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Abstract. We extend role-based multiparty sessions with reputationsand poli-
cies associated with principals. The reputation associated with a principal in a
service is built by collecting her relevant behaviour as a participant in sessions of
the service. The service checks the reputation of principals before allowing them
to take part in a session, also according to the role they wantto play. Furthermore,
principals can declare policies that must be fulfilled by theother participants of
the same service. These policies are used by principals to check the reputation of
the current participants and to decide whether or not to jointhe service. We illus-
trate the use of our approach with an example describing a real-world protocol.
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1 Introduction

Building on [8] and [10], where flexible role-based multiparty sessions were introduced,
we address the question of accomodating dynamic interaction policies in sessions with
multiple roles and a varying number of participants for eachrole, taking into account
the histories of principals. Thehistory of a principal is a trace of its past interactions
with other principals within service sessions. Aservice is an abstraction for a multiparty
interaction point, where partners play predefined roles andbehave according to a precise
communication protocol. Asession is an activation of a service. Histories are used to
build principals’reputations. For each service, only the principal’s history relative to
that service is significant for her reputation in the service. This reputation is checked
against the service access policy, before that principal isadmitted in a new session of
the service with a given role. It is also checked by other potential participants before
they engage in a session involving that principal.

Our aim is to provide an enriched role-based session calculus able to deal with prin-
cipals’ reputations, together with a type system ensuring that classical session proper-
ties, such as communication safety and progress, continue to hold in the presence of
these new features. While borrowing most constructs and typing rules from [8], and
notably thepolling operator that allows a principal to concurrently interact with all
principals playing a given role in an ongoing session, our calculus departs from [8] in
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that it distinguishes between the notion ofservice and that ofsession, allowing multiple
sessions for a single service. We believe this may help modelling real-world scenarios.
Think, for example, of an online shop, where there are principals who play the role of
sellers and principals who play the role of buyers (notice that each principal may play
both roles). The online shop is a service with two roles, “seller” and “buyer”. These
two roles are of different nature. Sellers should in principle always be available for a
transaction with a buyer. Therefore they join the service ina stable way, in order to be
present for several successive sessions. We call this astable join. Buyers, instead, might
want to join a service only for a single session, to purchase aspecific item from some
seller. We call this aone-shot join. To fix ideas, one may view the initialisation of the
service as the start-up of the online shop, the stable join bya seller as the opening of
her activity in the online shop, the one-shot join by a buyer as her connection to the
online-shop site, the initialisation of a session as the start of an interaction among the
sellers and buyers which are currently present in the onlineshop.

Other points of departure of our calculus with respect to [8]have to do with the
introduction of histories. Thus, some constructs of [8] hadto be refined in order to
account for histories and reputations. For example, in our calculus there are two kinds
of sending constructs. The first, denoted !, is the standard message send, while the
second, denoted !•, represents arelevant message send, whose content must be stored
in the history of the sender. Moreover, we offer achoice primitive for selecting one
principal among the best ones for a given role (according to agiven policy), if any.

Histories are exploited at various stages of the interaction:

– at service join, to allow the service to select the principals who will take part in future
sessions and to allow a principal wishing to join the serviceto evaluate the reputation
of the current participants and proceed or not with the join accordingly;

– at session initiation, to allow the service to select among the stable participants those
who will take part in the session, by testing if they satisfy some condition;

– in a poll operation, to allow a participant to interact only with participants which
satisfy some condition;

– in a choice operation, to allow a participant to select one ofthe best participants
according to some criterion.

As regards the type system, the main novelties with respect to [8] are the addition
of an existential quantification for the choice operator, and a variation of the universal
quantification for the polling operator, as in our case polling does not collect all princi-
pals in a given role, but only those verifying some conditionbased on their reputations.

An interesting feature of our calculus is its ability to regulate a principals’ partic-
ipation in a service according to her reputation: if a principal behaves “badly” as a
participant in some service, this may result in a restriction of the possible session roles
offered by the service to that principal.

The paper is organized as follows. In Section 2 we introduce our approach by a
motivating example. In Sections 3 and 4 we present the syntaxand the semantics of our
calculus. Section 5 defines the type system. Section 6 establishes the properties of our
calculus. In Section 7 we draw some conclusions and discuss related work.
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2 Example

Let us take a closer look at the online shop example introduced in Section 1. At any
time, a buyer can choose among the current sellers accordingto some criterion, in order
to purchase a specific item. For instance, the buyer may ask for sellers who are fast in
delivering their products. This selection can be done by inspecting the past behaviour of
sellers, that is, their history, assuming that the shop records all histories in a dedicated
registry. The selected seller then sends to the buyer the price of the item. The buyer
sends back either a positive or a negative answer, represented by the labelsOK or KO,
which become part of the buyer history. In case of a positive answer, the seller sends to
the buyer the delivery time, which is recorded in the historyof the seller and is liable to
be tested in future interactions. In case of a negative answer, the transaction aborts.

In this scenario, there can be an arbitrary number of buyers and sellers, joining the
online shop dynamically (this join is subject to an acceptance condition imposed by the
service, and depending on the histories of the applicants).After a number of buyers and
sellers have joined the service, a shopping session can start, in which all the present buy-
ers and sellers may interact concurrently. Therefore, the online shop may be seen as the
concurrent execution of several buyer-seller conversations, each of which is abstractly
specified by theglobal type G of Figure 1. The global typeG starts with a universal
quantification over buyers, followed by an existential quantification over sellers satis-
fying the criterionfast. The former represents the spawning of a separate interaction
for each buyer, while the latter represents the choice of oneof the best sellers according
to the criterionfast, i.e. one of the fastest sellers (for this choice to be possible, we
assume that for each criterion, there exists an ordering on reputations parametrised on
this criterion). Hence, interactions only occur between a buyer and the selected fastest
seller, and each of these interactions proceeds in parallelwith the others.

For simplicity, we only consider send actions to be relevantfor the reputation here.
One may argue that this restriction is reasonable since the value of a message is pro-
duced by the sender and the receiver does not have any controlover it. Note however
that, in some practical cases, a received value could be relevant for the reputation of the
receiver (for instance, a notification from a bank could onlybe sent to trusted clients).

Buyers and sellers can participate in the online shop service in different ways. The
participation can be one-shot: usually buyers join the shopwhen they want to buy some
item and leave it when they have completed their purchase. Bycontrast, sellers are likely
to have a more stable presence. As long as they want to sell their products, they are part
of the service and they replicate their behaviour for each shopping session. However,
nothing prevents the shop to include stable buyers and one-shot sellers. In other words,
stability is a property of the join operation, not of the roles themselves.
Possible processes describing the buyer and the seller are given in Figure 2.

ProcessB describes a principalb1 who wants to join just one session of servicea,
playing the buyer role (b1 : buyer). Once the session starts,b1 asks (using channely)

G = ∀ ι : buyer.∃ι ′ : fast(seller). ι → ι ′〈Item〉;
ι ′ → ι〈Price〉;
ι →• ι ′{OK.ι ′ →• ι 〈Deliver〉; end,

KO.end}

Fig. 1. Global type for buyer-seller interaction
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B = a[b1 : buyer](y). { y∃(ι : fast(seller)). {y!〈ι ,item〉;y?〈ι ,(x).
if OK(x) then y!•〈ι ,OK〉;y?〈ι ,(x1).0〉

else y!•〈ι ,KO〉;0〉} }

S = a[s1 : seller](y). { y∀(ι : buyer).{ y?〈ι ,(x).y!〈ι ,price〉;
y?〈ι ,{OK.y!•〈ι ,deliver〉;0,

KO.0}〉〉} }

Fig. 2. Buyer and seller processes

for one of the fastest sellers. This is done via the choice constructy∃(ι : fast(seller)),
which chooses among the participants in a given role one of the best according to a
particular criterion. The selection over sellers is performed by inspecting their histories
(that is, their delivery times), sincea records them in a dedicated registry. After the
selection, the buyer sends a request for a specific item and waits for the price of the
item from the seller. Then, according to the price, she will answer eitherOK or KO: in
the first case, she expects one further input (the delivery time), while in the latter the
conversation ends immediately.

ProcessS describes a principals1 who wants to join the servicea in a stable way
playing the role of a seller (s1 : seller) (the act of joining a servicea in a stable way is
expressed bya, to distinguish it from the act of joininga only for one session). Once
the seller has joined the service, she waits for the request of an item from all the present
buyers. This is realised by the poll constructory∀(ι : buyer), which spawns in parallel a
copy of the seller for each buyer, where the variableι is replaced by the buyer identity.

Note that the send construct !• corresponds to the arrow→• in the global type and
represents a relevant send whose content must be stored in the history of the sender.

This example can be extended by adding two roles:goldBuyer andgoldSeller. Gold
buyers can decide whether to buy an item or to ask for assistance. Gold sellers offer
additional assistance and sell the same items with an extra cost to cover assistance.
Gold sellers may want to interact only with gold buyers who tend to respond positively
(i.e., who accepted the proposed price most of the time in their previous interactions),
qualified as keen gold buyers. Gold buyers must select eitherthe labelBUY or the label
AST to indicate the kind of interaction requested. If a gold buyer wants assistance, she
selects one of the fastest available gold seller and sends her anAST label to ask for help,
then specifies her problem and waits for the response. Figure3 gives the global type
G′ for gold buyers and gold sellers, starting with a universal quantification on buyers
satisfying the conditionkeen, and Figure 4 shows the incarnations of principalsb1 and
s1 as gold buyer and gold seller, respectively.

G′ = ∀ ι : keen(goldBuyer, ι).∃ι ′ : fast(goldSeller).ι → ι ′{ BUY. ι → ι ′〈Item〉;
ι ′ → ι〈Price〉;
ι →• ι ′{OK.
ι ′ →• ι 〈Deliver〉 ;end,

KO.end}
AST. ι → ι ′〈Problem〉;

ι ′ → ι〈Solution〉;end}

Fig. 3. Global type for gold buyer and gold seller interaction
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GB = a[b1 : goldBuyer](y). { y∃(ι : fast(goldSeller)).
{ if alright then y!〈ι ,BUY〉;y!〈ι ,item〉;y?〈ι ,(x).

if OK(x) then y!•〈ι ,OK〉;y?〈ι ,(x1).0〉
else y!•〈ι ,KO〉;0〉

else y!〈ι ,AST〉;y!〈ι ,problem〉;y?〈ι ,(x′).0〉} }

GS = a[s1 : goldSeller](y). { y∀(ι : keen(goldBuyer, ι)).
{ y?〈ι ,{BUY. y?〈ι ,(x).y!〈ι ,price〉;

y?〈ι ,{OK.y!•〈ι ,deliver〉;0,
KO.0}〉〉

AST.y?〈ι ,(x′).y!〈ι ,solution〉;0〉}〉} }

Fig. 4. Gold buyer and gold seller processes

Consider the following process, where the componentsB, S, GB, andGS are defined
in Figures 2 and 4:

a〈G | G′,rel〉 | B | S | GB | GS

Here processa〈G | G′,rel〉 represents a service with namea (the name of the online
shop), global typeG | G′ and join conditionrel. The global typesG andG′ are given in
Figures 1 and 3, respectively, and the conditionrel (standing for “reliable”) expresses
different requirements for the join of a principal in the different roles:
– any principal can join a session of the service as an ordinarybuyer or seller;

– only principals which have a long enough record of successful transactions can join
sessions as gold buyers and gold sellers.
We notice that even if we collect in the histories onlyOK/KO answers for buyers

and delivery times for sellers, this information is enough to check interesting proper-
ties. Indeed, histories are evaluated in different ways by the conditionskeen andfast
expressed by participants and by the conditionrel associated with servicea:
– rel checks the number of successful transactions of gold buyers, whilekeen checks

the percentage of successful transactions over the total number3;

– rel checks the total number of transactions completed by a gold seller (that is, the
number of values in her history, no matter whether single values are good or bad),
while fast checks the average time of delivery.
At runtime, the initialisation of a service will create a dedicated registry for record-

ing the relevant behaviour of principals, thus building up their history in the service.
In the first session, principalsb1 ands1 can only play the roles of buyer and seller,

respectively, so principalb1 can only buy, without requesting assistance. After some
successful sessionsb1 ands1 will be able to play the roles of gold buyer and gold seller
too. Then, principalb1 will have the possibility to ask for assistance.

After being promoted to gold buyer, a principal must keep up her reputation: only
gold buyers who continue to satisfy thekeen condition are allowed to interact with
gold sellers. After a “bad” behaviour, in order to play againthe role of a gold buyer, a
principal must rebuild herself a “good” reputation as a buyer.

The above system only includes one buyer-seller pair, and one gold buyer-seller pair.
In a more realistic scenario, there would be several participants for each role, differing
from the processesB, S, GB andGS only for the id (b1, s1) and the exchanged values.
3 Note that it is possible to compute the percentage of failed transactions only for buyers, and

not for sellers (because the labelOK/KO is sent by the buyer, and only received by the seller).
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3 Syntax
We assume the following sets:value variables, ranged over byx,y,z . . . , service names,
ranged over bya,b, . . . , principals, ranged over byid, id′, . . . , principal variables,
ranged over byι, ι ′, . . . , roles, ranged over byr,r′, . . . , sessions, ranged over bys,s′, . . . ,
andlabels, ranged over byl, l′, . . . .

The syntax of processes is given in Table 1. It uses the auxiliary definitions of Table
2 and the types of Table 3. The syntax occurring only at runtime appearsshaded.

As hinted in the previous section, participants can either join a service in astable
modality and be present in all the sessions of the service (which start after they join and
end before they leave), or join a service for exactly one session in aone-shot modality.

A new service is always opened by an initialiser of the forma〈G,φ〉, whereG
is a global type andφ is a mapping from histories and roles to truth values, repre-
senting the condition a principal must satisfy in order to beaccepted as a participant
with a given role in servicea. The initialisation of servicea creates a service registry
a[H ,O1,O2,φ ], where thehistory set H records the current mapping between princi-
pals and their histories,O1 andO2 are (initially empty) parallel compositions ofoffers,
representing the participants who joined the service in a stable or one-shot modality,
respectively.

Once the servicea has been initialised, principalid can join the service in roler
usinga[id : r,C (r̃)](x).{P} or a[id : r,C (r̃)](x).{P}, becoming respectively a stable or
a one-shot offer. The join is only allowed if the principalid does not already appear
with the same role among the current offers, and if the histories associated with the other
principals present in the service satisfy the set of conditionsC (r̃) expected byid, what
we call thepolicy of id. Moreover, the history of principalid in the service registry
must satisfy the acceptance conditionφ for the required role (in order to get started
and allow fresh participants, some conditions must be satisfied by the empty history).
Indeed, when a principal joins a service, her history is not necessarily empty, since she
could have already joined and quit the service before. For stable join, the acceptance
condition will be checked also at the start of each session. We call P the body of the
join.

The join is implemented by registering the participant in the session registry as
the offer[id : r](x).P. The servicea can be abandoned by the stable participantp by
quit(a, p).

P ::= Processes
|| a〈G,φ〉 Service Init
|| u[id : r,C (r̃)](x).{P} Stable Join
|| u[id : r,C (r̃)](x).{P} OneShot Join
|| quit(u, p) Service Quit
|| quit〈c〉 Session Quit
|| c!∗〈p, l〈I 〉〈e〉〉 Send
|| c?〈p,{li〈Ii〉(xi).Pi}i∈I〉 Receive
|| c∀(ι 6∈ I : C(r, ι)).{P} Poll
|| c∃(ι : B(r)).{P} Choice
|| P | P Parallel

|| P;P Sequential
|| if e then P else P Conditional
|| 0 Nil
|| X Recursion variable
|| µX .P Recursion
|| (νa : G) P Service restriction

|| (νs)P Session restriction

|| s : B Message buffer

|| a[H ,O,O,φ ] Service registry

|| a〈s,P〉 Session registry

Table 1.Processes
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u ::= x || a || b || . . . Service Id.
p ::= id : r || ι : r Participant
I ::= /0 || I ∪id || I ∪ ι Princ. Set

c ::= x || s[p] Channel

v ::= true || . . . || a || s[id : r] Value

e ::= x || v || e∧e || . . . Expression

m ::= (id : r,id′ : r′, l〈I 〉〈v〉) Message

B ::= [ ] || B ·m Buffer

O ::= Offer Set
|| 0 Nil

|| [id : r](x).P Offer

|| O | O Parallel

h ::= ( ) || h · (l〈I 〉〈v〉,r) History

H ::= /0 || H ∪ (id,h) History Set

P ::= /0 || P ∪ (id : r) Part. Set

Conditions
C(ρ,r,ι) ::= φ (ρ↾ι , r) Single
C(r,ι) ::= λρ. C(ρ,r,ι) Poll
C (ρ,r̃) ::= Basic

∀ι . C(ρ,r,ι) || r ∈ r̃
∃ι . C(ρ,r,ι) || r ∈ r̃
C1(ρ, r̃)∧C2(ρ, r̃) ||
C1(ρ, r̃)∨C2(ρ, r̃)

C (r̃) ::= λρ. C (ρ,r̃) Join

Table 2.Auxiliary definitions

A service registrya[H ,O1,O2,φ ] can initiate a session by creating a new session
names and a session registrya〈s,P〉, whereP records the session participants. The
offers inO1 whose histories satisfy the predicateφ for the required role (evaluating each
offer’s reputation) and all the offers inO2 will join that session. A session represents a
particular instance or activation of a service. Session initiation replaces the variablex
in the body of each offer[id : r](x).P with the corresponding session channel. Session
channels are temporary channels created at the start of a session, and their lifetime is
that of the session. Each participant has just one session channel and this is her only
means for interacting with the other participants within a session.

The output processc!∗〈p, l〈I 〉〈e〉〉 sends top on channelc the value of expression
e labelled by the constantl and the set of principals and principal variablesI . The
symbol !∗ stands for two different kinds of send, ! and !•: ! is used for standard send,
while !• is used to send a message which will be registered in the history of the sender
within the service register. The input processc?〈p,{li〈Ii〉(xi).Pi}i∈I〉 expects fromp
on channelc a message with a labell in {li}i∈I and a set of principals and principal
variablesI in {Ii}i∈I. If l = li andI = Ii, the value of the message will be replaced
for the variablexi, which is bound inPi.

Pollingc∀(ι 6∈ I : C(r, ι)).{P} allows interaction betweenc and all the principalsι
not belonging toI that instantiate the roler and whose history satisfies the condition
C(r, ι). ProcessP (thebody of the poll) is replicated for each such participant.

G ::= Global Types
|| p →∗ p{li〈Ui〉.Gi}i∈I Label. Mess.
|| ∀ ι 6∈ I : C(r, ι).G Univ. Quant.
|| ∃ ι : B(r).G Exist. Quant.
|| G | G || G ; G Paral., Seq.
|| µx.G || x Rec., Var.
|| ε || end Inact., End

U ::= S || T Message Types

T ::= Local Types
|| !∗〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉 Selection
|| ?〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉 Branching
|| ∀ ι 6∈ I : C(r, ι).T Univ. Quant.
|| ∃ ι : B(r).T Exist. Quant.
|| T | T || T ; T Paral., Seq.
|| µx.T || x Rec., Var.
|| ε || end Inact., End

S ::= 〈G〉 || bool || string || . . . Sorts

Table 3.Global and local types
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Choicec∃(ι : B(r)).{P} returnsP whereι is replaced by one of the best principals
with respect to criterionB among those playing roler in the session, that is, one of
those enjoying the best reputation with respect toB, if any. For instance, ifr is seller
andB(r) is fast(seller), the choicec∃(ι : B(r)).{P} returnsP whereι is replaced by
one of the fastest sellers, unless there is no seller. This presupposes that for each roler
of a service, and for each criterionB applicable tor, there exists a partial order⊑B on
histories, parametrised onB. For instance,h ⊑fast h′ means that the average delivery
time recorded inh is less than or equal to the average delivery time recorded inh′.

Messages have the form(id : r,id′ : r′, l〈I 〉〈v〉), including sender, receiver, la-
bel, set of transmitted participants and value as in [8]. Messages exchanged (asyn-
chronously) in sessions are stored in the message buffers:B.

Parallel and sequential composition, conditional and recursion are standard. The
restriction(νa : G)P creates a shared service name that can be used as a reference for a
service specified byG, while (νs)P represents a new session instance.

Historiesh are built by recording some of the labels and values that are sent by the
principals, together with the roles the principals belong to. A history setH is a set
of pairs (id, h) associating a history with a principalid. Histories are used to measure
principals’ reputation, that is, to check if principals satisfy the conditions and the criteria
expressed in join, poll and choice operations. We project history sets on principals as
follows:

H ↾id=

{

h if (id,h) ∈ H ,

( ) otherwise

Therefore, ifρ is a history set variable,φ (ρ↾ι, r) expresses a condition (single condi-
tion) on the history of principalι in the history setρ relative to the roler. We denote
by C(ρ ,r, ι) a single condition and byC(r,ι) the abstraction with respect toρ of a single
condition. We useC (ρ ,r̃) for conditions (basic conditions) obtained from single condi-
tions by universal or existential quantification on principal variables and by closure un-
der conjunction and disjunction. Lastly,C (r̃) is the abstraction of a basic condition with
respect toρ . For example,C (r1,r2) could beλ ρ .∃ι1.φ1(ρ↾ι1,r1)∧∀ι2.φ2(ρ↾ι2,r2). For
processes we adopt the following simplifications, already used in the example of Sec-
tion 2: we omit empty sets of principals, we omit labels if there is a unique branch
(i.e., we writec!∗〈p,v〉, c?〈p,(x).P〉), we omit empty values (i.e., we writec!∗〈p, l〉,
c?〈p,{li.Pi}i∈I〉), we useι:r as short forι:C(r,ι) whenC(r,ι) holds always true, and we
omit roles for quantified principal variables (i.e., we write ι in the body of a quantifica-
tion onι:C(r,ι) or ι:B(r)). The writing of types is simplified in a similar way.

A process isinitial if it does not contain free variables and runtime syntax.

To sum up, the syntax of our calculus differs from that of [8] for the following
features:
1. we distinguish services and sessions, allowing multiplesessions for a single service;

2. we associate histories with principals participating inservices;

3. we associate acceptance conditions with services, allowing them to filter out “bad”
principals;

4. we associate policies with principals, allowing them to join a service only if the
reputation of the other principals already present in the service satisfies the policies;
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5. we add conditions to quantifications, allowing a participant to interact only with
selected partners;

6. we offer a choice primitive, allowing a participant to choose one of the best principals
(according to some specified criterion) among those playinga given role in a session.

4 Semantics
As usual, the operational semantics is defined modulo a structural equivalence≡. We
assume the standard structural rules for processes [16]. Among the rules for buffers, we
have one for swapping independent messages, i.e., messageswith different sender or
receiver. Moreover, the following rule

(νs)(a〈s,P〉 | s : [ ]) ≡ 0

is useful to garbage collect ended sessions.
The reduction rules are given in Tables 4, 5, 6 and 7. We brieflycomment on them.

Rule [ServiceInit] initialises a service by reducinga〈G,φ〉. It creates apermanent
session registrya[ /0,0,0,φ ]where the history set is empty, and two (initially null) groups
of offers are created: the first is the parallel composition of all stable offers, that is,
offers by participants who will be present in all sessions ofthe service, unless they
behave “badly” or decide to leave the service. The second is the parallel composition of
all one-shot offers, that is, offers by participants who will join one session only of the
service and then leave it.

[ServiceInit]
a〈G,φ〉 −→ a[ /0,0,0,φ ]

[StableJoin]
a[id : r,C (r̃)](y).{P} | a[H ,O1,O2,φ ]−→ a[H ♭id,O1 | [id : r](y).P,O2,φ ]

if C (r̃)H and(id : r) 6∈ O1 | O2 andφ(H ↾id,r)
[OneShotJoin]
a[id : r,C (r̃)](y).{P} | a[H ,O1,O2,φ ]−→ a[H ♭id,O1,O2 | [id : r](y).P,φ ]

if C (r̃)H and(id : r) 6∈ O1 | O2 andφ(H ↾id,r)
[SessionInit]
a[H ,Πi∈I [idi : ri](yi).Pi | Π j∈J [id j : r j](y j).Pj,Πk∈K [idk : rk](yk).Pk,φ ]−→

(νs)(a〈s,{idi : ri|i ∈ I ∪K}〉 | Πi∈I∪KPi{s[idi : ri]/yi} | s : [ ]) |
a[H ,Πi∈I [idi : ri](yi).Pi | Π j∈J [id j : r j](y j).Pj,0,φ ]

if ∀i ∈ I.φ(H ↾idi,ri) and∀ j ∈ J.¬φ(H ↾id j,r j)

[ServiceQuit]
quit(a,id : r) | a[H ,O1,O2,φ ]−→ a[H ,O1\(id : r),O2,φ ]

[SessionQuit]
quit〈s[id : r]〉 | a〈s,P ∪ (id : r)〉 −→ a〈s,P〉

Table 4.Reduction rules I

Rules[StableJoin] and [OneShotJoin] perform the registration of a participant as
an offer associated with a service, in a stable or one-shot way, respectively. The appli-
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[Send]
s[id : r]!〈id′ : r′, l〈I 〉〈v〉〉 | s : B −→ s : B · (id : r,id′ : r′, l〈I 〉〈v〉)

[SendR]
s[id : r]!•〈id′ : r′, l〈I 〉〈v〉〉 |
a[H ∪ (id,h),O1,O2,φ ] | s : B

−→
a[H ∪ (id,h · (l〈I 〉〈v〉,r)),O1,O2,φ ] |
s : B · (id : r,id′ : r′, l〈I 〉〈v〉)

[Receive]
s[id : r]?〈id′ : r′,{li〈Ii〉(xi).Pi}i∈I〉 | s : (id′ : r′,id : r, lk〈Ik〉〈v〉) ·B −→ Pk{v/xk} | s : B

wherek ∈ I

Table 5.Reduction rules II

cant specifies: i) her identityid, ii) which role r she wants to play and iii) her policy,
i.e. which conditionsC (r̃) must be satisfied by the histories of the principals that are
already present. The join is successful if:
1. the histories associated with the principals already present in the service satisfy these

conditions, checked byC (r̃)H ;

2. the participant is not already present as an offer, i.e.,(id : r) 6∈ O1 | O2, where we
define:

(id : r) ∈ O ⇔ O ≡ O ′ | [id : r](y).P for someO ′,P

3. the principalid has a history satisfying the predicateφ for role r, i.e.,φ (H ↾id, r)
holds.

In the resulting service registry,id will have exactly one history since the update of a
history set with a new principal is given by:

H ♭id=

{

H ∪{(id,( ))} if id 6∈ D(H ),

H otherwise

whereD(H ) = {id || (id,h) ∈ H }.
Notice that, for preserving the order of communications, nochannel occurring in

the bodies of the joins should occur in the processes which follow the joins. This is
assured by the typing rules for the join constructors (rules⌊STAJOIN⌋ and⌊OSJOIN⌋
in Table 10). For example using[OneShotJoin] and[Par] (see Table 7) we could get:

a[id1 : r3](y).{ s[id1 : r1]!〈id2 : r2,true〉 };s[id1 : r1]!〈id2 : r2,5〉 |
a[ /0,0,0,φ ]−→ s[id1 : r1]!〈id2 : r2,5〉 |

a[{(id1,( ))},0, [id1 : r3](y).s[id1 : r1]!〈id2 : r2,true〉,φ ]
In this way, the participantid2 : r2 could receive first 5 and thentrue from id1 : r1,
instead of receiving firsttrue and then 5, as expected.

In case of stable joins, we cannot allow free channels at all,as explained below
when rule[SessionInit] is discussed.

Notice that our double join mechanism, with possibly multiple sessions associated
with a single service, prevents new participants from intervening in the middle of an
ongoing session. In this way, we avoid the need for a locking policy, as required in [8]
to assure safe synchronisation.

Rule [SessionInit] initiates a session by reducinga[H ,O1,O2,φ ]. It creates a fresh
session names, a session registrya〈s,P〉 and an empty message bufferB nameds,
like the new session. The participant setP contains:
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[Poll]

s[id : r]∀(ι 6∈ I : C(r′, ι)).{P} |
a〈s,P〉 | a[H ,O1,O2,φ ]

−→

Πi∈Is[id : r]!〈idi : r′,YES〉 |
s[id : r]?〈idi : r′,{YES.P{idi/ι},NO.0}〉 |
Π j∈Js[id : r]!〈id j : r′,NO〉 |
s[id : r]?〈id j : r′,{YES.0,NO.0}〉 |
a〈s,P〉 | a[H ,O1,O2,φ ]

where{idi || i ∈ I}= {id′ || (id′ : r′) ∈ P ∧ C(r′,id′)H ∧ id′ /∈ I }
and{id j || j ∈ J}= {id′ || (id′ : r′) ∈ P ∧ (¬C(r′,id′)H ∨ id′ ∈ I )}

if ι : r′ occurs as subject inP
[PassivePoll]
s[id : r]∀(ι 6∈ I : r′).{P} | a〈s,P〉 −→ Πid

′:r′∈P id
′ /∈I P{id′/ι}

if ι : r′ occurs only as object inP
[Choice]

s[id : r]∃(ι : B(r′)).{P} |
a〈s,P〉 | a[H ,O1,O2,φ ]

−→

s[id : r]!〈id′ : r′,YES〉 |
s[id : r]?〈id′ : r′,{YES.P{id′/ι},NO.0}〉 |
Π j∈Js[id : r]!〈id j : r′,NO〉 |
s[id : r]?〈id j : r′,{YES.0,NO.0}〉 |
a〈s,P〉 | a[H ,O1,O2,φ ]

where{id j || j ∈ J} = {id′′ || (id′′ : r′) ∈ P ∧ id′′ 6= id′}
if B(r′)H P = id′

[NoChoice]
s[id : r]∃(ι : B(r′)).{P} | a〈s,P〉 −→ a〈s,P〉 if 6 ∃(id′ : r′) ∈ P

Table 6.Reduction rules III

1. the identities and roles of all the offers inO1 whose histories satisfyφ ;

2. the identities and roles of all the offers inO2. We do not check the reputations of
participants inO2 since they were good at the moment of the service join and these
participants may be active for one session only.

The new session activates the offers inO1 | O2 listed inP by replacings[id : r] for the
private channel of the offer with identityid and roler. The resulting session registry
does not have one-shot offers and it has the same stable offers. Note that if[id : r](y).P
is a stable offer with a good history, then we getP{s[id : r]/y} for all s created by
reducing the service registry. Therefore, in order to preserve channel linearity, our type
system requires thaty is the only free channel inP (see rule⌊STAJOIN⌋ in Table 10).

Rules[ServiceQuit] and[SessionQuit] allow a participant to leave a service or a ses-
sion, respectively. When quitting a service, the participant is cancelled from the stable
offers (if among them), but she remains in the session registries when present. When
quitting a session, the participant is cancelled from the session registry.

In both cases the participant’s history remains in the service registry. The cancella-
tion from the stable offers is defined by:

O\(id : r) =

{

O ′ if O ≡ O ′ | [id : r](y).P for someO ′,P

O otherwise

Rule [Send] describes the standard asynchronous send, implemented by putting the
message in the message buffers.

Rule[SendR] describes the asynchronous send of a relevant message, which must be
registered in the history of the sender. Again, the message is put in the message buffer
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s. The intention of recording the message sent is expressed bythe programmer by using
the symbol !•. The historyh of principalid is extended by the pair(l〈I 〉〈v〉,r).

Rule [Receive] specifies the reception of a matching message from the buffer, and
the selection of the corresponding continuation.

The most subtle rules are those for the poll and choice operators. Before examining
these rules in detail, we start with some observations. Notefirst that, in a global type,
each communication occurs between two participants of the formι : r andι ′ : r′, whose
principal variablesι andι ′ are both quantified, either universally or existentially. Auni-
versal quantification onι in role r may either be simple, as in [8], orconditional, i.e.,
controlled by a conditionC(r, ι) on the history ofι, which will hold only for some of the
session participants (possibly none). Its effect is to spawn in parallel all participants sat-
isfying that condition. An existential quantification onι in role r is always conditional,
i.e., guided by some criterionB(r) on the history ofι. Its effect is to spawn exactly one
participant among those best satisfying that criterion, ifany. Now, if both the principal
variablesι andι ′ are conditionally quantified, this means that each role imposes some
condition on the other, and hence some potential interactions between the two - possibly
all - should be filtered out. Only the “good pairs” of participants, where each partner
satisfies the condition required by the other, should be allowed to interact. Now, the fact
that a condition is satisfied by a participant can only be checked by the partner requiring
that condition. Hence a cross-checking is necessary. For this reason, in the rules for poll
and choice, each participant sends a messageYES to all participants that are “good” in
her view (because they comply with her policy) and a messageNO to all participants
that are “bad”. Symmetrically, she waits for eitherYES or NO from both good and bad
participants. For example, suppose thatb1 andb2 are the onlygoldBuyers in sessions,
and thatb1 is akeen goldBuyer andb2 is not. In this case, agoldSeller s1 who wants
to interact with allkeen goldBuyers will sendYES to b1, NO to b2 and wait for either
YES or NO from bothb1 andb2. The interaction betweens1 andb1 will start only if
s1 receivesYES from b1. For this reason, the bodyP of the poll withb1 replaced forι
must be guarded by the reception ofYES from b1.

UsinggB andgS as short forgoldBuyer andgoldSeller we get:

s[s1 : gS]∀(ι : keen(gB, ι).{P} −→

s[s1 : gS]!〈b1 : gB,YES〉 |
s[s1 : gS]?〈b1 : gB,{YES.P{b1/ι},NO.0}〉 |
s[s1 : gS]!〈b2 : gB,NO〉 |
s[s1 : gS]?〈b2 : gB,{YES.0,NO.0}〉

For instance, ifb1 only wants to interact withfast goldSellers, ands1 is notfast,
thenb1 will reply NO and the interaction will not take place.

This discussion explains the “agreement protocol” in the reduction rule[Poll]. How-
ever, there is a further subtlety to take into account. Notice that a quantified principal
variableι may be sent in the content of a message, as part of the setI . As explained
in [8], this is essential to avoid ambiguity in the routing ofmessages. A paradigmatic
example is a forwarder:

∀ ι1 : r1.∀ ι2 : C(r2, ι2).ι1 → ι2 OK;∀ ι3 : C′(r3, ι3).ι2 → ι3 OK〈ι1〉

If the message sent byι2 would not containι1 and there would be more than one princi-
pal in roler1, then the participants in roler3 could not predict the number of messages
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they should receive, which isn1× n2, wheren1 is the number of principals in roler1

andn2 is the number of principals in roler2 satisfying conditionC(r2, ι2).
Now, we want to argue that if a principal identifier is transmitted in a message inside

the body of a universal quantification, then this quantification cannot be conditional.
Indeed, since such a quantification would occur both in the sending and in the receiving
process, and the history of the transmitted principal couldchange between the time of
sending and the time of receiving, a mismatch could arise if the quantification were
allowed to be conditional, thus invalidating the property of communication safety. For
example, ifb1 : buyer sends tos1 : seller all the names ofreliable couriers, and
c1 : courier is reliable whenb1 sends the message, but no morereliable when
s1 receives it, then the message would remain forever in the buffer. For this reason the
typing rules of Section 5 guarantee that all principal variables which occur in messages
are universally quantified without conditions.

To formalise these concepts, it is useful to distinguish thetwo ways in which a
principal variableι may occur in a processP. We say thatι occurs inP:

– as subject, if for some roler, P contains a subprocess−!∗〈ι : r,−〈−〉〈−〉〉− or a
subprocess−?〈ι : r,{−〈−〉(−).−}〉;

– asobject, if P contains a subprocess−!∗〈−,−〈I 〉〈−〉〉 such thatι ∈ I , or a sub-
process−?〈−,{−〈Ii〉(−).−}i∈I〉 such thatι ∈ Ii for somei ∈ I.

Clearly, the cross-checking described above is sensible only if the quantified prin-
cipal variable occurs as subject in the body of the quantification. This is always true
for well-typed processes in the case of existential quantification. For this reason, in rule
[Choice] participants[id : r] sendsYES to a principal ofP playing roler′ and having
one of the best histories according to the criterionB(r′), andNO to all the remaining
principals ofP playing roler′, and then she waits forYES or NO from all of them. Rule
[NoChoice] is used when there is no principal in roler′.

Similarly, if the quantified principal variable occurs as subject in rule[Poll], par-
ticipant s[id : r] sendsYES or NO to all principals ofP playing roler′, according to
whether their histories satisfy the conditionC(r′, ι) or not, and waits forYES or NO from
all of them. Instead, ifι only occurs as an object in the body of an universal quantifi-
cation, we apply rule[PassivePoll], which simply spawns in parallel copies of the body
with identifiers replaced for the principal variable, as in [8].

A last observation is that a quantification of a participant which does not occur in
the body is useless and for this reason our type system does not allow it.

In the contextual rule[Par] theevaluation contexts are defined by:

[If−T] [If−F]
if true then P else Q −→ P if false then P else Q −→ Q

[Par] [Congr]

P | Q −→ P′ | Q′

E [P] | Q −→ E [P′] | Q′

P ≡ P′ −→ Q′ ≡ Q

P −→ Q

Table 7.Reduction rules IV
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E ::= [−] || E | P || E ;P || (νa : G)E || (νs)E || s[id : r]!∗〈id′ : r′, l〈I 〉〈E 〉〉
|| if E then P else P || E ∧ e || v∧E || . . .

We assume that bound names inE and free names inQ are disjoint in rule[Par]. Notice
that the standard contextual rule:

P −→ P′

E [P]−→ E [P′]
is derived from rules[Par] and[Congr].

5 Typing

5.1 Types

The syntax of global and local types is given in Table 3. The main novelty with respect
to [8] is the addition of the existential quantification. Moreover, our universal quantifi-
cation is different, as our polling construct does not accept all principals in a certain
role, but only the ones verifying a given condition based on their history. Therefore, we
concentrate on these two kinds of global and local types and refer the reader to [8] for
the other kinds.

The projection from global types to local types is defined as in [8] but for the case
of quantifiers, which is given in Table 8.

(∀ ι 6∈ I : C(r, ι).G) ↾ (id : r) = G{id/ι} ↾ (id : r) | (∀ ι 6∈ I ∪{id} : C(r, ι).G) ↾ (id : r)
if id /∈ I

(∀ ι 6∈ I : C(r, ι).G) ↾ (id : r′) = ∀ ι 6∈ I : C(r, ι).G ↾ (id : r′) if r′ 6= r or id ∈ I

(∃ ι : B(r).G) ↾ (id : r) = G{id/ι} ↾ (id : r)
(∃ ι : B(r).G) ↾ (id : r′) = ∃ ι : B(r).G ↾ (id : r′) if r′ 6= r

Table 8.Projection of quantified global types

Well-formed global types must satisfy all conditions givenin [8], i.e., they must be
syntactically correct, projectable and linear.

5.2 Typing rules

As usual, to type sessions we use a session environment, ranged over by∆ , which
associates local types with channels, as well as a standard environment, ranged over by

⌊BOOL⌋
Γ ⊢ true,false : bool

Γ ⊢ ei : bool (i = 1,2)
⌊OR⌋

Γ ⊢ e1∨ e2 : bool
. . .

⌊PSE⌋
Γ ⊢ /0

Γ ⊢ I

⌊PSI⌋
Γ ⊢ I ∪{id}

Γ ⊢ I ι : r ∈ Γ
⌊PSV⌋

Γ ⊢ I ∪{ι}

⌊PA⌋
Γ ⊢ id : r

ι : r ∈ Γ
⌊PAV⌋

Γ ⊢ ι : r

Table 9.Typing rules for expressions and participants
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∆ : end
⌊NIL⌋

Γ ⊢id 0�∆
⌊RVAR⌋

Γ ,X : ∆ ⊢id X �∆
Γ ,X : ∆ ⊢id P�∆

⌊REC⌋
Γ ⊢id µX .P�∆

Γ ⊢ u : 〈G〉 Γ ⊢id P� y : G ↾ (id : r)
⌊STAJOIN⌋

Γ ⊢id u[id : r,C (r̃)](y).{P}� /0

Γ ⊢ u : 〈G〉 Γ ⊢id P�∆ ,y : G ↾ (id : r) ns(∆ )
⌊OSJOIN⌋

Γ ⊢id u[id : r,C (r̃)](y).{P}�∆

∆ : end
⌊SERQUIT⌋

Γ ,a : 〈G〉 ⊢id quit(a,id : r)�∆

∆ : end
⌊SESQUIT⌋

Γ ⊢id quit〈c〉�∆ ,c : end

Γ ⊢ p Γ ⊢ I j Γ ⊢ e : S j Γ ⊢id P�∆ ,c : Tj j ∈ I
⌊VSEND⌋

Γ ⊢id c!∗〈p, l j〈I j〉〈e〉〉;P�∆ ,c :!∗〈p,{li〈Ii〉〈Si〉.Ti}i∈I〉

Γ ⊢ p Γ ⊢ Ii Γ ,xi : Si ⊢id Pi �∆ ,c : Ti ∀i ∈ I
⌊VRCV⌋

Γ ⊢id c?〈p,{li〈Ii〉(xi).Pi}i∈I〉�∆ ,c :?〈p,{li〈Ii〉〈Si〉.Ti}i∈I〉

Γ ⊢ p Γ ⊢ I j Γ ⊢id P�∆ ,c : Tj j ∈ I
⌊CSEND⌋

Γ ⊢id c!〈p, l j〈I j〉〈c
′〉〉;P�∆ ,c :!∗〈p,{li〈Ii〉〈T 〉.Ti}i∈I〉,c

′ : T

Γ ⊢ p Γ ⊢ Ii Γ ⊢id Pi �∆ ,c : Ti,xi : T ∀i ∈ I
⌊CRCV⌋

Γ ⊢id c?〈p,{li〈Ii〉(xi).Pi}i∈I〉�∆ ,c :?〈p,{li〈Ii〉〈T 〉.Ti}i∈I〉

Γ , ι : r ⊢id P� c : T ubi(T, ι)∧noo(T, ι)
⌊POLL⌋

Γ ⊢id c∀(ι 6∈ I : C(r, ι)).{P}� c : ∀ ι 6∈ I : C(r, ι).T

Γ , ι : r ⊢id P� c : T ubi(T, ι)
⌊POLLALL⌋

Γ ⊢id c∀(ι 6∈ I : r).{P}� c : ∀ι 6∈ I : r.T

Γ , ι : r ⊢id P� c : T sub(T, ι)∧noo(T, ι)
⌊CHOICE⌋

Γ ⊢id c∃(ι : B(r)).{P}� c : ∃ ι : B(r).T

Γ ⊢id P1 �∆1 Γ ⊢id P2 �∆2
⌊SEQ⌋

Γ ⊢id P1;P2 �∆1;∆2

Γ ⊢ e : bool Γ ⊢id P1 �∆ Γ ⊢id P2 �∆
⌊IF⌋

Γ ⊢id if e then P1 else P2 �∆

Γ ⊢id P1 �∆1 Γ ⊢id P2 �∆2
⌊PARid⌋

Γ ⊢id P1 | P2 �∆1 | ∆2

Γ ,a : 〈G〉 ⊢id P�∆
⌊RESid⌋

Γ ⊢id (νa : G)P�∆

Table 10.Type system⊢id
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Γ ⊢id P�∆
⌊NOid⌋

Γ ⊢ P�∆

Γ ⊢ a : 〈G〉
⌊INIT⌋

Γ ⊢ a〈G,φ〉� /0

Γ ⊢ P1 �∆1 Γ ⊢ P2 �∆2
⌊PAR⌋

Γ ⊢ P1 | P2 �∆1 | ∆2

Γ ,a : 〈G〉 ⊢ P�∆
⌊RES⌋

Γ ⊢ (νa : G)P�∆

Table 11.Type system⊢

Γ , which associates sorts with value variables, global sortswith service names, roles
with principal variables, and session environments with process variables.

∆ ::= /0 || c : T Γ ::= /0 || Γ ,x : S || a : 〈G〉 || Γ , ι : r || Γ ,X : ∆
Table 9 gives the typing rules for expressions and participants, taken from [8].

Our typing for processes assures that the joins and quits of two different principals
cannot besequentialised. This condition means that if there is an order among the ac-
tions of different principals, this must be made explicit via some communications, and
should not be hidden by a sequentialisation (for instance, in the example of Section 2,
we want to allow the same principal to perform some actions first as aseller and then
as agoldSeller, but we do not want the actions of principalb1 to depend on the actions
of principals1, without informing them both).

There are two kinds of typing judgments for processes. The most liberal judgment
is Γ ⊢ P�∆ : it says that under the assumptions inΓ the channels in the processP have
the local types prescribed by∆ . The judgmentΓ ⊢id P � ∆ assures also thatid is the
only principal occurring inP. This is used to guarantee the condition discussed above.

Table 10 contains the rules for the system⊢id, which we briefly comment.
The session environments for0 (rule ⌊NIL⌋) can only contain the typesε and end:

this is enforced by the premise∆ : end, which means that all types occurring in∆ are
eitherε or end. Rules⌊RVAR⌋ and⌊REC⌋ for recursion are standard.

As usual, rules⌊STAJOIN⌋ and⌊OSJOIN⌋ check that the local type of the partic-
ipant channel coincides with the projection of the global type for the required role.
Moreover, to type a stable service join we require that the participant channel is the
only channel in the body of the join. This is necessary in order to assure that the appli-
cation of rule[SessionInit] preserves the linearity of channels, see page 11. Peculiar to
our system is also the condition in rule⌊OSJOIN⌋, stating that all channels buty in P
have types terminating by end or by a recursion variable. Thereason for this restriction
is to prevent channels inP from being used in processes followingP (see the discussion
at page 10). To this aim we define the predicatens(T ), letting † range over{?, !∗}:

ns(†〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉) =
∧

i∈I ns(Ti) ns(T | T ′) = ns(T )∧ns(T ′)
ns(∀ ι ′ 6∈ I : C(r, ι ′).T ) = ns(∃ ι ′ : B(r).T ) = ns(µx.T ) = ns(T ′ ; T ) = ns(T )

ns(x) = ns(end) = true ns(ε) = false

We then extend this predicate to session environments by lettingns(∆)=
∧

c:T∈∆ ns(T ).
A participant may ask to quit a service (rule⌊SERQUIT⌋) at any point. She will

cease to take part in the service starting from the first session initiated after her with-
drawal. Instead, rule⌊SESQUIT⌋ prescribes that a session may be quit only after the
participant has terminated her task.
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ubi(†〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉, ι) =











true if p = ι : r for somer or

ι ∈ Ii for all i ∈ I

false otherwise
ubi(∀ ι ′ 6∈ I : C(r, ι ′).T, ι) = ubi(∃ ι ′ : B(r).T, ι) = ubi(µx.T, ι) = ubi(T, ι)

ubi(T | T ′, ι) = ubi(T ; T ′, ι) = ubi(T, ι)∧ubi(T ′, ι)
ubi(x, ι) = ubi(ε, ι) = ubi(end, ι) = true

noo(†〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉, ι) =

{

true if ι 6∈ Ii for all i ∈ I,

false otherwise
noo(∀ ι ′ 6∈ I : C(r, ι ′).T, ι) = noo(∃ ι ′ : B(r).T, ι) = noo(µx.T, ι) = noo(T, ι)

noo(T | T ′, ι) = noo(T ; T ′, ι) = noo(T, ι)∧noo(T ′, ι)
noo(x, ι) = noo(ε, ι) = noo(end, ι) = true

sub(†〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉, ι) =

{

true if p = ι : r for somer,

false otherwise
sub(∀ ι ′ 6∈ I : C(r, ι ′).T, ι) = sub(∃ ι ′ : B(r).T, ι) = sub(µx.T, ι) = sub(T, ι)

sub(T | T ′, ι) = sub(T ; T ′, ι) = sub(T, ι)∨sub(T ′, ι)
sub(x, ι) = sub(ε, ι) = sub(end, ι) = false

Table 12.The predicatesubi, noo andsub

The system types communications on channelc with participantp allowing dif-
ferent labels, sequences of participants, values and continuations (rules⌊VSEND⌋ and
⌊VRCV⌋). Also the exchange of channels can be typed (rules⌊CSEND⌋ and⌊CRCV⌋).
Notice that the type system does not allow sending a channel with !• since there is no
meaning in putting a channel name in the history of a principal. Moreover, the session
names occurring in channels are restricted and therefore, in order to do that, we should
enlarge the scope of these restrictions, making it impossible to use the current structural
equivalence to cancel exhausted sessions.

The typing of a quantification requires a unique channel in the session environment
(rules⌊POLL⌋, ⌊POLLALL⌋ and⌊CHOICE⌋). As argued in the previous section, partic-
ipants that occur in messages (i.e., that occur as objects inprocesses) should be uni-
versally quantified without conditions on their histories.There is another condition that
must be satisfied in order to avoid message ambiguity: participants who are universally
quantified should appear (either as a subject or as an object)in every communication
occurring in the body of the quantification. In order to checkthe above conditions, it
is handy to define three predicates on local types and principal variables. The predicate
ubi(T, ι) is true if all selections/branchings inT containι. The predicatenoo(T, ι) is
true if no selection/branching inT hasι as object. The predicatesub(T, ι) is true if
there is at least one selection/branching inT havingι as subject. More precisely, letting
† range over{?, !∗}, these predicates are defined by the clauses in Table 12.

To type the poll (rules⌊POLL⌋ and⌊POLLALL⌋) in such a way that we avoid am-
biguous messages, it is necessary thatι occurs in all selections/branchings ofT , con-
dition assured byubi(T, ι). Moreover, if the poll is conditional (rule⌊POLL⌋), thenι
cannot occur as an object inT . For this reason we requirenoo(T, ι) too.

In rule⌊CHOICE⌋ sub(T, ι) assures thatι occurs at least once as a subject inT , and
noo(T, ι) assures thatι does not occur as an object inT .
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Γ ⊢ P�∆
⌊SESRES⌋

Γ ⊢ (νs)P�∆

Γ ⊢ ∆ �end
⌊EBUFF⌋

Γ ⊢ s : [ ]�∆

Γ ⊢ P�∆ ,y : T
⌊OFF⌋

Γ ⊢ [id : r](y).P�∆

Γ ⊢ O1 �∆1 Γ ⊢ O2 �∆2
⌊PAROFF⌋

Γ ⊢ O1 | O2 �∆1 | ∆2

Γ ⊢ s : B �∆ Γ ⊢ v : U
⌊SMESS⌋

Γ ⊢ s : (id : r,id′ : r′, l〈I 〉〈v〉) ·B �{s[id : r] :!〈id′ : r′, l〈I 〉〈U〉〉};∆

Γ ⊢ O1 �∆1 Γ ⊢ O2 �∆2
⌊SERREG⌋

Γ ⊢ a[H ,O1,O2,φ ]�∆1 | ∆2

⌊SESREG⌋
Γ ⊢ a〈s,P〉� /0

Table 13.Typing rules for runtime processes

For typing the sequential composition of processes, in rule⌊SEQ⌋ we use the se-
quential composition of session environments defined by:

∆ ;∆ ′ = ∆ \D(∆ ′)∪∆ ′ \D(∆)∪{c : ∆(c);∆ ′(c) || c ∈ D(∆)∩D(∆ ′)}

Rule⌊PARid⌋ (as well as rule⌊PAR⌋ in Table 11) uses the following parallel com-
position of session environments:

∆ | ∆ ′ = ∆ \D(∆ ′)∪∆ ′ \D(∆)∪{c : (∆(c) | ∆ ′(c)) || c ∈ D(∆)∩D(∆ ′)}

Notice that a service initialisation cannot be sequentialised, since it cannot be typed
in the system⊢id, but only in the system⊢ (rule⌊INIT⌋ in Table 11).

The rules of Tables 10 and 11 are enough for typing user processes. For typing
runtime processes, we extend the syntax of local types withmessage types of the shape
!〈id : r, l〈I 〉〈U〉〉 and use all the rules in the tables above plus the rules of Table 13.
We notice that the rules for typing the registries are simpler than the corresponding rule
in [8], thanks to our distinction between services and sessions.

6 Properties

Our calculus enjoys type safety, which is obtained from the properties of subject reduc-
tion (Subsection 6.1) and progress (Subsection 6.2). Moreover, there is an interesting
relation between the local types and the possible future reputations (Subsection 6.3).

6.1 Subject Reduction

In order to state the subject reduction property, we need to define a reduction relation
on session environments, which describes how these environments evolve during pro-
cess execution. Table 14 gives this relation, which mimics the sending and receiving
of values and channels. The sets of identifiers in the reduction rules for quantifiers are
arbitrary. In this table, we consider types in∆ modulo an equivalence relation reflecting
the equivalence relation on buffers, and we define type contextsT as:

T ::= [−] || T | T || T | T || T ;T

We need to start from a well-typed initial process in order toassure that participants
respect the prescriptions of some global type. We say that a processP is reachable if
there is a well-typed initial processP0 such thatP0 −→

∗ E [P].
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{s[id : r] :!∗〈id′ : r′,{li〈Ii〉〈Ui〉.Ti}i∈I〉} ⇒ {s[id : r] :!∗〈id′ : r′, lk〈Ik〉〈Uk〉〉;Tk} k ∈ I

{s[id : r] :!∗〈id′ : r′, lk〈Ik〉〈Uk〉〉,s[id′ : r′] :?〈id : r,{li〈Ii〉〈Ui〉.Ti}i∈I〉} ⇒
{s[id : r] : ε,s[id′ : r′] : Tk} k ∈ I

{s[id : r] : ∀ ι 6∈ I : C(r′, ι).T}⇒
{s[id : r] : Πi∈I !〈idi : r′,YES〉;?〈idi : r′,{YES.T{idi/ι},NO.ε}〉 |

Π j∈J !〈id j : r′,NO〉;?〈id j : r′,{YES.ε,NO.ε}}
where∀i ∈ I ∪ J.idi /∈ I

{s[id : r] : ∀ ι 6∈ I : r′.T}⇒ {s[id : r] : Πi∈IT{idi/ι}} where∀i ∈ I.idi /∈ I

{s[id : r] : ∃ ι : B(r′).T}⇒ {s[id : r] :!〈id′ : r′,YES〉;?〈id′ : r′,{YES.T{id′/ι},NO.ε}〉 |
Π j∈J !〈id j : r′,NO〉;?〈id j : r′,{YES.ε,NO.ε}}

{s[id : r] : T}∪∆ ⇒{s[id : r] : T ′}∪∆ ′ implies
{s[id : r] : T [T ]}∪∆ ⇒ {s[id : r] : T [T ′]}∪∆ ′

∆ ⇒ ∆ ′ implies∆ ∪∆ ′′ ⇒ ∆ ′∪∆ ′′

Table 14.Reduction of session environments

As usual for session calculi, the reduction of processes gives rise to the reduction of
session environments.

Theorem 1. If P is a reachable process and Γ ⊢ P�∆ and P −→∗ P′, then Γ ⊢ P′
�∆ ′

for some ∆ ′ such that ∆ ⇒∗ ∆ ′.

6.2 Communication Safety and Progress

As usual, communication safety assures that every receiverwill find an appropriate
message in the buffer and, conversely, that every message inthe buffer will be fetched
by a matching receiver.

Definition 1. A process P is communication safeif:
– P ≡ E [s[id : r]?〈id′ : r′,{li〈Ii〉(xi).Pi}i∈I〉] implies that

E [0]−→∗ E ′[s : (id′ : r′,id : r, lk〈Ik〉〈v〉) ·B] with k ∈ I;

– P ≡ E [s : (id′ : r′,id : r, lk〈Ik〉〈v〉) ·B] implies that
E [0]−→∗ E ′[s[id : r]?〈id′ : r′,{li〈Ii〉(xi).Pi}i∈I〉] with k ∈ I.

It is well known [1] that interleaving different services can destroy communication
safety also in sessions without roles. In the present calculus also nested joins can destroy
communication safety, since joins can fail when one of the required conditions is not
satisfied. So we will only consider processes that use a single service and which can be
typed with a derivation where:
1. session environments which appear in premises or conclusions of the system⊢id

contain at most one association between a local type and a channel;

2. in rule ⌊SEQ⌋, if the session environment of the first premise is empty, then the
session environment of the second premise must be empty too.

The first condition assures that communications on two different channels can only oc-
cur in two parallel threads. The second condition forbids nested joins, since the first
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condition assures that the session environments for typingjoins are empty. It allows
instead sequentialisation of joins (when both session environments are empty), sequen-
tialisation of communications on the same channel (when both session environments
assign types to this channel), and communications on one channel followed by one join
(when the first session environment assigns a type to this channel and the second session
environment is empty). We denote by⊢⋆ such kind of derivations.

The calculus of [8] requires a locking/unlocking mechanismto ensure that a service
is “well-locked”, i.e., that it does not allow a principal tojoin an ongoing session. Our
distinction between services and sessions makes all services well-locked without having
to synchronise joins, as hinted previously.

Lemma 1. Let P be an initial process not containing restrictions. If a : 〈G〉 ⊢⋆ P � /0
and P −→∗ P′, then P′ is communication safe.

In session calculi, progress does not only ask for the absence of service interleaving,
but also for the presence of all required participants. In [8] too, progress is assured under
the condition that the needed principals can join. In our calculus:
– polls can properly reduce also when no principal satisfies the required condition;

– choices always reduce.
This means that we can avoid to add processes in parallel whendefining progress.

The most important peculiarities of our calculus are:
– service registries are permanent and they can always reduceby rule[SessionInit];

– service joins can require conditions which are not satisfied.
The standing availability of rule[SessionInit] implies that reducibility by this rule can-
not be considered to assure progress.

Definition 2. A process P has the progress propertyif P −→∗ P′ implies that either P′

does not contain runtime channels, or there exists P′′ such that P′ −→ P′′ using a rule
different from [SessionInit] and P′′ has the progress property.

According to this definition a process with progress can reduce to a parallel composi-
tion of service registers and service joins with unsatisfiedconditions, which can only
reduce by rule[SessionInit] to itself (modulo structural equivalence), since the gener-
ated sessions have no participants and so they can be garbagecollected.

The progress proof essentially uses communication safety,and the observation that,
starting from an initial process with a single service, the required registries and named
buffers will be present for sure.

Theorem 2. Let P ≡ a〈G,φ〉 | P0 be an initial process not containing restrictions. If
a : 〈G〉 ⊢⋆ P � /0, then P has the progress property.

6.3 Local Types for Reputations

We now discuss how to take advantage from local types to predict possible future repu-
tations of principals. To this end, it is handy to define reductions which activate at most
one session for each service.
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Definition 3. A reduction is one-sessionif rule [SessionInit] can be applied to a session
registry for service a only if the current process does not contain a〈s,P〉 for some s,
P .

Note that in [8] a service contains only one session, so all reductions are one-session.
Let h be the history of a principalid at the end of the execution of a session in a

one-session reduction. Then, in the next session for the same service, principalid is
allowed to play a roler only if φ(h,r).

The local type of a role in a service, together with the numberof participants in
a session, allows us to compute an upper bound to the number ofoccurrences of a
fixed label in the possible histories - of principals playingthat role - which can be
generated by executing the session, provided the label doesnot occur under recursion.
More precisely, ifnr is the number of principals playing roler in the session, then the
number of occurrences of labell in the histories of a role with local typeT is bounded
by #(T, l) defined by:

#(!•〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉, l) =











max{#(Ti0, l)+1,#(Ti, l) || i ∈ I \ {i0}} if l = li0 &

i0 ∈ I,

max{#(Ti, l) || i ∈ I} otherwise.

#(!〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉, l) = max{#(Ti, l) || i ∈ I}
#(?〈p,{li〈Ii〉〈Ui〉.Ti}i∈I〉, l) = max{#(Ti, l) || i ∈ I}
#(∀ ι 6∈ I : C(r, ι).T, l) = #(T, l)× nr

#(∃ ι : B(r).T, l) = #(T, l)
#(T1 | T2, l) = #(T1, l)+#(T2, l)

#(µx.T, l) = 0
#(x, l) = 0
#(ε, l) = 0
#(end, l) = 0
#(T1 ; T2, l) = #(T1, l)+#(T2, l)

We can exploit this information to chooseφ bounding the number of occurrences of
label l in (part of) the histories, when using one-session reduction. It is enough to set
φ(h,r) to m+#(T, l)≤ M, wherem is the number of occurrences ofl in the considered
part ofh, typeT is the local type ofr andM is the desired bound.

For example, we can modify thegoldBuyer of Figure 3 by recording in her history
the labelsBUY andAST. The local typeT of thegoldBuyer then contains

!•〈ι : goldSeller,{BUY. . . . ,AST.. . . .}〉

and #(T,AST)=1. Therefore, if we want to limit to 3 the number of assistance calls in
the last 20 transitions, the joining condition for thegoldBuyer can hold true only if in
the last 19 transitions the number ofAST is less than or equal to 2.

7 Conclusions and related work
In this paper, we studied a role-based multiparty session calculus that takes into account
the history of principals, in order to measure their reputation and regulate accordingly
their participation in future conversations. Histories are dynamically built by collecting
actions performed by principals, in such a way that, if a participant “behaves badly” in
a service, this will hinder her further attempts to join the service with particular roles
and her possibilities to be chosen by other participants viaa poll or a choice operation.

Since in our setting the reputation associated with a principal is objective and not
subjective (i.e., it is based on real interactions and not onother principals’ opinions),
one of the major problems arising in reputation systems,unfair ratings, is avoided.
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We managed to model the regulation of a principal’s behaviour depending on her
reputation: in Section 2, we showed how a principal’s “bad behaviour” may restrict the
range of session roles offered by the service to that principal. This is our main result.

However, our solution still suffers from some limitations,in particular we can only
type a limited form of delegation, the same as in [8], that does not allow general sce-
narios to be modelled. The limitation is due to the fact that session environments in the
typing rules for poll and choice must contain exactly one channel, while the session en-
vironments for typing delegation have at least two channels. Therefore it is impossible
to create a channel to be delegated before a poll or a choice. The only way out is to
create and discharge it afterwards, unused, by means of a join, right before sending it.

Session calculi were proposed in the mid-nineties to model communication proto-
cols among concurrent and mobile processes. We refer to [9] and [17] for overviews.
Since the original proposal of [12], such calculi have been extensively studied and en-
riched with various features. Initially dealing with binary protocols (often representing
an interaction between a user and a server), session calculihave been subsequently ex-
tended tomultiparty sessions [13], involving several principals interacting on an equal
footing. More recently, multiparty sessions have been extended with design by contracts
[2], dependent types for parametricity [18], upper bounds on buffer sizes [7], exception
handling [5], access and information flow control [4] and monitors [3]. The present pa-
per mainly builds on therole-based multiparty calculus of [8], as previously discussed.

The study and formalisation ofreputation has similarly attracted a great deal of
interest in recent years. We refer to existing surveys [15, 14, 11] for a general introduc-
tion toreputation systems. It is interesting to notice that the reputation system associated
with our calculus can be classified, according to [15], as a non-probabilistic experience-
based system, where principals are evaluated by inspectingtheir history, which is built
by recording their past interaction with other principals.

As it is grounded on theπ-calculus, our proposal may be directly compared with the
Calculus for Trust Management (ctm) [6], a process calculus for modelling trust based
systems. Principals inctm have two components: the protocol and the policy. Protocols
areπ-calculus style processes. Policies are made of two parts: logic formulae (similar
to our single conditions), which describe the rules for taking decisions on the basis
of past experiences; experiences (similar to our histories), which collect the messages
exchanged in interactions between principals. The treatment of [6] differs from ours
in that policies and histories are local and associated witheach principal, while we
store them in a registry which is global for all participantsin a given service. In our
calculus, histories are made of sent values and may be checked by both services and
other principals involved in the same service; inctm, histories are made of received
values and are checked locally before granting access to local resources. Moreover,
in ctm the focus is on barbed equivalences among principals, whilewe are mainly
concerned with supplying a type system to check communication safety.
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