
IS
S

N
 0

24
9-

63
99

ap por t

de r ech er ch e

1994

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Observing distribution in processes:
static and dynamic localities

Ilaria Castellani

N˚ 2276
Mai 1994

PROGRAMME 2

Calcul symbolique,

programmation

et génie logiciel

Observing distribution in processes:static and dynamic localitiesIlaria CastellaniProgramme 2 | Calcul symbolique, programmation et g�enie logicielProjet MEIJERapport de recherche n�2276 | Mai 1994 | 45 pagesAbstract: The distributed structure of CCS processes can be made explicit by as-signing di�erent locations to their parallel components. The assignment of locationsmay be done statically, or dynamically as the execution proceeds. The dynamicapproach was developed �rst, by Boudol et al., as it appeared more convenient forde�ning notions of location equivalence and preorder. Extending previous work byL. Aceto we study here the static approach, which is more natural from an intu-itive point of view, and more manageable for veri�cation purposes. We de�ne staticnotions of location equivalence and preorder, and show that they coincide with thedynamic ones. To establish the equivalence of the two location semantics, we intro-duce an intermediate transition system called occurrence system, which incorporatesboth notions of locality. This system supports a de�nition of local history preservingbisimulation for CCS, which is a third formulation of location equivalence.Key-words: Concurrent and distributed processes, CCS, bisimulation equivalence,noninterleaving semantics, locations, location equivalence and preorder, causal se-mantics, history-preserving bisimulation. (R�esum�e : tsvp)This work has been partly supported by the Project 502-1 of the Indo-French Centre for thePromotion of Advanced Research.
Unité de recherche INRIA Sophia-Antipolis

2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 93 65 77 77 – Télécopie : (33) 93 65 77 65

Observation de la r�epartition des processus:localit�es statiques et dynamiquesR�esum�e : On peut rendre explicite la structure de r�epartition d'un processus CCSen attribuant des localit�es di��erentes �a ses composants parall�eles. L'attribution deslocalit�es peut se faire de fa�con statique, ou dynamiquement au cours de l'execution.L'approche dynamique a �et�e d�evelopp�ee en premier, par Boudol et al., se prêtantmieux �a la d�e�nition de notions d'�equivalence et de pr�eordre de r�epartition. Etendantun travail de L. Aceto nous �etudions ici l'approche statique, qui est plus proche del'intuition et mieux adapt�ee �a des �ns de v�eri�cation. Nous d�e�nissons des notionsstatiques d'�equivalence et de pr�eordre de r�epartition, et nous montrons qu'elles co��n-cident avec les notions dynamiques. Pour �etablir l'�egalit�e des deux s�emantiques, nousintroduisons un syst�eme de transitions interm�ediaire appel�e syst�eme d'occurrences,qui incorpore les deux notions de localit�e. Ce syst�eme se prête aussi �a la d�e�nitiond'une bisimulation pr�eservant l'histoire locale, qui est une troisi�eme formulation del'�equivalence de r�epartition.Mots-cl�e : Processus parall�eles et r�epartis, CCS, bisimulation, parall�elisme vrai,localit�es, �equivalence et pr�eordre de r�epartition, s�emantique causale, bisimulationpr�eservant l'histoire.

Observing distribution in processes: static and dynamic localities 31 IntroductionThis work is concerned with distributed semantics for CCS, accounting for the spatialdistribution of processes. Such semantics focus on di�erent aspects of behaviour thanmost non-interleaving semantics for CCS considered so far in the literature, whichare based on the notion of causality. Roughly speaking, a distributed semantics keepstrack of the behaviour of the local components of a system, and thus is appropriatefor describing phenomena like a local deadlock. On the other hand a causal semantics,such as those described in [DDNM89], [GG89], [DD90] [BC91], is concerned with the
ow of causality among activities and thus is better suited to model the interactionof processes and the global control structure of a system.The distributed structure of CCS processes can be made explicit by assigningdi�erent locations to their parallel components. To this end we use a location pre�xingconstruct l :: p [BCHK93], [BCHK91], which represents process p residing at locationl. The actions of such a process are observed together with their location. We havefor instance: (l :: a j k :: b) a�!l (l :: nil j k :: b) b�!k (l :: nil j k :: nil)In general, because of the nesting of parallelism, the locations of actions will not besimple letters l; k; : : : but rather words u = l1 � � � ln. Then a \distributed process"will perform transitions of the form p a�!u p0.Intuitively, the assignment of locations should be done statically, and then be-come part of what is observed of a process. More precisely, CCS processes shouldbe observed through their distributions, which are obtained by transforming eachsubprocess (p j q) into (l :: p j k :: q), where l and k are distinct locations. Whencomparing the behaviours of processes, this will allow us for instance to distinguish(a j b) from (a: b+b: a), since any distribution of the �rst process will perform actionsa and b at di�erent locations. For more interesting examples we refer the reader tothe introductions of [BCHK93], [BCHK91].The question is now: which notion of abstract distributed behaviour do thesetransitions induce on CCS processes? More speci�cally, we look for a notion of weakbisimulation based on the transitions p a�!u p0. Roughly speaking, this should equateprocesses exhibiting the same \location transitions". In our view, however, it wouldbe too strong a requirement to ask for the identity of locations in correspondingtransitions. In fact, if we want to observe distribution, we still aim, to some extent,RR n�2276

4 Ilaria Castellaniat an extensional semantics. For instance, we do not want to observe the order inwhich parallel components have been assembled in a system, nor indeed the numberof these components. We are only interested in the number of active componentsin each computation. We would like e.g. to identify (the distributions of) the CCSprocesses: a j (b j c) and (a j b) j ca and a j nilTo this end, transitions must be compared modulo an association between theirlocations. For instance to relate the distributions l :: a j k :: (l0 :: b j k0 :: c) andl :: (l0 :: a j k0 :: b) j k :: c, we need to identify the locations l; kl0; kk0 of the �rstrespectively with ll0; lk0; k in the second. However, this association cannot in generalbe �xed statically. For consider the two processes:p = [(�+ b) j ��: b]n� and q = bIntuitively, we would like to equate p and q because the observable behaviour ofany distributions of these processes consists in just one action b at some locationl. But here the required association of locations will depend on which computationis chosen in the �rst process. Hence it is not immediately clear how to de�ne anequivalence based on static locations.Because of this di�culty, the static approach was initially abandoned in favourof a di�erent one, where locations are introduced dynamically as the execution pro-ceeds. This dynamic approach, where locations are associated with actions ratherthan with parallel components, has been presented in [BCHK93], [BCHK91]. In thissetting, the choice of locations is more
exible and the notion of location equivalenceis particularly simple: it is just the standard notion of bisimulation, applied to thetransitions p a�!u p0. Moreover, by weakening a little the de�nition of the equivalence,we obtain a notion of location preorder, which formalises the idea that one processis more sequential or less distributed than another. Such a notion is particularlyuseful when dealing with truly concurrent semantics, where an implementation isoften not equivalent to its speci�cation. Since location equivalence and preorder areessentially bisimulation relations, many proof techniques familiar from the theory ofstandard bisimulation may be applied to them: for example both these relations havea complete axiomatisation and a logical characterisation in the style of Hennessy andMilner, see [BCHK93], [BCHK91].However, the dynamic approach has the drawback of yielding in�nite transitionsystems even for regular processes, and thus cannot be directly used for veri�cationpurposes. Moreover in this approach locations represent access paths for actionsrather than sites in a system, and thus are somehow remote from the original intui-tion. For these reasons, it was interesting to resume the initial attempt at a staticapproach. The problem of �nding the appropriate notion of bisimulation was solvedby L. Aceto in [Ace91] for nets of automata, a subset of CCS where parallelism is
INRIA

Observing distribution in processes: static and dynamic localities 5only allowed at the top level. The key idea here is to replace the usual notion of abisimulation relation by that of a family of relations indexed by increasing locationassociations (what we call here a progressive bisimulation family). Aceto shows thatthe notions of static location equivalence and preorder thus obtained coincide withthe dynamic ones, and thus may be used as \e�ective" versions of the latter.The purpose of the present work is to generalize the static treatment of Aceto tofull CCS. Having established the notion of distribution for general CCS processes, themain point is to adapt Aceto's de�nitions of static location equivalence and preorder.Because of the arbitrary nesting of parallelism and pre�xing in CCS terms, and ofthe interplay between sum and parallelism, this is not completely straightforward.A step in this direction was done by Mukund and Nielsen in [MN92], where a no-tion of bisimulation equivalence based on static locations is proposed for a class ofasynchronous transition systems modelling CCS with guarded sums. The notion ofequivalence we present here is essentially the same (extended to all CCS), and ourmain result is that it coincides with the dynamic location equivalence of [BCHK91].We also give a similar result for the location preorders.To compare the two location semantics we introduce an intermediate transitionsystem, called occurrence transition system, which incorporates both the static anddynamic locations. This system has an interest of its own, as it allows for a precisede�nition of the notion of occurrence of an action in a computation. It also supportsa syntactic de�nition of (local) history preserving bisimulation, which turns out tobe another formulation of location equivalence.We conclude this introduction with a brief review of related work. A �rst dis-tributed semantics for a subset of CCS was proposed in [CH89], [Cas88], where thenotion of distributed bisimulation was introduced. An extension of this notion to alarger subset of CCS was investigated by A. Kiehn in [Kie89]. A variant of Kiehn'sextension is examined in [CN93]. Concerning distributed bisimulation, we shouldmention also the decidability result of [Chr92], for a recursive fragment of CCS withparallelism. The precise relation between distributed bisimulation and (dynamic) lo-cation equivalence is studied in [BCHK93] and [BCHK91]; let us just mention herethat Kiehn's extended notion is weaker than location bisimulation.A general comparison of distributed and causality-based semantics is carriedout in [Kie91]; in particular Kiehn gives a characterization of dynamic locationequivalence as a local cause bisimulation, a variant of the causal bisimulation of[DD90] based on local rather than global causality. A similar result is presented byMontanari and Yankelevich in [MY92], [Yan93], where dynamic location equivalenceis characterised as a local mixed-ordering equivalence, a variant of the mixed-orderingequivalence of [DDNM89]. Our characterisation of location equivalence as a localhistory preserving bisimulation is therefore not surprising, since causal bisimulation,history preserving bisimulation and mixed-ordering equivalence are known (from[DD91], [Ace92]) to be di�erent formulations of the same equivalence.As regards the static approach to locations, we mentioned already that our workcomes in the line of [Ace91] and [MN92]. A transition system for CCS labelled with
RR n�2276

6 Ilaria Castellanistatic locations, called \spatial transition system", was considered also in [MY92],[Yan93]. However locations are used there essentially to build a second transitionsystem, labelled by partial orders, which is then used for de�ning the local mixed-ordering equivalence. Again, this partial order transition system gives �nite repre-sentations only for �nite behaviours.Finally, D. Murphy in a recent paper [Mur93] proposes a more concrete view oflocalities, for nets of �nite sequential processes (essentially a sublanguage of thatconsidered in [Ace91]). Here again localities are given statically. However the namesof localities are themselves signi�cant, and processes are considered equivalent onlyif they reside on the same set of localities and present the same behaviour at eachlocality. So Murphy's concern appears to be di�erent from ours: he compares distri-butions of processes on a given set of localities (or processors), while our semanticsre
ects the notions of distributed behaviour and degree of distribution somewhatabstractly.The paper is organised as follows. In Section 2 we introduce our language forprocesses with locations. Sections 3 and 4 present respectively the static and thedynamic location semantics. Section 5 is devoted to the comparison of the two ap-proaches. Finally, in the Appendix, we give the de�nition of local history preservingbisimulation and present a �nitely-branching transition system for the dynamic lo-cation semantics, inspired from [Yan93].This is an extended version of [Cas93], complete with proofs.2 A language for processes with locationsWe introduce now a language for specifying processes with locations, called LCCS.This language is a simple extension of CCS, including a new construct to deal withlocations.Let us recall some conventions of CCS [Mil80]. One assumes a set of names �,ranged over by �; �; : : :, and a corresponding set of co-names �� = f�� j � 2 �g,where � is a bijection such that ��� = � for all � 2 �. The set of visible actions isgiven by Act = �[��. Invisible actions { representing internal communications { aredenoted by the symbol � =2 Act . The set of all actions is then Act� =def Act [f�g.We use a; b; c; : : : to range over Act and �; �; : : : to range over Act� . We also assumea set V of process variables, ranged over by x; y : : :.In addition to the operators of CCS, which we suppose the reader to be familiarwith, LCCS includes a construct for building processes with explicit locations. LetLoc, ranged over by l; k; : : :, be an in�nite set of atomic locations. The new constructof location pre�xing, noted l :: p, is used to represent process p residing at locationl. Intuitively, the actions of such a process will be observed \within location l". Thesyntax of LCCS is as follows:p ::= nil j �: p j (p j q) j (p+ q) j pn� j p hfi j x j rec x: p j l :: p
INRIA

Observing distribution in processes: static and dynamic localities 7Here we use the slightly nonstandard notation p hfi to represent the relabellingoperator of CCS.In a previous paper [BCHK91], this language has been given a location semanticsbased on a dynamic assignment of locations to processes. Here we shall present alocation semantics based on a static notion of location, and show that the twoapproaches, dynamic and static, give rise to the same notions of equivalence andpreorder on CCS processes. The basic idea, common to both approaches, is thatthe actions of processes are observed together with the locations at which theyoccur. In general, because of the nesting of parallelism and pre�xing in terms, thelocations of actions will not be atomic locations of Loc, but rather words over theselocations. Thus general locations will be elements u; v : : : of Loc�, and processes willbe interpreted as performing transitions p ��!u p0, where � is an action and u is thelocation at which it occurs.However, locations do not have the same intuitive meaning in the two approaches.In the static approach locations represent sites - or parallel components - in a dis-tributed system, much as one would expect. In the dynamic approach, on the otherhand, the location of an action represents the sequence of actions which are locallynecessary to enable it, and thus is more properly viewed as an access path to thataction within the component where it occurs. Because of this di�erence in intuition,it is not immediately obvious that the two approaches should yield the same seman-tic notions. The fact that they do means that observing distribution is essentiallythe same as observing local causality.3 Static approachWe start by presenting an operational semantics for LCCS based on the static notionof location. The idea of this semantics is very simple. Processes of LCCS have somecomponents of the form l :: p, and the actions arising from these components areobserved together with their location. The distribution of locations in a term remains�xed through execution. Location pre�xing is a static construct and the operationalrules do not create new locations; they simply exhibit the locations which are alreadypresent in terms. Formally, this is expressed by the operational rules for actionpre�xing and location pre�xing. Recall that locations are words u; v; : : : 2 Loc�. Theempty word " represents the location of the overall system. The rules for �: p andl :: p are respectively:(S1) �: p ��! s" p(S2) p ��! su p0) l :: p ��! sl u l :: p0Rule (S1) says that an action which is not in the scope of any location l is observedas a global action of the system. Rule (S2) shows how locations are transferredfrom processes to actions. The rules for the remaining operators, apart from the
RR n�2276

8 Ilaria Castellanicommunication rule, are similar to the standard interleaving rules for CCS, withtransitions ��! su replacing the usual transitions ��!.The set of all rules specifying the operational semantics of LCCS is given in Figure 1.The rule for communication (S4) requires some explanation. In the strong locationtransition system we take the location of a communication to be that of the smallestcomponent which includes the two communicating subprocesses: the notation u u vin rule (S4) stands for the longest common pre�x of u and v. For instance:Example 3.1 Let p = l :: � j k :: ��: (l0 :: � j k0 :: ��), with l 6= k; l0 6= k0. Then:p ��! s" l :: nil j k :: (l0 :: � j k0 :: ��) ��! sk l :: nil j k :: (l0 :: nil j k0 :: nil)However, we shall mostly be interested here in the weak location transition system,where � -transitions will have no explicit location: since the transitions themselvesare not observable, it would not make much sense to attribute a location to them.The weak location transitions a=)su and �=)s are thus de�ned by:p �=)s q , 9u1; : : : ; un; p0; : : : ; pn s:t: p = p0 ��! su1 p1 � � � ��! sun pn = qp a=)su q , 9 p1; p2 s:t: p �=)s p1 a�! su p2 �=)s qWe shall use the weak location transition system as the basis for de�ning a newsemantic theory for CCS, and in particular notions of equivalence and preorderwhich account for the degree of distribution of processes.The reader may have noticed, however, that applying the rules of Figure 1 toCCS terms just yields a transition p ��! s" p0 whenever the standard semantics yieldsa transition p ��! p0. In fact, we shall not apply these rules directly to CCS terms.Instead, the idea is to �rst bring out the parallel structure of CCS terms by assigninglocations to their parallel components, thus transforming them into particular LCCSterms which we call \distributed processes", and then execute these according to thegiven operational rules. The set DIS � LCCS of distributed processes is given by thegrammar:p ::= nil j �: p j (l :: p j k :: q)| {z }l 6=k j (p+q) j pn� j p hfi j x j rec x: pEssentially, a distributed process is obtained by inserting a pair of distinct locationsin a CCS term wherever there occurs a parallel operator. This is formalised by thenotion of distribution, which we de�ne next.
INRIA

Observing distribution in processes: static and dynamic localities 9
For each � 2 Act� , u 2 Loc�, let ��! su be the least relation ��!u on LCCS processessatisfying the following axiom and rules.(S1) �: p ��!" p(S2) p ��!u p0) l :: p ��!lu l :: p0(S3) p ��!u p0) p j q ��!u p0 j qq j p ��!u q j p0(S4) p ��!u p0; q ���!v q0) p j q �����!uu v p0 j q0(S5) p ��!u p0) p+ q ��!u p0q + p ��!u p0(S6) p ��!u p0; � 62 f�; ��g) pn� ��!u p0n�(S7) p ��!u p0) p hfi f(�)����!u p0 hfi(S8) p[rec x: p=x] ��!u p0) rec x: p ��!u p0Figure 1: Static location transitions
Let p ��! du q ,def p ��! su q, and for each a 2 Act , u 2 Loc�, let a�! du be theleast relation a�!u on LCCS processes satisfying rules (S2), (S3), (S5), (S6), (S7),(S8) and the axiom:(D1) a:p a�!l l :: p for any l 2 LocFigure 2: Dynamic location transitions
RR n�2276

10 Ilaria CastellaniDe�nition 3.2 The distribution relation is the least relation D � (CCS � DIS)satisfying:- nil D nil and xD x- pD r) �: p D �: rpn� D rn�p hfi D r hfi(rec x: p) D (rec x: r)- pD r & qD s) (p j q) D (l :: r j k :: s) ; 8 l; k s:t: l 6= k(p+ q) D (r + s)If pD r we say that r is a distribution of p.Note that the same pair of locations may be used more than once in a distribution.We shall see in fact, at the end of this section, that distributions involving justtwo atomic locations are su�cient for describing the distributed behaviour of CCSprocesses.3.1 Static location equivalenceWe want to de�ne an equivalence relation �s̀ on CCS processes, based on abisimulation-like relation between their distributions. The intuition for two CCSprocesses p; q to be equivalent is that there exist two distributions of them, say �pand �q, which perform \the same" location transitions at each step. However, as weargued already in the introduction, we cannot require the identity of locations incorresponding transitions. If we want to identify the following processes:a j (b j c) and (a j b) j ca and a j nilit is clear that, whatever distributions we choose, we must allow corresponding tran-sitions to have di�erent { although somehow related { static locations. In generaltransitions will be compared modulo an association between their locations. Theidea is directly inspired from that used by Aceto for nets of automata [Ace91]; ho-wever in our case the association will not be a bijection as in [Ace91], nor even afunction. For example, in order to equate the two processes:a: (b: c j nil) and a: b: (c j nil)we need an association containing the three pairs ("; "); (l; "); (l; l0), for some l; l0 2Loc.In fact, the only property we will require of location associations is that theyrespect independence of locations. To make this precise, let � denote the pre�xordering on Loc�. If u � v we say that v is an extension or a sublocation of u. Ifu 6� v and v 6� u, what we indicate by u � v, we say that u and v are independent. INRIA

Observing distribution in processes: static and dynamic localities 11De�nition 3.3 A relation ' � (Loc� � Loc�) is a consistent location association(cla) if: (u; v) 2 ' & (u0; v0) 2 ') (u � u0 , v � v0)Essentially the same notion of consistent association has been proposed by Mukundand Nielsen in [MN92] for a class of asynchronous transition systems modelling CCSwith guarded sums. The following properties of cla's are straightforward to check:Property 3.4 (Properties of cla's)1. If ' is a cla, then '�1 is a cla.2. If ' is a cla and � ', then is a cla.3. If ' and are cla's, then ' � is a cla.Now Aceto showed in [Ace91] that, for a given pair of distributed processes wewant to equate, the required cla cannot in general be �xed statically, but has to bebuilt incrementally. For consider the two distributed processes, which are intuitivelyequivalent since both perform actions a and b in either order at di�erent locations:(l :: (a:
 + b: �
) j k :: (�
: b+
: a)) n
 and (l :: a j k :: b)Here, depending on which summand is chosen in the left component of the �rstprocess, one will use the association ' = f(l; l); (k; k)g or the association '0 =f(l; k); (k; l)g (note that ' ['0 is not consistent). Another example is given in theintroduction.To dynamically build up associations, we use the same technique as in [Ace91].Let � be the set of consistent location associations. We de�ne particular �-indexedfamilies of relations S' over distributed processes, which we call progressive bisimu-lation families (although the relations that constitute a family are not themselvesbisimulations). The idea is to start with the empty association of locations andextend it consistently as the bisimulation proceeds.De�nition 3.5 A progressive bisimulation family (pbf) is a �-indexed family S =fS' j ' 2 �g of relations over DIS such that, if pS'q then for all a 2 Act ; u 2 Loc�:(1) p a=)su p0) 9 q0; v s.t. q a=)sv q0 ; ' [f(u; v)g 2 � and p0 S'[f(u;v)g q0(2) q a=)sv q0) 9 p0; u s.t. p a=)su p0 ; ' [f(u; v)g 2 � and p0 S'[f(u;v)g q0(3) p �=)s p0) 9 q0 s.t. q �=)s q0 and p0S'q0(4) q �=)s q0) 9 p0 s.t. p �=)s p0 and p0S'q0We may now de�ne the location equivalence �s̀ on CCS terms as follows:RR n�2276

12 Ilaria CastellaniDe�nition 3.6 (Static location equivalence) For p; q 2 CCS, we let p �s̀ q ifand only if for some �p; �q 2 DIS such that pD �p and qD �q, there exists a progressivebisimulation family S = fS' j ' 2 �g such that �pS; �q.We prove now that �s̀ q is indeed an equivalence relation. The reader may havenoticed that the inverse D �1 of the distribution relation is a function. If we let� =def D �1, then �(p) gives the CCS process underlying the distributed process p.We start by showing that all distributions of the same process are in the relation S;for some progressive bisimulation family S:Proposition 3.7 Let p1; p2 2 DIS. Then �(p1) = �(p2)) 9 pbf S s:t: p1S;p2.The proof of this proposition relies on the following de�nition and lemma.De�nition 3.8 For any p1; p2 2 DIS such that �(p1) = �(p2), let '(p1; p2) be theleast relation on locations satisfying:'(nil; nil) = '(x; x) = '(�: r1; �: r2) = '((r1 + s1) ; (r2 + s2)) = f("; ")g'(r1n�; r2n�) = '(r1 hfi; r2 hfi) = '(r1; r2)'(r1[rec x: r1=x]; r2[rec x: r2=x]) � '(rec x: r1; rec x: r2)'((l1 :: r1 j k1 :: s1) ; (l2 :: r2 j k2 :: s2)) = f("; ")g[(l1; l2) � '(r1; r2)[(k1; k2) � '(s1; s2)where for any relation ', we let (l; l0) � ' =def f(lu; l0v) j (u; v) 2 'g.It may be easily checked that the relation '(p1; p2) is a consistent location associa-tion. Note that '(p1; p2) only relates those locations of p1 and p2 which are \staticallyexhibited", i.e. which do not occur under a dynamic operator. The following lemmaestablishes the relation between '(p1; p2) and the transitions of p1; p2.Lemma 3.9 Let p1; p2 2 DIS be such that �(p1) = �(p2). Then:1. p1 a=)su p01) 9 p02; v s.t. p2 a=)sv p02 ; '(p1; p2) [(u; v) � '(p01; p02) and�(p01) = �(p02)2. p1 �=)s p01) 9 p02 s.t. p2 �=)s p02 ; '(p1; p2) � '(p01; p02) and �(p01) =�(p02)Proof: By induction on the proofs of transitions of distributed processes. Note thatin general '(p1; p2) � '(p01; p02) because new parallel structure may appear as thecomputations proceed. 2
INRIA

Observing distribution in processes: static and dynamic localities 13We may now prove the above proposition.Proof of Proposition 3.7: De�ne the family T = fT' j' 2 �g by letting:T' = f (r1; r2) j �(r1) = �(r2) and ' � '(r1; r2) gIt is clear that r1T;r2 for any r1; r2 such that �(r1) = �(r2). Let us show that T is aprogressive bisimulation family. Suppose that r1T'r2. If r1 a=)su r01 then by Lemma3.9 r2 a=)sv r02 ; with '(r1; r2)[(u; v) � '(r01; r02) and �(r01) = �(r02) . We want toshow that '0 = '[(u; v) is a cla and that r01T'0r02. But this follows immediately from' � '(r1; r2) and Lemma 3.9, since '0 = '[(u; v) � '(r1; r2)[(u; v) � '(r01; r02) .2Using this proposition, we can �nally prove that:Proposition 3.10 The relation �s̀ is an equivalence on CCS processes.Proof: Re
exivity: Consider the family S = fS' j' 2 �g de�ned by:S' = (f (q; q) j q 2 DIS g if ' � Id; otherwiseIt is clear that S is a progressive bisimulation family such that (q; q) 2 S; for anyq 2 DIS. Hence p �s̀ p for any p 2 CCS.Symmetry: Let p �s̀ q. This means that for some �p; �q 2 DIS such that �(�p) = pand �(�q) = q, there exists a progressive bisimulation family S = fS' j ' 2 �g suchthat �pS; �q. De�ne now a family R = fR j 2 �g by:R = f (r; s) j s S �1 r gClearly �q R; �p. We show now that R is a progressive bisimulation family. Sup-pose (r; s) 2 R : this is because s S' r, with ' = �1. Then r a=)su r0 impliess a=)sv s0, with s0S'[f(v;u)gr0. Now [' [f(v; u)g]�1 = �1 [f(u; v)g, and thus(r0; s0) 2 R �1[f(u;v)g. The case of unobservable transitions is similar. We can thenconclude that q �s̀ p.Transitivity: Let p �s̀ r and r �s̀ q. This means that for some �p; �q; r1; r2 2 DISsuch that �(�p) = p; �(�q) = q; �(r1) = �(r2) = r, there exist pbf's R1 and R2s.t. �pR1;r1, r2R2;�q. Moreover, if T is the pbf introduced in the proof of Proposition3.7, we know (from the same proposition) that r1T;r2. Hence if we de�ne a familyS = fS' j' 2 �g as follows:(s; s0) 2 S' , 9 t1; t2 2 DIS such that �(t1) = �(t2);9 pbf 0s S1; S2 ; 9 cla 0s '1; ; '2; such that' � '2 � � '1 and s S1'1 t1 T t2 S2'2 s0RR n�2276

14 Ilaria Castellaniit is clear that �pS; �q. Furthermore it is easy to check that S is a progressive bisimu-lation family, since for any u; v; v0; w we have ' [f(u;w)g � '2 [f(v0; w)g � [f(v; v0)g � '1 [f(u; v)g. 2A pleasant consequence of Proposition 3.7 is that �s̀ is independent from the par-ticular distributions we choose. If two CCS terms p and q are equivalent, then anytwo distributions of them are related by S;, for some progressive bisimulation familyS = fS' j ' 2 �g.Corollary 3.11 For any p; q 2 CCS : p �s̀ q , for all �p; �q 2 DIS such thatpD �p and qD �q there exists a progressive bisimulation family S = fS' j ' 2 �gsuch that �pS; �q.By virtue of this result, we can restrict attention to particular \binary" distributions,systematically associating location 0 to the left operand and location 1 to the rightoperand of a parallel composition. A distribution of this kind will be called canonical.Similarly, elements of f0; 1g� will be called canonical locations. These are exactly thelocations used in [MN92] and, with a slightly di�erent notation, in [MY92],[Yan93].In fact, when applied to canonical distributions of CCS terms, our transition rulesgive exactly the same transitions as the spatial transition system of Montanari andYankelevich (except for � -transitions, for which they use pairs of locations).Let us see now a simple example, which shows the di�erence between locationequivalence and causality-based equivalences, such as the (weak) causal bisimulationof [DD90]:Example 3.12 a: b+ b: a 6�s̀ (a:
 j �
: b)n
 + (b:
 j �
: a)n
 �s̀ a j bUsing canonical distributions, it is easy to see that the computation a followed by byields the association ' = f ("; 0) ; ("; 1) g between the locations of the �rst two pro-cesses, which is not consistent. On the other hand, for the second and third processwe build the consistent association '1 = f (0; 0) ; (1; 1) g for the computation a fol-lowed by b, and the consistent association '2 = f (0; 1) ; (1; 0) g for the computationb followed by a.Another example, showing the di�erence w.r.t. the usual CCS semantics, is:Example 3.13 rec x: a: x 6�s̀ (rec x: a: x j rec x: a: x)In the standard CCS semantics these two processes give rise to isomorphic transitionsystems.
INRIA

Observing distribution in processes: static and dynamic localities 153.2 Static location preorderWe de�ne now a preorder <� s̀ on CCS processes, which formalises the idea that oneprocess is more sequential or less distributed than another. This preorder is obtainedby slightly relaxing the notion of consistent association. The intuition for p <� s̀ q isthat there exist two distributions �p and �q of them such that whenever �p can performtwo transitions at independent locations, then �q performs corresponding transitionsat locations which are also independent, while the reverse is not necessarily true.This is expressed by the following notion of left-consistency:De�nition 3.14 A relation ' � (Loc� � Loc�) is a left-consistent location associa-tion if: (u; v) 2 ' & (u0; v0) 2 ') (u � u0) v � v0)Now, if 	 is the set of left-consistent location associations, we may obtain a notion ofprogressive pre-bisimulation family (ppbf) on distributed processes of DIS by simplyreplacing � by 	 in De�nition 3.5. Again, this gives rise to a relation on CCSprocesses:De�nition 3.15 (Static location preorder) If p; q 2 CCS, let p <� s̀ q if andonly if for some �p; �q 2 DIS such that pD �p and qD �q, there exists a progressivepre-bisimulation family S = fS j 2 	g such that �pS; �q.It is easy to see that p �s̀ q) p <� s̀ q. As may be expected the reverse is nottrue. We have for instance, resuming the examples of the previous section:Example 3.16 a: b+ b: a <� s̀ (a:
 j �
: b)n
 + (b:
 j �
: a)n
Example 3.17 rec x: a: x <� s̀ (rec x: a: x j rec x: a: x)Having introduced both an equivalence �s̀ and a preorder <� s̀ based on the sameintuition, we may wonder whether �s̀ coincides with the equivalence 's̀=def <� s̀\ =� s̀ induced by the preorder. It is clear that �s̀�'s̀, since we have both �s̀�<� s̀and �s̀�=� s̀. On the other hand, the kernel of the preorder is weaker than locationequivalence, as shown by the following example. Consider the two processes:a: a: a + (a j a j a) and a: a: a + a: a j a + (a j a j a)These two processes are not equivalent w.r.t. �s̀, but they are equivalent w.r.t. 's̀because a: a: a <� s̀ a: a j a <� s̀ a j a j a.We will show in Section 5 that the static preorder <� s̀ coincides with the dynamiclocation preorder <� d̀ of [BCHK91b], and thus inherits the theory of the latter.
RR n�2276

16 Ilaria Castellani4 Dynamic approachWe brie
y recall here the dynamic approach of [BCHK91], and in particular thede�nitions of �d̀ and <� d̀. In the dynamic approach, locations are associated withactions rather than with parallel components. This association is built dynamically,according to the rule:(D1) a: p a�! dl l :: p for any l 2 LocIn some sense locations are transmitted from transitions to processes, whereas inthe static case we had the inverse situation. Rule (D1) is the essence of the dynamiclocation semantics. The remaining rules for observable transitions are just as in thestatic semantics, see Figure 2 at p. 9. We refer to [BCHK91] for more intuition onthe dynamic notion of location. Let us just observe that these locations increase ateach step, even if the execution goes on within the same parallel component. In factthe location l which appears in rule (D1) may be seen as an identi�er for action a, ormore precisely, for that particular occurrence of a. Then the location u of a generictransition p a�! du p0 is a record of all the action occurrences which causally precedea (through the pre�xing operator), what we shall call also the access path to a.The observable dynamic transitions p a�! du p0 are related to the static transitionsp a�! su p0 in a simple way. To see this, let us introduce a few notations. Let �k(p)be the function that erases the atomic location k in p, wherever it occurs. Formally,� : (Loc� LCCS)! LCCS is de�ned by:�k(p) = p; if p 2 CCS�k(l :: p) = (�k(p) if k = ll :: �k(p) otherwiseas well as clauses stating the compatibility of �k with the remaining operators (forinstance �k(p j q) = �k(p) j �k(q), etc.). Also, for any p 2 LCCS, let Loc(p) bethe set of atomic locations occurring in p, de�ned in the obvious way. We have thenthe following correspondence between the two kinds of location transitions:Fact 4.1 Let p 2 LCCS, l =2 Loc(p). Then:(i) p a�! dul p0) p a�! su �l(p0)(ii) p a�! su p0) 9 p00 s:t: p a�! dul p00 and �l(p00) = p0The proof, by induction on the inference of transitions, is left to the reader. 2Because of rule (D1), the dynamic location transition system is both in�nitelybranching and acyclic: it thus gives in�nite representations for all regular processes.Indeed, this has been the main criticism addressed to the dynamic approach, see
INRIA

Observing distribution in processes: static and dynamic localities 17[Ace91],[MY92],[MN92],[Mur93]. In fact, while the in�nite branching may be over-come easily (through a canonical choice of dynamic locations, see Appendix), thein�nite progression is really intrinsic to the dynamic semantics.Note that for � -transitions, for which we do not want to introduce additionallocations, we simply use the static transition rules. Although this last point di�eren-tiates our strong dynamic location transition system from that originally introducedin [BCHK91], where no locations were associated with � -transitions, the resultingweak (dynamic) location transition system is the same. The de�nition of the weaktransitions a=)du and �=)d is similar to that of the a=)su and �=)s.We de�ne now the dynamic location equivalence �d̀ and the dynamic locationpreorder <� d̀. Because of the
exibility in the choice of locations, these de�nitionsare much simpler than in the static case. In [BCHK91] the relations �d̀ and <� d̀ areobtained as instances of a general notion of parameterized location bisimulation. Weshall use here directly the instantiated de�nitions.De�nition 4.2 (Dynamic location equivalence) A relation R � LCCS�LCCSis called a dynamic location bisimulation (dlb) i� for all (p; q) 2 R and for alla 2 Act ; u 2 Loc+:(1) p a=)du p0) 9 q0 such that q a=)du q0 and (p0; q0) 2 R(2) q a=)du q0) 9 p0 such that p a=)du p0 and (p0; q0) 2 R(3) p �=)d p0) 9 q0 such that q �=)d q0 and (p0; q0) 2 R(4) q �=)d q0) 9 p0 such that p �=)d p0 and (p0; q0) 2 RThe largest dlb is called dynamic location equivalence and denoted �d̀.We refer to [BCHK91] for examples and results concerning �d̀. Consider now thelocation preorder <� d̀. Here, instead of requiring the identity of locations in cor-responding transitions, we demand that the locations in the second (more distri-buted) process be subwords of the locations in the �rst (more sequential) pro-cess. Formally, the subword relation �sub on Loc� is de�ned by: v �sub u ,9 v1; : : : ; vk ; 9w1; : : : ; wk+1 s:t: v = v1 � � � vk and u = w1v1 � � �wkvkwk+1.De�nition 4.3 (Dynamic location preorder) A relation R � LCCS � LCCSis called a dynamic location pre-bisimulation (dlpb) i� for all (p; q) 2 R and for alla 2 Act ; u 2 Loc+:(1) p a=)du p0) 9 v �sub u; 9 q0 such that q a=)dv q0 and (p0; q0) 2 R(2) q a=)dv q0) 9u: v �sub u; 9 p0 such that p a=)du p0 and (p0; q0) 2 R(3) p �=)d p0) 9 q0 such that q �=)d q0 and (p0; q0) 2 R(4) q �=)d q0) 9 p0 such that p �=)d p0 and (p0; q0) 2 RThe largest dlpb is called dynamic location preorder and denoted <� d̀.
RR n�2276

18 Ilaria CastellaniThe intuition is as follows. If p is a sequentialized version of q, then each componentof p corresponds to a group of parallel components in q. Thus the local causes of anyaction of q will correspond to a subset of local causes of the corresponding action ofp. This may be easily veri�ed for the following examples:Example 4.4 a: a: a <� d̀ a: a j a and a: b + b: a <� d̀ a j bWe shall not comment further here on the relations �d̀ and <� d̀, referring again thereader to [BCHK91] for more examples and for results concerning these relations.We proceed instead to state our main result, namely that the dynamic relations �d̀and <� d̀ coincide with the static relations �s̀ and <� s̀ introduced in the previoussection.Theorem 4.5 Let p; q 2 CCS. Then:(1) p �s̀ q , p �d̀ q(2) p <� s̀ q , p <� d̀ qThe rest of the paper is devoted to proving this theorem. To this end, we shall usea new transition system on CCS, called occurrence transition system, which in somesense incorporates the information of both location transition systems. This systemwill serve as an intermediate between the static and the dynamic semantics. Themain point will be to prove that starting from a static or a dynamic location com-putation, one may always reconstruct a corresponding occurrence computation. Thismeans, essentially, that all the information about distribution and local causality isalready present in both location transition systems.The two location transition systems could also be compared directly, withoutrecourse to an auxiliary transition system. However we �nd it instructive to introducethe occurrence transition system, since it provides a concrete level of descriptionwhere the notions of occurrence of an action, access path to an occurrence andcomputation state have a precise de�nition. Moreover, as we shall see, it allows forthe de�nition of a notion of local history preserving bisimulation, which turns out tobe a third equivalent formulation of location equivalence.

INRIA

Observing distribution in processes: static and dynamic localities 195 Equivalence of the two approaches5.1 The occurrence transition systemTo compare the two location semantics we introduce a new transition system, calledoccurrence (transition) system, whose states represent CCS computation states witha \past", and whose labels are occurrences of actions within a computation. Thissystem, which is based on a syntactic notion of occurrence of action, is essentiallya simpli�cation of the event (transition) system introduced in [BC91] to comparedi�erent models of CCS: it is simpler because we do not try to identify uniquely alloccurrences of action in a term, as in [BC91], but only those which can coexist in acomputation. Moreover, since we are interested here in weak semantics, we shall notdistinguish between � -actions and we concentrate on abstract occurrences, in which� -actions and communications are absorbed. Formally, the set O� of occurrences isde�ned as O� = O [f�g , where O , the set of visible occurrences, is given by thegrammar: e ::= a j a e j 0 e j 1 eThe meaning of the occurrence constructors is as follows: a denotes an initial occur-rence of action a (possibly following - or followed by - some � actions), a e denotesthe occurrence e after an action a, while 0 e; 1 e represent the occurrence e at theleft, resp. at the right of a parallel operator. Finally the symbol � is used - withabuse of notation - to represent any occurrence of a � -action in a computation. Weuse e; e0; : : : to range over the whole set O� .We show now that a visible occurrence e 2 O incorporates both its static andits dynamic location. For note that O could also be de�ned as:O = (Act [f0; 1g)� ActThen an occurrence e 2 O� is either � or a word �a, for some � 2 (Act [f0; 1g)�and a 2 Act . The label of e 2 O� is the action of which e is an occurrence:De�nition 5.1 (Label) The function � : O� ! Act� is de�ned by:�(�) = �; �(�a) = a:This alternative presentation of O makes it also particularly easy to de�ne thelocation and the access path of a visible occurrence e. The location loc(e) of anoccurrence e 2 O is its projection on the set of canonical locations:De�nition 5.2 (Location) The function loc : O ! f0; 1g� is de�ned by:loc(e) = e jn f0; 1g�The relation of causality on visible occurrences is simply the pre�x ordering on O .De�nition 5.3 (Local causality) The relation � � (O � O) is given by:e � e0 , e = e0 or 9 e00 s:t: ee00 = e0RR n�2276

20 Ilaria CastellaniWe know that � is a partial ordering. We call � local causality because it onlyconnects occurrences within the same parallel component: it is clear that e � e0)loc(e) � loc(e0). Let as usual e � e0 stand for (e � e0 & e 6= e0). For e 2 O , wede�ne #e = fe0 j e0 � eg to be the set of local causes of e. Then the access path of eis the sequence of such causes:De�nition 5.4 (Access path) For e 2 O , path(e) =def e1 � � � � � en, wherefe1; : : : ; eng = #e and ei � ei+1 , 1 � i < n.For instance, if e = 0a10b11c, then #e = f0a; 0a10bg and path(e) = (0a) � (0a10b).We call e 2 O an initial occurrence if #e = ; (equivalently path(e) = "). An initialoccurrence has always the form e = loc(e) ��(e). More generally, if �0 � � and �=�0is the residual of � after �0, de�ned by �=�0 = �00 if � = �0�00, we have the followingcharacterisation for visible occurrences:Fact 5.5 An occurrence e 2 O is completely determined by its label, location andaccess path. Namely, if �(e) = a, loc(e) = � and path(e) = e1 � � � � � en, n � 1,then: e = (loc(e1) � �(e1)) � (loc(e2)=loc(e1) � �(e2)) � � � � � (�=loc(en) � a)If path(e) = " then e = � � a.We de�ne now the relation of concurrency on visible occurrences:De�nition 5.6 (Concurrency) The relation ^ � (O � O) is de�ned by:e ^ e0 , (either e = � 0 e0 & e0 = � 1 e00or e = � 1 e0 & e0 = � 0 e00where � 2 (Act [f0; 1g)�; e0; e00 2 O .The relation ^ is symmetric and irre
exive. Clearly e ^ e0) loc(e) � loc(e0).Let us now shift attention to the states of the occurrence system. As we said, thesestates are meant to represent processes with a past. The past records the observableguards which have been passed along a computation. Formally, if p; q 2 CCS, theset S of computation states is given by:� ::= nil j �: p j p+ q j x j rec x: p j ba: � j (� j �0) j �n� j � hfiThe construct ba: � is used to represent the state � with \past" a, that is, after a guarda has been passed. The idea is that any transition labelled by a visible occurrencewill introduce a \hat" in the resulting state. The basic operational rule is:(O1) a: p a�! ba: pOn the other hand an invisible occurrence � does not leave any trace in the past.This is expressed by the rule: INRIA

Observing distribution in processes: static and dynamic localities 21(O10) � : p ��! pThe hats recorded in states are used to build up \deep" occurrences along compu-tations, according to the rule:(O2) � e�! �0 ; e 6= �) ba: � a e��! ba: �0On the other hand occurrences of the form i e, for i = 0; 1, originate from parallelterms � j �0:(O3) � e�! �0 ; e 6= �) � j �00 0 e�! �0 j �00 ; �00 j � 1 e�! �00 j �0For de�ning the whole occurrence system we need a few more notations. First, weextend a relabelling f of actions to occurrences by letting: f(a e) = f(a) f(e) andf(i e) = i f(e); i = 0; 1.Moreover, we need an auxiliary function for de�ning the communication rule.In the occurrence system communication arises from concurrent occurrences withcomplementary labels. However the resulting � -occurrence should not contribute tothe past, since this only keeps track of observable actions. Thus we need to takeback the hats introduced by the occurrences participating in the communication.To this end we introduce a function �e(�), which erases the hat corresponding tooccurrence e in � (somehow similar to the function �k(p) used in Section 3). Thepartial function � : (O � S)! S is given by:�a(ba: p) = p�ae(ba: �) = ba: �e(�)�0e(� j �0) = �e(�) j �0�1e(� j �0) = � j �e(�0)�e(�n�) = �e(�)n��e(� hfi) = �e(�) hfiWe have now all the elements to de�ne the occurrence system for CCS. The rulesspecifying this system are listed in Figure 3. Note that the condition �(e) 6= f�; ��gin rule (O6) could be strenghtened to e jn f�; ��g = ", to prevent transitions likeba : b: p a b�! ba :bb: p. However this would make no di�erence for states � obtained viaan occurrence computation from a CCS term (more will be said on this point below).The weak occurrence system is now given by:� �=) �0 , 9 �0; : : : ; �n s:t: � = �0 ��! �1 � � � ��! �n = �0� e=) �0 , 9 �1; �2 s:t: � �=) �1 e�! �2 �=) �0Let us examine some properties of this weak occurrence system. It is clear that anyterm � gives an intensional representation of a CCS computation state. In fact fromeach state � one may extract the set of visible occurrences that have led to it. Clearlythis set should be empty for a CCS term. Formally, the set of past occurrences of aterm � is de�ned by:RR n�2276

22 Ilaria CastellaniFor each e 2 O� let e�! � (S � S) be the least binary relation satisfying thefollowing axioms and rules.(O1) a:p a�! ba: p(O10) �:p ��! p(O2) � e�! �0 ; e 6= �) ba: � a e��! ba: �0(O3) � e�! �0 ; e 6= �) � j �00 0 e�! �0 j �00�00 j � 1 e�! �00 j �0(O20) � ��! �0) ba: � ��! ba: �0(O30) � ��! �0) � j �00 ��! �0 j �00�00 j � ��! �00 j �0(O4) �0 e0�! �00 ; �1 e1�! �01and �(e0) = �(e1))) �0 j �1 ��! �e0(�00) j �e1(�01)(O5) p e�! �) p+ q e�! �q + p e�! �(O6) � e�! �0 ; �(e) 62 f�; ��g) �n� e�! �0n�(O7) � e�! �0) � hfi f(e)�! �0 hfi(O8) p [rec x: p=x] e�! �) rec x: p e�! �
Figure 3: Occurrence transition system

INRIA

Observing distribution in processes: static and dynamic localities 23
occ (p) = ;; if p 2 CCSocc (ba: �) = fag [a � occ (�)occ (� j �0) = 0 � occ (�) [1 � occ (�0)occ (�n�) = f e 2 occ (�) j �(e) 6= �; �� gocc (� hfi) = occ (�)For states � reachable from a CCS term, the clause for restriction reduces toocc (�n�) = occ (�). In fact, one may easily verify that such states, which weshall call CCS computation states, are exactly those � whose subterms �0n� satisfy�; �� =2 �(occ (�0)). As may be expected, we have the following:Remark 5.7 If �e(�) is de�ned, then occ (�e(�)) = occ (�)� feg.The next lemma shows how visible occurrences are generated along computations,and how they are related.Lemma 5.8 Let � be a CCS computation state. Then:1. � e�! �0; e 6= �) 8>><>>: (i) occ (�0) = occ (�) [feg(ii) 8e0 2 occ (�) : e0 � e or e0 ^ e)(iii) #e � occ (�)2. � ��! �0) occ (�0) = occ (�)Proof: We start by showing 1 :, by induction on the proof of � e�! �0; e 6= � . Notethat in the cases where � is a CCS term, namely when the last rule applied is (O1),(O5) or (O8), occ (�) = ; and #e = ;, thus conditions (ii) and (iii) are triviallysatis�ed. We consider some representative cases.{ (O1) � = ap a�! ba : p = �0. Then (i) is straightforward since occ (a: p) = ; andocc (ba : p) = fag.{ (O2) � = ba : �0 a e0�! ba : �00 = �0 is inferred from �0 e0�! �00. Let us �rst check condition(i). By induction occ (�00) = occ (�0) [fe0g. Then occ (�0) = fag [a (occ (�0)) [fa e0g = occ (�) [fa e0g. Consider now condition (ii). By induction, we have: 8e00 2occ (�0) : e00 � e0 or e00 ^ e0 . Now occ (�) = fag [a (occ (�0)). Clearly a � a e0,whereas for e0 = a e00; e00 2 occ (�0); (ii) follows from induction and the fact that �and ^ are preserved by pre�xing with a. As for (iii), #(a e0) � occ (ba : �0) followsfrom #e0 � occ (�0).{ (O6) � = �0n� e�! �00n� = �0 is deduced from �0 e�! �00; �(e) 6= �; ��. Byinduction occ (�00) = occ (�0) [fe0g. Now �; �� =2 �(occ (�0)) since �0 = �00n� is a

RR n�2276

24 Ilaria CastellaniCCS computation state. Thus occ (�00n�) = occ (�00) = occ (�0) [feg = occ (�0n�) [feg. Conditions (ii) and (iii) follow trivially by induction.Point 2 : is proved by induction on the proof of the transition � ��! �0. For the cases(O10),(O5),(O8), it is enough to remark that, if � 2 CCS, then also �0 2 CCS, andthus occ (�0) = ; = occ (�). We examine here the case where the last rule applied is(O4). The other cases are similar to the corresponding cases in point 1..{ (O4) � = �0 j �1 ��! �00 j �01 = �0 is deduced from �0 e0�! �000 , �1 e1�! �001 ,�(e0) = �(e1), and �0i = �ei(�00i). By point 1. occ (�00i) = occ (�i) [feig; i = 0; 1. Nowby the Remark 5.1, occ (�ei(�00i)) = occ (�00i)�feig = occ (�i). Hence occ (�0) = occ (�).2Corollary 5.9 Let p 2 CCS. If p e1=) �1 � � � en=) �n , where 8i : ei 6= � , then:1. 8i : occ (�i) = f e1; : : : ; ei g2. i < j) ei � ej or ei ^ ejProof: Point 1. is straightforward. As for 2., we have �j�1 �=) �0 ej�! �00 �=) �jfor some �0; �00. Now i < j) ei 2 occ (�j�1) by 1., whence the result by Lemma5.8. 2The following proposition shows how local causality may be recovered from staticlocations along a computation:Proposition 5.10 Let p 2 CCS. If p e1=) �1 � � � en=) �n , where 8i : ei 6= � , then:ei � ej () i < j and loc(ei)� loc(ej)Proof: (: Since i < j, by Corollary 5.9 either ei � ej or ei ^ ej . But it cannotbe ei ^ ej , since this would imply loc(ei) � loc(ej). Thus ei � ej .): If ei � ej , then it cannot be j < i, because of Corollary 5.9 again. Moreover,since ei is a pre�x of ej , also loc(ei) is a pre�x of loc(ej). 2We proceed to de�ne a notion of bisimulation on the weak occurrence system. Onceagain we use a notion of consistency and progressive bisimulation family.
INRIA

Observing distribution in processes: static and dynamic localities 25De�nition 5.11 A consistent occurrence aliasing is a partial injective functiong : O ! O which satis�es, for any e; e0 on which it is de�ned:(i) �(e) = �(g(e))(ii) e0 � e , g(e0) � g(e)Let G be the set of consistent occurrence aliasings on O .De�nition 5.12 A progressive o-bisimulation family is a G-indexed family of rela-tions over S, R = fRg j g 2 Gg , such that if �0Rg �00 then for all e 2 O :(1) �0 e=) �1) 9 e0; �01 s.t. �00 e0=) �01; g [f(e; e0)g 2 G and �1Rg[f(e;e0)g �01(2) �00 e0=) �01) 9 e; �1 s.t. �0 e=) �1; g [f(e; e0)g 2 G and �1Rg[f(e;e0)g �01(3) �0 �=) �1) 9 �01 2 S such that �00 �=) �01 and �1Rg�01(4) �00 �=) �01) 9 �1 2 S such that �0 �=) �1 and �1Rg�01These relations induce an equivalence �occ on CCS processes as follows:De�nition 5.13 (Equivalence on the occurrence system) For any p; q 2 CCS,let p �occ q i� pR;q for some progressive o-bisimulation family R = fRg j g 2 Gg.The reader familiar with the notion of history preserving bisimulation (seee.g. [GG89]) may have noticed the similarity with our de�nition of �occ. In facthistory preserving bisimulation is itself a \progressive" notion, and it is clear thata consistent occurrence aliasing g is nothing else than an isomorphism between twopartially ordered sets of occurrences. In the Appendix we shall give a de�nition oflocal history preserving bisimulation on the occurrence system (so-called because theordering is that of local causality), and show that it is a direct reformulation of theequivalence �occ.A preorder <� occ is obtained by the same de�nition, after weakening the notionof consistency as follows:De�nition 5.14 A right-consistent occurrence aliasing is a partial injective functiong : O ! O which satis�es, for any e; e0 on which it is de�ned:(i) �(e) = �(g(e))(ii) g(e0) � g(e)) e0 � eOur main result is that the equivalence �occ coincides with both �s̀ and �d̀, andsimilarly that <� occ coincides with both <� s̀ and <� d̀. The proofs rely on the aboveproperties of the occurrence system, and on proving conversion lemmas between thedi�erent kinds of transitions.RR n�2276

26 Ilaria Castellani5.2 Occurrence semantics = static location semanticsWe establish here the relationship between �occ and �s̀. We saw in Section 3 that�s̀ can be de�ned in terms of canonical distributions. We recall that these are distri-butions always associating location 0 to the left operand and 1 to the right operandof a parallel composition. Let CDIS denote the set of these canonical distributions,and �; � 2 f0; 1g� range over canonical locations. With each state �, we associate adistributed process dis(�) 2 CDIS as follows:dis(�) = �; if � = nil or � = xdis(a: p) = a: dis(p)dis(p+ q) = dis(p) + dis(q)dis(rec x: p) = rec x: dis(p)dis(ba: �) = dis(�)dis(� j �0) = 0 :: dis(�) j 1 :: dis(�0)dis(�n�) = dis(�)n�dis(� hfi) = dis(�) hfiThus dis(�) is the canonical distribution of the CCS term underlying �. We cannow give the conversion lemma between occurrence transitions and static locationtransitions:Lemma 5.15 (Conversion : static$ occurrence) Let p; p0 2 CDIS, �; �0 2 S.Then:(i) � ��! �0) 9� s:t: dis(�) ��! s� dis(�0)(ii) p ��! s� p0) 8� s:t: dis(�) = p 9 �0 s:t: � ��! �0 and dis(�0) = p0(iii) � e�! �0) dis(�) a�! s� dis(�0); where a = �(e) and � = loc(e)(iv) p a�! s� p0) 8� s:t: dis(�) = p 9 e; 9 �0 s:t: �(e) = a; loc(e) = �;dis(�0) = p0; � e�! �0In the proof of Lemma 5.15 we will use the following fact:Fact 5.16 Let p 2 CCS. Then: dis(p [rec x: p=x]) = dis(p)[rec x: dis(p)=x] .Proof: We show the more general statement:8 p; r 2 CCS : dis(p [rec x: r=x]) = dis(p)[rec x: dis(r)=x]by induction on the structure of p. We only consider a couple of cases.{ Basic cases: p = nil ; p = x. The �rst case is trivial. In the second case, we haveimmediately: dis(x [rec x: r=x]) = dis(rec x: r) = rec x: dis(r) = x[rec x: dis(r)=x] =dis(x)[rec x: dis(r)=x]. INRIA

Observing distribution in processes: static and dynamic localities 27{ p = rec x: q has no free occurrences of x. Thus dis((rec x: q)[rec x: r=x]) =dis(rec x: q) = dis(rec x: q)[rec x: dis(r)=x].{ p = rec y: q, y 6= x. Then dis((rec y: q)[rec x: r=x]) = dis(rec y: q[rec x: r=x]) =rec y: dis(q[rec x: r=x]), which by induction equals rec y: (dis(q))[rec x: dis(r)=x] =(rec y: dis(q))[rec x: dis(r)=x] = (dis(rec y: q))[rec x: dis(r)=x]. 2We give now the proof of the above Lemma.Proof of Lemma 5.15: We start by proving (iii) and (iv), since they are needed todeal with the communication case in (i) and (ii). All clauses are proved by inductionon the inference of the transition.Proof of (iii). Consider the last rule applied to infer � e�! �0.{ (O1) a: p a�! ba: p. We then have immediately: dis(a: p) = a: dis(p) a�! s" dis(p) =dis(ba: p).{ (O2) ba: � a e�! ba: �0 is inferred from � e�! �0; e 6= � . By inductiondis(�) �(e)���!sloc(e) dis(�0). Since dis(ba: �) = dis(�); dis(ba: �0) = dis(�0) and �(a e) =�(e); loc(a e) = loc(e), we have the required transition dis(ba: �) �(a e)�����! sloc(a e) dis(ba: �0).{ (O3) � j �00 0 e�! �0 j �00 is inferred from � e�! �0; e 6= � . By induction wehave dis(�) �(e)���!sloc(e) dis(�0). Then dis(� j �00) = 0 :: dis(�) j 1 :: dis(�00) �(e)�����! s0 loc(e)0 :: dis(�0) j 1 :: dis(�00), which is the required transition since �(e) =�(0 e); 0 loc(e) = loc(0 e) and 0 :: dis(�0) j 1 :: dis(�00) = dis(�0 j �00).{ (O5), (O6), (O7): easy induction.{ (O8) rec x: p e�! � is inferred from p [rec x: p=x] e�! �. By inductionwe have dis(p [rec x: p=x]) �(e)�����! sloc(e) dis(�). By Fact 5.16 dis(p [rec x: p=x]) =dis(p)[rec x: dis(p)=x]) . Then from dis(p)[rec x: dis(p)=x]) �(e)���!sloc(e) dis(�) we maydeduce the required transition dis(rec x: p) = rec x: dis(p) �(e)���!sloc(e) dis(�).Proof of (iv). Again, we consider the last rule applied in the proof of the transitionp a�! s� p0.{ a: p a�! s" p. Let � 2 S be such that dis(�) = a: p. Since dis preserves allthe operators except the \hats", which are erased, either � = a: p or � is of theform ca1: : : : :can: a: p, in short b�: a: p. In the �rst case we have a: p a�! ba: p, which
RR n�2276

28 Ilaria Castellaniclearly satis�es the conditions. In the second case, by iterated use of (O2) we deriveb�: a: p � a���! b�: ba: p, � 2 Act�, which also satis�es the conditions.{ 0 :: p0 j 1 :: p1 a���!s0 � 0 :: p00 j 1 :: p1 is inferred from p0 a�! s� p00. Note thatany � such that dis(�) = 0 :: p0 j 1 :: p1 is necessarily of the form �0 j �1, wheredis(�i) = pi. By induction 9 e; 9 �00 s:t: �(e) = a; loc(e) = �; dis(�00) = p00 .Then we have a transition �0 j �1 0 e�! �00 j �1, which is the required one since�(0 e) = �(e) = a; loc(0 e) = 0 loc(e) = 0 �.{ p0+p1 a�! s� p00 is inferred from p0 a�! s� p00. Here � is of the form q0+q1, where foreach i : qi 2 CCS and dis(qi) = pi. Actually � = �(p0)+�(p1) { recall from Section3 that for any distributed process p, �(p) is the function yielding the underlyingCCS process. Now by induction 9 e; 9 �0 s:t: �(e) = a; loc(e) = �; dis(�0) = p00 andq0 e�! �0. Then also � = q0 + q1 e�! �0.{ rec x: p a�! s� p0 is inferred from p [rec x: p=x] a�! s� p0. Here � is of the formrec x: q, where q 2 CCS and dis(q) = p. Actually, � = rec x: �(p). Now by Fact5.16 we have p [rec x: p=x] = dis(q)[rec x: dis(q)=x]) = dis(q [rec x: q=x]). Let �00 =q[rec x: q=x]. Since dis(�00) = p [rec x: p=x], we know by induction that 9 e; 9 �0such that q [rec x: q=x] e�! �0, where �(e) = a; loc(e) = �; dis(�0) = p0. Then also� = rec x: q e�! �0.Proof of (i). We only consider the communication case, as the other cases arestraightforward. So suppose the last rule applied for deriving � ��! �0 is (O4).{ (O4) � = �0 j �1 ��! �e0(�00) j �e1(�01) is deduced from �0 e0�! �00 ; �1 e1�! �01 ; �(e0) =�(e1). Then by point (iii) above dis(�i) �(ei)�����! sloc(ei) dis(�0i), and thus by rule (S4)dis(�0 j �1) = 0 :: dis(�0) j 1 :: dis(�1) ��! s" 0 :: dis(�00) j 1 :: dis(�01). Now,since dis(ba: �) = dis(�) it should be clear that dis(�0i) = dis(�ei(�0i)). Thus0 :: dis(�00) j 1 :: dis(�01) = 0 :: dis(�e0(�00)) j 1 :: dis(�e1(�01)) = dis(�e0(�00) j �e1(�01)).Proof of (ii). Again, we just consider the communication case. Suppose (S4) is thelast rule applied in the proof of p ��! s� p0.{ (S4) 0 :: p0 j 1 :: p1 ��! s" 0 :: p00 j 1 :: p01 is deduced from p0 �0�! s�0 p00; p1 �1�! s�1 p01,�0 = �1. In this case � = �0 j �1 for some �0; �1 such that dis(�i) = pi. By point(iv) for each i = 0; 1 : 9 ei; 9 �0i such that loc(ei) = �i; dis(�0i) = p0i; �(ei) = �iand �i ei�! �0i. Then by rule (O4) we deduce �0 j �1 ��! �e0(�00) j �e1(�01), which isthe required transition since dis(�e0(�00) j �e1(�01)) = dis(�00 j �01) , as just shown inthe proof of (i). 2As a straightforward corollary we have an analogous conversion for the weak tran-sitions. INRIA

Observing distribution in processes: static and dynamic localities 29Lemma 5.17 (Weak conversion) Let p; p0 2 CDIS and �; �0 2 S. Then:(i) � �=) �0) dis(�) �=)s dis(�0)(ii) p �=)s p0) 8� s:t: dis(�) = p 9 �0 s:t: � �=) �0 and dis(�0) = p0(iii) � e=) �0) dis(�) a=)s� dis(�0); where a = �(e) and � = loc(e)(iv) p a=)s� p0) 8� s:t: dis(�) = p 9 e; �0 s:t: �(e) = a; loc(e) = �;dis(�0) = p0 and � e=) �0Using Lemma 5.17 and Proposition 5.10 we may now prove our equivalence result.Theorem 5.18 For any p; q 2 CCS : p �s̀ q) p �occ q.Proof: Suppose p �s̀ q, and let S = fS' j ' 2 �g be a progressive bisimulationfamily such that dis(p)S; dis(q). De�ne a family of relations R = fRg j g 2 Gg by:(�; �0) 2 Rg () there exist occurrence transition sequencesp �=) �0 e1=) � � � en=) �n = �q �=) �00 e01=) � � � e0n=) �0n = �0such that(1) g = f (e1; e01); : : : ; (en; e0n) g(2) dis(�) S' dis(�0) ; where ' = f (loc(e); loc(e0)) j (e; e0) 2 g gClearly (p; q) 2 R;. We show that R is a progressive o-bisimulation family. Assume(�; �0) 2 Rg.- Let � e=) �n+1; e 6= � . By Lemma 5.17 (iii) dis(�) a=)s� dis(�n+1), where a = �(e)and � = loc(e). Let r = dis(�); rn+1 = dis(�n+1) and s = dis(�0). Since r S' s, thereexist �0; sn+1 such that s a=)s�0 sn+1 and rn+1 S'[(�;�0) sn+1, where ' [(�; �0) is aconsistent location association. By Lemma 5.17 (iv), there exist now e0; �0n+1 suchthat �(e0) = a; loc(e0) = �0; dis(�0n+1) = sn+1 and �0 e0=) �0n+1. We want to showthat g0 = g [(e; e0) is a consistent occurrence aliasing. Since g is consistent, andby Corollary 5.9(2) we have 8i : e 6� ei; e0 6� e0i, we only have to check that8i : ei � e , e0i � e0. Since ' [(�; �0) is a consistent location association, we have8i: loc(ei) � loc(e) , loc(e0i) � loc(e0). This is equivalent to loc(ei) � loc(e) ,loc(e0i)� loc(e0) by Corollary 5.9(2). Using Proposition 5.10, we may then concludethat 8i : ei � e , e0i � e0.- Let � �=) �n+1. By Lemma 5.17 (i) dis(�) �=)s dis(�n+1). Let r = dis(�); rn+1 =dis(�n+1) and s = dis(�0). Since r S' s, there exists sn+1 such that s �=)s sn+1 andrn+1 S' sn+1. By Lemma 5.17 (ii) there exists �0n+1 such that dis(�0n+1) = sn+1 andRR n�2276

30 Ilaria Castellani�0 �=) �0n+1. Since the computations p �=) �0 e1=) � � � en=) �n+1 and q �=) �00 e01=)� � � e0n=) �0n+1 are of the required form, we have then (�n+1; �0n+1) 2 Rg. The initial�=) in the computations is needed to cover the case �0 = � �=) �1. 2Theorem 5.19 For any p; q 2 CCS : p �occ q) p �s̀ q.Proof: Suppose p �occ q, and let R = fRg j g 2 Gg be a progressive o-bisimulationfamily such that pR; q. Consider the family S = fS' j ' 2 �g of relations overCDIS given by:(r; s) 2 S' () there exist occurrence transition sequencesp �=) �0 e1=) � � � en=) �n = �q �=) �00 e01=) � � � e0n=) �0n = �0such that(1) dis(�) = r ; dis(�0) = s(2) ' = f (loc(ei); loc(e0i)) j 1 � i � n g(3) � Rg �0 for g = f (ei; e0i) j 1 � i � n gWe show that S is a progressive bisimulation family. Assume (r; s) 2 S'.- Let r a=)s� rn+1. By Lemma 5.17 (iv) , there exist e; �n+1 such that �(e) =a; loc(e) = �; dis(�n+1) = rn+1 and � e=) �n+1. Since � Rg �0 there exist nowe0; �0n+1 such that g [(e; e0) is a consistent occurrence aliasing and �0 e0=) �0n+1.The consistency of g[(e; e0) implies �(e0) = �(e) = a. By Lemma 5.17 (iii) we havethen dis(�0) a=)s�0 dis(�0n+1), where �0 = loc(e0). We want to show that '[(�; �0) is aconsistent location association. Since ' is supposed to be consistent, we only have tocheck that for any i: loc(ei) � loc(e) , loc(e0i) � loc(e0). Since g[(e; e0) is consistentwe know that ei � e , e0i � e0. But since ei; e0i occur respectively before e; e0 ,this is equivalent, by Proposition 5.10, to loc(ei) � loc(e) , loc(e0i) � loc(e0),which in turn is equivalent, by Corollary 5.9, to loc(ei) � loc(e) , loc(e0i) � loc(e0).- The case r �=)s rn+1 is straightforward, applying Lemma 5.17 (ii) and Lemma5.17 (i) . 2We prove now the coincidence of the preorders:
INRIA

Observing distribution in processes: static and dynamic localities 31Theorem 5.20 For any p; q 2 CCS : p <� s̀ q , p <� occ q.Proof:): Variation of the proof of Theorem 5.18. We take a progressive pre-bisimulation family S, and show that R, as de�ned above, is a progressive o-prebisimulation family. To show that g0 = g [(e; e0) is a right-consistent occurrencealiasing, we need to check that 8i : e0i � e0) ei � e. Since ' [(�; �0) is a left-consistent location association, we know that 8i: loc(ei) � loc(e)) loc(e0i) � loc(e0).By Corollary 5.9(2), this is equivalent to loc(e0i) � loc(e0)) loc(ei) � loc(e). ByProposition 5.10, we have then 8i : e0i � e0) ei � e.(: Adaptation of the proof of Theorem 5.19. To show that ' [(�; �0) is a left-consistent location association, we check that 8i: loc(ei) � loc(e)) loc(e0i) � loc(e0).Since g [(e; e0) is right-consistent we know that e0i � e0) ei � e. This isequivalent to loc(e0i)� loc(e0)) loc(ei)� loc(e), which in turn is equivalent toloc(ei) � loc(e)) loc(e0i) � loc(e0). 25.3 Occurrence semantics = dynamic location semanticsWe turn now to the relation between �occ and �d̀. To establish the coincidence ofthe two equivalences, we will use the fact that �d̀ may be obtained by restrictingattention to computations where distinct atomic locations are chosen at each step.This fact was �rst pointed out by Kiehn in [Kie91]. Let us recall some de�nitionsand results from [BCHK91]:De�nition 5.21 A location renaming is a mapping � : Loc ! Loc�. For any p 2LCCS, let p[�] denote the process obtained by replacing all occurrences of l in pwith �(l), for any l 2 Loc.We use the notation �fu=lg for the renaming which maps l to u and acts like � onLoc n flg. Also, we shall abbreviate p[idfu=lg] to pfu=lg. In what follows, we shallmainly consider alphabetic renamings � : Loc! Loc.Note that any partial function f : Loc ! Loc may be seen as a location renaming� : Loc! Loc, by letting:�(l) = (l if f(l) is not de�nedf(l) otherwise.For instance the empty function ; corresponds to the identity renaming id. In thefollowing we shall freely use the renaming notation p[f] whenever f is a partialfunction f : Loc! Loc.The following lemma (similar to those of [BCHK93], [BCHK91]), relates the transi-tions of p[�] with those of p.
RR n�2276

32 Ilaria CastellaniLemma 5.22 Let p 2 LCCS, and � : Loc ! Loc be an alphabetic location rena-ming. Then:1. a) p ��! du p0) 9v s.t. �(u)� v and p[�] ��! dv p0[�].b) p �=)d p0) p[�] �=)d p0[�].2. a) p[�] ��! dv p0) 9u; p00 such that �(u)� v; p00[�] = p0 and p ��! dv p00.b) p[�] �=)d p0) 9 p00 such that p00[�] = p0 and p �=)d p00.3. a) p a�! dul p0 ; l =2 Loc(p)) 8 k 2 Loc ; p[�] a����!d�(u) k p0[�fk=lg].b) Same as a), with weak transitions.4. a) p[�] a�! dvl p0) 9u such that �(u) = v and 8 k =2 Loc(p) 9 p00 such thatp00[�fl=kg] = p0 and p a�! duk p00.b) Same as a), with weak transitions.We recall now Kiehn's de�nition for �d̀, and show that it is equivalent to the originalone.Notation 5.23 Let LCCS � be the set of LCCS processes whose atomic locationsare all distinct.De�nition 5.24 (�{dynamic location equivalence [Kie91])A relation R � (LCCS � � LCCS �) is a �{dynamic location bisimulation (�{dlb) i�for all (p; q) 2 R and for all a 2 Act ; u 2 Loc�:(1) p a=)dul p0; l =2 Loc(p) [Loc(q)) 9 q0 s.t. q a=)dul q0 and (p0; q0) 2 R(2) q a=)dul q0; l =2 Loc(p) [Loc(q)) 9 p0 s.t. p a=)dul p0 and (p0; q0) 2 R(3) p �=)d p0) 9 q0 s.t. q �=)d q0 and (p0; q0) 2 R(4) q �=)d q0) 9 p0 s.t. that p �=)d p0 and (p0; q0) 2 RThe largest �{dlb is called �{dynamic location equivalence and denoted ��̀ .Fact 5.25 For any processes p; q 2 CCS: p �d̀ q , p ��̀ q.Proof:): trivial. (: Let p ��̀ q. Then there exists a �{dlb R s.t. pR q. De�nenow: S = f (r[�]; s[�]) j r ��̀ s; � Loc! Loc gClearly pS q, for � = id. We show that S is a dlb. Suppose r[�] S s[�]. INRIA

Observing distribution in processes: static and dynamic localities 33{ Let r[�] a=)dul r0; l not necessarily new. Take k =2 loc(r)[loc(s). By Lemma 5.22.(4),9 v; r00 s.t. r a=)dvk r00, �(v) = u and r00[�fl=kg] = r0. Then, since r ��̀ s, thereexists s0 s.t. s a=)dvk s0 and r00 ��̀ s0. By Lemma 5.22.(2), s[�] a=)dul s0[�fl=kg]. Sincer00 ��̀ s0, we have r00[�fl=kg] S s0[�fl=kg], hence S is a dlb. 2We proceed now to show that �occ= ��̀ . To do this, we need to establish a conver-sion between occurrence transitions and dynamic location transitions. We start byconverting terms � into LCCS terms which represent the same state of computation.The idea is to replace every \hat" in � by a canonical atomic location representinguniquely the corresponding occurrence. The simplest way to do this is to take theoccurrences themselves as canonical locations. We shall then assume, from now on-wards, that O � Loc. We also introduce, for any
 2 Act [f0; 1g, a renaming�
(p) which pre�xes by
 all the occurrences appearing as locations in p, namely�
(e) =
e. Then the canonical LCCS process proc(�) corresponding to a computa-tion state � 2 S is de�ned by:proc(�) = �; if � 2 CCSproc(ba: �) = a :: proc(�)[�a]proc(� j �0) = proc(�)[�0] j proc(�0)[�1]proc(�n�) = proc(�)n�proc(� hfi) = proc(�) hfiWe have for instance: proc(ba:bb:nil j c:nil) = 0a :: 0ab :: nil j c: nil . It can beeasily checked that Loc(proc(�)) = occ (�) and proc(�) 2 LCCS �.We introduce next some notation that will be used for proving the conversionlemma. The reader not interested in the details of the proof should proceed directlyto the weak version of the conversion lemma (Lemma 5.28 at p. 36).We de�ne now, for p 2 LCCS �, a partial function where (k; p) which gives theplace where the atomic dynamic location k occurs in p, if it exists. This place isexpressed as a static canonical location � 2 f0; 1g�. The function where (k; p) isessentially the same as that used by D. Yankelevich in [Yan93], p. 124. Here weonly de�ne it on LCCS � processes which can be reached from CCS processes (thatis, where locations do not appear under recursion or the dynamic operators). Thepartial function where : (Loc� LCCS �)! f0; 1g� is given by:where (k; l :: p) = (" if k = lwhere (k; p) otherwisewhere (k; p j q) = (0 � where (k; p) if where (k; p) is de�ned1 � where (k; q) if where (k; q) is de�nedwhere (k; pn�) = where (k; p hfi) = where (k; p)
RR n�2276

34 Ilaria CastellaniIn the coming lemma, we shall also use the function �k(p) introduced in section 4.Recall that �k(p) is the partial function that erases the location k in p, if it exists.We noted already the similarity between �k(p) and the function �e(�) de�ned atp. 21. In fact, one has the following:Remark 5.26 For any � 2 S : proc(�e(p)) = �e(proc(�)).The conversion lemma between occurrence transitions and dynamic location transi-tions is now:Lemma 5.27 (Conversion : dynamic$ occurrence)Let �; �0 2 S, f : occ (�)! Loc. Then:(i) � ��! �0) 9u s:t: proc(�)[f] ��! du proc(�0)[f](ii) proc(�)[f] ��! du p0) 9 �0 s:t: proc(�0)[f] = p0 and � ��! �0(iii) � e�! �0) 8 l 2 Loc : proc(�)[f] a�! dul proc(�0) [ffl=eg] ;where a = �(e) ; u = f(path(e))(iv) proc(�)[f] a�! dul p0) 9 e; �0 such that �(e) = a; f(path(e)) = u;proc(�0) [ffl=eg] = p0 and � e�! �0Proof: By induction on the proof of the transition in the hypothesis.Proof of (iii). Consider the last rule used to infer � e�! �0. We take some represen-tative cases.{ (O1) a: p a�! ba: p. Since Loc(proc(a: p)) = ;, we have proc(a: p)[f] = a: p. By(D1) a: p a�! dl l :: p, for any l 2 Loc. This is the required transition since a =�(a); " = f(") = f(path(a)) and proc(ba: p)[ffl=ag] = (a :: (proc(p)[�a]))[ffl=ag] =(a :: p)[ffl=ag] = l :: p.{ (O2) ba: � a e�! ba: �0 is inferred from � e�! �0; e 6= � . By induc-tion we have proc(�) �(e)������! dpath(e)�e proc(�0), taking l = e and f = id jn occ (�).Note that e =2 Loc(proc(�)). Then, applying Lemma 5.22 (2) with � = idand k = ae, and subsequently rule (S2), we derive a transition proc(ba: �) =a :: (proc(�)[�a]) �(e)�����������! da��a(path(e))�ae a :: (proc(�0)[�afae=eg]) = a :: (proc(�0)[�a]) =proc(ba: �0). Note that a � �a(path(e)) = path(ae). Now, from e =2 Loc(proc(�)) wededuce ae =2 Loc(proc(ba: �)). Thus by Lemma 5.22 (2) again we obtain, for anyl 2 Loc, proc(ba: �)[f] �(e)��������! df(path(ae))�l proc(ba: �0)[ffl=aeg], which is the transition wesought for, since �(e) = �(ae).{ (O8) rec x: p e�! �0 is deduced from p [rec x: p=x] e�! �0. By induc-tion we have proc(p [rec x: p=x]) �(e)������! dpath(e)�e proc(�0), taking f = id; l = INRIA

Observing distribution in processes: static and dynamic localities 35e. Since proc(p [rec x: p=x]) = p [rec x: p=x] we have also, by rule (S8), atransition proc(rec x: p) = rec x: p �(e)������! dpath(e)�e proc(�0). Whence, since e =2Loc(rec x: p), applying Lemma 5.22 (2) we obtain, for any l 2 Loc,proc(rec x: p)[f] �(e)��������! df(path(e))�l proc(�0)[ffl=eg].Proof of (iv). Let proc(�)[f] a�! dul p0. By the renaming Lemma 5.22 (4) 9 v s.t.f(v) = u and 8k =2 loc(proc(�)) 9 pk s.t. proc(�) a�! dvk pk and pk[ffl=kg] = p0.We show now, by induction on the proof of proc(�) a�! dvk pk, that there existe; �0 such that � e�! �0 ; �(e) = a; path(e) = v; loc(e) = where (k; pk) andproc(�0) = pk fe=kg. This will imply proc(�0) [ffl=eg] = p0. The other conditionswill also be satis�ed, since �(e) = a and f(path(e)) = f(v) = u. We examine tworepresentative cases.{ (D1) proc(a: p) = a: p a�! dk k :: p = pk. By (O1) a: p a�! ba: p, where �(a) =a; path(a) = "; loc(a) = " = where (k; pk) and proc(ba: p) = a :: p = pk fa=kg.{ (S2) proc(bb: �) = b :: (proc(�)[�b]) a��������! db��b(v)�k b :: p0 = pk is deduced fromproc(�) a���!dv�k0 qk0, where k0 =2 Loc(proc(�)); qk0 [�bfk=k0g] = p0. By induction9 e; �0 such that � e�! �0, �(e) = a; path(e) = v; loc(e) = where (k0; qk0)and proc(�0) = qk0 fe=k0g. By (O2) we have bb: � b e�! bb: �0, which is the requi-red transition since �(be) = �(e) = a; path(be) = b � �b(path(e)) = b � �b(v);loc(be) = loc(e) = where (k0; qk0) = where (k; qk0 [�bfk=k0g]) = where (k; p0) =where (k; pk) and proc(bb: �0) = b :: (proc(�0)[�b]) = b :: (qk0 fe=k0g[�b]) =b :: (qk0 [�bfbe=k0g]) = b :: (qk0 [�bfk=k0g]fbe=kg) = pkfbe=kg.Note that the pair (e; �0) thus determined is unique since, by Fact 5.5, an occurrence eis completely characterized by its label �(e), access path path(e) and static locationloc(e).Proof of (i). By induction on the proof of � ��! �0. We only consider the communi-cation case.{ (O4) �0 j �1 ��! �e0(�00) j �e1(�01) is deduced from �0 e0�! �00 ; �1 e1�!�01; �(e0) = �(e1). From ei =2 occ (�i) = Loc(proc(�i)) we deduce iei =2Loc(proc(�i)[�i]). Then by point (iii) above proc(�i)[�i] �(ei)�����������! d�i(path(ei))�i ei proc(�0i)[�i].Corresponding to these dynamic transitions we have, by Fact 4.1, the sta-tic transitions: proc(�i)[�i] �(ei)�����! s�i(path(ei)) �iei(proc(�0i)[�i]) = (�ei(proc(�0i))[�i] =proc(�ei(�0i))[�i]. From these, by rule (S4), we deduce proc(�0 j �1) = proc(�0)[�0] jproc(�1)[�1] ��! d" proc(�e0(�00))[�0] j proc(�e1(�01))[�1] = proc(�e0(�00) j �e1(�01)).Whence the result, by the renaming Lemma 5.22 (2).RR n�2276

36 Ilaria CastellaniProof of (ii). Let proc(�)[f] ��! du p0. By the renaming Lemma 5.22 (2) 9 p00s.t. proc(�) ��! du p00 and p00[f] = p0. We show, by induction on the proof ofproc(�) ��! du p00, that 9 �00 such that � ��! �00 and proc(�00) = p00. This will im-ply proc(�00)[f] = p00[f] = p0. Again, we only consider communication.{ (S4) proc(�0 j �1) = (proc(�0)[�0] j proc(�1)[�1]) ��! d" q00 j q01 is deducedfrom proc(�i)[�i] ai�! sui q0i; u0 u u1 = u; a0 = a1. By Fact 4.1, for any li =2Loc(proc(�i)[�i]) there exists q00i such that proc(�i)[�i] ai����!dui�li q00i and �li(q00i) =q0i. By point (iv) there exist ei; �0i s.t. �i ei�! �0i; �(ei) = ai; path(ei) =ui; loc(ei) = where (li; q00i) and proc(�0i)[�ifli=eig] = q00i . Then by rule (O4)�0 j �1 ��! �e0(�00) j �e1(�01). This is as required since proc(�e0(�00) j �e1(�01)) =proc(�e0(�00))[�0] j proc(�e1(�01))[�1] = �e0(proc(�00))[�0] j �e1(proc(�01))[�1] =�0e0(proc(�00)[�0]) j �1e1(proc(�01)[�1]), and the last term is equal to�l0(proc(�00)[�0fl0=e0g]) j �l1(proc(�01)[�1fl1=e1g]) = q00 j q01. 2We have now, as an immediate corollary:Lemma 5.28 (Weak conversion) Let �; �0 2 S, f : occ (�)! Loc. Then:(i) � �=) �0) proc(�)[f] �=)d proc(�0)[f](ii) proc(�)[f] �=)d p0) 9 �0 s:t: proc(�0)[f] = p0 and � �=) �0(iii) � e=) �0) 8l 2 Loc : proc(�)[f] a=)dul proc(�0) [ffl=eg];where a = �(e); u = f(path(e))(iv) proc(�)[f] a=)dul p0) 9 e; �0 such that �(e) = a; f(path(e)) = u;proc(�0) [ffl=eg] = p0 and � e=) �0 2We have now all the elements to prove our results.Theorem 5.29 For any p; q 2 CCS : p �occ q) p �d̀ q.Proof: Let p �occ q. Then there exists a family of relations R = fRg j g 2 Ggsuch that pR;q. De�ne a relation S on processes by:
INRIA

Observing distribution in processes: static and dynamic localities 37(r; s) 2 S () there exist occurrence transition sequencesp �=) �0 e1=) � � � en=) �n = �q �=) �00 e01=) � � � e0n=) �0n = �0and there exist two functions:f1 : fe1; : : : ; eng ! Loc ; f2 : fe01; : : : ; e0ng ! Locsuch that(1) 8i 2 f1; : : : ; ng : f1(ei) = f2(e0i)(2) proc(�) [f1] = r ; proc(�0)[f2] = s(3) � Rg �0 for g = f (e1; e01); : : : ; (en; e0n) gWe show that S is a dynamic location bisimulation. Let (r; s) 2 S.- Suppose r a=)dul r0. By Lemma 5.28 (iv) there exist e; �n+1 such that �(e) =a; f1(path(e)) = u; proc(�n+1) [f1fl=eg] = r0 and � e=) �n+1. Since � Rg �0,there exist now e0; �0n+1 such that �0 e0=) �0n+1 ; g [(e; e0) is a consistent oc-currence aliasing and �n+1 Rg[(e;e0) �0n+1. We know from Lemma 5.8 (iii)) that# e � fe1; : : : ; eng; # e0 � fe01; : : : ; e0ng. Then path(e) = ei1 � � � � � eik , whereij 2 f1; : : : ; ng; eij � eij+1 . Since g [(e; e0) is a consistent occurrence aliasing,we have e0i � e0 , ei � e and e0ij � e0ih , eij � eih , thus path(e0) = e0i1 � � � � � e0ik .From this and f2(e0i) = f1(ei) , we deduce f2(path(e0)) = f1(path(e)) = u. Theconsistency of g [(e; e0) also implies �(e0) = �(e) = a. Then by Lemma 5.28 (iii)s = proc(�0)[f2] a=)dul proc(�0n+1) [f2fl=e0g] = s0. Thus (r0; s0) 2 S.- Let now r �=)d r0. By Lemma 5.28 (ii) 9 �n+1 such that proc(�n+1) [f1] = r0 and� �=) �n+1. Since � Rg �0, there exists �0n+1 such that �0 �=) �0n+1 and �n+1Rg �0n+1.By Lemma 5.28 (i) s = proc(�0) [f2] �=)d proc(�0n+1) [f2] = s0. Since the computa-tions p �=) �0 e1=) � � � en=) �n+1 and q �=) �00 e01=) � � � e0n=) �0n+1 are of the requiredform, we have then (r0; s0) 2 S. Again (cf Theorem 5.18), the �rst �=) in thecomputations is needed to cover the case of an initial � -transition. 2To prove the reverse implication, we use the alternative de�nition ��̀ of dynamiclocation equivalence.Theorem 5.30 For any p; q 2 CCS : p �d̀ q) p �occ q.Proof: Suppose p ��̀ q. De�ne a G-indexed family of relations R = fRg j g 2 Ggas follows:RR n�2276

38 Ilaria Castellani(�; �0) 2 Rg () there exist occurrence transition sequencesp �=) �0 e1=) � � � en=) �n = �q �=) �00 e01=) � � � e0n=) �0n = �0such that(1) g = f (e1; e01); : : : ; (en; e0n) g(2) 9 injection f : fe01; : : : e0ng ! Loc such that :proc(�) [f � g] ��̀ proc(�0)[f]Note that proc(�) [f � g]; proc(�0)[f] 2 LCCS �, given that f and g are injections.Also, it is easy to see that (p; q) 2 R;, since proc(p)[;] = p and proc(q)[;] = q (recallthat the partial function ; corresponds to the identity renaming id). We show thatR = fRg j g 2 Gg is a progressive o-bisimulation family. Assume (�; �0) 2 Rg. Weonly consider the case of observable transitions.- Suppose � e=) �n+1; e 6= � . Let l =2 range(f). Then l =2� range(f � g). By Lemma5.28 (iii), proc(�) [f � g] a=)dul proc(�n+1) [(f � g)fl=eg], where a = �(e) and u =f � g(path(e)). Since proc(�) [f � g] ��̀ proc(�0)[f], 9 s s.t. proc(�0)[f] a=)dul s andproc(�n+1) [(f � g)fl=eg] ��̀ s. Now by Lemma 5.28 (iv) there exists e0 s.t. �(e0) =a; f(path(e0)) = u and �0 e0=) �0n+1 for some �0n+1 s.t. proc(�0n+1) [ffl=e0g] =s. Since (f � g)fl=eg = ffl=e0g � (g [(e; e0)), we have then proc(�n+1) [ffl=e0g �(g [(e; e0))] ��̀ proc(�0n+1) [ffl=e0g], where ffl=e0g is still an injection sincel =2 range(f). So all we have to show is that g [(e; e0) is a consistent occurrencealiasing. Since g is known to be one, it is enough to show that ei � e , g(ei) �g(e) = e0. But this is implied by g(path(e)) = path(e0), which in turn follows fromf � g(path(e)) = u = f(path(e0)) and the injectivity of f . 2We give now the analogous result for the preorders. To prove the direction p <� d̀q) p <� occ q we use a preorder <� �̀ (the obvious variant of ��̀) in place of <� d̀.Theorem 5.31 For any p; q 2 CCS : p <� d̀ q , p <� occ q.Proof: (: adapted from the proof of Theorem 5.29. We take a progressive o-prebisimulation family R and show that S, as de�ned there, is a dynamic locationprebisimulation. To show that f2(path(e0)) is a subword of f1(path(e)) = u, notethat if g[(e; e0) is a right-consistent occurrence aliasing, then g(ei) � e0) ei � eand g(eij) � g(eih)) eij � eih . But this means that path(e0) is a subword ofg(path(e)) , whence the result, since f2(g(ei)) = f1(ei).): Similar adaptation of the proof of Theorem 5.30. We want to show here thatg [(e; e0) is a right-consistent occurrence aliasing. It is enough to show e0i � e0) INRIA

Observing distribution in processes: static and dynamic localities 39ei � e . We know that f(path(e0)) is a subword of f �g (path(e)). Since f is injective,this implies that path(e0) is a subword of g(path(e)). It follows that #e0 � g(#e).Since #e � fe1; : : : ; eng; #e0 � fe01; : : : ; e0ng, this amounts exactly to e0i � e0)ei � e. 2Theorem 4.5 (1), stating the coincidence of �s̀ and �d̀, follows now immediatelyfrom Theorems 5.18, 5.18 and 5.30, 5.30. Similarly, Theorem 4.5 (2) follows fromthe analogous results for the preorders.AcknowledgementsThe idea of a static assignment of locations was originally put forward by G. Boudolin the course of a CEDISYS meeting in Brighton, in September 1990. I would liketo thank him for inspiration and for several comments and advices. I also bene�ttedfrom discussions with L. Aceto, who was the �rst to formalise the \static view oflocations" for a subset of CCS. I am grateful to P.S. Thiagarajan and Fr�ed�ericBoussinot, for commenting on an earlier draft of this paper. Part of this work wasdone while visiting Thiagarajan and his colleagues in Madras. I would like to thankall of them for their interest and comments.

RR n�2276

40 Ilaria CastellaniAppendixWe give here a de�nition of local history preserving bisimulation on the occurrencesystem, and show that the induced equivalence on CCS processes coincides with theequivalence �occ, as was mentioned in Section 5. We also present an alternative de�-nition of the dynamic location equivalence �d̀, which is based on a �nitely branchingdynamic transition system for CCS. This is essentially the same as that proposedby Yankelevich in [Yan93], with a slightly di�erent formulation.Local history preserving bisimulation on CCSUsing the occurrence transition system of Section 5, we may de�ne a notion of localhistory preserving bisimulation for CCS processes. History-preserving bisimulationwas originally de�ned in [RT88] and [GG89] for prime event structures, and extendedin [GG90] and [Ace92] to
ow and stable event structures respectively. Essentially,a history-preserving bisimulation is a bisimulation which preserves, at each state ofcomputation, the partially ordered set of events that led to that state. Our de�nitiondi�ers from that of [GG89] and [Ace92] in two respects: it is \syntactic", in that itis de�ned directly on (an enrichment of) the CCS transition system, and it is basedon the local rather than the global causality ordering.The occurrence system provides a notion of state (or con�guration) forCCS terms. For p 2 CCS, de�ne:States(p) = f � j 9 ei; �i s:t: p �=) �0 e1=) � � � en=) �n = � gRecall that each state � has an associated set of events occ (�), ordered by the localcausality relation �. Unlike the global causality ordering in
ow and stable eventstructures, which is relative to a con�guration, the local causality ordering �, whichis essentially a static notion, is the same for all states.De�nition 5.32 (Local history preserving bisimulation)Let p; q 2 CCS. A relation R � States(p) � States(q) � }(occ (States(p)) �occ (States(q))) is a local history preserving bisimulation (lhp-bisimulation) betweenp and q if (p; q; ;) 2 R and whenever (�0; �00; g) 2 R then:(1) g is an isomorphism between (occ (�0); �) and (occ (�00); �)(2) a) �0 e=) �1) 9 e0; �01 s.t. �00 e0=) �01 and (�1; �01; g [(e; e0)) 2 Rb) �00 e0=) �01) 9 e ; �1 s.t. �0 e=) �1 and (�1; �01; g [(e; e0)) 2 R(3) a) �0 �=) �1) 9 �01 s:t: �00 �=) �01 and (�1; �01; g) 2 Rb) �00 �=) �01) 9 �1 s:t: �0 �=) �1 and (�1; �01; g) 2 RWe say that p and q are local history preserving equivalent, p �lhp q, if there existsa local history preserving bisimulation between them. INRIA

Observing distribution in processes: static and dynamic localities 41We noted already that this de�nition is syntactic, as opposed to the original de�ni-tions of [RT88], [GG89], which were given on event structures. By taking a slightlymore concrete notion of occurrence, where communications are pairs of visible oc-currences, and adopting the corresponding global causality ordering (as de�ned in[BC91]), we would obtain a similar syntactic de�nition for the usual notion of historypreserving bisimulation. We have now the following:Fact 5.33 For any processes p; q 2 CCS: p �lhp q , p �occ q.Proof: It should be clear that if R = fRg j g 2 Gg is a progressive bisimulationfamily such that pR;q, then the relation:S = f (�; �0; g) j � 2 States(p); �0 2 States(q); g 2 G and �Rg�0 gis a lhp-bisimulation between p and q, since if �Rg�0 for � 2 States(p); �0 2States(q), then g is an occurrence aliasing such that occ (�) � dom(g); occ (�0) �range(g), that is an isomorphism between occ (�) and occ (�0).Similarly, if S is a lhp-bisimulation between p and q, we de�ne a family R =fRg j g 2 Gg by: Rg = f (�; �0) j (�; �0; g) 2 S gClearly R is a progressive bisimulation family such that pR;q. 2In the light of the results of Section 5, we have then also:Corollary 5.34 For any processes p; q 2 CCS: p �d̀ q , p �lhp q , p �s̀ q.A similar notion of local history preserving preorder, <� lhp, can be obtained by requi-ring g, in De�nition 5.32, to be a bijection between (occ (�0); �) and (occ (�00); �)whose inverse is a homomorphism.Finitely-branching dynamic location transition systemThe rest of this Appendix is devoted to showing that the in�nite branching is notessential to the dynamic location transition system. As suggested in Section 4, it ispossible to retrieve the equivalence �d̀ by dynamically assigning a canonical atomiclocation to each transition of a CCS term. In fact, this has been shown already byYankelevich, who introduced in [Yan93] a variant of the dynamic transition system,called transition system with numbered localities, where progressive natural numbersare chosen as atomic locations.Here, with the occurrence system at our disposal, it would be natural to takeas canonical atomic location for a transition the corresponding occurrence. Moreprecisely, we could restrict attention to processes of the form proc(�), where � 2 Sis a state in the occurrence system, and to canonical dynamic transitions of theRR n�2276

42 Ilaria Castellaniform proc(�) a�! d��e proc(�0), where e is the unique occurrence such that �(e) =a; path(e) = � and loc(e) = where (e; proc(�0)) (cf Section 5).It should be clear that the resulting canonical dynamic transition system has at mostone transition for any unguarded occurrence e at each state, and thus is �nitely-branching for any process with guarded recursion and �nite degree of parallelism(what is called a guarded and sequential process in [Mil89]).However, this choice of atomic locations has a drawback: to equate transitionsof bisimilar processes we still have to use a bijection on their locations (althoughnot an order-preserving one, since this is already guaranteed by the correspondenceof access paths). To be able to use the de�nition of dynamic location bisimulationas it stands, we make a further step and consider processes proc(�)[f], where f isan injective location renaming. In fact, we may take f to be a monotonic injectiverenaming f : Loc(proc(�)) ! f 1; : : : ; n g, where n = jLoc(proc(�)) j (note thatLoc(proc(�)) = occ(�) is �nite for any � 2 S). In this way we retrieve exactly thetransition system with numbered localities (nl-transition system) of [Yan93].Let us recall the de�nition of this nl-transition system, rephrasing it in ourformalism. A location renaming f : O ! IN is monotonic if e � e0) f(e) < f(e0).In this case we write f : O !mon IN . Assume IN � Loc.The states of the transition system with numbered localities are:Nproc = fp j 9 � 2 S s:t: p = proc(�)[f] and f : occ (�)!mon f 1; : : : ; j occ (�) j g gThe transitions p a�����!nlu�(n+1) p0 on Nproc are the least ones such that:p a�! du�l p0 ; l =2 Loc(p) ; jLoc(p) j = n) p a�����!nlu�(n+1) p0fn+ 1=lgIt should be clear that the dynamic location bisimulation equivalence based on suchtransitions coincides with �d̀ (the proof is essentially the same as for ��̀ =�d̀).Again, this transition system is �nitely-branching for processes with guarded re-cursion and �nite degree of parallelism. However, the nl-transition system is \wider"than the dynamic canonical transition system, since the diamonds corresponding toconcurrency are unfolded, thus giving rise to duplication of states. This is due to thefact that for any CCS term p, the nl-transition system assigns location n to the nthtransition of any computation of p, hence the order in which concurrent transitionsare executed is recorded in the states.The di�erence between the various transition systems is illustrated by the follo-wing example, discussed already in [MN92].Example 5.35 Consider the CCS process p = rec x: a: x j rec x: a: x. Its standardtransition system has just one state p and one transition p a�! p, while its staticcanonical transition system has one state p0 = 0 :: rec x: a: x j 1 :: rec x: a: x and twotransitions p0 a�! s0 p0 and p0 a�! s1 p0. On the other hand both the dynamic canonical INRIA

Observing distribution in processes: static and dynamic localities 43transition system and the transition system with numbered localities are in�nite(although �nitely-branching), as illustrated by the �gure below. This is because thedynamic location transition systems, as well as the occurrence transition system ofSection 5, are models of computation rather than system models.The dynamic canonical transition system for p is the following:
0a :: rec x: a: x j rec x: a: x rec x: a: x j 1a :: rec x: a: x0a :: rec x: a: x j 1a :: rec x: a: x

pa 0 a1a1 a 0
����	 @@@@R@@@@R ����	��	 @@R� � �while the transition system with numbered localities is:

0 :: rec x: a: x j rec x: a: x rec x: a: x j 0 :: rec x: a: x0 :: rec x: a: x j 1 :: rec x: a: x 1 :: rec x: a: x j 0 :: rec x: a: x
pa 0 a0a 1 a 1

����	 @@@@R
? ?��	 @@R ��	 @@R� � � � � �Note the unfolding of concurrency diamonds here.

RR n�2276

44 Ilaria CastellaniReferences[Ace91] L. Aceto. A static view of localities. Report 1483, INRIA, 1991. Toappear in Formal Aspects of Computing.[Ace92] L. Aceto. History preserving, causal and mixed-ordering equivalenceover stable event structures (note). Fundamenta Informaticae, 17(4),1992.[BC91] G. Boudol and I. Castellani. Flow models of distributed computations:three equivalent semantics for CCS. Report 1484, INRIA, 1991. Toappear in Information and Computation. Preliminary version in Pro-ceedings LITP Spring School, La Roche-Posay, number 469 in LNCS,1990.[BCHK91] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of pro-cesses with localities. Report 1632, INRIA, 1991. To appear in FormalAspects of Computing. Extended abstract in Proceedings CONCUR92,number 630 in LNCS, 1992.[BCHK93] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing loca-lities. TCS, 114:31{61, 1993. Extended abstract in Proceedings MFCS91, number 520 in LNCS, 1991.[Cas88] I. Castellani. Bisimulations for Concurrency. Ph.d. thesis, Universityof Edinburgh, 1988.[Cas93] I. Castellani. Observing distribution in processes. In Proceedings MFCS93, number 711 in LNCS, 1993.[CH89] I. Castellani and M. Hennessy. Distributed bisimulations. JACM,10(4):887{911, 1989.[Chr92] S. Christensen. Distributed bisimilarity is decidable for a class of in�nitestate-space systems. In Proceedings CONCUR 92, number 630 in LNCS,1992.[CN93] F. Corradini and R. De Nicola. Locality and causality in distributedprocess algebra. Report SI/RR - 93/05, Universit�a di Roma La Sapienza,1993.[DD90] Ph. Darondeau and P. Degano. Causal trees: interleaving + causality.In Proceedings LITP Spring School, La Roche-Posay, number 469 inLNCS, 1990.[DD91] Ph. Darondeau and P. Degano. Event structures, causal trees and re�ne-ment, 1991. Submitted to Theoretical Computer Science for the specialissue of MFCS 90.
INRIA

Observing distribution in processes: static and dynamic localities 45[DDNM89] P. Degano, R. De Nicola, and U. Montanari. Partial orderings des-criptions and observations of nondeterministic concurrent processes. InProceedings REX School/Workshop, Noordwijkerhout, number 354 inLNCS, 1989.[GG89] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrentsystems and re�nement of actions. GMD Technical Report 366, Gesell-schaft f�ur Mathematik und Datenverarbeitung, Sankt Augustin, 1989.Extended abstract in Proceedings MFCS 89, number 379 in LNCS, 1989.[GG90] R.J. van Glabbeek and U. Goltz. Equivalences and re�nement. In Pro-ceedings LITP Spring School, number 469 in LNCS, 1990.[Kie89] A. Kiehn. Distributed bisimulations for �nite CCS. Report 7/89, Uni-versity of Sussex, 1989.[Kie91] A. Kiehn. Local and global causes. Technical Report 342/23/91, Tech-nische Universit�at M�unchen, 1991.[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LectureNotes in Computer Science. Springer{Verlag, 1980.[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[MN92] M. Mukund and M. Nielsen. CCS, locations and asynchronous transitionsystems. In Proceedings FST-TCS 92, number 652 in LNCS, 1992.[Mur93] D. Murphy. Observing located concurrency. In Proceedings MFCS 93,number 711 in LNCS, 1993.[MY92] U. Montanari and D. Yankelevich. A parametric approach to localities.In Proceedings ICALP 92, number 623 in LNCS, 1992.[RT88] A. Rabinovich and B.A. Trakhtenbrot. Behavior structures and nets.Fundamenta Informaticae, XI(4):357{404, 1988.[Yan93] D. Yankelevich. Parametric Views of Process Description Languages.Ph.d. thesis, University of Pisa, 1993.

RR n�2276

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

