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Abstract: The distributed structure of CCS processes can be made explicit by as-
signing different locations to their parallel components. The assignment of locations
may be done statically, or dynamically as the execution proceeds. The dynamic
approach was developed first, by Boudol et al., as it appeared more convenient for
defining notions of location equivalence and preorder. Extending previous work by
L. Aceto we study here the static approach, which is more natural from an intu-
itive point of view, and more manageable for verification purposes. We define static
notions of location equivalence and preorder, and show that they coincide with the
dynamic ones. To establish the equivalence of the two location semantics, we intro-
duce an intermediate transition system called occurrence system, which incorporates
both notions of locality. This system supports a definition of local history preserving
bisimulation for CCS, which is a third formulation of location equivalence.
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Observation de la répartition des processus:
localités statiques et dynamiques

Résumé : On peut rendre explicite la structure de répartition d’un processus CCS
en attribuant des localités différentes a ses composants paralleles. L’attribution des
localités peut se faire de facon statique, ou dynamiquement au cours de 'execution.
L’approche dynamique a été développée en premier, par Boudol et al., se prétant
mieux a la définition de notions d’équivalence et de préordre de répartition. Etendant
un travail de L. Aceto nous étudions ici 'approche statique, qui est plus proche de
Iintuition et mieux adaptée & des fins de vérification. Nous définissons des notions
statiques d’équivalence et de préordre de répartition, et nous montrons qu’elles coin-
cident avec les notions dynamiques. Pour établir I’égalité des deux sémantiques, nous
introduisons un systeme de transitions intermédiaire appelé systéeme d’occurrences,
qui incorpore les deux notions de localité. Ce systéme se préte aussi a la définition
d’une bisimulation préservant l’histoire locale, qui est une troisieme formulation de
I’équivalence de répartition.

Mots-clé : Processus paralleles et répartis, CCS, bisimulation, parallélisme vrai,
localités, équivalence et préordre de répartition, sémantique causale, bisimulation
préservant 'histoire.
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1 Introduction

This work is concerned with distributed semantics for CCS, accounting for the spatial
distribution of processes. Such semantics focus on different aspects of behaviour than
most non-interleaving semantics for CCS considered so far in the literature, which
are based on the notion of causality. Roughly speaking, a distributed semantics keeps
track of the behaviour of the local components of a system, and thus is appropriate
for describing phenomena like a local deadlock. On the other hand a causal semantics,
such as those described in [DDNM89], [GG89], [DD90] [BCI1], is concerned with the
flow of causality among activities and thus is better suited to model the interaction
of processes and the global control structure of a system.

The distributed structure of CCS processes can be made explicit by assigning
different locations to their parallel components. To this end we use a location prefizing
construct [ :: p [BCHK93], [BCHK91], which represents process p residing at location
[. The actions of such a process are observed together with their location. We have
for instance:

(l:a | k:b) —‘;» (l:nil | k:b) % (L::mil | K nil)

In general, because of the nesting of parallelism, the locations of actions will not be
simple letters [, k,... but rather words v = [y --- l,,. Then a “distributed process”
will perform transitions of the form p -~ p'.

u

Intuitively, the assignment of locations should be done statically, and then be-
come part of what is observed of a process. More precisely, CCS processes should
be observed through their distributions, which are obtained by transforming each
subprocess (p | ¢) into ([ :: p | k :: ¢), where [ and k are distinct locations. When
comparing the behaviours of processes, this will allow us for instance to distinguish
(a | b) from (a.b+b. a), since any distribution of the first process will perform actions
a and b at different locations. For more interesting examples we refer the reader to
the introductions of [BCHK93], [BCHK91].

The question is now: which notion of abstract distributed behaviour do these
transitions induce on CCS processes? More specifically, we look for a notion of weak
bisimulation based on the transitions p % p’. Roughly speaking, this should equate
processes exhibiting the same “location transitions”. In our view, however, it would
be too strong a requirement to ask for the identity of locations in corresponding
transitions. In fact, if we want to observe distribution, we still aim, to some extent,
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at an extensional semantics. For instance, we do not want to observe the order in
which parallel components have been assembled in a system, nor indeed the number
of these components. We are only interested in the number of active components
in each computation. We would like e.g. to identify (the distributions of) the CCS
processes:

al(b]e) and (a]b)]c

a and a | nil

To this end, transitions must be compared modulo an association between their
locations. For instance to relate the distributions 1 ::a | k= (I' 20| k' 2 ¢) and
l(l":za | K b)) | k¢, we need to identify the locations I, kl’, kk' of the first
respectively with Il’, [k', k in the second. However, this association cannot in general
be fixed statically. For consider the two processes:

p=[a+b)|ab\a and ¢g=0b

Intuitively, we would like to equate p and ¢ because the observable behaviour of
any distributions of these processes consists in just one action b at some location
[. But here the required association of locations will depend on which computation
is chosen in the first process. Hence it is not immediately clear how to define an
equivalence based on static locations.

Because of this difficulty, the static approach was initially abandoned in favour
of a different one, where locations are introduced dynamically as the execution pro-
ceeds. This dynamic approach, where locations are associated with actions rather
than with parallel components, has been presented in [BCHK93], [BCHK91]. In this
setting, the choice of locations is more flexible and the notion of location equivalence
is particularly simple: it is just the standard notion of bisimulation, applied to the
transitions p % p’. Moreover, by weakening a little the definition of the equivalence,

we obtain a notion of location preorder, which formalises the idea that one process
is more sequential or less distributed than another. Such a notion is particularly
useful when dealing with truly concurrent semantics, where an implementation is
often not equivalent to its specification. Since location equivalence and preorder are
essentially bisimulation relations, many proof techniques familiar from the theory of
standard bisimulation may be applied to them: for example both these relations have
a complete axiomatisation and a logical characterisation in the style of Hennessy and
Milner, see [BCHK93], [BCHK91].

However, the dynamic approach has the drawback of yielding infinite transition
systems even for regular processes, and thus cannot be directly used for verification
purposes. Moreover in this approach locations represent access paths for actions
rather than sites in a system, and thus are somehow remote from the original intui-
tion. For these reasons, it was interesting to resume the initial attempt at a static
approach. The problem of finding the appropriate notion of bisimulation was solved
by L. Aceto in [Ace91] for nets of automata, a subset of CCS where parallelism is
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only allowed at the top level. The key idea here is to replace the usual notion of a
bisimulation relation by that of a family of relations indexed by increasing location
associations (what we call here a progressive bisimulation family). Aceto shows that
the notions of static location equivalence and preorder thus obtained coincide with
the dynamic ones, and thus may be used as “effective” versions of the latter.

The purpose of the present work is to generalize the static treatment of Aceto to
full CCS. Having established the notion of distribution for general CCS processes, the
main point is to adapt Aceto’s definitions of static location equivalence and preorder.
Because of the arbitrary nesting of parallelism and prefixing in CCS terms, and of
the interplay between sum and parallelism, this is not completely straightforward.
A step in this direction was done by Mukund and Nielsen in [MN92], where a no-
tion of bisimulation equivalence based on static locations is proposed for a class of
asynchronous transition systems modelling CCS with guarded sums. The notion of
equivalence we present here is essentially the same (extended to all CCS), and our
main result is that it coincides with the dynamic location equivalence of [BCHK91].
We also give a similar result for the location preorders.

To compare the two location semantics we introduce an intermediate transition
system, called occurrence transition system, which incorporates both the static and
dynamic locations. This system has an interest of its own, as it allows for a precise
definition of the notion of occurrence of an action in a computation. It also supports
a syntactic definition of (local) history preserving bisimulation, which turns out to
be another formulation of location equivalence.

We conclude this introduction with a brief review of related work. A first dis-
tributed semantics for a subset of CCS was proposed in [CH89], [Cas88], where the
notion of distributed bisimulation was introduced. An extension of this notion to a
larger subset of CCS was investigated by A. Kiehn in [Kie89]. A variant of Kiehn’s
extension is examined in [CN93]. Concerning distributed bisimulation, we should
mention also the decidability result of [Chr92], for a recursive fragment of CCS with
parallelism. The precise relation between distributed bisimulation and (dynamic) lo-
cation equivalence is studied in [BCHK93] and [BCHK91]; let us just mention here
that Kiehn’s extended notion is weaker than location bisimulation.

A general comparison of distributed and causality-based semantics is carried
out in [Kie91]; in particular Kiehn gives a characterization of dynamic location
equivalence as a local cause bistmulation, a variant of the causal bisimulation of
[DDY0] based on local rather than global causality. A similar result is presented by
Montanari and Yankelevich in [MY92], [Yan93], where dynamic location equivalence
is characterised as a local mized-ordering equivalence, a variant of the mixed-ordering
equivalence of [DDNM89]. Our characterisation of location equivalence as a local
history preserving bisimulation is therefore not surprising, since causal bisimulation,
history preserving bisimulation and mixed-ordering equivalence are known (from
[DDI1], [Ace92]) to be different formulations of the same equivalence.

As regards the static approach to locations, we mentioned already that our work
comes in the line of [Ace91] and [MN92]. A transition system for CCS labelled with
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static locations, called “spatial transition system”, was considered also in [MY92],
[Yan93]. However locations are used there essentially to build a second transition
system, labelled by partial orders, which is then used for defining the local mixed-
ordering equivalence. Again, this partial order transition system gives finite repre-
sentations only for finite behaviours.

Finally, D. Murphy in a recent paper [Mur93] proposes a more concrete view of
localities, for nets of finite sequential processes (essentially a sublanguage of that
considered in [Ace91]). Here again localities are given statically. However the names
of localities are themselves significant, and processes are considered equivalent only
if they reside on the same set of localities and present the same behaviour at each
locality. So Murphy’s concern appears to be different from ours: he compares distri-
butions of processes on a given set of localities (or processors), while our semantics
reflects the notions of distributed behaviour and degree of distribution somewhat
abstractly.

The paper is organised as follows. In Section 2 we introduce our language for
processes with locations. Sections 3 and 4 present respectively the static and the
dynamic location semantics. Section 5 is devoted to the comparison of the two ap-
proaches. Finally, in the Appendix, we give the definition of local history preserving
bisimulation and present a finitely-branching transition system for the dynamic lo-
cation semantics, inspired from [Yan93].

This is an extended version of [Cas93], complete with proofs.

2 A language for processes with locations

We introduce now a language for specifying processes with locations, called LCCS.
This language is a simple extension of CCS, including a new construct to deal with
locations.

Let us recall some conventions of CCS [Mil80]. One assumes a set of names A,
ranged over by a,f3,..., and a corresponding set of co-names A = {a | a € A},
where ~ is a bijection such that & = « for all @ € A. The set of visible actions is
given by Act = AUA. Invisible actions representing internal communications are
denoted by the symbol 7 ¢ Act. The set of all actions is then Act, =qor Act U {7}.
We use a, b, ¢, ... to range over Act and p, v, ... to range over Act,. We also assume
a set V' of process variables, ranged over by z,y. ...

In addition to the operators of CCS, which we suppose the reader to be familiar
with, LCCS includes a construct for building processes with explicit locations. Let
Loc, ranged over by [, k, ..., be an infinite set of atomic locations. The new construct
of location prefixing, noted [ :: p, is used to represent process p residing at location
[. Intuitively, the actions of such a process will be observed “within location [”. The
syntax of LCCS is as follows:

pu=mnil | pwp | (plg) | (p+q) | P\ | p(f) | @ | reca.p | lup

INRIA
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Here we use the slightly nonstandard notation p (f) to represent the relabelling
operator of CCS.

In a previous paper [BCHK91], this language has been given a location semantics
based on a dynamic assignment of locations to processes. Here we shall present a
location semantics based on a static notion of location, and show that the two
approaches, dynamic and static, give rise to the same notions of equivalence and
preorder on CCS processes. The basic idea, common to both approaches, is that
the actions of processes are observed together with the locations at which they
occur. In general, because of the nesting of parallelism and prefixing in terms, the
locations of actions will not be atomic locations of Loc, but rather words over these
locations. Thus general locations will be elements u, v ... of Loc*, and processes will
be interpreted as performing transitions p % p', where u is an action and u is the

location at which it occurs.

However, locations do not have the same intuitive meaning in the two approaches.
In the static approach locations represent sites - or parallel components - in a dis-
tributed system, much as one would expect. In the dynamic approach, on the other
hand, the location of an action represents the sequence of actions which are locally
necessary to enable it, and thus is more properly viewed as an access path to that
action within the component where it occurs. Because of this difference in intuition,
it is not immediately obvious that the two approaches should yield the same seman-
tic notions. The fact that they do means that observing distribution is essentially
the same as observing local causality.

3 Static approach

We start by presenting an operational semantics for LCCS based on the static notion
of location. The idea of this semantics is very simple. Processes of LCCS have some
components of the form [ :: p, and the actions arising from these components are
observed together with their location. The distribution of locations in a term remains
fixed through execution. Location prefixing is a static construct and the operational
rules do not create new locations; they simply exhibit the locations which are already
present in terms. Formally, this is expressed by the operational rules for action
prefixing and location prefixing. Recall that locations are words u, v, ... € Loc*. The
empty word ¢ represents the location of the overall system. The rules for u.p and
[::p are respectively:

(S1) pp s p
(S2) P %’s P’ = l:p Ti;s Ly

Rule (S1) says that an action which is not in the scope of any location [ is observed
as a global action of the system. Rule (S2) shows how locations are transferred
from processes to actions. The rules for the remaining operators, apart from the
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communication rule, are similar to the standard interleaving rules for CCS, with
transitions —— s replacing the usual transitions -,
u

The set of all rules specifying the operational semantics of LCCS is given in Figure 1.
The rule for communication (S4) requires some explanation. In the strong location
transition system we take the location of a communication to be that of the smallest
component which includes the two communicating subprocesses: the notation « M v
in rule (S4) stands for the longest common prefix of u and v. For instance:

Example 3.1 Let p=1I:a|kza. ('3 |k = 3), with | #k, I' #k'. Then:

P %s Lenil | k(2B K ) %s Liznil | ke (1 ndl | K 2:nil)
However, we shall mostly be interested here in the weak location transition system,
where 7-transitions will have no explicit location: since the transitions themselves
are not observable, it would not make much sense to attribute a location to them.
The weak location transitions ==s and ==, are thus defined by:

u

Pp==,q <  Jui,...,Up, Pos...Pn St. P=1po uimpl--- ui»spn:q
a T a T ! "
p s q = dp1,p2 st. p=sm s D2 ==k q

We shall use the weak location transition system as the basis for defining a new
semantic theory for CCS, and in particular notions of equivalence and preorder
which account for the degree of distribution of processes.

The reader may have noticed, however, that applying the rules of Figure 1 to
CCS terms just yields a transition p %s p’ whenever the standard semantics yields

a transition p £, p'. In fact, we shall not apply these rules directly to CCS terms.
Instead, the idea is to first bring out the parallel structure of CCS terms by assigning
locations to their parallel components, thus transforming them into particular LCCS
terms which we call “distributed processes”, and then execute these according to the
given operational rules. The set DIS C LCCS of distributed processes is given by the
grammar:

pu=ni | pp | (uplkzq) | (p+e) | pP\a | p(f) | = | reca.p
£k
l

Essentially, a distributed process is obtained by inserting a pair of distinct locations
in a CCS term wherever there occurs a parallel operator. This is formalised by the
notion of distribution, which we define next.

INRIA
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For each p € Act, , u € Loc*, let 2.5 be the least relation ~— on LCCS processes
u u

satisfying the following axiom and rules.

(S1) wp o p
2 2
(S2) P p' = lip l:p
(3) pe = plal vl
H /
¢lp— alp
(S4) P a = pla ——— p'|d
(S5) Py = p+q -y
g+p - p
w _ u
(S6) p— v, pég{aal = p\a — p\a
o f(w)
(S7) p— = p(f) = P
(S8) plrecx. p/x] % P’ = reca. p % P’

Figure 1: Static location transitions

Let p ‘Z)d g Sdet P {Ts q, and for each a € Act, u € Loc*, let %d be the

least relation % on LCCS processes satisfying rules (S2), (S3), (S5), (S6), (ST7),
(S8) and the axiom:

(D1) a.p % lip for any | € Loc

Figure 2: Dynamic location transitions
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Definition 3.2 The distribution relation is the least relation D C (CCS x DIS)
satisfying:

-nil Dnil and xDx

-pDr = upu.pDupu.r
p\a D r\«a

p(f) Dr{f)
(recx. p) D (recx. r)

-pDr & ¢qDs = (plq) D (lur|kzs), VILk st. 1#k
(p+4q) D (r+s)

If pDr we say that r is a distribution of p.

Note that the same pair of locations may be used more than once in a distribution.
We shall see in fact, at the end of this section, that distributions involving just
two atomic locations are sufficient for describing the distributed behaviour of CCS
processes.

3.1 Static location equivalence

We want to define an equivalence relation ~; on CCS processes, based on a
bisimulation-like relation between their distributions. The intuition for two CCS
processes p, ¢ to be equivalent is that there exist two distributions of them, say p
and ¢, which perform “the same” location transitions at each step. However, as we
argued already in the introduction, we cannot require the identity of locations in
corresponding transitions. If we want to identify the following processes:

al(b]e) and (a]b)]c
a and a | nil

it is clear that, whatever distributions we choose, we must allow corresponding tran-
sitions to have different  although somehow related static locations. In general
transitions will be compared modulo an assoctation between their locations. The
idea is directly inspired from that used by Aceto for nets of automata [Ace91]; ho-
wever in our case the association will not be a bijection as in [Ace91], nor even a
function. For example, in order to equate the two processes:

a.(b.c|nil) and a.b.(c|nil)
we need an association containing the three pairs (¢, ¢), (I,¢),(1,1"), for some [,I" €

Loc.

In fact, the only property we will require of location associations is that they
respect independence of locations. To make this precise, let < denote the prefix
ordering on Loc*. If u < v we say that v is an extension or a sublocation of u. If
u &L v and v £« u, what we indicate by u ¢ v, we say that v and v are independent.

INRIA
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Definition 3.3 A relation ¢ C (Loc* x Loc*) is a consistent location association
(cla) if:
() €@ & (W')ep = (uou & vod)

Essentially the same notion of consistent association has been proposed by Mukund
and Nielsen in [MN92] for a class of asynchronous transition systems modelling CCS
with guarded sums. The following properties of cla’s are straightforward to check:

Property 3.4 (Properties of cla’s)

1. If ¢ is a cla, then ¢~ is a cla.
2. If v isacla and ¢ C @, then ¥ is a cla.

3. If ¢ and Y are cla’s, then @ o is a cla.

Now Aceto showed in [Ace91| that, for a given pair of distributed processes we
want to equate, the required cla cannot in general be fixed statically, but has to be
built incrementally. For consider the two distributed processes, which are intuitively
equivalent since both perform actions a and b in either order at different locations:

(le(ay+b.9) | ka(7.b+7.a))\y and (l:za | k=)

Here, depending on which summand is chosen in the left component of the first
process, one will use the association ¢ = {(l,1),(k,k)} or the association ¢’ =
{(l, k), (k, 1)} (note that ¢ U ¢’ is not consistent). Another example is given in the
introduction.

To dynamically build up associations, we use the same technique as in [Ace91].
Let @ be the set of consistent location associations. We define particular ®-indexed
families of relations S, over distributed processes, which we call progressive bisimu-
lation famailies (although the relations that constitute a family are not themselves
bisimulations). The idea is to start with the empty association of locations and
extend it consistently as the bisimulation proceeds.

Definition 3.5 A progressive bisimulation family (pbf) is a ®-indexed family S =
{S, | ¢ € @} of relations over DIS such that, if pS,q¢ then for all a € Act,u € Loc*:

(1) p :Z>s p' = 3¢, v st. g %s ¢, ¢U{(u,v)} €@ and p’' S,ufue) ¢
(2) q %s ql = ap,au s.t. p %3 pla pU {(U,’U)} € ® and p, StpU{(u,v)} ql
(3) p==,p = 3¢ st. ¢==,q¢ and p'S.q

(4) ¢==sq¢ = TP st. p=,p and p'S,q

We may now define the location equivalence ~; on CCS terms as follows:
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Definition 3.6 (Static location equivalence) For p,q € CCS, we let p =} ¢ if
and only if for some p, g € DIS such that pDp and ¢D g, there exists a progressive
bisimulation family S = {S, | ¢ € ®} such that p Sy q.

We prove now that ~j ¢ is indeed an equivalence relation. The reader may have
noticed that the inverse D ~! of the distribution relation is a function. If we let
T =gef D ', then 7(p) gives the CCS process underlying the distributed process p.
We start by showing that all distributions of the same process are in the relation Sy
for some progressive bisimulation family S:

Proposition 3.7 Let py,py € DIS. Then w(p1) =7n(p2) = 3 pbf S s.t. p1Sypa.
The proof of this proposition relies on the following definition and lemma.

Definition 3.8 For any pi,py € DIS such that 7(p1) = 7(p2), let p(p1,p2) be the
least relation on locations satisfying:

p(nil,nil) = p(z,x) = @(p.r1,p.12) = @((r1+s1), (r2 +52)) = {(c,2)}
e(ri\a, 2\a) = o(ri (f), r2(f)) = w(ri,r)
(
(

o(rifrecx. ri/z], rafrecx. ro/x]) C @(recx. ri, recw. ry)

o((lyiry | krs), (lonrglkeise)) = {(g,9)}
U (llaZQ) '@(TlaTZ)

U (k1. k2) - o(s1,52)

where for any relation ¢, we let (I,I') - ¢ =ger {(lu,'v) | (u,v) € p}.

It may be easily checked that the relation ¢(p1,p2) is a consistent location associa-
tion. Note that ¢(p1, p2) only relates those locations of p; and py which are “statically
exhibited”, i.e. which do not occur under a dynamic operator. The following lemma
establishes the relation between ¢(p1, p2) and the transitions of pq, ps.

Lemma 3.9 Let p1,py € DIS be such that w(py) = 7(p2). Then:
Lopr = py = 3phv st pr ==s ph 9(p1,p2) U(u,0) C o(ph,ph) and
m(p1) = m(p3)
2. pr == 1 = 3Py st py == Py (p1,p2) C (ph.ph) and w(ph) =

m(ph)

PROOF: By induction on the proofs of transitions of distributed processes. Note that
in general ¢(p1,p2) C ¢(p},p)) because new parallel structure may appear as the
computations proceed. O
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We may now prove the above proposition.
PROOF OF PROPOSITION 3.7: Define the family T = {7, | ¢ € ®} by letting:

T, ={(r1,re) | m(r) =w(r2) and ¢ C @(r1,72) }

It is clear that riTyry for any ry, 7y such that 7(r1) = m(r2). Let us show that T is a
progressive bisimulation family. Suppose that ri T ry. If %s r} then by Lemma
3.9 ry %s rhy, with @(rq, ) U (u,v) C @(r],ry) and w(r]) = w(ry) . We want to
show that ¢' = pU(u,v) is a cla and that T, r5. But this follows immediately from
o C p(r1,72) and Lemma 3.9, since ¢ = oU(u,0) C @(r1,m)U(u,0) C g(rh,r4).

O

Using this proposition, we can finally prove that:

Proposition 3.10 The relation ~j is an equivalence on CCS processes.

PROOF: Reflexivity: Consider the family S = {S, |y € ®} defined by:

g _{ {(q,q) | ¢€DIS} if p CId

L 0 otherwise

It is clear that S is a progressive bisimulation family such that (¢,q) € Sy for any
q € DIS. Hence p =} p for any p € CCS.

Symmetry: Let p =} ¢. This means that for some p,q € DIS such that «(p) = p
and m(q) = ¢, there exists a progressive bisimulation family S = {S, | ¢ € ®} such
that p Sy q. Define now a family R = {Ry | € ®} by:

Ry ={(rs) | 35@1,717"}

Clearly ¢ Rgp. We show now that R is a progressive bisimulation family. Sup-
pose (r,s) € Ry: this is because sS,r, with ¢ = ¢~ 1. Then r %s r’ implies

s ::>s s, with §'S_ qupnr’s Now [ U {(v,u)}]™t = ¢ ' U{(u,v)}, and thus

(r',8") € Ry-10f(u)}- The case of unobservable transitions is similar. We can then
conclude that g = p.

Transitivity: Let p ~j r and r ~; ¢. This means that for some p,q,r,ry € DIS
such that 7(p) = p, 7(q) = ¢, n(r1) = 7w(ry) = 7, there exist pbf’s R! and R?
s.t. ]jRéTl, TQR%Q. Moreover, if T is the pbf introduced in the proof of Proposition
3.7, we know (from the same proposition) that r17yre. Hence if we define a family
S ={S, |y € ®} as follows:

(s,s') €S, & 3Fiy,ty € DIS such that 7(t1) = w(ty);

3 pbf's S', 8%, I cla’s @1, ¥, @y, such that
@ C ooy and sSi;1 t1 Ty tgsgg? s’
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it is clear that p Sy ¢. Furthermore it is easy to check that S is a progressive bisimu-
lation family, since for any u,v,v’,w we have ¢ U {(u,w)} C ¢y U {(v',w)} o ¢ U

{(v,0")} o @1 U{(u,v)}. =

A pleasant consequence of Proposition 3.7 is that ~; is independent from the par-
ticular distributions we choose. If two CCS terms p and ¢ are equivalent, then any
two distributions of them are related by Sy, for some progressive bisimulation family
S ={S, | g€ d}.

Corollary 3.11 For any p,q € CCS: p =j q & forall p,q € DIS such that
pDp and gD q there exists a progressive bisimulation family S = {S, | ¢ € ®}
such that pSpq.

By virtue of this result, we can restrict attention to particular “binary” distributions,
systematically associating location 0 to the left operand and location 1 to the right
operand of a parallel composition. A distribution of this kind will be called canonical.
Similarly, elements of {0, 1}* will be called canonical locations. These are exactly the
locations used in [MN92] and, with a slightly different notation, in [MY92],[Yan93].
In fact, when applied to canonical distributions of CCS terms, our transition rules
give exactly the same transitions as the spatial transition system of Montanari and
Yankelevich (except for 7-transitions, for which they use pairs of locations).

Let us see now a simple example, which shows the difference between location
equivalence and causality-based equivalences, such as the (weak) causal bisimulation
of [DD90]:

Example 3.12  a.b+b.a %] (av|70)\y + (b.v|7.a)\y =; alb

Using canonical distributions, it is easy to see that the computation a followed by b
yields the association ¢ = {(,0),(s,1) } between the locations of the first two pro-
cesses, which is not consistent. On the other hand, for the second and third process
we build the consistent association ¢; = {(0,0),(1,1)} for the computation a fol-
lowed by b, and the consistent association p9 = {(0,1),(1,0)} for the computation
b followed by a.

Another example, showing the difference w.r.t. the usual CCS semantics, is:
Example 3.13 recx.a.x %] (recx.a.x|recx. a.x)

In the standard CCS semantics these two processes give rise to isomorphic transition
Systems.
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3.2 Static location preorder

We define now a preorder E; on CCS processes, which formalises the idea that one
process is more sequential or less distributed than another. This preorder is obtained
by slightly relaxing the notion of consistent association. The intuition for p EZ q is
that there exist two distributions p and ¢ of them such that whenever p can perform
two transitions at independent locations, then ¢ performs corresponding transitions
at locations which are also independent, while the reverse is not necessarily true.
This is expressed by the following notion of left-consistency:

Definition 3.14 A relation ¢ C (Loc* x Loc*) is a left-consistent location associa-
tion if:
()€ & (WWYey = (uou = vor)

Now, if ¥ is the set of left-consistent location associations, we may obtain a notion of
progressive pre-bisimulation family (ppbf) on distributed processes of DIS by simply
replacing @ by V¥ in Definition 3.5. Again, this gives rise to a relation on CCS
processes:

Definition 3.15 (Static location preorder) If p,q € CCS, let p T

NZ g if and
only if for some p,q € DIS such that pDp and ¢D ¢, there exists a progressive

pre-bisimulation family S = {Sy | ¢ € U} such that p Sy q.

It is easy to see that p =) ¢ = p EZ g. As may be expected the reverse is not
true. We have for instance, resuming the examples of the previous section:

Example 3.16 a.b+b.a T, (a.v[730)\v + (b.y]75.a)\y

Example 3.17 recx.a.xz L °

~ [

(recx. a.x | recx. a.x)

Having introduced both an equivalence ~; and a preorder Ez based on the same
intuition, we may wonder whether ~j coincides with the equivalence ~j =, E‘Z
N ;'J; induced by the preorder. It is clear that &7 C ~7, since we have both ~j C Z
and ~; CJ )

equivalence, as shown by the following example. Consider the two processes:

. On the other hand, the kernel of the preorder is weaker than location

a.a.a + (alala) and aaa+ aala+ (a|lala)

These two processes are not equivalent w.r.t. ~j. but they are equivalent w.r.t. ~;
S

because a.a.a &,

a.ala E2a|a|a.

We will show in Section 5 that the static preorder T ° coincides with the dynamic

~ [

location preorder E? of [BCHK91b], and thus inherits the theory of the latter.
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4 Dynamic approach

We briefly recall here the dynamic approach of [BCHK91], and in particular the
definitions of %;f and T Z. In the dynamic approach, locations are associated with
actions rather than with parallel components. This association is built dynamically,
according to the rule:

(D1) a.p 47’(1 lp for any I € Loc

In some sense locations are transmitted from transitions to processes, whereas in
the static case we had the inverse situation. Rule (D1) is the essence of the dynamic
location semantics. The remaining rules for observable transitions are just as in the
static semantics, see Figure 2 at p. 9. We refer to [BCHK91]| for more intuition on
the dynamic notion of location. Let us just observe that these locations increase at
each step, even if the execution goes on within the same parallel component. In fact
the location [ which appears in rule (D1) may be seen as an identifier for action a, or
more precisely, for that particular occurrence of a. Then the location u of a generic
transition p ‘Z)d p' is a record of all the action occurrences which causally precede

a (through the prefixing operator), what we shall call also the access path to a.
The observable dynamic transitions p —— 4 p’ are related to the static transitions
u

p —=s p' in a simple way. To see this, let us introduce a few notations. Let Ay(p)
u

be the function that erases the atomic location %k in p, wherever it occurs. Formally,
A: (Loc x LCCS) — LCCS is defined by:

Ag(p) = p, if pe CCS

) - Ag(p) it k=1
Ak(l--p) - { l::Ak(p) otherwise

as well as clauses stating the compatibility of A; with the remaining operators (for
instance Ag(p | ¢) = Ar(p) | Ax(q), etc. ). Also, for any p € LCCS, let Loc(p) be
the set of atomic locations occurring in p, defined in the obvious way. We have then
the following correspondence between the two kinds of location transitions:

Fact 4.1 Let p € LCCS, | ¢ Loc(p). Then:

i a
@) p —ap = p s M)

ul

(i1) p %s Y= 3P st. p —ap' and A =y

The proof, by induction on the inference of transitions, is left to the reader. O

Because of rule (D1), the dynamic location transition system is both infinitely
branching and acyclic: it thus gives infinite representations for all regular processes.
Indeed, this has been the main criticism addressed to the dynamic approach, see
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[Ace91],[MY92],[MN92]|,[Mur93]. In fact, while the infinite branching may be over-
come easily (through a canonical choice of dynamic locations, see Appendix), the
infinite progression is really intrinsic to the dynamic semantics.

Note that for 7-transitions, for which we do not want to introduce additional
locations, we simply use the static transition rules. Although this last point differen-
tiates our strong dynamic location transition system from that originally introduced
in [BCHK91], where no locations were associated with 7-transitions, the resulting
weak (dynamic) location transition system is the same. The definition of the weak
transitions %d and ==, is similar to that of the :Z>s and ==,.

We define now the dynamic location equivalence %;f and the dynamic location

preorder & Z. Because of the flexibility in the choice of locations, these definitions

are much simpler than in the static case. In [BCHK91] the relations ~¢ and E;l are
obtained as instances of a general notion of parameterized location bisimulation. We
shall use here directly the instantiated definitions.

Definition 4.2 (Dynamic location equivalence) A relation R C LCCS x LCCS
is called a dynamic location bisimulation (dlb) iff for all (p,q) € R and for all
a € Act,u € Loc™:

(1) p :Z>d i
(2) ¢ %d q
(3) p==a47

3¢ such that ¢ =4 ¢’ and (p',¢') € R
u

3p' such that p =4 p' and (p/,¢') € R
u

R

3¢ such that ¢ =4 ¢ and (p',¢') € R
(4) ¢ =4¢ = 3p' suchthat p==,4p' and (p',¢') €R
The largest dlb is called dynamic location equivalence and denoted z;l.

We refer to [BCHK91] for examples and results concerning ~¢. Consider now the
location preorder E?. Here, instead of requiring the identity of locations in cor-
responding transitions, we demand that the locations in the second (more distri-
buted) process be subwords of the locations in the first (more sequential) pro-
cess. Formally, the subword relation <g,, on Loc* is defined by: v <gp ©u <
Jv, .o vk, Jwy, .o wpe st v =01 v, and u = WUy WEVE W1

Definition 4.3 (Dynamic location preorder) A relation R C LCCS x LCCS
is called a dynamic location pre-bisimulation (dipb) iff for all (p,q) € R and for all
a € Act,u € Loc™:

(1) » :Z>d p' = Jv <qp u, 3¢ such that ¢ %d ¢ and (p',¢')€R
(2) ¢ ::>d ¢ = Fu.v <gp u, Ip’ such that p :Z>d p' and (p'.¢') €R
(3) p==4p = 3¢ suchthat ¢ ==,¢ and (p'.¢)€ER

(4) ¢==4q¢ = 3p' suchthat p==,p and (p',¢) € R

The largest dipb is called dynamic location preorder and denoted L ?.
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The intuition is as follows. If p is a sequentialized version of ¢, then each component
of p corresponds to a group of parallel components in ¢q. Thus the local causes of any
action of ¢ will correspond to a subset of local causes of the corresponding action of
p. This may be easily verified for the following examples:

Example 4.4 a.a.a EZ a.ala and a.b + b.a EZ alb

We shall not comment further here on the relations ~¢ and C d referring again the

~ ("’
reader to [BCHKO91] for more examples and for results concerning these relations.
We proceed instead to state our main result, namely that the dynamic relations z‘}
and E? coincide with the static relations ~j and EZ introduced in the previous

section.

Theorem 4.5 Let p,q € CCS. Then:

1) p=iq & p=igq

d
(2) pS,q9 & pE,q

The rest of the paper is devoted to proving this theorem. To this end, we shall use
a new transition system on CCS, called occurrence transition system, which in some
sense incorporates the information of both location transition systems. This system
will serve as an intermediate between the static and the dynamic semantics. The
main point will be to prove that starting from a static or a dynamic location com-
putation, one may always reconstruct a corresponding occurrence computation. This
means, essentially, that all the information about distribution and local causality is
already present in both location transition systems.

The two location transition systems could also be compared directly, without
recourse to an auxiliary transition system. However we find it instructive to introduce
the occurrence transition system, since it provides a concrete level of description
where the notions of occurrence of an action, access path to an occurrence and
computation state have a precise definition. Moreover, as we shall see, it allows for
the definition of a notion of local history preserving bisimulation, which turns out to
be a third equivalent formulation of location equivalence.
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5 Equivalence of the two approaches

5.1 The occurrence transition system

To compare the two location semantics we introduce a new transition system, called
occurrence (transition) system, whose states represent CCS computation states with
a “past”, and whose labels are occurrences of actions within a computation. This
system, which is based on a syntactic notion of occurrence of action, is essentially
a simplification of the event (transition) system introduced in [BC91] to compare
different models of CCS: it is simpler because we do not try to identify uniquely all
occurrences of action in a term, as in [BC91], but only those which can coexist in a
computation. Moreover, since we are interested here in weak semantics, we shall not
distinguish between 7-actions and we concentrate on abstract occurrences, in which
T-actions and communications are absorbed. Formally, the set O, of occurrences is
defined as O, = O U{r}, where O, the set of visible occurrences, is given by the
grammar:
e u==a | ae | Oe | le

The meaning of the occurrence constructors is as follows: a denotes an initial occur-
rence of action a (possibly following - or followed by - some 7 actions), ae denotes
the occurrence e after an action a, while Oe,1e represent the occurrence e at the
left, resp. at the right of a parallel operator. Finally the symbol 7 is used - with
abuse of notation - to represent any occurrence of a 7-action in a computation. We
use e, €', ... to range over the whole set O, .

We show now that a visible occurrence e € O incorporates both its static and
its dynamic location. For note that O could also be defined as:

O = (Act U{0,1})* Act

Then an occurrence e € O, is either 7 or a word oa, for some o € (Act U {0,1})*
and a € Act. The label of ¢ € O, is the action of which e is an occurrence:

Definition 5.1 (Label) The function A : O, — Act, is defined by:
A7) =71, Moa) = a.

This alternative presentation of O makes it also particularly easy to define the
location and the access path of a visible occurrence e. The location loc(e) of an
occurrence ¢ € O is its projection on the set of canonical locations:

Definition 5.2 (Location) The function loc: O — {0,1}* is defined by:
loc(e) = e {0,1}*
The relation of causality on visible occurrences is simply the prefix ordering on O.

Definition 5.3 (Local causality) The relation < C (O x O) is given by:

! ! " " /
e<e & e=¢ or de s.t. ee =e¢
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We know that < is a partial ordering. We call < local causality because it only
connects occurrences within the same parallel component: it is clear that e < ¢/ =
loc(e) < loc(e'). Let as usual e < €’ stand for (e <€ & e #¢€'). Fore € O, we
define e = {¢'| €’ < e} to be the set of local causes of e. Then the access path of e
is the sequence of such causes:

Definition 5.4 (Access path) For e € O, path(e) =ger €1 - -+ - e,, where
{e1,...,en} =leand e <ej11, 1 <i<n.

For instance, if e = 0a10b11c, then |e = {0a,0al0b} and path(e) = (0a) - (0a100).
We call e € O an initial occurrence if |e = 0 (equivalently path(e) = ). An initial
occurrence has always the form e = loc(e) - A(e). More generally, if ' < 1 and /7’

1.1

is the residual of n after 5/, defined by n/n' = n" if = 1’1", we have the following
characterisation for visible occurrences:

Fact 5.5 An occurrence e € O is completely determined by its label, location and
access path. Namely, if A(e) = a, loc(e) =n and path(e) =e; - -+ -e,, n>1,
then:

e = (loc(er) - Aer)) - (loc(eg)/loc(er) - AM(eg)) - -+ - (n/loc(en) - a)

If path(e) =< then e =1n-a.
We define now the relation of concurrency on visible occurrences:

Definition 5.6 (Concurrency) The relation — C (O x O) is defined by:

, {either e=o00e & e =0lg
e—e &

or e=ocleyg & € =00¢
where o € (Act U{0,1})*, eg, e € O.

The relation — is symmetric and irreflexive. Clearly e — ¢’ = loc(e) ¢ loc(e').

Let us now shift attention to the states of the occurrence system. As we said, these
states are meant to represent processes with a past. The past records the observable
guards which have been passed along a computation. Formally, if p,q € CCS, the
set § of computation states is given by:

Ev=mil | pp | ptq | x| rece.p | @& | (E[E) | Qa | &)

The construct a. £ is used to represent the state £ with “past” a, that is, after a guard
a has been passed. The idea is that any transition labelled by a visible occurrence
will introduce a “hat” in the resulting state. The basic operational rule is:

(01) a.p——a.p

On the other hand an invisible occurrence 7 does not leave any trace in the past.
This is expressed by the rule:
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The hats recorded in states are used to build up “deep” occurrences along compu-
tations, according to the rule:

(02) ¢-5¢, e4A17 = a.¢&-*>ad

On the other hand occurrences of the form e, for i = 0,1, originate from parallel
terms & | ¢

(03) € -¢, etr = €| 28, eS¢

For defining the whole occurrence system we need a few more notations. First, we
extend a relabelling f of actions to occurrences by letting: f(ae) = f(a) f(e) and
flie)=1if(e), i=0,1.

Moreover, we need an auxiliary function for defining the communication rule.
In the occurrence system communication arises from concurrent occurrences with
complementary labels. However the resulting 7-occurrence should not contribute to
the past, since this only keeps track of observable actions. Thus we need to take
back the hats introduced by the occurrences participating in the communication.
To this end we introduce a function é.(¢), which erases the hat corresponding to
occurrence e in ¢ (somehow similar to the function Ag(p) used in Section 3). The
partial function 6 : (O x §) — § is given by:

6a(a‘p) = P

Oae (a 5) = a.b (5)

boe(§ €)= 06e(§) | ¢
01e(€1€) = €] 0e(€)
be(E\a) = be(§)\x
6e(ECF)) = 0e(€)(f)

We have now all the elements to define the occurrence system for CCS. The rules
specifying this system are listed in Figure 3. Note that the condition A(e) # {a,a}
in rule (O6) could be strenghtened to e | {a,a} = &, to prevent transitions like
a.b.p SN a.E.p. However this would make no difference for states £ obtained via

an occurrence computation from a CCS term (more will be said on this point below).
The weak occurrence system is now given by:

E=¢ & Fé,.. b st E=6H 6 6 =¢

(=¢ & 3.4 st (=& -5 H=¢

Let us examine some properties of this weak occurrence system. It is clear that any
term ¢ gives an intensional representation of a CCS computation state. In fact from
each state £ one may extract the set of visible occurrences that have led to it. Clearly
this set should be empty for a CCS term. Formally, the set of past occurrences of a
term ¢ is defined by:
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For each ¢ € O, let == C (S x S) be the least binary relation satisfying the
following axioms and rules.

(01) a.p ——a.p

(01") TP —p

(02) §—¢, et = Q. “ae

(03) 58, et = gle =5 e
gl =S¢ ¢

(02) ¢ ¢ = it - a.¢

(03) ¢-¢ = ele-Toe e

e e-Ten e

o e e L
(O5) p—¢ = p+qg-——¢
g+p ¢
(06) E-5¢ 0 Me) € {a,al = S\a -5 \a
(©7) ¢t = an Qe
(08) plreca. plz] -5 ¢ N recr.p to €

Figure 3: Occurrence transition system
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occ (p) = (, if peCCS

occ(a.§) = {a}Ua-occ()

occ(E1€&) = 0-o0ce(&)U 1-oce(E)
occ(\a) = {e€cocc(é) | Ne) #a,a}
occ (E(f)) = occ(§)

For states ¢ reachable from a CCS term, the clause for restriction reduces to
occ (E\a) = occ(€). In fact, one may easily verify that such states, which we
shall call CCS computation states, are exactly those £ whose subterms &'\« satisfy
a,a ¢ Moce (£')). As may be expected, we have the following:

Remark 5.7 If 6.(&) is defined, then occ(6¢(§)) = occ (&) — {e}.

The next lemma shows how visible occurrences are generated along computations,
and how they are related.

Lemma 5.8 Let £ be a CCS computation state. Then:

(i) occ (&) = oce(€) U{e}
1. ¢ 5 et = (11) Ve' € occ(§): € <e or € —e)

(7i1) le C oce (&)

2. & = occ(€') = occ(€)

Proor: We start by showing 1., by induction on the proof of ¢ ~5 ¢, e # 7. Note
that in the cases where £ is a CCS term, namely when the last rule applied is (O1),
(05) or (08), occ(§) = 0 and |e = @, thus conditions (i7) and (iii) are trivially
satisfied. We consider some representative cases.

(01) ¢ =ap % G.p = ¢ Then (i) is straightforward since occ (a.p) = @ and
occ(a.p) ={a}.

(02) & = a.& 2% a.¢) = ¢ isinferred from & > &). Let us first check condition
(i). By induction occ (&) = occ (&) U {eg}. Then oce (') = {a} U a(oce (&) U
{aeg} = occ (&) U {aeg}. Consider now condition (ii). By induction, we have: Yej €
oce (&) @ ey < eg or ey — eg. Now occ (&) = {a} Ua(oce(&)). Clearly a < a ey,
whereas for ¢/ = a e, e € occ (&), (i1) follows from induction and the fact that <
and — are preserved by prefixing with a. As for (iii), [(aeg) C occ(a.&) follows
from |eg C oce (&p).

(06) ¢ = &\a = &\a = ¢ is deduced from & —— &), Ae) # a,a. By
induction occ (&) = occ (&) U {eg}. Now a,a ¢ A oce(€')) since &' = &)\ is a
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CCS computation state. Thus occ (£5\a) = occ (&) = oce (§) U {e} = oce (o\av) U
{e}. Conditions (i7) and (7i7) follow trivially by induction.

Point 2. is proved by induction on the proof of the transition ¢ —— ¢’. For the cases
(01'),(05),(08), it is enough to remark that, if ¢ € CCS, then also ¢’ € CCS, and
thus oce (¢') = 0 = occ (€). We examine here the case where the last rule applied is
(O4). The other cases are similar to the corresponding cases in point 1..

(04) €=¢6 | & = & & = ¢ is deduced from & = &, & = &,

Aeg) = Mer), and & = 6., (£)). By point 1. occ (£)) = oce (&) U{e;}, i = 0,1. Now
by the Remark 5.1, occ (6, (€)')) = occ (&) —{ei} = occ (&). Hence oce (&) = oce (€).
O

Corollary 5.9 Let p € CCS. If p =% & --- == ¢, , where Vi: e; # 7, then:
1. Yi: occ(&)={e1,....e}
2. 1<) = e <ej or g —e;

T

PROOF: Point 1. is straightforward. As for 2., we have &; 1 == ¢’ e L &

for some ¢',¢". Now i < j = e; € occ(;-1) by 1., whence the result by Lemma
5.8. O

The following proposition shows how local causality may be recovered from static
locations along a computation:

Proposition 5.10 Let p € CCS. If p == &, --- == &, , where Yi: e; # 7, then:

e; <e; = 1<j and loc(e;) < loc(e;)

PROOF: <: Since i < j, by Corollary 5.9 either e; < e; or e; — e;. But it cannot
be e; — e;, since this would imply loc(e;) © loc(e;). Thus e; < e;.

=: If e; < ej, then it cannot be j < i, because of Corollary 5.9 again. Moreover,
since e; is a prefix of e;, also loc(e;) is a prefix of loc(e;). O

We proceed to define a notion of bisimulation on the weak occurrence system. Once
again we use a notion of consistency and progressive bisimulation family.
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Definition 5.11 A consistent occurrence aliasing is a partial injective function
g: O — O which satisfies, for any e, ¢’ on which it is defined:

(i) Ale) = Algle))

(i) ¢ <e & g(e) <gle)

Let G be the set of consistent occurrence aliasings on O.

Definition 5.12 A progressive o-bisimulation family is a G-indexed family of rela-
tions over S, R ={Ry | g € G}, such that if {y R;&; then for alle e O:

(1) ==& = 3e,¢ st. & é &1, g U{(e,€')} € G and & Ryuf(e.e)) &

(2) &= ¢ = Feby st & ==&, gU{(e,é)} €G and & Ryuf(eeny &1
(3) ==& = 3¢ €8 suchthat & == & and &R,

(4) &= ¢ = 3& €8 such that & == & and &R,
These relations induce an equivalence =°““ on CCS processes as follows:

Definition 5.13 (Equivalence on the occurrence system) For any p, ¢ € CCS,

~0CC
~

let p q iff pRyq for some progressive o-bisimulation family R ={R, | g € G}.

The reader familiar with the mnotion of history preserving bisimulation (see
e.g. [GG89]) may have noticed the similarity with our definition of ~°“. In fact
history preserving bisimulation is itself a “progressive” notion, and it is clear that
a consistent occurrence aliasing ¢ is nothing else than an isomorphism between two
partially ordered sets of occurrences. In the Appendix we shall give a definition of
local history preserving bisimulation on the occurrence system (so-called because the
ordering is that of local causality), and show that it is a direct reformulation of the
equivalence =,

A preorder T °““ is obtained by the same definition, after weakening the notion
of consistency as follows:

Definition 5.14 A right-consistent occurrence aliasing is a partial injective function
g: O — O which satisfies, for any e, ¢’ on which it is defined:

(1) Ale) = Alg(e))

(i) g(¢') <gle) = € <e
Our main result is that the equivalence ~° coincides with both ~; and %;f, and
similarly that T °° coincides with both Ez and T Z. The proofs rely on the above

properties of the occurrence system, and on proving conversion lemmas between the
different kinds of transitions.
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5.2 Occurrence semantics = static location semantics

We establish here the relationship between ~“““ and ~j. We saw in Section 3 that
~; can be defined in terms of canonical distributions. We recall that these are distri-
butions always associating location 0 to the left operand and 1 to the right operand
of a parallel composition. Let CDIS denote the set of these canonical distributions,
and 7, ¢ € {0,1}* range over canonical locations. With each state &, we associate a
distributed process dis(¢) € CDIS as follows:

dis(&) = & ifé&=mnil or §E=2x
dis(a.p) = a.dis(p)

dis(p + q) = dis(p) + dis(q)
dis(recx. p) = recx. dis(p)

dis(a.§) = dis(§)

dis(&] &) = 0:dis(&) | 1:dis(¢')
Gis@\a) = dis(©)\a

GsElf) = dis) ()

Thus dis(§) is the canonical distribution of the CCS term underlying £. We can
now give the conversion lemma between occurrence transitions and static location
transitions:

Lemma 5.15 (Conversion : static < occurrence) Let p,p' € CDIS, £, € S.
Then:

(i) &€—¢ = I st dis(¢) % dis(¢')

(i) p —s p = Vst dis(6)=p I st. &€ ¢ and dis(¢') =’
(iii) € - ¢ = dis(¢) 7 dis(¢'), where a = \(e) and 7 = loc(e)
(iv) p Ssp = Vst dis(€)=p Te, IE st Ae) = a, loc(e) =1,

dis(¢') =p', € — ¢
In the proof of Lemma 5.15 we will use the following fact:

Fact 5.16 Let p € CCS. Then: dis(p[recx. p/x]) = dis(p)[recz. dis(p)/x].

PROOF: We show the more general statement:
Vp,r€ CCS: dis(plrecx. r/x]) = dis(p)[recx. dis(r)/x]

by induction on the structure of p. We only consider a couple of cases.

Basic cases: p = nil, p = x. The first case is trivial. In the second case, we have
immediately: dis(x [recx. r/x]) = dis(recx. r) = recw. dis(r) = zlrecx. dis(r)/xz] =

dis(x)[recx. dis(r)/x].
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Z i

— p = recx. ¢ has no free occurrences of x. Thus dis((recx. q)[recx. r/x]) =
dis(recx. q) = dis(recx. q)[recx. dis(r)/z].

- p=recy. q, y# x. Then dis((recy. q)[recx. r/x]) = dis(recy. q[recz. r/x]) =
recy. dis(q[recz. r/z]), which by induction equals recy. (dis(q))[recz. dis(r)/x] =
(recy. dis(q))[recx. dis(r)/x] = (dis(recy. q))[recx. dis(r)/z].

We give now the proof of the above Lemma.

PROOF OF LEMMA 5.15: We start by proving (ii) and (iv), since they are needed to
deal with the communication case in (7) and (i7). All clauses are proved by induction
on the inference of the transition.

Proof of (iii). Consider the last rule applied to infer ¢ —— ¢’

—(01) a.p —% @.p. We then have immediately: dis(a.p) = a. dis(p) ‘Z’s dis(p) =
X

dis(a.p)

- (02) a.¢ 2% a.¢ is inferred from ¢ - ¢, e # 7. By induction
dis (€) li((e—))»s dis(¢"). Since dis(a.¢) = dis(€), dis(a.¢') = dis(¢) and Mae) =
Ae), loc(ae) = loc(e), we have the required transition dis(a.¢) *?%*%s dis(a.&").

-(03) ¢1]¢ Lo, ¢ | ¢ is inferred from ¢ = ¢, e # 1. By induction we

have dis(€) li% dis(€'). Then dis(€ | €") = 0 = dis(€) | 1 = dis(¢") E{Q(L)

0 = dis(&') | 1 = dis(¢”), which is the required transition since A(e) =
A0e), 0loc(e) =loc(0e) and 0::dis(&') | 1:: dis(¢") = dis(&' | €").

- (05), (06), (OT): easy induction.

(08) recx. p —= ¢ is inferred from plrecz. p/z] = &. By induction

we have dis(p[recz. p/z]) 7?{%6))‘)5 dis(§). By Fact 5.16 dis(p[recx. p/z]) =

dis(p)[recx. dis(p)/x]). Then from dis(p)[recx. dis(p)/x]) %(%’5 dis(¢) we may
deduce the required transition dis(recz. p) = recz. dis(p) ?¥%5 dis(&).

Proof of (iv). Again, we consider the last rule applied in the proof of the transition

a 1
S .
p 7} p

- a.p %’s p. Let £ € § be such that dis(§) = a.p. Since dis preserves all

the operators except the “hats”, which are erased, either & = a.p or ¢ is of the
form @j.....ap.a.p, in short &.a.p. In the first case we have a.p —— @.p, which
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clearly satisfies the conditions. In the second case, by iterated use of (O2) we derive
G.a.p —2%= G.4.p, 0 € Act*, which also satisfies the conditions.

- O0upo| 1upm *Ean—m 0:pp | 1:pr is inferred from pg %’s py- Note that
any ¢ such that dis(§) = 0::pg | 1:: p1 is necessarily of the form &y | &1, where
dis(&;) = pi. By induction Fe, IE s.t. Ale) = a, loc(e) = n, dis(&) = pp -
Then we have a transition & | & e, &y | &, which is the required one since
A0e) = Me) =a, loc(0e) =0loc(e) = 0.

~ po+p1 ——s pl is inferred from py ——s pf. Here ¢ is of the form ¢g+¢;, where for
eachi: ¢; € CCS and dis(q;) = p;- Actually & = w(pg)+7(p1) recall from Section
3 that for any distributed process p, 7(p) is the function yielding the underlying
CCS process. Now by induction Je, I s.t. A(e) = a, loc(e) =0, dis(¢') = py and
qo — &' Then also € = g4+ q1 — &,

recx. p %s p’ is inferred from plrecz. p/z] %s p’. Here ¢ is of the form
recx. q, where ¢ € CCS and dis(q) = p. Actually, ¢ = recx. n(p). Now by Fact
5.16 we have p[recx. p/z| = dis(q)[recx. dis(q)/x]) = dis(q[recx. q/x]). Let " =
q[recx. q/x]. Since dis(¢") = plrecx. p/x], we know by induction that Je, 3¢’
such that q[recz. ¢/x] —= ¢, where A(e) = a, loc(e) =1, dis(¢') = p'. Then also
E=recx. ¢ — ¢

Proof of (i). We only consider the communication case, as the other cases are

straightforward. So suppose the last rule applied for deriving ¢ —— ¢ is (O4).

(04) € =& | &1 — 8¢ (&) | b, (€7) is deduced from & = &, &~ €], Aeo) =
A(e1). Then by point (iii) above dis(;) ,l,)‘,((fl)?s dis(€}), and thus by rule (S4)
dis(&o | &) = 0 = dis(&) | 1 2 dis(&q) 75 0 = dis(&)) | 1 = dis(&)). Now,
since dis(a.§) = dis(¢) it should be clear that dis(&)) = dis(ée,(€))). Thus

0:: dis(&p) [ 1:: dis(§1) = 022 dis (6 (§9)) [ 132 dis (¢, (1)) = dis (e ( 0) | be; (£1))-

Proof of (i1). Again, we just consider the communication case. Suppose (S4) is the

last rule applied in the proof of p %s p.

—(S4) 0:pg | 1i:pn ‘;’5 0::pg | 1:p) is deduced from py %s Py, D1 %’s P,
ap = @y. In this case & = &y | & for some &g, & such that dis(§;) = p;. By point
(iv) for each i = 0,1: Fe;, FE such that loc(e;) = ni, dis(&)) = ph, Aei) =
and & —5 ¢/ Then by rule (04) we deduce & | & —— 80 (€h) | 6e,(€]), which is
the required transition since dis(de, (&) | 6ey (€])) = dis(&) | €7), as just shown in
the proof of (). a

As a straightforward corollary we have an analogous conversion for the weak tran-
sitions.
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Lemma 5.17 (Weak conversion) Let p,p’ € CDIS and £, € S. Then:

() &=¢& = dis(§) = dis(¢)

(ii) p==, p = V& st dis(¢)=p ¢ st. £ = ¢ and dis(¢') =’
(i) &€= ¢ = dis(¢) 7> dis(¢"), where a = \(e) and 7 = loc(e)
(iv) p 7> p = Vst dis(&) =p e, & st Ae) =a, loc(e) =1,

dis(¢') = p' and ¢ = ¢
Using Lemma 5.17 and Proposition 5.10 we may now prove our equivalence result.

Theorem 5.18 For any p,q € CCS: p=jq = p=r"“q.

PROOF: Suppose p =) ¢, and let S = {S, | ¢ € ®} be a progressive bisimulation
family such that dis(p) Sy dis(q). Define a family of relations R = {Ry | g € G} by:

(&,¢') € R, <= there exist occurrence transition sequences
g g, =
| g =

such that

(1) g = {(61,6’1),...7((2”,6;1)}
(2) dis(§) Sy dis(¢'). where ¢ = {(loc(e).loc(e')) | (e,e’) € g}

Clearly (p,q) € Ry. We show that R is a progressive o-bisimulation family. Assume
(§:€) € Ry.

-Let € == &,41, e # 7. By Lemma 5.17 (ii4) dis(¢) ::;>s dis(&nt1), where a = A(e)
and n = loc(e). Let r = dis(€), rpy1 = dis(énq1) and s = dis(£'). Since 7 S, s, there
exist 7', 5,41 such that s é’s Snt1 and Tny1 Souy) Snt1, where ¢ U (n,n') is a

7

consistent location association. By Lemma 5.17 (iv), there exist now €', &, such
that A(e') = a, loc(e') = 7', dis(&), 1) = sn41 and & < ni1- We want to show
that ¢ = g U (e, €’) is a consistent occurrence aliasing. Since ¢ is consistent, and
by Corollary 5.9(2) we have Vi : e £ e;, ¢ £ e, we only have to check that
Vi:e <e < e <€ Since ¢ U(n,n') is a consistent location association, we have
Vi: loc(e;) © loc(e) < loc(el) o loc(e’). This is equivalent to loc(e;) < loc(e) <
loc(el) < loc(e') by Corollary 5.9(2). Using Proposition 5.10, we may then conclude
that Vi:e; <e & e <€,

- Let £ == &,41. By Lemma 5.17 (i) dis(¢) ==, dis(&,11). Let r = dis(€), rpy1 =
dis(Ept1) and s = dis(¢'). Since r S, s, there exists s,11 such that s == s,41 and
Tn41 S¢ sSnt1. By Lemma 5.17 (i4) there exists &, ; such that dis(§, ;) = sn4+1 and
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!

. . n €
¢ == ¢/ ;. Since the computations p == & == -+ =% {,41 and ¢ = ) =

LN &n41 are of the required form, we have then (&,41.¢,,,1) € Ry. The initial
== in the computations is needed to cover the case & = & == ;. O

Theorem 5.19 For any p,q € CCS: p=r°“q = p=jq.

PRrOOF: Suppose p =° ¢, and let R = {R, | g € G} be a progressive o-bisimulation
family such that p Ryq. Consider the family S = {S, | ¢ € ®} of relations over
CDIS given by:

(r,s) € S, <= there exist occurrence transition sequences
Pt g,
PR NN <
such that

(1) dis(&) =r, dis(')=s
(2) o= 1{ (loce),loc(el)) | 1< i <)
(3) ERy¢" for g={(eie;) |1 <i<n}

We show that S is a progressive bisimulation family. Assume (r,s) € S,.
- Let r %s rn+1. By Lemma 5.17 (iv), there exist e, {,41 such that A(e) =

a, loc(e) = n, dis(€n1) = rpp1 and € == &,41. Since & R, ¢ there exist now

!
e', &, such that g U (e, ') is a consistent occurrence aliasing and ¢ == ¢/, ;.

The consistency of gU (e, €') implies A(e') = A\(e) = a. By Lemma 5.17 (iii) we have
then dis(¢') s dis(&,,41), where 7' = loc(e'). We want to show that pU(n,7') is a
consistent loc::tion association. Since ¢ is supposed to be consistent, we only have to
check that for any i: loc(e;) o loc(e) < loc(e}) o loc(e’). Since gU(e, €') is consistent
we know that e; < e & e < €. But since e;, e, occur respectively before e, €,
this is equivalent, by Proposition 5.10, to loc(e;) < loc(e) < loc(el) < loc(e'),
which in turn is equivalent, by Corollary 5.9, to loc(e;) ¢ loc(e) < loc(el) o loc(e’).

- The case r ==, rp4; is straightforward, applying Lemma 5.17 (ii) and Lemma
5.17 (4) . O

We prove now the coincidence of the preorders:
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Theorem 5.20 For any p,q € CCS: p EZ g & pL”q

PROOF: =-: Variation of the proof of Theorem 5.18. We take a progressive pre-
bisimulation family S, and show that R, as defined above, is a progressive o-
prebisimulation family. To show that ¢’ = g U (e, €’) is a right-consistent occurrence
aliasing, we need to check that Vi : e/ < € = e; < e. Since p U (n,n') is a left-
consistent location association, we know that Vi: loc(e;) © loc(e) = loc(e)) o loc(e).
By Corollary 5.9(2), this is equivalent to loc(e}) < loc(e') = loc(e;) < loc(e). By
Proposition 5.10, we have then Vi: el < e = ¢e; <e.

<: Adaptation of the proof of Theorem 5.19. To show that ¢ U (1,7') is a left-
consistent location association, we check that Vi: loc(e;) oloc(e) = loc(e))oloc(e).
Since g U (e, €') is right-consistent we know that e, < ¢ = ¢; < e. This is
equivalent to loc(e)) < loc(e') = loc(e;) < loc(e), which in turn is equivalent to
loc(e;) o loc(e) = loc(el) o loc(e). O

5.3 Occurrence semantics = dynamic location semantics

We turn now to the relation between ~°“ and z;l. To establish the coincidence of
the two equivalences, we will use the fact that z;l may be obtained by restricting
attention to computations where distinct atomic locations are chosen at each step.
This fact was first pointed out by Kiehn in [Kie91]. Let us recall some definitions
and results from [BCHK91]:

Definition 5.21 A location renaming is a mapping p : Loc — Loc*. For any p €
LCCS, let p[p] denote the process obtained by replacing all occurrences of [ in p
with p(l), for any | € Loc.

We use the notation p{u/l} for the renaming which maps [ to u and acts like p on
Loc \ {l}. Also, we shall abbreviate p[id{u/l}] to p{u/l}. In what follows, we shall
mainly consider alphabetic renamings p: Loc — Loc.

Note that any partial function f: Loc — Loc may be seen as a location renaming
p: Loc — Loc, by letting:

() = [ if f(1) is not defined
PUZ Y f(I) otherwise.

For instance the empty function (§ corresponds to the identity renaming id. In the
following we shall freely use the renaming notation p[f] whenever f is a partial
function f: Loc — Loc.

The following lemma (similar to those of [BCHK93], [BCHK91]), relates the transi-
tions of p[p] with those of p.
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Lemma 5.22 Let p € LCCS, and p : Loc — Loc be an alphabetic location rena-
ming. Then:

1. a) p %d P = Ju st plu) < v and plp) %d P p]-
b) p=ap = plol =aplp).

2. a) plp] —Zqi p' =  Fu, p" such that p(u) < v, p'[p] =p' and p %d P’
b) plp] ==ap = 3" such that p"[p] =p' and p ==4p".

5. w) p o ap U¢ Locp) = Vk € Loc, plo] — “ua plp{k/1]).

b) Same as a), with weak transitions.
4. a) plpl i[d p' = Fu such that p(u) = v and Yk ¢ Loc(p) Ip" such that
p"[p{l/k}] =p" and p i’d p".

b) Same as a), with weak transitions.

We recall now Kiehn's definition for ~¢, and show that it is equivalent to the original
one.

Notation 5.23 Let LCCSY be the set of LCCS processes whose atomic locations
are all distinct.

Definition 5.24 (v—dynamic location equivalence [Kie91])

A relation R C (LCCS” x LCCSY) is a v dynamic location bisimulation (v dlb) iff
for all (p,q) € R and for all a € Act,u € Loc*:

(1) p %d p', 1 ¢ Loc(p) U Loc(q) = 3¢ s.t. q %d ¢ and (p'.¢')€R
(2) ¢ %d ¢, 1 ¢ Loc(p) ULoc(q) = 3Ip' s.t. p %d p and (p',¢')€ER
(3) p==4p = 3¢ st. =4¢ and (p'.¢) €ER

(4) ¢==4q¢ = 3P st.that p=>,p and (p',¢) € R

The largest v—dlb is called v—-dynamic location equivalence and denoted =~ .

Fact 5.25 For any processes p,q € CCS: p z? ¢ & p Ry Q.

PROOF: =: trivial. <=: Let p =] ¢. Then there exists a v dlb R s.t. p Rq. Define
now:

S={(rlpl.sle]) | r ¢ s, p Loc — Loc}

Clearly pSgq, for p = id. We show that S is a dlb. Suppose r[p] S s[p].
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— Let r[p] =4 1, I not necessarily new. Take k ¢ loc(r)Uloc(s). By Lemma 5.22.(4),

ul

Ju, " st %d ", p(v) = w and 7"[p{l/k}] = r'. Then, since r ={ s, there

exists s’ s.t. s :a]:d s" and 1" =} s'. By Lemma 5.22.(2), s[p] %d s'[p{l/k}]. Since

r" =] ¢, we have r"[p{l/k}] S s'[p{l/k}], hence S is a dib. O

We proceed now to show that =°“ = = . To do this, we need to establish a conver-
sion between occurrence transitions and dynamic location transitions. We start by
converting terms ¢ into LCCS terms which represent the same state of computation.
The idea is to replace every “hat” in £ by a canonical atomic location representing
uniquely the corresponding occurrence. The simplest way to do this is to take the
occurrences themselves as canonical locations. We shall then assume, from now on-
wards, that O C Loc. We also introduce, for any v € Act U {0,1}, a renaming
p~(p) which prefixes by v all the occurrences appearing as locations in p, namely
p~(e) = ve. Then the canonical LCCS process proc(§) corresponding to a computa-
tion state £ € S is defined by:

proc(§) = ¢, if £ € CCS
proc(a.§) = a:proc(&)[pa)

proc(§ | &) = proc(§)lpo] | proc(&')[pi]
proc(§\e) = proc(§)\a

proc(§(f)) = proc(&)(f)

We have for instance: proc(@.b.nil | c.nil) = Oa :: Oab :: nil | c.nil. It can be
easily checked that Loc(proc(€)) = oce () and proc(§) € LCCS”.

We introduce next some notation that will be used for proving the conversion
lemma. The reader not interested in the details of the proof should proceed directly
to the weak version of the conversion lemma (Lemma 5.28 at p. 36).

We define now, for p € LCCS", a partial function where (k,p) which gives the
place where the atomic dynamic location & occurs in p, if it exists. This place is
expressed as a static canonical location 7 € {0,1}*. The function where (k,p) is
essentially the same as that used by D. Yankelevich in [Yan93], p. 124. Here we
only define it on LCCS” processes which can be reached from CCS processes (that
is, where locations do not appear under recursion or the dynamic operators). The
partial function where : (Loc x LCCS" ) — {0,1}* is given by:

where (k,p) otherwise

where (k,1::p) = {5 if k=1

B 0 - where (k,p) if where(k,p) is defined
where (k.p [ ¢) = { 1 - where (k,q) if where(k,q) is defined

where (k, p\«) where (k,p(f)) = where(k,p)
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In the coming lemma, we shall also use the function Ag(p) introduced in section 4.
Recall that Ag(p) is the partial function that erases the location k in p, if it exists.
We noted already the similarity between Ag(p) and the function 6.(¢) defined at
p. 21. In fact, one has the following;:

Remark 5.26 For any £ € S: proc(6.(p)) = Ac(proc(§)).

The conversion lemma between occurrence transitions and dynamic location transi-
tions is now:

Lemma 5.27 (Conversion : dynamic < occurrence)

Let £, €S, f:occ(§) — Loc. Then:

(@) &—¢ = Ju st proc(§)[f] —-a proc(€)(f]
(i) proc(Olf] —a p' = 3 st proc(@)[f]=p and £ ¢
(iii) & ¢ = Vi€ Loc: proc(§)[f] —a proc(&) [f{I/e}].

where a = A(e), u = f(path(e))
(iv)  proc(&)[f] i{d p = Te, & such that A(e) =a, f(path(e)) = u,
proc(&) [f{l/e}] =p' and £ — ¢

PROOF: By induction on the proof of the transition in the hypothesis.

Proof of (iii). Consider the last rule used to infer ¢ —= ¢’. We take some represen-
tative cases.

(01) a.p —% G.p. Since Loc(proc(a.p)) = B, we have proc(a.p)[f] = a.p. By
(D1) a.p ‘j’d [ :: p, for any | € Loc. This is the required transition since a =

AMa), e = f(e) = f(path(a)) and proc(a.p)[f{l/a}] = (a:: (proc(p)[pd]))[f{l/a}] =
(s p)[f{1fa}] = Lp.

- (02) a.¢ 5% a.¢ is inferred from ¢ % ¢, e # 7. By induc-
tion we have proc(§) ****e*)"d proc(¢'), taking | = e and f = id | occ(€).
Note that e ¢ Loc(proc(£)). Then, applying Lemma 5.22 (2) with p = id

and k = ae, and subsequently rule (S2), we derive a transition proc(a.§) =

a :: (proc(§)lpa]) — M0 (proc(@)pudac/el)) = a s (proc(&)lpa) =

a-pa(path(e))-ae
proc(a.£'). Note that a - pg(path(e)) = path(ae). Now, from e ¢ Loc(proc(£)) we

deduce ae ¢ Loc(proc(a.£)). Thus by Lemma 5.22 (2) again we obtain, for any
[ € Loc, proc(a.€)[f] f(pajlize;l’d proc(a.&")[f{l/ae}], which is the transition we
sought for, since A(e) = A(ae).

(O8) recx. p —= ¢ is deduced from plrecx. p/r] = ¢. By induc-

A(e
tion we have proc(plrecx. p/z]) *****)"d proc(¢'), taking f = id, | =
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e. Since proc(p(recx. p/x]) = plrecx. p/x] we have also, by rule (S8), a
A
transition proc(recx. p) = recx. p ***Si)*—’d proc(¢'). Whence, since e ¢
path(e)-e

Loc(recx. p), applying Lemma 5.22 (2) we obtain, for any [ € Loc,
Ae)
proc(recx. p)|f] **;;”;‘_’d proc(&)[f{l/e}].

Proof of (iv). Let proc(&)[f] ‘al*d p’. By the renaming Lemma 5.22 (4) Jv s.t.

f(v) = w and Vk ¢ loc(proc(&)) Ipg s.t. proc(§) i}gd pr and pi[f{l/k}] = P
We show now, by induction on the proof of proc(&) ik;d Pk, that there exist

e, ¢ such that ¢ = ¢, Ae) = a, path(e) = v, loc(e) = where(k,p,) and
proc(&') = pr{e/k}. This will imply proc(¢’)[f{l/e}] = p’. The other conditions
will also be satisfied, since A(e) = a and f(path(e)) = f(v) = u. We examine two
representative cases.

(D1) proc(a.p) = a.p %d k:p=pp By (O1) a.p —% @.p, where Aa) =
a, path(a) = e, loc(a) = ¢ = where (k,px) and proc(a.p) = a::p = pr {a/k}.
(S2)  proc(b.€) = b == (proc(&)[py)) **b**i(l*)*k‘)d b:p' = pr is deduced from
-pp(v)-
proc(§) *i‘,’d qr, where k' ¢ Loc(proc(§)), qulps{k/k'}] = p'. By induction

Je, ¢ such that ¢ -5 &, Me) = a, path(e) = v, loc(e) = where(k', qy)
and proc(¢') = qw {e/k'}. By (02) we have b.¢ Lo ¢, which is the requi-
red transition since A(be) = A(e) = a, path(be) = b - pp(path(e)) = b - pp(v),
loc(be) = loc(e) = where(k',q) = where(k, qi[pp{k/k'}]) = where(k,p’) =
where (k,p) and proc(h.€) = b = (proc(€)ml) = b = (g {e/W} o) =
b (qur [pp{be/k'}]) = b (qur [po{k/ K }I{be/k}) = pr{be/k}.

Note that the pair (e, &) thus determined is unique since, by Fact 5.5, an occurrence e
is completely characterized by its label A(e), access path path(e) and static location
loc(e).

Proof of (i). By induction on the proof of ¢ —— ¢’. We only consider the communi-
cation case.

€1

~(04) & | & T 8e(&p) | 86 (&1) is deduced from & = &, & =
£, AMeo) = Aler). From e; ¢ occ(&) = Loc(proc(§;)) we deduce ie; ¢
Loc(proc()[p): Then by point (i) above proc(&)lpi] " proc(€l)p].
pi\pathie;))re;

Corresponding to these dynamic transitions we have, by Fact 4.1, the sta-
)\ei
tie transitions: proc(§)lp] s Aue(proc(€Dlpl) = (A (proc(e))lp] =
pi(path(e;
proc(be, (€1))[pi]- From these, by rule (S4), we deduce proc(&y | &1) = proc(&o)|po] |

proc(&n)[pr] = a proc(8e, (€)ool | proc(ée, (€1))lm] = proc(be,(&h) | bey(€1))-
Whence the result, by the renaming Lemma 5.22 (2).
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Proof of (ii). Let proc(§)[f] %d p’. By the renaming Lemma 5.22 (2) 3p”
s.t. proc(§) —;d p” and p”[f] = p. We show, by induction on the proof of
proc(&) — 4 p", that 3¢ such that ¢ —— ¢ and proc(¢”) = p”. This will im-
ply proc(Z”)[f] = p"[f] = p'. Again, we only consider communication.

- (84 proc(&o | &) = (proc(&o)lpo] | proc(€)lp]) Taap | ¢f s deduced

from proc(&;)|pil 75 ¢, up Mu; = u, a9 = ai. By Fact 4.1, for any [; ¢
Loc(proc(&;)[pi]) there exists ¢ such that proc(&;)[pi] **a*fd g/ and A, (¢)) =
¢i. By point (iv) there exist e;, & st. & = € Nej) = ai, path(e;) =
wi, loc(e;) = where(l;,q!) and proc( ,)[pl{l,/e,}] = ¢!. Then by rule (0O4)
§o | &1 = 0eo(&h) | 6, (&]). This is as required since proc(de,(£5) | de; (€])) =

proc(be,(§))lpol | proc(be, (E1))lm] = Aco(proc(&))lpo] | Ae, (proc(€r)) o]
ANgey (proc(&h)[po]) | Alel(proc(f)[pl]) and the last term is equal to

Ay (proc(§p)lpoflo/eot]) | A (proc(&)lpil/en}]) = ap | 4i- O

We have now, as an immediate corollary:

Lemma 5.28 (Weak conversion) Let £,¢' €S, f:occ(€) — Loc. Then:

(i) ¢=¢ = proc(€)[f] ==a proc(&)[f]

(i)  proc(@f] =>a p' = 3 stproc(€)[f]=p' and { = ¢

(iii) € == ¢ = VL€ Loc: proc(&)[f] —>a proc(&)[f{l/e}].
where a = A(e), u = f(path(e))

a

(iv)  proc(&)|[f] :l>d p’ = Te, & such that A(e) =a, f(path(e)) = u,
proc(&) [f{l/e}] =p' and ¢ = ¢

We have now all the elements to prove our results.

Theorem 5.29 For any p,q € CCS: p=°“q = p z‘} q-

PROOF: Let p = ¢. Then there exists a family of relations R = {R, | ¢ € G}
such that pRyg. Define a relation S on processes by:
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d

(r,s) € S <= there exist occurrence transition sequences
PR
¢ g g =
and there exist two functions:
fi:{e1,....en}t — Loc, fy:{e},... el,} — Loc
such that
(1) Vi€ {L...on}b: files) = fole)
(2) proc(§) [i] =7, proc()[fo] = s
(3) Ry ¢ for g={(er,eh),..-.(en ) }
We show that S is a dynamic location bisimulation. Let (r,s) € S.

- Suppose r :a;d r’. By Lemma 5.28 (iv) there exist e, &,y1 such that A(e) =
fl(path( )) = u, pTOC(§n+1)[f1{l/e}] ' and § = Ent1- Since ngfla

there exist now ¢', £, such that ¢ < §na1s g U (e€') is a consistent oc-

currence aliasing and Ent1 Ryueery &ngr- We know from Lemma 5.8 (ii7) ) that

le C {el,...,en}, e C {e,....el,}. Then path(e) = e; - --- - e, where
i; € {1,. n} ei; < ei;,,. Since g U (e,e’) is a consistent occurrence aliasing,
we have e} < ¢ < e; <e and e < el . & ei; < e, thus path(e e)=rej - -e;k.

From this and fiy(el) = fi(ei), “we deduce fa(path(e')) = fi(path(e)) = u. The
consistency of g U (e, e’) also implies A(e') = A(e) = a. Then by Lemma 5.28 (iii)

s = proc(&')[f2] :>d proc(&, 1) [f2{l/e'}] = s'. Thus (+',s") € S.

- Let now r ==4 r’. By Lemma 5.28 (ii) 3&,41 such that proc(&,41) [f1] = ' and
£ == &ny1. Since € R, ¢, there exists £n+1 such that ¢ == §n+1 and &1 Ry &, 41
By Lemma 5.28 (i) s = proc(¢') [fa] ==4 proc(¢& n+1) [fg] = s'. Since the computa-

tions p == &y = --- == &4 and ¢ = & = . : §,41 are of the required
form, we have then (7" ,s') € S. Again (¢f Theorem 5.18), the first == in the
computations is needed to cover the case of an initial 7-transition.

To prove the reverse implication, we use the alternative definition ~j of dynamic
location equivalence.

Theorem 5.30 For any p,q € CCS: p=lq = p=~"‘yq.

PROOF: Suppose p ~={ ¢. Define a G-indexed family of relations R = {R, | g € G}
as follows:
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(€,¢') € R, <= there exist occurrence transition sequences
g g =
A N N
such that

(1) 9 = {(61,6/1),...,(6”,641)}

(2) 3 injection f:{€),...e/,} — Loc such that :
proc(§) [f o gl ~{ proc(¢)[f]

Note that proc(§)[f o g], proc(&')[f] € LCCSY, given that f and ¢ are injections.
Also, it is easy to see that (p, ¢) € Ry, since proc(p)[0] = p and proc(q)[0] = ¢ (recall
that the partial function () corresponds to the identity renaming id). We show that
R = {R, | g € G} is a progressive o-bisimulation family. Assume (¢,¢') € R,. We
only consider the case of observable transitions.

- Suppose & == &,11, € # 7. Let [ ¢ range(f). Then | ¢ D range(f og). By Lemma
5.28 (idi), proc(§) [f o g] %d proc(&ni1) [(f o g){l/e}], where a = A(e) and u =

(e)). Since pmc(é) [Fog) =t proc(€)f], Is st proc(¢)|f] —ra s and
proc( nt1) [(fog){l/e}] =7 s. Now by Lemma 5.28 (iv) there exists ¢’ s.t. A(e’) =

a, f(path )) = u and 51 e: §n+1 fOI' some £n+1 s.t. pT‘OC( n+1)[f{l/el}] =
(f o

(€
s. Since (f g){l/e} = f{l/e'} o (g U (e,€)), we have then proc(&,41)[f{l/€'} o
(g U (e,e))] =7 proc(&,,q1) [f{l/e'}], where f{l/e’} is still an injection since
[ ¢ range(f). So all we have to show is that g U (e,€’) is a consistent occurrence

fog(path

aliasing. Since ¢ is known to be one, it is enough to show that e; < e < g(e;) <
g(e) = ¢'. But this is implied by g¢(path(e)) = path(e'), which in turn follows from
fog(path(e)) = u = f(path(e')) and the injectivity of f. O

We give now the analogous result for the preorders. To prove the direction p E?

¢ = pL°°q we usea preorder T , (the obvious variant of ~{ ) in place of EZ

Theorem 5.31 For any p,q € CCS: p E? ¢ & pLC”q.

PrROOF: <«: adapted from the proof of Theorem 5.29. We take a progressive o-
prebisimulation family R and show that S, as defined there, is a dynamic location
prebisimulation. To show that fo(path(e’)) is a subword of fi(path(e)) = u, note
that if gU (e, e’) is a right-consistent occurrence aliasing, then g(e;) < e’ = ¢; < e
and g(e;;) < glei,) = ei; < e;,. But this means that path(e') is a subword of
g(path(e)), whence the result, since fo(g(e;)) = fi(ei).

=: Similar adaptation of the proof of Theorem 5.30. We want to show here that
g U (e, €') is a right-consistent occurrence aliasing. It is enough to show e} < ¢’ =
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e; < e. We know that f(path(e')) is a subword of fog (path(e)). Since f is injective,
this implies that path(e’) is a subword of g(path(e)). It follows that |e' C g( |e).
Since |e C {e1,...,e,}, le' C {e},... e}, this amounts exactly to e < ¢ =
e; < €.

Theorem 4.5 (1), stating the coincidence of ~; and z;l, follows now immediately
from Theorems 5.18, 5.18 and 5.30, 5.30. Similarly, Theorem 4.5 (2) follows from
the analogous results for the preorders.
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Appendix

We give here a definition of local history preserving bisimulation on the occurrence
system, and show that the induced equivalence on CCS processes coincides with the
equivalence x=°°“, as was mentioned in Section 5. We also present an alternative defi-
nition of the dynamic location equivalence z‘}, which is based on a finitely branching
dynamic transition system for CCS. This is essentially the same as that proposed
by Yankelevich in [Yan93], with a slightly different formulation.

Local history preserving bisimulation on CCS

Using the occurrence transition system of Section 5, we may define a notion of local
history preserving bisimulation for CCS processes. History-preserving bisimulation
was originally defined in [RT88] and [GG89] for prime event structures, and extended
in [GGI90] and [Ace92] to flow and stable event structures respectively. Essentially,
a history-preserving bisimulation is a bisimulation which preserves, at each state of
computation, the partially ordered set of events that led to that state. Our definition
differs from that of [GG89] and [Ace92] in two respects: it is “syntactic”, in that it
is defined directly on (an enrichment of) the CCS transition system, and it is based
on the local rather than the global causality ordering.

The occurrence system provides a notion of state (or configuration) for
CCS terms. For p € CCS, define:

States(p) = {& | Fei& st p= &= =2 & =¢}

Recall that each state £ has an associated set of events occ (£), ordered by the local
causality relation <. Unlike the global causality ordering in flow and stable event
structures, which is relative to a configuration, the local causality ordering <, which
is essentially a static notion, is the same for all states.

Definition 5.32 (Local history preserving bisimulation)

Let p,q € CCS. A relation R C States(p) x States(q) x (oce(States(p)) x
occ (States(q)) ) is a local history preserving bisimulation (lhp-bisimulation) between
p and ¢ if (p,q,0) € R and whenever (&g,&),9) € R then:

(1) ¢ is an isomorphism between (occ (&), =) and (occ (&), <)

(2) o) &L=& 3¢ st g == ¢l and (&€l 9 U(e.') €R

=
b) =& = 3Fe.& st =& and (§.¢.9 U(e.€)) €ER
(3) a) =& = 3¢ st =¢& and (&,¢,9) €R
b) =& = 3& st L =& and (&.6.9) €R
We say that p and ¢ are local history preserving equivalent, p ='"" ¢, if there exists
a local history preserving bisimulation between them.
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We noted already that this definition is syntactic, as opposed to the original defini-
tions of [RT88], [GG8Y], which were given on event structures. By taking a slightly
more concrete notion of occurrence, where communications are pairs of visible oc-
currences, and adopting the corresponding global causality ordering (as defined in
[BCI1]), we would obtain a similar syntactic definition for the usual notion of history
preserving bisimulation. We have now the following:

Fact 5.33 For any processes p,q € CCS: p='"P ¢ o p~ocy.

ProoF: It should be clear that if R = {R, | g € G} is a progressive bisimulation

family such that pRpg, then the relation:

S={(C¢q) | & € States(p), £ € States(q), g € G and R}

is a lhp-bisimulation between p and ¢, since if (R ¢ for { € States(p), & €
States(q), then ¢ is an occurrence aliasing such that occ (§) C dom(g),occ (£') C
range(g), that is an isomorphism between occ (£) and oce (£').
Similarly, if S is a lhp-bisimulation between p and ¢, we define a family R =
{Rg | g€ G} by:
Ry ={(¢) | (&¢ . 9) €S}
Clearly R is a progressive bisimulation family such that pRgyq. O

In the light of the results of Section 5, we have then also:

Corollary 5.34 For any processes p,q € CCS: p z;l g & prPyg e p ~yq.

A similar notion of local history preserving preorder, & thy

, ", can be obtained by requi-
ring ¢, in Definition 5.32, to be a bijection between (occ (&), =) and (oce (&), <)

whose inverse is a homomorphism.

Finitely-branching dynamic location transition system

The rest of this Appendix is devoted to showing that the infinite branching is not
essential to the dynamic location transition system. As suggested in Section 4, it is
possible to retrieve the equivalence z;l by dynamically assigning a canonical atomic
location to each transition of a CCS term. In fact, this has been shown already by
Yankelevich, who introduced in [Yan93] a variant of the dynamic transition system,
called transition system with numbered localities, where progressive natural numbers
are chosen as atomic locations.

Here, with the occurrence system at our disposal, it would be natural to take
as canonical atomic location for a transition the corresponding occurrence. More
precisely, we could restrict attention to processes of the form proc(¢), where £ € S
is a state in the occurrence system, and to canonical dynamic transitions of the
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form proc(§) ijd proc(&'), where e is the unique occurrence such that A(e) =
a, path(e) = o and loc(e) = where (e, proc(£')) (¢f Section 5).

It should be clear that the resulting canonical dynamaic transition system has at most
one transition for any unguarded occurrence e at each state, and thus is finitely-

branching for any process with guarded recursion and finite degree of parallelism
(what is called a guarded and sequential process in [Mil89]).

However, this choice of atomic locations has a drawback: to equate transitions
of bisimilar processes we still have to use a bijection on their locations (although
not an order-preserving one, since this is already guaranteed by the correspondence
of access paths). To be able to use the definition of dynamic location bisimulation
as it stands, we make a further step and consider processes proc(&)[f], where f is
an injective location renaming. In fact, we may take f to be a monotonic injective
renaming f : Loc(proc(§)) — {1,...,n}, where n = |Loc(proc(£))| (note that
Loc(proc(€)) = oce(€) is finite for any ¢ € §). In this way we retrieve exactly the
transition system with numbered localities (nl-transition system) of [Yan93].

Let us recall the definition of this nl-transition system, rephrasing it in our
formalism. A location renaming f: O — IN is monotonic if e < ¢/ = f(e) < f(€').
In this case we write f: O — 00 IN. Assume IN C Loc.

The states of the transition system with numbered localities are:
Nproc={p | 3£ €S s.t. p=yproc(&)[f] and f : occ (&) —=mon {1,...,0cc(&)]} }

The transitions p ”(i?)nl p" on Nproc are the least ones such that:
u-(n+

p ap,l¢Loc(p). |Loc(p)|=n = p ———mp/{n+1/}
u-l u-(n+1)
It should be clear that the dynamic location bisimulation equivalence based on such
transitions coincides with ~¢ (the proof is essentially the same as for ~Y ==¢).

Again, this transition system is finitely-branching for processes with guarded re-
cursion and finite degree of parallelism. However, the ni-transition system is “wider”
than the dynamic canonical transition system, since the diamonds corresponding to
concurrency are unfolded, thus giving rise to duplication of states. This is due to the
fact that for any CCS term p, the nl-transition system assigns location n to the nth
transition of any computation of p, hence the order in which concurrent transitions
are executed is recorded in the states.

The difference between the various transition systems is illustrated by the follo-
wing example, discussed already in [MN92].

Example 5.35 Consider the CCS process p = recx. a.z | recx. a.x. Its standard
transition system has just one state p and one transition p —— p, while its static
canonical transition system has one state p’ = 0::recz. a.x | 1::recx. a.x and two
transitions p’ %s p" and p’ —‘ll*s p’. On the other hand both the dynamic canonical

INRIA



voserving aisStrioution 1n processes.” StatiC and aynaimic toOCattlties

transition system and the transition system with numbered localities are infinite
(although finitely-branching), as illustrated by the figure below. This is because the
dynamic location transition systems, as well as the occurrence transition system of
Section 5, are models of computation rather than system models.

The dynamic canonical transition system for p is the following:

%X

Oa::recx. a.x recr. a.x recr. a.xr | la::recx. a.x

nd

crecx. a.x | lazrecx. a.x

RN

while the transition system with numbered localities is:

P

Ouxrecx. a.x | recz. a.x recr. a.x | 0:recx. a.x
a|l a|l
O:recx.a.x | lurecx. a.x crecx. a.x | 0urecx. a.x

SN / N\

Note the unfolding of concurrency diamonds here.
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