
Theoretical Computer Science 114 (1993) 31-61

Elsevier

31

Observing localities *

G. Boudol and I. Castellani
INRIA , Sophia- Antipolis. 2004 Route de.~ Luckhs. 06561 Vulhonnr Cedra, Frmce

M. Hennessy
BNI 9QH. UK

Institut ,fiir Infbrmutik. Technischr Unicrrsitiit Mlinchen, Arci.~stra.we 21, W-8000 Miinchen 2,

Germrrn~

Boudol, G., I. Castellani, M. Hennessy and A. Kiehn, Observing localities, Theoretical Computer

Science 114 (1993) 31-61.

We introduce a refined version of observation for CCS which allows the observer to see the

distributed nature of processes. Using several examples, we argue that a semantic theory based on

such observations is not only intuitive but may also be of use when formalising the relationship

between implementations and specifications. Technically, we show that the resulting. theory of

location equivalence is very similar to that of bisimulation equivalence, e.g. it can be characterised by

a simple modal logic. A comparison with distributed bisimulations is also given.

1. Introduction

There are by now a number of well-established semantic theories of processes in the

research literature which are based on principles of observation. The main idea is that

processes are deemed to be equivalent if there is no possible observation which can

distinguish them. Different formalisations of this idea, which give rise to a number of

semantic equivalences, may be found in [13,9, lo]. All these formalisations are based

on the same simple notion of observation, namely communication: one may observe

a process by communicating with it via a communication channel. The resulting

semantic theories are often called interleaving theories; they do not distinguish be-

tween concurrency and nondeterminism or, more precisely, they equate a parallel

Correspondence to: G. Boudol, INRIA, Sophia-Antipolis, 2004 Route des Lucioles, 06561 Valbonne Cedex,
France.

This work has been supported by the ESPRIT/BRA CEDISYS project.

0304-3975/93/$06.00 f_‘> 1993-Elsevier Science Publishers B.V. All rights reserved

32 G. Boudol et al.

process with the purely nondeterministic one obtained by interleaving its primitive

computation steps or actions.

Some attempts have been made to generalise this observation-based approach in

order to develop a semantic theory which does distinguish between these two phe-

nomena [S, 2,8, 3, 71. Here we reexamine the approach taken in [S, 111, where the

processes under observation are considered to be distributed in nature. So, the

observer cannot only test the process by communicating with it but can also observe

or distinguish that part of the distributed process which reacted to the test. A purely

nondeterministic process is based at one site, whereas, in general, a concurrent one

may be distributed among a number of different locations. It follows that an observer

will be able to distinguish them.

In this extended introduction we will try to explain in detail our approach and to

motivate it by indicating its usefulness.

We use as a starting point the process algebra CCS, a process description language

which describes processes in terms of the actions they can perform. For example,

a “cell”, or a one-place bag B1, which repeatedly performs the actions in, out, may be

defined by

BI -+ in.out.B,.

If we run two copies of this in parallel, we obtain a process which acts like a two-place

bag:

Here / is the parallel operator of CCS which, in this context, defines a process which

consists of two independent processes, two copies of B1, running in parallel.

Processes running in parallel may also communicate or synchronise with each

other. This is formalised by dividing the set of actions into two complementary

subsets, the input actions and the output actions. Communication is then considered to

be the simultaneous occurrence of complementary actions. Output actions are in-

dicated by an overbar, such as Cc, G, etc., input actions by the absence of an overbar

and there is a distinguished action t to indicate a communication or, more

generally, internal and unobservable computation. So, if we define two processes

In,Out by

out c== r.out.Out,

then the process In 1 Out acts somewhat like B2. However, In, Out are not obliged to

synchronise via the action X. The actions r and Cc may be performed independently,

which corresponds to separate synchronisations with processes in their operating

environments. To eliminate these possible communications with the environment and

thereby force the synchronisation between the two processes, we limit the scope of

Obseruing localities 33

these actions using another operator of CCS, restriction, which is written as \a or,

more loosely, as \A, where A is a set of actions. So, let NB2 be defined by

NB2 =(In 1 Out)\a.

These two processes, Bz and NB2, offer very similar behaviour to a user, particularly

as the synchronisation between In and Out is not supposed to be visible externally.

According to the theory developed in [13], they are weak&simulation-equivalent,

denoted by B 2 cz NB2; in terms of the visible actions in and out, they offer the same

possible behaviour to any user of the systems.

However, this reasoning is based on the assumption that the only property which

can be observed of a process is its ability to perform particular actions. Now let us re-

interpret the language by saying that PIQ is a distributed process, where the subpro-

cess P is at one site and Q is at another site; moreover, let us suppose that an observer

can distinguish between sites in the sense that, when a distributed process performs an

action, the observer knows the site responsible for it. Thus, one observer’s view of the

distributed process B2 is as shown in Fig. 1. Here the observer has decided, out of

personal choice, to call II the site or location of the first subprocess, and l2 the location

of the second subprocess. Now it is not possible to construct a similar view of NB2. For

example, the distribution represented in Fig. 2 can easily be distinguished from B2 as

here all in actions are seen to occur at location I, and all out actions at location 12. In

contrast, they are distributed between I, and l2 in the distributed process B2.

The basic difference between these two processes is that in NB2 one site is

responsible for the in actions and one for the out actions, whereas B2 has two

equivalent sites, each acting like a one-place buffer. Viewing these as specifications,

this is a useful and meaningful distinction. To implement B2, it is necessary to have

independent locations, each acting like buffers, whereas an implementation of NB2

Fig. 1.

____________________ ________________

: 11 :: In -; out 1:

L___________________I L______________.

Fig. 2.

would always have to localise the responsibility for the in actions and the out actions

in independent locations. In fact, NB2 is a reasonable specification for a variety of

communication protocols which have to transfer successfully messages across (pos-

sibly, faulty) mediums. For example, consider Pr,, defined by

Sender = in. send. Sender,

Medium e send.deliver.Medium,

Receiver C= deliver. out. Receiver,

Pr, -c= (Sender / Medium 1 Receiver)\ (send, deliver}.

Here the causal links between the in and out actions are more complicated but the

responsibility for them is distributed in a manner similar to that in NB2. So, as

a distributed system, Pr, can be viewed by an observer in the same way as NB2 above

by naming the locations in the manner depicted in Fig. 3. Note that here the medium

has not been assigned any location. This is reasonable because an observer will never

see any actions which it performs and, therefore, he will never even know that it is

there. Similar reasoning may be applied to more complicated protocols, where the

transfers from the Sender to the Receiver follow a more tortuous route. As an example,

consider a protocol which uses both a secure and a faulty wire. It tries first the faulty

wire and, if it does not receive an acknowledgement, it retransmits on the secure one.

The protocol Pr2 can be defined by

Sender C= in .send. Sender,

Medium ~send.try,f.(ack.Mediun+z.trys.Medium),

F Wire - try,f.(z.deliver. F Wire + F Wire),

SWire .G try s. deliver. S Wire,

Receiver e deliver.out. Receiver,

Pr2 G= (Sender / Medium 1 F Wire) S Wire j Receiver)\l,

where I = (send, deliver, try,f, try s, uck f

Here we use the choice operator + to indicate that at certain times a process may

act in either of two ways. Again this can be observed in a distributed fashion in

____________________, _________________---.

Fig. 3.

Ohsrr~ing localifirs 35

____________________. ____________________,

swire ;

Sender I A4edium Receiver i
FWire i

11 :: 12 ::
_________________---. C___________________.

Fig. 4.

a manner similar to NB2 above (see Fig. 4). So, both these implementations Pr, and

Pr, match the distributed specification NB2, while they are not equivalent to B2.

As another example, consider the solution to a simple mutual-exclusion problem,

where the access of two readers to a device is controlled by a semaphore. The system

may be defined in CCS by

Reader -= p.enter .exit .I?. Reader,

Sem = p.v.Sem,

Sys -c= (Reader 1 Sem 1 Reader)\ [p, v}.

This system satisfies the specification defined by

Spec -f= enter.exit.Spec

in that Spec z Sys. However, it is also possible to have a faulty system implement this

specification. This involves a faulty reader which may deadlock after exiting from the

critical region:

Reader X= j.enter.exit.G.Reuder,

FReader -~=p.enter.(exit.C.FReader+exit.C.nil),

Sem + p.v.Sem,

FSys = (Reader 1 Sem 1 FReader)\ { p, v}.

In our description of the faulty reader, FReader, we use nil to indicate a process which

is deadlocked, but, in practice, the deadlock could arise because of some more

complicated behaviour of a particular reader. One can check using the definition of

weak bisimulation equivalence in [13] that Spec z FSys although the system obviously

has a deadlocked subsystem which has no counterpart in the specification.

However, if we view these systems as distributed systems then a difference can be

perceived. An observer may view Sys as shown in Fig. 5, where there are two locations,

in each of which there is a process repeatedly executing the actions enter, exit. There is

no comparable view of the faulty system FSys. For example, the view shown in

Fig. 6 leads to a different observable behaviour. Here it is possible to reach a state in

which no more actions will ever be observed at location /*, while this is not possible

for the corresponding view of Sys.

I
’ Sena g Reader 1

l;! ::

Fig. 5.

-. ____________________,

Reudcr ; Sent

r__________________

FReader

Fig. 6.

We hope that these examples show that, by allowing an observer to see the

distributed nature of a process, a useful and intuitively reasonable semantic equiva-

lence is obtained.

Let us now address the question of how exactly an observer should be allowed to

perceive the distributed nature of a process. In this respect we are guided by principles

of extensionality; we would like the resulting equivalence to be as extensional as

possible, in the sense that the semantics of a process should be determined only by its

external manifestations rather than by its internal structure or behaviour. It is

reasonable to argue that at least some aspect of the distribution of subprocesses in

a distributed system is a part of its extensional behaviour; therefore, if we are to view

CCS as a language for describing distributed systems, an observer should be able to

view PIQ as a distributed system which potentially has two distinct sites; any

externally visible action performed by P should be recognizable as emanating from

one location and any performed by Q should be recognizable as coming from

a different location.

But how is an observer to decide when more than one location is involved? The first

point to note is that the notion of location has to be conceived of hierarchically

because the distributed structure of a system may evolve dynamically. For example,

any system of the form a. P will initially be viewed as containing one location. This is

true even when P has the form Q 1 R. The distributed nature of P will become apparent

only when the action u has been performed. Thus, if an observer decides to call I, the

unique location in u.P when u is performed, he will then perceive that P is distributed

among two locations and may allocate them the names l2 and j3. At this stage l2 and

1, are actually sublocutions of the original location I, and in our formalisation they will

correspond to the two locations I, ./* and I, .i3. This notion of sublocation will serve to

Obserring localities 37

distinguish the different kinds of distribution which appear in systems such as a.(PI Q)

and a.RIS.

One might hope that this allocation of location names by the observer could, at

least to some extent, be static; at each stage during the observation period, the

observer could allocate location names within the system under observation on the

basis of the operator 1 and then proceed by examining the ability of the resulting

system to perform specific actions at specific locations. However, this approach leads

to some difficulties. For example, it would distinguish the two processes a.nil and

((a + c() 1 a. a)\ x, which is difficult to justify intuitively. One would also have difficulty

in equating terms such as P and PI nil or even ensuring that 1 is associative.

In this paper we abandon this static approach and instead develop the idea that

location names are assigned dynamically as part and parcel of the act of observation;

when an observer sees an action being performed, this is seen as emanating from

a particular location and the observer may then choose to allocate a name to that

location. All subsequent actions performed at that location will then be recognised as

emanating from this same location. Technically, this involves developing an opera-

tional semantics for the language by replacing the usual statements of the form

P * Q with new ones of the form

which carry information about the location names which the observer has assigned to

particular locations in the system. This is very similar to the approach taken in

[.5,4, 111, where distributed bisimulations are defined, and later in the paper we will

offer a detailed comparison.

We now briefly outline the remainder of the paper. In the next section we give

a formal definition of the new equivalence, which we call (weak) locution equivalence
and develop some of its properties. This section also includes some examples. This is

followed by a section containing technical results on the new equivalence. We then

define a modal logic for location equivalence which characterises it in the same way as

the modal logic HML characterises bisimulation equivalence. A detailed comparison

with distributed bisimulation is then given, and we end with a list of further research

problems which is suggested by the introduction of the idea of locations.

2. Location equivalence

In this section we introduce location equivalence and show some of its properties.

As discussed in the introduction, we take a dynamic approach, that is, we are

interested only in the observable distribution of a process. The site of a process is

observable if and only if a visible action is performed at it. Seeing such an action

emanating from a site, the observer allocates a location name to it. This name is then

perceived with any further observation of an action at that site.

The language we use to formalize this approach is a slight extension of Milner’s

pure CCS. The extension is an additional operator, called location prefixing, repre-

senting the allocation of locations to processes. A process p prefixed by a location

u will be denoted by u :: p. Intuitively, process p is at a location called U. However, in

general, we will assume these locations to be introduced via the observation of visible

actions. That is, initially, before any experiment has been performed, the process

under investigation does not contain any location. The observers we assume here are

more powerful than those usually considered for CCS or other process algebras. With

the observation of an action, the location of the action is also perceived and assigned

a name. So, we will have a transition rule

U.&L 11::~ 1, for any location name u,

which means that u has been performed at a location to which the observer has

permanently assigned the name u. Intuitively, a process of the form u::p arises from

the execution of some action at a location u, and p is the subprocess following this

action. However, as usual in CCS, we will assume r transitions as invisible and,

therefore, no location will be observed when they are performed. Hence, a.s.p also

would evolve to u :: p. i.e.

tr.r,p+::p.

If further experiments are performed on u::p then the location u will always be

observed. Moreover, the location called u may contain sublocations, which in turn

may also be observed. For example,

Here the location which has been called u by a previous observation contains two

sublocations and at one of them a is performed. The name D is allocated to this subsite

via the observation of u. The complete observation of u records both the general

location u and the sublocation t’. In general, we will have transitions of the form

A, where each tdi, i3 1, is the name of a primitive site. The sequence ur . ..u. lll...ll,,
identifies the location where the action u is actually executed, i.e. we identify a general

location with its access path, This allows us to formalise the notion of a sublocation:

the location U, .u,, may be considered to be a sublocation of ur .uj for any j, 1 <j< n.

Before we go into a more detailed discussion of such transitions and of location

equivalence, we will introduce formally the language we consider and also establish

some straightforward properties.

We assume the reader to be familiar with Milner’s pure CCS (see [13]). We have

a set of actions ,4, ranged over by c(, fl, and a set of co-actions {c(1 XEA}, a disjoint

copy of il, where the overbar represents a bijection such that E=cc for all sr~il. The

Obsercing loculities 39

invisible action is denoted by r. We have Act = A u /1 ranged over by a, b, c, . . . and

Act, = Act u {z} ranged over by p, V, . . Var denotes a set of process variables ranged

over by x, y,z, . . The operators we consider are the standard CCS ones, nil, action

prefixing p., nondeterministic choice +, parallel composition 1, relabelling [f],

restriction \CY and recursion recx. Moreover, to express algebraic properties we will

also use the auxiliary operators leftmerge 1 and communication merge Ic (cf. [l, 91).

Additionally, we introduce the new operator of location prefixing discussed above. To

this end, we assume an infinite set of basic location names or site names Lot disjoint

from Act,. These will be ranged over by k, l,m, whereas general locations, se-

quences from Lot*, will be ranged over by U, v, w, . . . As usual, we use E to denote the

empty word in Lot*. Syntactically, we write u::p with the intuitive meaning that

process p is at a general location called u. So, we work with the following abstract

syntax

t ::= nil 1 ,u.t 1 t+t I (tit) I t[f] 1 f\a

I x I recx.t

I trr I tlct

I u::t,

where f is a relabelling function f: Act ,+Act, such that f(Z)=f(a) for all aEAct and

f(r) = r. We assume the usual precedence rules for operators, where / and Ic have the

same precedence as I and u :: p the same as ,u.p. As usual, we will often omit

occurrences of nil, for example, rendering a. nil as a. Let d be the set of all terms which

can be generated by this syntax. For tE&, the set of free variables fv(t) is defined in the

standard way. Closed terms are called processes and we use P to denote the set of such

terms. We, furthermore, distinguish the set CCS containing all location-free processes

and the sets CC& and CC&, the former consisting of the recursion-free CCS

processes and the latter those which are additionally restriction- and relabelling-free.

Typical examples for processes in P are l::a.niljb.nil, l::(k::a.nil) and (l::c(.nil

I k :: &.nil)\a. In examples of processes, we will often write x c= t instead of recx. t. For

example, the process NB2 of the introduction is equivalent to (recx.in.a.x /

recx.E.out.x)\cc. Another notational convention we use is p\A for p\~r~\cc,\~~~\cc,,,

where A={a,,tl.). Also, we work modulo the identifications

u,::~~::...::u,::p=u::p, where u=u1u2...u,, and E:: p=p. We shall see that these

identifications are valid in our semantics. Finally, we use lot(p) c Lot to denote the set

of basic location names occurring in p.

We will give two operational semantics to 8. The first one generalizes bisimulation

equivalence in a straightforward way. The standard transition system is extended by

a rule for location prefixing. Loosely speaking, the new transition rule preserves

locations but also ignores them. The extended transition system is given in Fig. 7.

Note that the rule for the communication merge IF cannot be defined without using

For each IceAct,, let A E (P x P) and 2 c (P x P) be the least binary relations satisfying the following

axiom and rules:

(Sl) /‘.P~P,

(52) p&p’ implies u::pLu::p’

(S3) P-1I,P’ implies p+q&p’

q+pAp’

(S4) PAP' implies plq++p’jq

qlpLdP

(W pLp' implies pIqLp’lq

66) p&Lp' implies p[.1’]Xp’[f]

(S7) p&+p’ & &[cc,E) implies p’,, ZAP’\ r

(SW t [WC Y. t;r] I’ p’ implies WC\-.rLp’

(S9) ” p.p’. 11++q’ implies plqLp’lq

(S IO) p&p’% p’Lp”
q i q’, q+ q” implies plCqLp”lq”

(WI) P&P.

(W2) T ' p+p,. P'jP" implies p k p”

Fig. 7. Standard transitions.

&-transitions.’ Based on this transition system, weak bisimulation is defined as usual.

We use % to denote % 3 % and b to denote a if p=a, aEAct, or fi=~ if p==.

Definition 2.1 (Bisimulation equivalence). A symmetric relation R E P x P is called

a bisimulation iff R G B(R), where

(p, ~)EB(R) iff for all ,uEActT,

p 2 p’ implies 4 2 q’ for some ~‘EP such that (p’, q’)ER

p and q are bisimulation-equivalent (or bisimilar), p z q, if and only if there is a bisimula-

tion R such that (p,q)ER.

Two expressions t, t’E& are hisimulation-equivalent (or hisimilar), t z t’, iff tp z t’p for

all substitutions p: fv(t)ufv(t’)+P.

It is well known that z is an equivalence relation and, restricted to P, the largest

symmetric fixed point of the equation R = B(R).

1 As pointed out by L. Aceto, an operational rule for IC based entirely on strong transitions would yield an

operator which does not preserve z+, the coarsest relation contained in z preserved by +.

Observing localities 41

Bisimulation equivalence considers the ability of performing visible actions and

only in this respect bisimilar processes exhibit the same behaviour. The new semantics

we give to 8 additionally takes the distribution in space into account. As already

discussed above, there will be two points in which it differs from the standard one. The

first point is that locations may be introduced via the observation of actions.

Secondly, processes may contain locations, and actions in the scope of locations will

be observed at those locations. Formally, these two points are reflected by the

following two rules in the location transition system.

(Ll) a.&+ u::p, uELoc*,

(L4 P++ p’ implies 0 :: p ++ v::p’.

Here u is an access path representing a location where the action a is performed and in

the second rule this is extended by II to give the new location uu. With these two rules

we are able to derive, up to the identification u :: u :: p = uu :: p,

a.b.c.nil 5 u :: b.c.nil

+ uv::c.nil

3 uvw :: nil.

This example demonstrates the incremental allocation of locations in the course of

observations. But one might wonder whether this is necessary when considering

sequential processes only. However, with the rule (Ll) it is not obligatory to assign

a new location with each action performed because u may be instantiated to E. So, we

could also have the derivation

u::b.c.nil + u::c.nil

+ u::nil.

The rule for parallel composition is the usual one:

(L4) P+ p’ implies p[q + p’lq.

Using this rule together with (Ll), we can derive

a.(b.nilI c.nil) -&+ u::(b.nil/c.nil)

+ u::(u::nillc.nil)

* u::(u::nill w::nil).

We can now see how parallelism is differentiated from nondeterminism. For the

process a. nil 1 b. nil, we can derive u. nil 1 b.nil a u :: nil 1 b.nil, while its nondetermin-

istic counterpart would perform the transitio’n u. h. nil + b.a.nil 3 u :: b.nil. Now

with the observation of the action b different locations would be perceived. In

u::nilIb.nil+ u :: nil 1 L’:: nil the h is performed at the location L‘ which is indepen-

dent of u, whereas in u :: b.nil G UP:: nil it is performed at a sublocation of U,

namely UL’.

The r-transitions are considered, as usual, to be invisible; so, no location is observed

when they are performed. They are of the form p L p’ and are defined through the

standard transition system for CCS given in Fig. 7. Visible transitions are defined by

the location transition system given in Fig. 8. They always have the form p 3 p’,

where we call u the location where the action II is performed. Weak transitions are

defined in the same way as for the previous transition system:

P&P,, PI + p2, p2 % p’ implies p + p’,

Note that p + p’ implies p 25 p’, up to the identification F :: q = q, and that, in general,

the reverse is not true, due to rule (S2).

If we apply the transition rules to our examples from the introduction, we can

derive

In 111 Ii :: r.In. I,

Formally, In is represented by the term recs.in.z..u and

rec.u.in.cc.s + u::x.recs.in.sr.r

For each LIEAC.I. let 2 c(P x kc* ” x P) be the least binary relation satisfying the following axioms and

rules:

CL11 :: (I. p . II : : ,’ IltLtw*

(L2) ” r--;-r’
0

implies ~.::p+r::p’

(L3) (’ r-r implies p+q+p’
N

ci+pTr’

(L4) P++P’ implies plq+p’lq

4lp+dr’

(LS) ” P-r’ implies p[y+p’lq

(L6) ” P-P' implies p[,/J+p’L,f]

CL71 &+p’ & u$(r.?l implies p’,a+p’ r

(LX) t [WC s. I h] + p’ implies recu.t~p ”

Fig. 8. Location transitions.

Observing localities 43

because

in.X.x[recx. in.cc.x/x] + u :: z.recx. in.a.x

by (Ll) and (L8). Similarly, recalling that In = in.a.Zn and Out + &.out.Out and using

in addition (L4) and (L7) and our notational conventions

(In 1 Out)\cc-+-+ (u::x.In 1 Out)\%

A (u::ln 1 out.Out)\cr

++ (u::In 1 v::Out)\a

+ (u::In / u::out.Out)\a.

This means that the observer can discern two different locations in the system, one

where in is performed and the other where out is performed.

Based on the transition system given in Figs. 7 and 8, we now define location

equivalence. Two processes p and q are location-equivalent if every move of one of

them is matched by a similar move of the other and, in particular, if, for every visible

transition p + p’, the matching transition q + q’ has the same location.

Definition 2.2 (Location equivalence). A symmetric relation R G P’ x IP is called a loca-

tion bisimulation iff R E C(R), where (p, q)EC(R) iff

(i) p % p’ implies q 2% q’ for some q’EP such that (p’, q’)ER,

(ii) pup’, a~Act, u~Loc* implies q Gq’ for some q’EP such that (p’,q’)~R.

Two processes p and q are said to be locution-equioulent, p + q, iff there is a location

bisimulation R such that (p,q)~R.

Two expressions t, t’E& are locution-equivalent, tz:/ t’, iff, for all substitutions

P:fu(t)ufi(t’)+P, tpq t’p.

We reconsider the examples of the introduction. As argued there, the processes

and

NB2 +(Zn I Out)\x

should be distinguished if their distributed nature is taken into account. Indeed,

B2 and NB2 are not location-equivalent. Consider the move

B*+u::out.B1 Ii31 = l?;.

44 G. Boudol et ul

Then NB2 would have to match it with

NB,+(u::x.In 1 Out)\cc=NB:

or

NB,+(u::In 1 out.Out)\x=NB<.

Both of these, NB: and NB:, may perform an out action at any location C,

which cannot be matched by a similar move by B$ at the location L’ if z: is chosen to be

different from U. On the other hand, NBz+ Prl because a location bisimulation

containing this pair of processes may be defined, using NB and Pr as generic names

for states of the systems NB2 and Pr,, as follows, using I = {send, deher}:

(NB, Pr)ER iff

NB=(u:: In 1 o::Out)\cc and Pr=(u::Sender 1 Medium I u:: Receiuer)\I or

NB=(u::x.In I z~::Our)\a or

NB=(u::In I a::out.Out)\a

and

Pr=(u::send.Sender I Medium I u:: Receioer)\l or

Pr = (u :: Sender I deliver. Medium I v :: Receiver)\1 or

Pr = u :: Sender 1 Medium I v :: out. Receiver)\ I.

Finally, it can be checked that Pr, z/ Pr2 z:/ NB2 considering the location bisimula-

tion in Fig. 9, where I = {send, deher, tryf, try s}.

3. Properties of location equivalence

In this section we prove some properties of +. For example, a property one would

expect is that p z:/ q implies p z q, that is, location equivalence is included in bisimula-

tion equivalence. In order to show a more general result, we introduce some notation

concerning the renaming and erasing of locations.

Let 71 be a mapping 71: Loc+Loc*. We call such a mapping a locution renaming.

Now 7c may be extended to words in the obvious way: X(E)=& and rc(Iu)=rr(1)z(u).

Further, 7c may be transferred homomorphically to a mapping between processes

7~: b-+6: for example, we will have rr(u :: p) = x(u) :: n(p). For a renaming affecting only

.d z (d)and ‘1-c uo!$!sodoq

'p.IEM.IOJ~q@AI]S s! LyadoId &.I!MOIIOJ aq~ uaq~ '(,d)annd ~(d)arnd

J! Ape pm J ,d 7 d a~vy aM ‘%y3rl 1cw .I~J ‘~eq~ y3aq3 01 Lsea s! I!

‘~0~.(b=b::3 uopmyguap! aq3 01 dn)d sdlCue~oj ssaDoJd-s33r? sp[a!li (d)arnd uaql

f3=(l)alnd ‘x1731,4 'a'! ‘suo!)x?3o~ III? Sasela q3!qM %I!LUeUa.I uo!lmol aql aq and]a?

.as!Mlaqlo y

‘]=y J' n =(@
I

Aq pauyap II 8u!weual aql 3 01 @lClddt:

JO l[nsal aql %u!ueaw ‘[n+-111 uoge~ou aql asn Apuanbaq [I!M aM ‘uoymol auo

'zAd PUE "d 'OJ UO!]F2(tlLU!S!q UO!)B30[v ‘6 ‘%d

[\(“JCl!JJJ~‘In0::.1 1 J.‘!AS 1 J~!~~+J~!M~l’lJ”llJp’yJ” /
~-

UUUpJfl (AJpUJS :: n) = .,d

JO I\(.iJ+fJJJx :: il 1 all,+, S’.lJMfJp 1 J.t!Ad +J.l!~~“.rJ~l!/Jp’+X7 (

Uln!pJ~) AJpUJS :: n) = “d

10 ~\(.dJ$JJJ~::t, 1 JdlMS 1 Jl!~d+J~!~~“.rJn!lJp.YJ~ 1

LUmpJm’S .f.ll 1 .,JpUJS :: Y,) = Ad

10 ~\(d~o!~~J~~in~::fl I adids I a_uAJ 1 umpa~ I .d~pu~S::n)=dd

JO I\(.~J~~!JJJ~::R 1 JA!~S I J.f!~d~- / umpa~ I dJpuas::n)=q

10 ~\(~J~~J3J~::” 1 c%U~S 1 J~!Md+J~!~~‘.rJa!lJp’yJU 1

urnlpJ~‘S,t~]‘I+urn!pJ~‘yJn 1 .lJpUJS::n)=.dd

10 I\(lJfl!JJJv::R 1 %l!AS 1 3.HA.J 1 .dJ/pU”t,J.UM 1 .tJpUJS::n)=Q

10 [\(dJ@J>Jv ::(1 1 J.UAS 1 J.l!dd 1 dJ/PU”t,J.,!A 1 AJpUJS :: n)=.,d

10 ~\(dJd!JJJ~::il 1 JdAS 1 JA&d 1 LLtmpJ~ 1 .dJpUJS~pUJS::n)=.,d

P”E

Z\(JtlO~JtlO::.1 1 U~::n)=g,,l

10 Fl\(JnO:::l I UI’X;::n)=gN

JO

I\(dJ:x!J2Jy:: :I I a.f!~s 1 J.t!~d +J~~~~~‘.ra:u~ap~~.x~ I cun!pJm 1 ~Jpuas:: n)=.dd

,O [\(.tJcl!JJJ~::fl 1 J.UAS 1 J+,d (LW!pJ~ 1 .,JpUJS::n)=dd

P=e

xl\(lng::a I uf::n)=gN

B! 2l%dd ‘BN) 4 pa=w S! 8

SP SJ!l!/“JOI h+UJSqO

46 G. Boudol et al.

In fact, we have a stronger result, namely that pure(p) and p are strong bisimulation-

equivalent [13] but we shall only use Proposition 3.1 in the following.

We now show that location equivalence implies ordinary bisimulation equivalence.

This result relies on the next lemma, which shows the basic interrelation between the

transition systems * and +.

Lemma 3.2. (1) Ifp* p’ then pure(p)& pure(p’).

(2) Lf‘pure(p) *r “then 3u~Loc*, p’~p s.t. p + p’ and r = pure(p’).

(3) Properties (1) und (2) also hold,for weak transitions.

Proof. By induction on the proof of transitions. 0

Proposition 3.3. p q q implies pure(p) z pure(q).

Proof. We show that R = { (pure(p),pure(q)) I pz/ q} is a bisimulation. Suppose

pure(p) 25 r. By Lemma 3.2, we have p + p’ with r= pure(p’). As p z:/ q, we know that

q + q’ for some q’ such that p’z(q’. Applying Lemma 3.2, we obtain pure(q) 25

pure(q’), which is a suitable matching move since (pure(p’),pure(q’))ER.

The case pure(p) % r is even easier, since we have pure(p) 2% r iff 3~’ s.t. p 2~ p’ and

r=pure(p’). 0

The inclusion of location equivalence into bisimulation equivalence follows directly

from Propositions 3.1 and 3.3.

Corollary 3.4. p+ q implies pzq.

We now study how location renamings affect the behaviour of processes. The next

lemma establishes the relation between the transitions of processes p and n(p).

Lemma 3.5. Let ps[FD, and n be an arbitrary location renaming.

(1) LfPA p’ then n(p)5 n(p’).

(2) Lf~(P)‘-t r then 3p’s.t. p& p’ and z(p’)=r.

(3) !f P+ P’ then Z(P)* x(P’).

(4) For any L s.t. lot(p) 5 L c Lot: z(p)+ r implies 3x’, 3v~Loc*, C~SE$ such that

71’rL=71rL and p+ s, lvith z’(u)=u, n’(s)=r.

(5) Properties (l)-(4) also hold for weak transitions.

Proof. We prove only point (4) as the others are easy. The proof is by induction on

the proof of the transition x(p)* r. We examine two cases, the other ones being

immediate.

47

(i) a.q+ u::q, with 7c(p)=a.q, r=u::q. Then 3p’s.t. p=a.p’ and x(p’)=q. Let

now IELOC- L. Define the renaming 7~’ by

Then drL=zrL, and the required move of p is a.p’+l::p’, since z’(!)=u and

n’(p’)=x(p’)=q because loc(p’)=loc(p)~ L.
(ii) w::q~w::q’,71(p)=M’::q,u=wu’andr=w::q’,andthetransitionofw::qis

inferred fro; q&--+q’. Since w::q=x(p), there exist w’,p’ s.t. p=w’::p’, with

x(w’)=w, n(p’)=q. Then, by induction, 3rc’, 3tl’, 3s’ s.t. z’rL=xrL and p’--f+s’,
with rc’(u’)=u’, d(s’)=q’. From this we deduce w’:: p’* w’:: s’, which is the

required move for p since z’(w’)= I = M, because lot(p) G L and, thus, ~‘(w’u’) =

WU’=U and &(w’::s’)=w::q’=r. 0

Proposition 3.6. Let p, qEp, and 71 be an arbitrary location renaming. Then p z:/ q

implies z(p) + n(q).

Proof. Let R= { (x(p), z(q)) 1 pz/ q). We show that R is a location bisimulation.

Assume 7c(p)+r. Take now L such that loc(p)uloc(q) E LC Lot. Applying

Lemma 3.5 (4), we deduce that there exists n’ s.t. 7~’ r L = 71 r L and a transition p + p’

such that rc’(u)=u, n’(p’)=r. As pz/ q, there is a transition q s q’ such that p’+ q’.

Now since z(q) = d(q), applying Lemma 3.5(3), we obtain d(q) 7’5 n’(q’), where, by

definition of R, (d(p’), n’(q’))ER.
The case x(p) % r is treated similarly, using clauses (1) and (2) of Lemma 3.5. 0

Like (weak) bisimulation equivalence, location equivalence is a congruence with

respect to the operators of prefixing, parallel composition, renaming, restriction and

recursion. It is also preserved by the new operator of location prefixing. We do not

give the proof here, the proof technique being essentially the same as for bisimulation

equivalence [131.

Proposition 3.7. Let p, q, rE P, t, t’E&, and suppose p + q, t + t’. Then

(1) P.P=/F.q>

(2) u::pz/u::q,

(3) plr+qIr,

(4) pICr=/qICr,

(5) Pm=:/ Y Lx

(6) P\ZZ:/ 4\G

(7) recx.tz2/recx.t’. 0

48 G. Boudol et al.

It is well known that the (weak) bisimulation equivalence z is not preserved by

nondeterministic choice nor by the leftmerge operator (for the latter consider the

following example: a z 5.u but a (b + z. a 1’ b), and for similar reasons neither is location

equivalence. We proceed here as for bisimulation equivalence, and work with z:$ - the

coarsest equivalence contained in E/ which is preserved by all operators. The

equivalence ~7 can be characterized in two ways. Again, these are standard and we

omit the proofs.

Proposition 3.8. p z:F q ifs

(i) p A- p’ implies q A- q’ for some q’E P such that p’ z/ q’,

(ii) p+ p’ implies q + q' for some q’EP such that p’ zf q’,

(iii) q i q’ implies p &-p’ for some P’EP such that p’z[q’,

(iv) q+ q’ implies p s p’ for some P’EP such that p’ z:/ q’,

ifs
p+az:/q+a ,for some a$sort(p)usort(q),

where, us usual, sort(p) yields the set of visible actions of p.

Consider now the equations in Figs. 10-12. The first set of equations D contains the

so-called static laws of CCS, that is, the basic laws governing the static operators,

parallel composition, relabelling and restriction. The equations E and E’ give a set of

very simple laws about the distribution of location names through the other operators

and will be used later in the paper. Finally, the equation set G is a complete set of

equations for distributed bisimulation equivalence on CC&, finite CCS without

restriction and relabelling. This particular set of equations is taken from [l l] and will

also be referred to later in the paper. The last equation in Fig. 12 expresses an

Pl)
(W
(P3)

(RUl)

(U1)
KJ2)
RJ3)

(-u \,r)[f‘] =.x[f’]\p if /l$f(sorr(x)) and f’(c)=
f(c) if cfac
B

otherwise

x[id]=v

.~[Uc81=~[s .I’1
~-~IL.~CSI=~lf‘ll~‘lfl

Fig. 10. Equations D, the static laws.

Observing localities 49

(El)
(E-3
(E3)

(E4)

(E5)

(E6)

@‘I)

(E’2)

073)

u::(xly)=u::xlu::y

u::(x[f])=(u::x)[J]
u::(x\r)=(u::.x)\r
e::x=x

u::nil=nil

u::(o::y)=ur::4‘

u::(x~,y)=u::“lCu::4’

u::(xl?_)=u::x[u::y

u::(.x+y)=u::x + u::y

Fig. 11

(AlI

(A21

(A31

644)

(LPI)

u-p21
u-p31

u-p41

(11)
(12)

03)

WV

Wl)

(CP2)
W3)

(CP4)

(CP5)

Equations E u E’, equations for location names.

x+().+z)=(x+y)+z
x+y=)‘+x

x + nil = x

x+x=x

(x+l’)~z=x~z+l’/z

(xiu)lz=xl(Ylz)
x[nil=x

nil[x=nil

x+rx=r.x

p.rx=p.x

~.(x+r.4’)+~.4.=~.(.~+~.~)

s.x[y=s.(xlp)

x[y=x[r.y

x~(y+r.z)+x~z=x[(y+s.z)

xlY=xtY+Y~x+&~

s.xl,y=xl,y

(x+Y)l,~=(xl~~)+(Yl,~)
xlc)‘=ylcx
xl..nil=nil

I.

{

~.(xly)[(.x’ly’) if a=6
(a..x[x’)l,(b.yly’)=

ml otherwise

a.(xlx~)[(y~y’) c a.(c..~l.~‘+u)i(cL’tv’+w)

Fig. 12. Equations G

absorption of terms: the notation y c x means that y is absorbed by x, that is,

x+y=x.

Now it may be checked that all these equations are satisfied by z;:

Proposition 3.9. The sets ofequations D (in Fig. lo), E, E’ (in Fig. 11) and G (Fig. 12) are

sound for z?.

We show now that for sequential CCS processes the equivalence z/ reduces to the

bisimulation equivalence z. This will ensure us that introducing locations adds

discriminations between processes only as far as their distributed aspect is concerned.

50 G. Boudol et (11.

Let CC&,, be the set of sequential processes of CCS, that is, processes built without

the parallel operator. The following is easy to prove, using the laws (E2), (E3) and (E6).

Lemma 3.10. Let ~ECCS,,, and IA, o~Loc*. Tken

(1) $fc::pUr then ~P’ECCS,,, s.t. p&p’, dk rz,u::p’,

(2) ifpip’ then VWELO~*. 3rECCS,,, s.t. ti::p&r, with r+uw::p

Proposition 3.11. !j’p,q~CC&, then p =q implies pz/ q.

Proof. Let R=((a::p,ti::q)Iu~Loc*, p,q~CCs,,, and pzq}. We want to show that

RE z:/. To this end, it is sufficient to show that R is a location bisimulation up to

location equivalence. More precisely, we will show that if o :: p + r then u :: q + s, with

r z/. R. z/s (and, similarly, for c-moves).

Suppose u :: p + r. Then by Lemma 3.10(l), ~~‘ECCS,,, s.t. p % p’, with r+ u :: p’.

Note that u is necessarily of the form u = UV. Now since p % q, corresponding to p % p’

there is a move q % q’ s.t. p’ z 4’. But now, by Lemma 3.10(2), 3sKCS,,, s.t. c :: q $ s,

with s*/ mv::q’=u::q’. Then (u::p’,u::q’)~R and, thus, rz,u::p’Ru::q’z,s.

Take now v :: p &- t: :: p’. This is because p % p’. Then, since p zz q, we have q % q’

with p’c q’ and, thus, (t’::p’, c::q’)cR.

We have, thus, proved that pzq implies L’:: pz/ v:: q and, hence, in particular,

E:: p z+ E:: q. Now, by the soundness of law (E4), we have E:: p z/ p; whence, we

conclude that p+E::p+&::q+q. 0

We next show a decomposition result for location equivalence. This will be used in

Section 5 to show that location equivalence and distributed bisimulation equivalence

coincide on a subset of CCS. This decomposition result concerns only pr, the set of

finite processes of IFD. We introduce first some notation and preliminary results. Let

p~$~. Define the ohserl;ahle length of p, denoted as IpI, to be the maximal length of

a chain of observable actions of p, that is,

VpEP,: /p/=rnax{nIp~...~pp’}.

The following properties are easy to show.

Lemma 3.12. Let p,q~p~. Then

(1) pzq implies lpl=lql,

(2) p % p’ intplies (p(3 (p’(,

(3) p Z p’ implies I p I > / p’ 1,

(4) p+p’ implies IpI>Ip’I.

Note that from clause (1) we may deduce also lu::pl= IpI. Also, it may be noted

that, as a consequence of Proposition 3.1, we have z(p) z p for any location renaming

rc, since p zpure(p) =pure(x(p)) z n(p). Then, from clause (1) it follows also that

lPl=l~(P)l.

Ohseroiny localitirs 51

The next lemma generalizes Lemma 3.2. It also expresses the fact that in the

location transition system the location allocated at each step may be chosen

arbitrarily.

Lemma 3.13. Let p, qE P. Then

(1) if-P Ap’ then 3u~loc(p)* s.t. Vl$loc(p): p +p”, with p’=p”[l+~],

(2) ifp+ p’ then 3u~loc(p)*, w~Loc* s.t. u=vw and Vl$loc(p): p+p”, with

p’=p”[l+w].

We need another preliminary result.

Lemma 3.14. Let p, q, Y, SE P, and UELOC *, 1~ Lot, with l$loc(p)u loc(q)u loc(r)u lot(s).

Then

ul::plqz,ul::rls implies IpI=lrl und /q)=/sl.

Proof. Note first that I(plq)l=IpI+lql. Let now q$...$q’, where n=lql. By

Lemma 3.13(2), we may assume that I does not occur in any t’i. Now

ul::p(q~...~u[::plq’.Therefore,3r’,s’s.t.Itl::rls~...~ul::rrls’.Nowucannotbe

responsible for any ai-move, since I does not occur in any Zji and, thus, /sI > (41.

A symmetric argument shows I q I > 1s I; hence, I q I = 1s I and, by the remark above, also

IPI=ld 0

We may now prove the decomposition result.

Proposition 3.15 (Decomposition). Let p, q, r, SET, and u~Loc*, ~ELOC, with l$loc(p)

u lot(q) u lot(r) u lot(s). Then

ul::p/qz,ul::rIs implies pz/r and qz:/s.

Proof. Let R = {(p, r), (q, s) I ~1:: p lq z./ ul:: rI s}. We want to show that R is a location

bisimulation. We consider only the pair (p,r).

Let p % p’. We want to show that r % r’ with (p’, r’)ER. From p 2% p’, we deduce

ul::plq%ul::p’Iq. Then u1::rl.s has a corresponding move ul::rls%ul::r'ls' such

that ~1:: p’lq SZ/ ~1:: r’ls’. Then we have (p’, r’)ER and (q, S’)E R.

We want to show now that r % r’ and s % s’. We prove then, by contradiction, that

in ~1:: r Is % ~1:: r’l s’ there was no communication between r and s. For, assume that

there was such a communication, that is, ul::rls% ul::r”ls” &ul::r’ls’ because

~1:: r iul:: r” and s 3 s” for some a~ Act. Due to this communication, the observable

length of s has decreased, i.e. I s I > Is’ I. However, Lemma 3.14 applied to the precondi-

tionand toul::p’~qz~ul::r’~s’yields~q~=~s~and~q~=~s’~,respectively;thus,/s(=~s’~,

contradicting I s I > 1 s’ I.
Therefore, ul::rls% ul::r’ls’ because r % r’ and s %s’ and, thus, r&r is the

required move of r.

The case p + p’ is similar. It relies on the case p % p’ above, and uses Lemmas 3.12,

3.14 and 3.13(2). U

4. Logical characterization

It is well known that bisimulation equivalence may be characterized using a simple

modal language called HML, in the sense that two processes are bisimulation-

equivalent if and only if they satisfy exactly the same set of formulae [13]. This

characterization has generated considerable further research into the relationship

between processes and behavioural properties, which, in turn, has given rise to

significant practical applications [6, 14, 121. Here we show that a similar logical

characterization of location equivalence may be given and in future research we hope

to use this characterization to extend the work on model checking, proof systems for

modal properties, etc., in these papers to this new setting.

HML is a simple modal logic based on two modalities (a) and [a], where a is an

arbitrary action. So, an obvious extension to cope with location equivalence is to

parameterise these modalities by locations. However, we will introduce a slightly

more general modal language, which we feel is somewhat more natural. If a process

contains no locations then it should be unnecessary for the formulae which character-

ise it to contain locations. In such processes, elements of CCS, locations are potential

rather than actual and it should also be the case in its characterising formulae. For

this reason we introduce location variables and quantification over these variables.

One can imagine an expressive term language for locations but here we consider only

a very simple language given by

t ::= 1, IELOC / x,.xELVur 1 E 1 t.t.

Here LVur is an infinite set of location variables, disjoint from Lot, E represents the

degenerate location and is sequence concatenation. As usual, we omit this symbol,

writing r. t’ as tt’. The language for property formulae is then defined by the following

abstract syntax:

t=t’ / 3.x.@.

In the formula (a),@ the term t represents a location and intuitively the formula is

satisfied by a process which can perform an action a at a location specified by t and in

doing so reaches a state which satisfies @.

Other logical operators may be defined in the standard way in this language. For

example, Vx.@ stands for 13.x.1 @, [u],@ stands for 1 (a),~ @ and tt stands for

A{ @ I@ 8) h’h’ E w IC is vacuously true for all processes. As with processes, we use lot(@)

to denote the set of all locations occurring in @. Both V and 3 bind location variables

Ohseraing localities 53

and this leads to the usual definition of free and bound variables. We are interested

only in formulae which are closed, i.e. which contain no free occurrences of location

variables, which we denote by 9’. More generally for L G Lot, we let -r;P, denote the set

of closed formulae which use locations only from L. So, in particular, formulae in

Y@ use no locations and all location variables are bound.

The satisfaction relation between processes and formulae, /= G P x 9, is a straight-

forward extension of the standard one [131, and is defined by structural induction on

formulae. We extend the notation for renaming locations already defined on processes

to formulae. We use @[x+t] to denote the formula which results from substituting

t for all free occurrences of x in @. If 1 denotes a simple location, i.e. IELOC, then

@[I-tu] is the formula which results from substituting u for all occurrences of 1 in

@ and @[l&+x] is defined similarly:

Pk/j@i if, for each ill, p I= pi,

PI’l@ if not p+@,

p I= (a), @ if, for some p’, p c p’ and p’ /= @,

PI=(E)@ if, for some p’, p&p’ and p’/=@,

pI=u=w if u is w,

p+3x.!P if, for some u~Loc*, p t_ @[x-u]

Note that the variables range over general locations, i.e. sequences from Lot* rather

than simply elements of Lot. We consider some examples:

This expresses the fact that the process alb can perform the actions a and b at

arbitrary and, therefore, independent locations. This is not true for the process

u.b + b.a, which, consequently, does not satisfy this formula. Instead, it satisfies

a formula which expresses the idea that, whenever an action a is followed by an action

b, the latter is always executed at a sublocation of the former:

u.b+b.u ~vx.vy.[u],[b],tt+3z.(y=x.z).

Let us introduce the notation tsubloc t’ to abbreviate the formula 3z.(t=t’.z), where

z is some variable not occurring in t or t’. It expresses the fact that t is a sublocation of

t’. Then the above formula may be rewritten as

VxVy[~]~[b],,tt+ysublocx.

As another example, let p,q denote the processes (a.u.clb.i.d)\cc, (u.a.dlb.E.c)\a,

respectively. Then

while 4 satisfies the dual property

q1=3x.34’.3z.(a),(h),(c.),rt A l(Z.WhlO(.X).

We can also use these properties to distinguish between the two different kinds of

buffers, NB2 and BZ, discussed in the introduction:

This expresses the fact that whenever an our action follows an in action it must take

place at the same location. This property is not true of NB,. In fact, we have

which emphasises the fact that the locations where the in and out actions are

performed are independent.

Our aim is to show that location equivalence is characterised by the formulae in

F which processes satisfy. We first show a lemma which says that certain locations

may be renamed without affecting the satisfaction relation.

Lemma 4.1. For I, kcLoc, p I= @ implies p[k+l] /= @[k+l] procided 1 does not occur in

p or @.

Proof (ha induction on the dejinition of‘ p + @). We give three examples.

(i) @ is (u),, Y. Then p + p’ such that p’ I= Y. By induction, p’[k+l] I= Y[k+/].

Also, from Lemma 3.5, it is easy to show that p + p’ implies p[k+l] + p’[k+l],

where M’ is u[k-11. So, p[k-+l] I=(~)~~Y[k-fl], i.e. p[k+l] I=@[k-I].

(ii) @ is 3x.Y. We must show p[k+l] 1=3x.Y[k+l], i.e. for some u, p[k+l] I=

(Y[k-l])[.x-u]. We know that pI=Y[.x+w] for some VV. If 1 does not occur in

Y[.x+\v] then, by induction, p[k-tl] i=(Y[. w-w])[k-11. The required u is, there-

fore, w[k+l] since

Otherwise, i.e. if 1 occurs in ~1, let 1’ be a location name which does not occur in p nor

Y[\--by]. Then, by induction, p[l+l’] I=(Y[.u-w])[l-1’1, that is, pi= Y[x-w’],

where w+w[l+l’], and we are back to the previous case.

(iii) @ is 1 Y. We must show that p[k+l] /=l Y[k+l], i.e. not p[k+l]I=

Y [k-l]. Suppose to the contrary that p[k+l] I= Y[k-I]. Then, by induction, since

k does not appear in p[k+l] or Y[k-11, p[k+l][l+k] + Y[k+l][l+k]. Since

1 does not appear in p or Y, this reduces to p I= Y, which contradicts p I=1 Y. 0

As a corollary, we have that if p I= @ and @J contains a location not in lot(p) then the

role of that location is essentially arbitrary.

Corollary 4.2. [f‘ p /= @[.u+l], Mhere l~loc(p)u/oc(@) then, ./iv ecery k$loc(p)u

h(G), p I= @[s-k].

Ohseraing localities 55

Proof. By the previous lemma, p[l+k] I=@[x-+l][l+k]. But p[1+k] is p and

(@[x-+l])[l+k] is @[x-k] since neither k nor I occur in p or @. 0

We are now ready to state the main result of this section. For L G Lot, let =!ZL(p)

denote {@EZ’J~I=@}.

Theorem 4.3. pq q iff 6pL(p)= TL(q), where L= loc(p)uloc(q).

Proof. =s: It is sufficient to show that if p z/ q and @ in YL(p) then q I= @. The proof is

straightforward by induction on the structure of @ and is omitted.

C: Let R={(p,q)I YL(p)=YL(q), L=loc(p)uloc(q)}. We show that R is a location

bisimulation. The proof is by contradiction. If R is not a location bisimulation then

there can only be two reasons (up to symmetry):

(i) p % p’ and, for every q’, q 2s q’, (p’, q’)$R or

(ii) for some UELOC* and a~Act, p + p’ and, for every q' such that q s q’, (p’, q’)#R.

We examine only the second possibility as the first is similar but easier.

Let {qi 1 iel} denote {q’ I q u q’}. Then, for each ~E:I, there exists a closed formula

pi which uses at most the locations from qi and p’ such that p’ /= @i and qi v @i. SO,

p k @ and q I+ @, where @ denotes (a), /j (4i I iEZ}. Note, however, that in general

lot(@) rf loc(p)u lot(q). We need to find a formula which is satisfied by p and not by

q but which contains locations only from loc(p)u lot(q). We know that u must be of

the form L’W, where the basic locations in u belong to lot(p) and, therefore, the only

new basic locations occurring in @ which are not in loc(p)uloc(q) must appear in w.

Let I be one such location. We show that there exists a formula @’ such that

/oc(@‘) = lot(@)- {I} and p I= @‘, q # @‘. By iterating this elimination procedure, we

will eventually obtain a formula which differentiates between p and q and only

contains the basic locations only from loc(p)uloc(q). Let new(x) be a formula which

expresses the fact that x is a basic location which does not occur in loc(p)uloc(q). If

II, I, is an enumeration of this set then new(x) may be defined by

1(x=/,) A 1(x=/2) A . . . A 1 (X = 1,) A 1 (X = E)

A ((x=y.z)-+y=& ‘/ Z=E).

Provided we choose a fresh variable x, it then follows that p I= 3x.(@[l+x] A new(x))

while q I+ 3x.(@[l+x] A new(x)). The latter follows from the previous corollary and

these two statements contradict the fact that (p, q)ER. To see in detail why q does not

satisfy this formula, suppose to the contrary that it does, i.e. q I=3x.(@[I-+x] A

new(x)). Then q I= @C/+x] [x+u] A new(u) for some location u. This means that u is,

in fact, a basic location k from Lot which is not in loc(q)u loc(@[l+x]) and

q/=@[l+x][x-+k]. So, we may apply the previous corollary to obtain

q + @[l-+x] [x+/l, i.e. q I= Cp. Cl

As an immediate corollary we have the following result.

Corollary 4.4. For p, q ECCS, p z./ q f and only if Y@(p) = 90(q).

5. The relationship to distributed bisimulation

The first approach to a semantics for CCS which takes the distributed nature of

processes into account - as opposed to their causal structure ~ can be found in [S, 41,

with an extension in [ll]. The basic idea is similar to that of location equivalence. The

capabilities of observers are increased so that they can observe actions together with

the location where they are performed. However, observers have a different strategy.

In the present paper an observer sees an action together with its location, chooses

a name and assigns it to the observed site. Within the world of distributed bi-

simulations, observers are mobile and may move from one location to another. So,

when seeing an action together with its location, an observer moves to this location

and appoints a new observer to observe the remainder of the process. Thus, in the

course of experimenting on a process, the number of observers increases by one with

each visible action. On the other hand, locations are observed without assigning

names to them.

In this section we give a formal comparison of distributed bisimulations and

location equivalence for the finite language without renaming and restriction. We will

show that for these processes both the semantics coincide. This allows the transfer of

results already available for distributed bisimulations to location equivalence. For

example, we have a complete axiomatization.

In what follows, we give a brief discussion of distributed bisimulations for finite

processes without restriction and renaming. The definition we choose here is based on

local and concurrent observers as first introduced in [4] as opposed to the local and

global approach in [S]. However, we consider an operational semantics slightly

different from that in [4]; this can be found in [ll].

We will distinguish the local subprocess by including it in brackets [1, as, for

example, (a.nil/ [b.nil]) / c.b’.nil. Therefore, the syntax for “processes with a local

component” is given by the following grammar, where p stands for any CC&-term,

that is, for any finite CCS term written without restriction and renaming:

p ::= [PI I (PIP) I (PIP)

Let PROC, , denote this language. We use %[p], 22[q], . . . to range over PROC,]. In

u’[p], p denotes the local subprocess included in []-brackets, while %? stands for its

context; p will often be called the process at the current location. For example, for

(a.nil~[b.nil])~c.h.nil,wehavep=b.niland~=(a.nil~.)~c.b.nil.Wewillalsousethe

notation V(p), where $5 and p are as in %Y[p] but p is embedded in +2 without the

[]-brackets. Processes in PROC, I will be used to exhibit the location which has been

observed with the execution of a visible action. They determine the new position the

observer will take and the remaining part of the process to be observed by a new

observer. So, visible transitions have the form p Ld %T[p’]. The observer who

observed the action a of p will move to the location of a, and from then on he can see

only actions performed by the local component, that is, p’. A newly appointed

observer will observe the remaining part %‘(nil).

Ohserring localities 57

For each aeAt, let Ad E (CC& x PROC, ,) be the least binary relation satisfying the following axiom

and rules:

(Dl) U.PL, [PI.

(JW pLd%[p’] implies p+qL,X[p’]

4fP~‘iKCP’l

CD31 pLd%[p’] implies plqL,%[p’]lq

qlPLdql% [P’l

(D4) pLd%[p’] implies p[q+Ld%[p’]lq.

Fig. 13. Distributed transitions.

In this semantics one observes locations of actions as in the location transition

system, but no names are assigned to locations. The rules for (strong) distributed

transitions are given in Fig. 13. These rules apply only to restriction- and renaming-

free terms.

Weak transitions are derived by the rule

(WD) P&P r LdV[p’] 5 9[p”] implies ~4% d~CP”l>

where transitions W[p’] 2. Q[p”] are defined, in conjunction with the single arrow

relations --L, as the least binary relations satisfying (Sl)-(W2) in Fig. 7, with, in

place of (S2):

(S2’) p--L p’ implies [p] A [p’].

As an example, we can derive

So, the main difference between the location semantics and that based on distributed

bisimulations does not lie in their transition system but in the equivalences based on

them; in the former observing a location results in assigning a name to it, while in the

latter it results in splitting the process into a local subprocess and a remaining

subprocess.

Definition 5.1 (Distributed bisimulation equivalence). A symmetric relation R L

CC& x CCS,, is called a distributed bisimulation iff R G D(R), where (p, q)ED(R) iff

(i) p % p’ implies q 2~. q’ for some q’ECCS,, such that (p’, q’)ER,

(ii) ~%~%[p’] implies q%‘d9[q’] for some B[q’]EPROC, I such that (p’,q’)~R

and (@‘(nil), s(nil))ER.

Two distributed processes p and q are said to be distributed-bisimulation-equivalent,

p~~q, if and only if there is a distributed bisimulation R such that (p,q)~R. 0

As an example of nonequivalent processes, consider u. h + b.a and al b. If

u. h + h.a i, [h] then a 1 h can match this move only with u 1 b sd [nil] 1 b. So, we have

to compare the local subprocesses, b and nil, and the remaining ones, i.e. %‘(nil)=nil

and Y(nil)=nilI b. Obviously, in both cases the equivalence does not hold.

On the other hand,

For example, pi sd [6] / h, which can be matched by q1 with q, sd nil I b I [hIj; it is

obvious that the processes at the current locations are equivalent and so are the

remaining processes nil I b and rril 1 b I nil.

Distributed bisimulation equivalence is not preserved by + and 1, for the same

reason as location and bisimulation equivalence are not preserved by them and, so,

again we consider the largest relation Z: contained in Z~ which is preserved by all

operators. It can be characterised in the standard way.

Proposition 5.2. p 2: q #

(i) p 2 p’ implies 4 G 4’ suck that p’ zd q’,

(ii) p sd ‘t’[p’] irnplirs 4 gd Y 14’1 suck that p’ zd 4’ and ‘d(d) czd 8(niI),

(iii) 4 i 4’ implirs p i p’ .suck that p’ zd 4’.

(iv) q sd 9 [4’] implies p sd % [p’] such tlmt p’ zd q’ and ‘%‘(nil) zd 9”(d)

#p+ua~q+u,ftir smne u~sort(p)usort(q). 0

We next show that Z/ and zd for processes in CC& coincide. The major difference

between these two equivalences lies in the fact that in the case of distributed-

bisimulation equivalence, after a visible move, the process being observed is split into

two, the two parts being subsequently observed independently. Another difference is

the way locations are observed. We establish with the next lemma the relationship

between the different kinds of observations. Based on that, we then obtain the

required splitting for location terms by applying the decomposition proposition

(Proposition 3.15).

Lemma 5.3. Let ~ECCS,, und Y’= ((P2),(P3)) (c:jf: Fig. 10). Tken

(1) lj‘ p T p’ tken there exist % und ~“GCC& suck tkut p sd% [p”] und

p’-o,(l::p”I%(nil)).

(2) $p sd $5 [p”] tkef? tkrrr e\-ists p’ .suck tkut p + p’ and p’ =Dc (/ :: p” 1% (nil)).

Proof. By induction on the length of the proof of transitions. Z

Proposition 5.4. Let p, qcCCS,,. Tkerz p+ 4 #pcd4.

Proof. By induction on the sum of sizes of p and 4, where the size of a term is defined

as the number of actions occurring in it. Without mentioning it, we will make use of

the fact that equations in D’ preserve the size of processes.

Observing localities 59

a: Assume that p %‘d %‘[p”].
By the previous lemma, p 4 p’, where P’-~, (1:: p” 1 V(d)). Since p+q, there is

q 4 q’ such that p’z?q’. By Lemma 5.3 again, there exist 9 and q” such that

4&d 9[q”] with q’-D, (1:: q” I B(d)). As the equations in D’ are sound for +, we

derive (I:: q” [9(nil))q (1:: p” I Q?‘(d)). Applying the decomposition of Proposition

3.15, we obtam q” z/ p” and s(nil)+ %‘(nil). Now induction yields q” asp” and

9(nil) %:d %‘(nil), which is what we were required to show.

The case p &- p’ is immediate, since the c-transitions are the same in both systems.

e: Assume p 4 p’.
By Lemma 5.3, there exist %? and p” such that p 2-‘d %Y[p”] with p ED’ (1:: p” 1 %?(nil)).

Moreover, since p z d q, there is q %‘d 9 [q”] such that p” z d q” and %?(nil)z d 9(nil).

Induction yields p”+ q” and @‘(nil) z/ 9(ni/). By Lemma 5.3 again, there exists q’ such

that q 4 q’, with q’ ED’ (I :: q” I 9(nil)). Now, as the equations in D’ are sound for +, we

can conclude p’ z:/ q’.
The case p % p’ is obvious. 0

Corollary 5.5. Let p, qECCS,,. Then pz? q ifspzi q.

The equivalence of z/ and zd immediately yields the following result.

Proposition 5.6. On CC&, ~2 is equal to the congruence generated by the equations

G in Fig. 12.

Proof. See Theorem 4.12 in [111.

In [l l] the definition of distributed bisimulation was extended to all of finite CCS.

We do not give the definition here but we can show that the resulting equivalence is

different from %:I. For example, the two processes p and q, defined below are

equivalent according to the generalised definition of distributed bisimulation but are

differentiated by z(.

P=(c.(a.C,+p.~,+~.c,+P.n,,l(/5.~*+~.n~+~.~~+B.n,)) \ {%filY

q=(c.(a.C,+p.n,+~.c,+P.n,,l(~.c,+P.n,+a.c,+~.n,)) \ {~TBl,

where

and

Intuitively, the difference between these two equivalences is due to the fact that, in the

course of experimenting on processes by means of distributed bisimulation, locations

which have been observed are forgotten in later states. Hence, a visible transition of

one process can be matched with a visible transition of the counterprocess which

originally was at a different location. This shows that location equivalence is a better

choice than generalized distributed bisimulation when looking for an extension of

distributed bisimulation to CCS processes with restriction.

Finally, we should point out that location equivalence appears to be orthogonal

to causality-based equivalences. For example, Z/ distinguishes the processes

(a.x.c 1 h.t?i.d)‘\cc, (~7.x.d 1 h.ii.c)\r which would be identified by behavioural equiva-

lences based on causality such as that in 171. On the other hand, the processes u.b 1 c.d

and ((~.(~.h+b)I(‘(r.d+d))\,cc are identified by + although they have a different

causal structure.

6. Conclusions

Most of the recent research into noninterleaving semantic theories for concurrent

systems has centred on introducing some aspect of causality into their own observa-

tion. We believe that it is very difficult for an external observer to confirm causal

dependencies between actions performed by independent systems and, if such depend-

encies can be determined, this may be done only in a very indirect manner. For this

reason, we believe that it is inappropriate to base an extensional semantic theory of

processes on notions such as causality although they may be appropriate for inten-

sional purposes, such as defining the operational behaviour of processes. Instead, we

have focused on a different aspect of systems, namely, their distribution in space. For

distributed systems, it seems natural to assume that an external observer can discern

which sites within the system react to particular experiments or requests for informa-

tion. We hope that the present paper gives some arguments to convince the reader

that a reasonable and useful semantic theory can be based on such ideas and that it

can be applied to nontrivial languages.

Very similar ideas underlie the various definitions of distributed-hisimulution equira-

lence [4, 5, 1 l] and indeed the main contribution of the present paper is to reformulate

this approach in order to make it more accessible. This new location-based equiva-

lence is easy to understand, applies to all of CCS, and its formulation makes its

relationship with the standard bisimulation equivalence transparent. Indeed, it should

be possible to adapt much of the work done on bisimulation equivalence to location

equivalence. This includes generalising the algorithms for checking and generating

bisimulations and those for checking that processes satisfy recursively defined modal

formulae [6]. However, this generalisation is not completely straightforward because,

for example, the relations which establish location equivalence between even finite

processes are infinite. This was certainly the case with the examples we examined in

the earlier sections.

Another interesting area of research would be the development of a specification

language, an extension of CCS, more suited to location equivalence or, more gener-

ally, to expressing properties of the distribution of processes and the application of

such a language to nontrivial examples.

Observing /malilies 61

The introduction of locations into the language for describing processes also

enables us to define what it means for one location to be a sublocation of another.

This has been shown to be of use in the modal language defined in Section 4. It could

also be used to define a “concurrency preorder” between processes. Briefly, p <q

would mean that p and q have more or less the same behaviour but q is possibly more

concurrent than p. Such a preorder could be defined by relaxing the condition that

matching actions be performed at exactly the same locations; instead, an action from

q could be matched by one from p performed at a more specified location. This would

imply that p is possibly more sequential than q or q is possibly more concurrent than

p. However, there is considerable room for discussion as to what exactly the formal

definition should be.

Finally, we should mention that location equivalence lacks a finite axiomatisation

when restricted to finite terms in CCS. This is one of the most attractive features of

bisimulation equivalence and it would be nice to have such an axiomatisation for

location equivalence, especially if it did not use many auxiliary operators.

Acknowledgment

The authors thank Luca Aceto for many useful and illuminating discussions.

References

[l] J. Bergstra and J.W. Klop, Algebra of communicating processes with abstraction. Theoret. Comput.

Sci. 37 (1985) 77-121.

[2] G. Boudol and I. Castellani. On the semantics of concurrency: partial orders and transition systems,

in: Proc. of TAPSOFT 87, Lecture Notes in Computer Science, Vol. 249 (Springer, Berlin, 1987)

123-137.

[3] G. Boudol and I. Castellani, Permutation of transitions: an event structure semantics for CCS and

SCCS. in: Proc. of Linear Time, Branching Time and Partial Order in Logics and Models fbr

Concurrent), Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1989) 411-427.

[4] 1. Castellani, Bisimulations for concurrency. Ph.D. Thesis, University of Edinburgh, 1988.

[S] 1. Castellani and M. Hennessy, Distributed bisimulations. .I. ACM 10 (1989) 887-911.

[6] R. Cleaveland, J. Parrow and B. Steffen, A semantics based verification tool for finite state systems, in:

Proc. 9th Internut. Symp. on Protocol Specijcution, Testing and Verijicarion (North-Holland, Amster-

dam, 1989).

[7] P. Degano and P. Darondeau, Causal trees, in: Proc. SCALP 88, Lecture Notes in Computer Science,

Vol. 372 (Springer, Berlin, 1989) 2344248.

[S] P. Degano, R. De Nicola and U. Montanari, A distributed operational semantics for CCS based on

conditioq’event systems. Acta Ir@m. 26 (1988) 59-91.

[9] M. Hennessy, Axiomatising finite concurrent processes, SIAM J. Comput. 17 (1988) 99771017.
[lo] C.A.R. Hoare. Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).

[l l] A. Kiehn, Distributed bisimulations for finite CCS, Report 7/89, University of Sussex, 1989.

1123 K. Larsen, Proof systems for satisliability in Hennessy-Milner logic with recursion, Them-et. Comput.

Sri. 72 (1990) 265-288.

1131 R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989).
1141 C. Stirling, Modal logics for communicating systems, Theoret. Comput. Sci. 49 (1987) 31 l-347.

