNCS pages 161-173. Springer,
2004.

. P.-M. Deniélou and N. Yoshida. Buffered Communicatioralysis in Distributed Multiparty

Sessions. In P. Gastin and F. Laroussinie, edifena;. CONCUR' 10, volume 6269 of NCS,
pages 343-357. Springer, 2010.

. P.-M. Deniélou and N. Yoshida. Dynamic Multirole Sesslgpes. In M. Sagiv, editoRroc.

POPL'11, pages 435-446. ACM, 2011.

. M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions angsim Types: an Overview. In

C. Laneve and J. Su, editoRoc. WS-FM’ 09, volume 6194 of NCS, pages 1-28. Springer,
2010.

E. Giachino, M. Sackman, S. Drossopoulou, and S. EiséntfBoftly Safely Spoken: Role
Playing for Session Types. Presente®afCES’ 09, 2009.

K. Hoffman, D. Zage, and C. Nita-Rotaru. A Survey of Akand Defence Techniques for
Reputation System#CM Computing Surveys, 42:1:1-1:31, 2009.

K. Honda. Types for Dyadic Interaction. In E. Best, edifsoc. CONCUR' 93, volume 715
of LNCS pages 509-523. Springer, 1993.

K. Honda, N. Yoshida, and M. Carbone. Multiparty Asyrtous Session Types. In G. C.
Necula and P. Wadler, editofBoc. POPL’ 08, pages 273—-284. ACM Press, 2008.

A. Jgsang and J. Golbeck. Challenges for Robust TrusRepdtation Systems. In T. Dim-
itrakos and F. Martinelli, editor®roc. STM’ 09, volume 244 ofENTCS. Elsevier, 2009.

K. Krukow, M. Nielsen, and V. Sassone. Trust Models induitious Computing.Philo-
sophical Transactions of the Royal Society, 366:3781-3793, 2008.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. CUP, 1999.

V. T. Vasconcelos. Sessions, from Types to Programmangguages. EATCS Bulletin,
103:53-73, 2011.

N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Pargenised Multiparty Session Types.
In L. Ong, editor,Proc. FOSSACS 10, volume 6014 ofLNCS pages 128-145. Springer,
2010.

23



