
Observing Localities *
(Extended Abstract)

G. Boudol, I. Castellani
INRIA, Sophia-Antipolis,

M. Helmessy
CSAI, University of Sussex,

A. Kiehn
TUM, Munich.

1 I n t r o d u c t i o n

There are by now a number of well-established semantic theories of processes in the

research literature which are based on principles of observation. The main idea is that

processes are deemed to be equivalent if there is no possible observation which can distin-

guish them. Different formalisations of this idea, which give rise to a number of semantic

equivalences, may be found in [MilS9], [Hen88] and [Hoa85]. All of these formalisations

are based on the same simple notion of observation, namely communication: one may

observe a process by communicating with it via a communication channel. The resulting

semantic theories are often called interleaving theories; they do not distinguish between

concurrency and nondeterminism or more precisely they equate a parallel process with

the purely nondeterministic one obtained by interleaving its primitive computation steps

or actions.

Some attempts have been made to generalise this observation based approach in

order to develop a semantic theory which does distinguish between these two phenomena,

[CH89], [BC87], [DNM88], [BC89], [DD89]. Here we reexamine the approach taken in

[CH89] and [Kie89] where the processes under observation are considered to be distributed

in nature. So the observer can not only test the process by communicating with it but

can also observe or distinguish that part of the distributed process which reacted to

the test. A purely nondeterministic process is based at one site whereas in general a

concurrent one may be distributed among a number of different locations. It follows that

an observer will be able to distinguish them.

*This work has been supported by the ESPRIT]BRA CEDISYS project.

94

We use as a starting point the process algebra CCS, a process description language

which describes processes in terms of the actions they can perform. So for example the

process B1 defined by

Bx #= in.out.B1

is a simple process which repeatedly performs the actions in, out. If we run two copies

of this in parallel we obtain a process which acts more or less like a two-place bag:

B2 ¢: B~ [B~.

Here I is the parallel operator of CCS which in this context defines a process which

consists of two independent processes, two copies of B1, running in parallel.

Processes running in parallel may also communicate or synchronise with each other.

This is formalised by dividing the set of actions into two complementary subsets, the input

actions and the output actions. Communication is then considered to be the simultaneous

occurrence of complementary actions. Output actions are indicated by an overbar, such

as 3, z'-n, etc., input actions by the absence of an overbar and there is a distinguished action

T to indicate a communication or more generally internal and unobservable computation.

So if we define two processes In, Out by

In ¢= in.a.In

Out ¢= ~.out.Out

then the process In] Out acts somewhat like B2. However In, Out are not obliged to

synchronise via the action a. The actions a and ~ may be performed independently,

which corresponds to separate synchronisations with processes in their operating envi-

ronments. To eliminate these possible communications with the environment and thereby

force the synchronisation between the two processes we limit the scope of these actions

using another operator of CCS, restriction, which in general is written as \A where A is

"a set of actions. So let NB2 be defined by

NB2 "¢= (In J Out)\c~.

These two processes, B2 and NB2, offer very similar behaviour to a user particularly as the

synchronisation between In and Out is not supposed to be visible externally. According

to the theory developed in [Mi189] they are weak bisiraulation equivalent, denoted by

132 ~ NB2; in terms of the visible actions in and out they offer the same possible behaviour

to any user of the systems.

However this reasoning is based on the assumption that the only property which

can be observed of a process is its ability to perform particular actions. Now let us re-

interpret the language by saying that P [Q is a distributed process where the sub-process

95

P is at one site and Q is at another site; moreover let us suppose that an observer can

distinguish between sites in the sense that when a distributed process performs an action

the observer knows the site responsible for it. Thus one observer's view of the distributed

process B2 is

11 ::

k t

~ :: 4

b !

Here the observer has decided, out of personal choice, to call the site or location of the

first subprocess I1 and the second subprocess 4. Now it is not possible to construct a

similar view of NB2. For example

. I

~ :: 4

h

can easily be distinguished as here all in actions are seen to occur at the location 11 and

all out actions at location 4. In contrast they are distributed between 11 and 4 in the

distributed process B2.

The basic difference between these two processes is that in NB2 one site is respon-

sible for the in actions and one for the out actions whereas B2 has two equivalent sites

each acting like a one place buffer. Viewing these as specifications this is a useful and

meaningful distinction. To implement B2 it is necessary to have independent locations

each acting like buffers whereas an implementation of NB2 would always have to localise

the responsibility for the in actions and the out actions in independent locations.

Let us now address the question of how exactly an observer should be allowed to

perceive the distributed nature of a process. In this respect we are guided by principles of

extensionality; we would like the resulting equivalence to be as extensional as possible in

that the semantics of a process should only be determined by its external manifestations

rather than its internal structure or behaviour. It is reasonable to argue that at least

some aspect of the distribution of subprocesses of a distributed system is a part of its

extensional behaviour and therefore if we are to view CCS as a language for describing

distributed systems an observer should be able to view in P [Q a distributed system

which potentially has two distinct sites; any externally visible action performed by P

should be recognizable as emanating from one location and any performed by Q should

be recognizable as coming from a different location.

In this paper we develop the idea that location names are assigned dynamically as

96

part and parcel of the act of observation; when an observer sees an action it will naturally

be seen as emanating from a particular location and the observer may then choose to

allocate a name to that location. All subsequent actions performed at that location

will then be recognised as emanating from this same location. Technically this involves

developing an operational semantics for the language by replacing the usual statements

of the form P -% Q with new ones of the form

P ~ Q
U

which carry information a b o u t the location names which the observer has assigned to

particular locations in the system. This is very similar to the approach taken in [CH89],

[Cas88] and [Kie89] where distributed bisirnulatio~ are defined and in the full version of

the paper we offer a detailed comparison.

2 Location Equivalence

The language we use to formalize our approach is a slight extension of Milner's pure

CCS. The main extension is an additional operator called location prefixing representing

the allocation of locations to processes, A process p prefixed by a location u will be

denoted by u :: p. Intuitively, this means that process p is at a location called u.

However, in general we will assume these locations are introduced via the observation of

visible actions. Tha t is, initially, before any experiment has been performed the process

under investigation does not contain any location. With the observation of an action

the location of the action is also perceived and assigned a name. Thus the observers we

assume here are more powerful than those usually considered for CCS or other process

algebras. So we will have a transition rule

a.p a_, u :: p for any location name u

which means that a is performed at a location to which the observer permanent ly assigns

the name u. If further experiments are performed on u :: p then the location u will always

be observed. Moreover the location called u may contain sub-locations which in turn may

also be observed. For example

u :: (a.nit [b.ni 0 ~ u :: (v :: nil [b.n~ 0 .

Here the location which has been called u by a previous observation contains two sub-

locations and at one of them a is performed. The name v is allocated to this subsite via

the observation of a.

Formally we assume an infinite set of basic location names or site names Loc, ranged

over by l, k, etc. , and general locations will be sequences from Lot*, ranged over by

97

u, v, w, So we work with the following abstract syntax:

= nit I u.t I t + t I t i t I t[f] I t\b

where # ranges over Actt2 {r}, Act is a basic set of actions and f is a bijective relabelling

function which preserves complementation. Most of these operators are taken directly

from CCS but ~ and Ic are the leftmerge and communication merge operators from

[BK85], [aenSS].

We will give two operational semantics to the closed terms of this language. The

first one generalizes bisimulation equivalence, ~ , in a straightforward way and is omitted

in this extended abstract. This equivalence considers the ability of performing visible

actions and only in this respect bisimilar processes exhibit the same behaviour. The

second semantics we give to the language additionally takes the distribution in space

into account. As already discussed above there will be two points in which it differs

from bisimulation equivalence. The first point is that locations may be introduced via

the observation of actions. Secondly processes may contain locations and actions in the

scope of locations will be observed at those locations. Formally these two points are

reflected by the following two rules in the location transition system.

(L1) a.p :~ u :: p u E Loc*
t t

(L2) p ~-~ p' implies v :: p -~ v ::/¢
t l t ~ u

Here u is an access path representing a location where the action a is performed and in

the second rule this is extended by v to give the new location vu.

The v-transitions are considered, as usual, to be invisible, so no location is observed

when they are performed. They are of the form p 5~ p~ and are defined through the

standard t ransi t ionsystem for CCS on which bisimulation equivalence is based. Visible

transitions are defined by the location transition system given in Figure 1. They always

have the form p ~ pl where we call u the location where the action a is performed.
t l

Weak transitions are defined m the usual manner:

P 6 P~, P~ -%,, P'2, P2 6 p' implies p~p .= '

We can now see how parallelism is differentiated from nondeterminism. For the process

a.nil I b.nil we can derive a.nil [b.nil a_~ I :: rdl I b.niI while its nondeterministic
1

counterpart would perform the transition a.b.nil + b.a.nil ~-~ l :: b.nil. Now with the
1

observation of the action b different locations would be perceived. In l :: nil] b.nil b-L l ::
k

n// I k :: nil the b is performed at the location k which is independent of I whereas in

l :: b.nil b_~ Ik :: nil it is performed at a sublocation of l, namely lk.
ik

98

For each a 6 Act let -~ C C_ (IP x Loc* x IP) be the least binary relation satisfying the
t t

following axioms and rules.

(L1) a.p "-~ u :: p u 6 Loc*
i t

(L2) p -L ~ p' implies
i t

(L3) p -L" p' implies
i t

v : :p "-L v::p '
~)it

p + q ~-~ p'
t t

q + p ~--.~ p'
U

(L4) p ~ p' implies
i t

p l q ~--% p ' l q
U

q l p "-t q]p'
U

(L5) p --% p' implies
U

(L6) p -L ~ p' implies
U

(L7) p ~ p' implies
i t

(L8) t[reex, t/x] "-~ p' implies
U

p[q ~ p '[q
U

p[f] f(--5 ~) p'[f]
i t

p\b ~-~ p'\b, a ¢ {b,b}
i t

recx. t ~ p'
U

Figure 1: Location Transitions

Based on this transition system we now define location equive2ence. Two processes p

and q are location equivalent if every move of one of them is matched by a similar move

of the other and in particular if for every visible transition p=~.p' the matching transition

q=%q' has the same location.
U

Def in i t ion 2.1 [Location Equivalence]

A symmetric relation R __C_]P x IP is called a location bisimulation iff R C_ C(R) where

(p, q) e c(n)i
(i) p =~ p' implies q =~ q' for some q' 6]P such that (p', q') 6 R

(i i) , a 6 Ac t , u e Loc"

implies q ~ q ' for some q' 6 IP such that (p', q') 6 R.
U

Two processes p and q are said to be location equivalent, p ~l q, iff there is a location

bisimulation R such that (p, q) 6 R. []

99

One may now easily check that the two processes B2 and NB2 defined in the intro-

duction, are distinguished by ~l.

3 Properties of Location Equivalence

In this section we briefly outline some properties of ~z. The details may be found in the

full version of the paper.

Proposition 3.1

1. P ~t q implies p ~ q.

2. I f p, q contain no occurrence of[then p ~ q implies p ~ q.

. Let p, q E]P, and r: Loct , Loc* be an arbitrary relabelling of location names.

Then p q implies

4. ~z is preserved by all the operators of CCS except + and ~ .

Like weak bisimulation ~ , the equivalence ~t is not preserved by +. Let ~-,~ be the

largest equivalence contained in ~l which is preserved by all operators. This congruence

satisfies the usual static laws of CCS [Mi189] and may be characterised equationally

on the subset of CCS which does not include restriction and relabelling. The required

equations, which involve the auxiliary operators [, lc are given in Figure 2, where the

notation x E y means that x is absorbed by y, i. e. y + x = y. In the full paper we

show that on the same sub-language location equivalence ~-,I coincides with distributed

bisimuIation as defined in [CH89], [Kie89].

It is well known that bisimulation equivalence may be characterized using a simple

modal language called HML, in the sense that two processes are bisimulation equivalent

if and only if they satisfy exactly the same set of formulae, [Mi189]. HML is a simple

modal logic based on two modalities (a) and [a] where a is an arbitrary action. So an

obvious extension to cope with location equivalence is to parameterise these modalities

by locations. However, we will introduce a slightly more general modal language, which

we feel is somewhat more natural. If a process contains no locations then it should be

unnecessary for the formulae which characterise it to contain locations. In such processes,

elements of CCS, locations are potential rather than actual and it should also be thus

in their characterising formulae. For this reason we introduce location variables and

quantification over these variables. One can imagine an expressive term language for

locations but here we consider only a very simple language given by

t : : = l , I E L o c [x, x E L V a r [e [t.t.

100

(A:)
(A2)
(A3)
(A4)

: + (y + ,) = (: + y) + z
x + y = y + x

x + n i l = z

x " b X = X

(LP1)

(LP2)

(LP3)

(LP4)

(x + y) y z = : y z + ~ K z

(~ Y y) Y ~ = • Y (y I z)
z y n i Z = z

nil ~ x = nil

(I1)
(12)
(I3)

xq-'rx ---- v.X

#.rX = /~.X
, . (x + ".y) + ~.y = ~.(X + ' . y)

(NU)
(NI2)
(NI3)

,-.x i~y = ,-.(x I y)
xyy = zy~'.y

• y (y + , - . z) + ~ , y ~ = ~ y (y + , . . z)

(CPE) • l y = ~ Y y + y Y ~ + ~ I o y

(cPo)
(cP1)
(cP2)
(ce3)

(cP4)

(cP5)

~.Xloy = xloy
(~+y) loz = (~ loz)+(yloz)

x [c niI = nil
g

(a .~yz ') lo (b .yyV) = {
r . (x [y) y (xl l y I) i f a = b

nil otherwise
%

a.(~ I ~') Y (y I y') E a.(c= ~ ' + v) g (a¢ gy, + w)

Figure 2: Equations G: Standard Non-Interleaving Laws.

101

Here LVar is a set of location variables, e represents the degenerate location and

is sequence concatenation. The language for property formulae is then defined by the

following abstract syntax

(~ : : ~ A{¢lCeZ} I-'¢
(a),¢ I (,)o
t = t ' I 3z.q'

In the formula (a)t~ the term t represents a location and intuitively the formula is

satisfied by a process which can perform an action a at a location specified by t and

in so doing reaches a state which satisfies q'. Both Y and 3 bind location variables and

this leads to the usual definition of free and bound variables. We are only interested in

formulae which are closed, i.e. which contain no free occurrences of location variables,

which we denote by L:. More generally, for L C Loc we let £L denote the set of closed

formulae which only use locations from L. So in particular formulae in L: 0 use no locations

and all location variables are bound.

The satisfaction relation between processes and formulae, ~ C]P x £:, is a straight-

forward extension of the standard one, [Mi189], and is defined by structural induction on

formulae. For example

p ~ (a),¢ if p ~ p ' and p' ~ q)

p p 3x.q~ if for some u E Loc" p p ¢[x --, u].

T h e o r e m 3.2 p "~t q iff £L(p) = £L(q) where L = loc(p) U loc(q).

As an immediate corollary we have

Corol lary 3.3 For p, q E CCS, p ~t q if and only if £¢(p) = £$(q). []

These technical results, only sketched here, show that location equivalence is a natural

refinement of bisimulation equivalence which inherits many of its interesting properties

but distinguishes between nondeterminism and concurrency.

R e f e r e n c e s

[BC87]

[BCSg]

G. Boudol and I. Castellani. On the semantics of concurrency: partial orders

and transition systems. In Proceedings of TAPSOFT 87, number 249 in Lecture

Notes in Computer Science, pages 123-137, 1987.

G. Boudol and I. Castellani. Permutation of transitions: an event structure

semantics for CCS and SCCS. In Proceedings of Linear Time, Branching

Time and Partial Order in Logics and Models]or Concurrency, number 354

in Lecture Notes in Computer Science, pages 411-427, 1989.

102

[BK85]

[CasS8]

[CH89]

[DD89]

[DNM88]

[HenS8]

[Hoa85]

[Kie89]

J. Bergstra and 3.W. Klop. Algebra of communicating processes with abstrac-

tion. Theoretical Computer Science, (37):77-121, 1985.

I. Castellani. Bisimulations for Concurrency. Ph.d. thesis, University of Ed-

inburgh, 1988.

I. Castellani and M. Hennessy. Distributed bisimulations. JACM, 10(4):887-

911, 1989.

P. Degano and P. Darondeau. Causal trees. In Proceedings of ICALP 88,
number 372 in Lecture Notes in Computer Science, pages 234-248, 1989.

P. Degano, R. De Nicola, and U. Montanari. A distributed operational seman-

tics for CCS based on condition/event systems. Acta Informatica, 26:59-91,

1988.

M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal of
Computing, 17(5):997-1.017, 1988.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

A. Kiehn. Distributed bisimulatious for finite CCS. Report 7/89, University

of Sussex, 1989.

[Mi189] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

