
Observing distribution in processes

I laria CasteUani*
INRIA Sophia-Antipolis
06565 Valbonne, France

emaih ic@sophia, inria.fr

A b s t r a c t . The distributed structure of CCS processes can be made explicit by assigning different
localions to their parallel components. These locations then become part of what is observed of a
process. The assignment of locations may be done statically, or dynamically as the execution proceeds.
The dynamic approach was developed first, by Boudol et al. in [BCHK91a], [BCHK91b], as it seemed
more convenient for defining notions of location equivalence and preorder. However, it has the drawback
of yielding infinite transition system representations. The static approach, which is more intuitive but
technically more elaborate, was later developed by L. Aceto [Acegl] for nets of automata, a subset of
CCS where parallelism is only allowed at the top level. In this approach each net of automata has a finite
representation, and one may derive notions of equivalence and preorder which coincide with the dynamic
ones. The present work generalizes the static treatment of Aceto to full CCS. The result is a distributed
semantics which yields finite transition systems for all CCS processes with a regular behaviour and a
finite degree of parallelism.

1 Introduction

This work is concerned with distributed semantics for CCS, accounting for the spatial distribution
of processes. Such semantics focus on different aspects of behaviour than most non-interleaving
semantics for CCS considered so far in the literature, which are based on the notion of causality.
Roughly speaking, a distributed semantics keeps track of the behaviour of the locM components
of a system, and thus is appropriate for describing phenomena like a local deadlock. On the
other hand a causal semantics, such as those described in [DDNM87], [GG89], [DD90] [BCgl],
is concerned with the flow of causality among activities and thus is bet ter suited to model the
interaction of processes and the global control structure of a system.

The distributed structure of CCS processes can be made explicit by assigning different loca-
tions to their parallel components. To this end we use the location prefizing construct l :: p of
[BCHK91a,b], which represents process p residing at location I. The actions of such a process
are observed together with their location. We have for instance:

'~ s (l :: nil I k :: nil) (1 :: a [k :: b) "7" (l :: nil I k :: b) --~

In general, because of the nesting of parallelism, the locations of actions will not be simple letters
l, k , . . . but rather words u = 11 ""ln. Then a "distributed process" will perform transitions of
the form p - ~ p'.

The idea is now to compare CCS terms by comparing their possible distributions, which
are obtained by transforming each subprocess (p [q) into (l :: p [k :: q), where l and k are
distinct locations. Intuitively, such an assignment of locations should be done statically, and

*This work has been partly supported by the Project 502-1 of the Indo-French Centre for the Promotion of
Advanced Research.

322

then become par t of what is observed of a process. This will allow us to distinguish for example
(a [b) from (a.b + b.a), since any distribution of the first process will perform actions a and b
at different locations. For more interesting examples we refer the reader to the introductions of
[BCHK91a,b].

We thus want to define a notion of (weak) bisimulation on distributed processes, which
equates processes exhibiting the same "location transitions". However, it would be too strong a
requirement to ask for the identity of locations in corresponding transitions. In fact, if we want
to observe distribution, we still aim, to some extent, at an extensional semantics. For instance,
we do not want to observe the order in which parallel components have been assembled in a
system~ nor indeed the number of these components. We are only interested in the components
which axe active in each computation. We would like e.g. to identify the distributions of the
CCS processes:

a I (b lc) and (a Ib) lc

a and a I nil

Then transitions must be compared modulo an association between their locations. For instance
to relate the distributions l :: a I k :: (l' :: b I k' :: c) and 1 :: (l ' :: a I k' :: b)] k :: c, we need
to "identify" the locations l, kl ~, kk t of the first respectively with II ~, lk ~, k in the second.
However, it appears tha t this association cannot in general be fixed statically. For consider the
two CCS processes:

p = [(~ + b) t ~ b] \~ and q = b

Intuitively, we would like to equate p and q because the observable behaviour of any distribu-
tions of these processes consists in just one action b at some location I. But here the required
association of locations will depend on which run is chosen in the first process. Hence it is not
obvious how to define a notion of equivalence formalising our intuition abo.ut abstract distributed

behaviours.

Because of this difficulty, the static approach was initially abandoned in favour of a different
one, where locations are introduced dynamically as the execution proceeds. This dynamic ap-
proach, where locations are associated with actions rather than with parMlel components, has
been presented in [BCIIK91a,b]. In this setting, the notion of location equivalence is particu-

a

laxly simple: it is just the standard notion of bisimulation, applied to the transitions p --~ pl.

Moreover, by weakening a little the definition of the equivalence, we obtain a notion of location
preorder, which formalises the idea tha t one process is more sequential or less distributed than
another. Such a notion is particularly useful when dealing with truly concurrent semantics,
where an implementation is often not equivalent to its - generally more sequential - specifica-
tion. Since location equivalence and preorder are essentially bisimulation relations, many proof
techniques familiar from the theory of standard bisimulation may be applied to them: for ex-
ample both these relations have a complete axiomatisation and a logical chaxacterisation in the
style of IIennessy and Milner, see [BCttK91a,b].

However, the dynamic approach has the drawback of yielding infinite transition systems even
for regular processes, and thus cannot be directly used for verification purposes. Moreover in
this approach locations represent access paths for actions rather than sites in a system, and
thus are somehow remote from the original intuition. For these reasons, it was interesting to
resume the initial a t tempt at a static approach. The problem of finding the appropriate notion
of bisimulation was solved by L. Aceto in [Ace91] for nets of automata, a subset of CCS where
parallelism is only allowed at the top level. The key idea here is to replace the usual notion of
a bisimulation relation by that of a family of relations indexed by location associations. Aceto

323

shows tha t the notions of static location equivalence and preorder thus obtained coincide with
the dynamic ones, and thus may be used.as "effective" versions of the latter.

The purpose of the present work is to generalize the static t reatment of Aceto to full CCS.
Having established the notion of distribution for general CCS processes, the main point is to
adapt Aceto's definitions of static location equivalence and preorder. Because of the arbitrary
nesting of parallelism and prefixing in CCS terms, and of the interplay between sum and par-
allelism, this is not completely straightforward. A step in this direction was done recently by
Mukund and Nielsen in [MN92], where a notion of bisimulation equivalence based on static lo-
cations is proposed for a class of asynchronous transition systems modelling CCS with guarded
sums. The notion of equivalence we present here is essentially the same (extended to all CCS),
and our main result is tha t it coincides with the dynamic location equivalence of [BCHK91b].
We also show tha t a similar result holds for the location preorders.

A transit ion system for CCS labelled with static locations, called "spatial transit ion system",
has been also presented in [MY92], [Yan93]. Here locations are essentially used to build a second
transition system, labelled by partial orders representing local causality, on which is based the
theory of equivalence (as well as of preorders, in [Yan93]). Again, this partial order transit ion
system gives finite representations only for finite behaviours. This work also confirms what had
been previously shown by A.Kiehn in [Kie91], namely that observing dynamic locations amounts
to observe local causality in computations. In [Kie91] one may also find a detailed comparison
of distributed and cansality-based semantics.

In this extended abstract all proofs are omitted. For a full account we refer to the complete
version of the paper [Cas93].

2 A l a n g u a g e for processes w i t h locat ions

We introduce here a language for specifying processes with locations, cMled LCCS. This language
is a simple extension of CCS, including a new construct to deal with locations.

We start by recalling some conventions of CCS [Mil80]. One assumes a set of names A,
ranged over by ce, fl , . . . , and a corresponding set of co-names ~_ = {6~ I a E A}, where - is a
bijection such tha t ~ = a for all a E A. The set of visible actions is given by Act = A U A.
Invisible actions - representing internal communications - are denoted by the symbol r ~ Act.
The set of all actions is then Actr =def Act U {r}. We use a , b , c , . . , to range over Act and
,u, ~,,... to range over ActT. We also assume a set V of process variables, ranged over by x, y

In addition to the operators of CCS, which we suppose the reader to be familiar with, LCCS
includes a construct for building processes with explicit locations. Let Loc, ranged over by
l, k , . . . , be an infinite set of atomic locations. The new construct of location prefixing, noted
l :: p, is used to represent process p residing at location I. Intuitively, the actions of such a
process will be observed "within location l". The syntax of LCCS is as follows:

p::=ni l I /z.p I (P l q) I (P+q) I p\o~ I P (f) I x I recx. p I I::P

We use the slightly nonstandard notation p (f) to represent the relabelling operator of CCS.
In a previous paper [BCHK91b], this language has been given a location semantics based on a
dynamic assignment of locations to processes. Here we shall present a location semantics based
on a static notion of location, and show that the two approaches, dynamic and static, give rise
to the same notions of equivalence and preorder on CCS processes. The basic idea, common
to both approaches, is tha t the actions of processes are observed together with the locations at
which they occur. In general, because of the nesting of parallelism and prefixing in terms, the
locations of actions will not be atomic locations of Loc, but rather words over these locations.

324

Thus general locations will be dements u, v . . . of Loc*, and processes will be interpreted as
performing transitions

p' P

where ~t is an action and u is the location at which it occurs.

However, locations do not have the same intuitive meaning in the two approaches. In the
static approach locations represent sites - or parallel components - in a distributed system,
much as one would expect. In the dynamic approach, on the other hand, the location of an
action represents the sequence of actions which are locally necessary to enable it, and thus is
more properly viewed as an access path to that action within the component where it occurs.
Because of this difference in intuition, i t is not immediately obvious tha t the two approaches
should yield the same semantic notions. The fact tha t they do means tha t observing distribution
is essentially the same as observing local causality.

3 Stat ic approach

We star t by presenting an operational semantics for LCCS based on the static notion of location.
The idea of this semantics is very simple. Processes of LCC$ have some components of the form
I :: p, and the actions arising from these components are observed together with their location.
The distribution of locations in a term remains fixed through execution. Location prefixing is
a static construct and the operational rules do not create new locations; they simply exhibit
the locations which are already present in terms. Formally, this is expressed by the operational
rules for action prefixing and location prefixing. Recall tha t locations are words u, v , . . . E Loc*.
The empty word E represents the location of the overall system. The rules for # . p and I :: p
are respectively:

(S1) # . p --~ s p

(S2) p ~-~su pr ~ l : :p t,~ l : :p '

Rule ($1) says tha t an action which is not in the scope of any location l is observed as a global
action of the system. Rule ($2) shows how locations are transferred from processes to actions.
The rules for the remaining operators, apart from the communication rule, are similar to the
standard interleaving rules for CCS, with transitions --~, replacing the usual transitions ~ .

I t

The set of all rules specifying the operational semantics of LCCS is given in Figure 1. The rule
for communication ($4) requires some explanation. In the strong location transition system we
take the location of a communication to be that of the smallest component which includes the
two communicating subprocesses: the notation u [q v in rule ($4) stands for the longest common
prefix of u and v. For instance we have:

E x a m p l e 3 .1

t : : a l k : : ~ . (l ' : : / ~ l k ' : : B) ---", l : : n i l l k : : (l ' : : ~ l k ' : : f l) t-'r-', l : : n i l l k : : (l ' : : n i l l k ' : : n i l)
k

However, we shall mostly be interested here in the weak location transit ion system, where r-
transitions will have no explicit location: since the transitions themselves are not observable,
it would not make much sense to a t t r ibute a location to them. The weak location transitions
~ s and ==r are thus defined by:

u

..L, r , .2,rs p = ~ s q r 3Ul , . . . ~Un , PO, . . . ,pn S.t. P = Po ul Pl ' ' " un Pn = q
1"

p =~s q r 3Pl ,p2 S.t. P ~ s Pl a"~s P2 :=:r q

325

We shall use the weak location transition system as the basis for defining a new semantic theory
for CCS, and in particular notions of equivalence and preorder which account for the degree
of distribution of processes. The reader may have noticed, however, t ha t applying the rules
of Figure 1 to CCS terms just yields a transition p --~s p* whenever the s tandard semantics

yields a transit ion p ~ p'. In fact, we shall not apply these rules directly to CCS terms.
Instead, the idea is to first bring out the parallel structure of CCS terms by assigning locations
to their parallel components, thus transforming them into particular LCCS terms which we call
"distributed processes", and then execute these according to the given operational rules. The
set DIS C LCCS of distributed processes is given by the grammar:

p: :=ni l I # .p I (l : : p l k : :q) I (P+q) I P\~ I P (f) I ~ I recx . p

t~k

Essentially, a distributed process is obtained by inserting a pair of distinct locations in a CCS
term wherever there occurs a parallel operator. This is formalised by the notion of distribution.

D e f i n i t i o n 3.2 The distribution relation is the least relation 79 C_ (CCS x DIS) satisfying:

- nil 79 nil and x /) x

- p D r ~ # . p 7 9 # . r
p \a I) r \ a

p (f) v r (f)
(tee z. p) 79 (rec z. r)

- p79r & q79s ~ (p[q) O (l : : r l k : : s) , Vl, k s.t. l ~ k
(p+ q) 7) (r + s)

If p D r we say that r is a distribution ofp.

Note tha t the same pair of locations may be used more than once in a distribution. We shall
see in fact, at the end of this section, that distributions involving just two atomic locations are
sufficient for describing the distributed behaviour of CCS processes.

3 .1 S t a t i c l o c a t i o n e q u i v a l e n c e

We want to define an equivalence relation ~ on CCS processes, based on a bisimulation-like
relation between their distributions. The intuition for two CCS processes p, q to be equivalent
is tha t there exist two distributions of them, say/~ and ~, which perform "the same" location
transitions at each step. However, as we argued already in the introduction, we cannot require
the identity of locations in corresponding transitions. If we want to identify the following
processes:

a l (b l c) and (alb) lc

a and a [n i l

it is clear that , whatever distributions we choose, we must allow corresponding transit ions to
have different - although somehow related - static locations. In general transitions will be
compared modulo an association between their locations. The idea is directly inspired from
that used by Aceto for nets of automata [Ace91]; however in our case the association will not be
a bijection as in [Ace91], nor even a function. For example, in order to equate the two processes:

a. (b. c [nil) and a.b. (c I nil)

326

we need an association containing the three pairs (E, ~), (1, E), (1,1'), for some I, I' E Loc.

In fact, the only property we will require of location associations is that they respect inde-
pendence of locations. To make this precise, let << denote the prefix ordering on Loc*. If u << v
we say that v is an extension or a sublocation of u. If u ~ v and v ~ u, what we indicate by
u o v, we say that u and v are independent.

Def in i t ion 3.3 A relation ~o c_ (Loc* x Loc*) is a consistent location association (cla) if:

(~ , ~) ~ sz (u ' , r ~ (~o~' ~ vov')

Essentially the same notion of consistent association has been proposed in [MN92] for a class of
asynchronous transition systems modelling CCS with guarded sums.

Now Aceto showed in [Ace91] that, for a given pair of distributed processes we want to
equate, the required cla cannot in general be fixed statically, but has to be built incrementally.
For consider the two distributed processes, which are intuitively equivalent since both perform
actions a and b in either order at different locations:

(l::(a. TTb.Zf)[k::(~/.b-4-%a))\~/ and (l : :aik::b)

Here, depending on which summand is chosen in the left component of the first process, one
needs to use the association ~o = {(/,l), (k, k)} or the association ~' --- {(l, k), (k, l)} (note that
~o U ~ is not consistent). Another example is given in the introduction.

To dynamically build up associations, we use the same technique as in [Ace91]. Let q~ be the
set of consistent location associations. We define particular C-indexed families of relations S~
over distributed processes, which we call progressive bisimulation families (although the relations
that constitute a family are not themselves bisimulations). The idea is to start with the empty
association of locations and extend it consistently as the bisimulation proceeds.

Def in i t ion 3.4 A progressive bisimulation family (pbf) is a ~-indexed family
S = {S~] ~o E r of relations over DIS, such that if pS~q then for all a E Act, u E Loc*:

! ! (1) p :b,s p' ~ 3q ' ,v such that q =~s q' , r and pS~u{(~,~)}q

(2) q ~ q' ~ 3p',u such that p = ~ p ' , ~ U { (u , v) } E (~ and p'S~u{(~,~))q'
v u

(3) p = ~ s p ~ :O 3q' such that q = ~ q ' and p'S~q'

(4) q =~8 q' ~ 3p' such that p:=~s p' and p'S~q'

Using these progressive bisimulation families, we may now define the location equivalence .~ on
CCS terms as follows:

Def in i t ion 3.5 (Sta t ic loca t ion equivalence) For p,q E CCS, we let p ~ q if and only if
for some /~,(~ E DIS such that p:D/~ and q79q, there exists a progressive bisimulation family
S = {S~ [~2 E (I)} such that ~ S ~ .

The reader may have noticed that the inverse 79 -1 of the distribution relation is a function. If
we let ~" =def 79-I, then r(p) gives the CCS process underlying the distributed process p. It
may be easily shown that all distributions of the same process are in the relation Sr for some
progressive bisimulation family S:

327

Proposition 3.6 Let Pl,P2 E DIS. Then r(pl) = r(P2) ~ 3 pbf S s.t. plSep2.

Using this fact, we may prove that ~ is indeed an equivalence relation and that, moreover, it
is independent from the particular distributions that are chosen.

Proposition 3.7 (Properties of ~)

1. The relation ~ is an equivalence on CCS processes.

2. For any p, q E CCS : p ~ q r for all ~, ~ E DIS such that p 7) ff and q 7) ~ there exists
a progressive bisimulationfamily S = {S~ I ~ E q~} such that ffSO~.

Thus to check the equivalence of CCS processes we may pick arbitrary distributions of them.
By virtue of this result, we can restrict our attention to particular "binary" distributions, sys-
tematically associating location 0 to the left operand and location 1 to the right operand of a
parallel composition. A distribution of this kind will be called canonical, and elements of {0, 1}*
will be called canonical locations. These are exactly the locations used in [MN92] and, with a
slightly different notation, in [MY92],[Yan93].

Let us see now a simple example, which shows the difference between location equivalence and
causality-based equivalences, such as the causal bisimulation of [DD90]:

E x a m p l e 3.8 a . b + b . a ~ (a .719. b)\7 + (b. 719. a) \7 ~ a l b

As we announced earlier, ~,~ will be shown to coincide with the dynamic equivalence ~d of
[BCHK91b]. Therefore all the examples given there for ~d apply to ~ as well.

3.2 S t a t i c l o c a t i o n p r e o r d e r

r -s We define now a preorder ,~ t on CCS processes, which formalises the idea that one process is
more sequential or less distributed than another. This preorder is obtained by slightly relaxing
the notion of consistent association. The intuition for p ~ ~ q is that there exist two distributions
/~ and q of them such that whenever/3 can perform two transitions at independent locations,
then q performs corresponding transitions at locations which are also independent, while the
reverse is not necessarily true. This is expressed by the following notion of left-consistency:

Def in i t ion 3.9 A relation ~ C_ (Loe ~ x Loc*) is a left-consistent location association if:

(u,v)~v a (u',v')zv ~ (uou' ~ roy')

Now, if �9 is the set of left-consistent location associations, we may obtain a notion of progressive
pre-bisimulation family (ppbf) on distributed processes of DIS by simply replacing (Ii by �9 in
Definition 3.4. Again, this gives rise to a relation on CCS processes:

Def in i t ion 3.10 (Static location preorder) If p,q E CCS, let p ~ ~ q if and only if for
some p,q E DIS such that pT)p and qO q, there exists a progressive pre-bisimulation family
S = {Sr [r E g/} such that pSr

It is easy to see that p ~ q =~ p ~ ~ q. As may be expected the reverse is not true. We have
for instance, for the processes of Example 3.8 above:

E x a m p l e 3.11 a.b + b.a E s ~ e (a . 'y lg . b)\7 4- (b . 7 t g . a) \ 7

We shall show that this static preorder coincides with the dynamic location preorder ff~ d of
[BCHK91b], and thus inherits the theory of the latter.

328

For each # E Actr u E Loc*, let

the following axiom and rules.
s be the least relation - ~ on LCCS processes satisfying

t t I t

P

(s2) p -~ p'

(S3) p ~" p'
u

(S4) p ~-~ p', q ~-~ q'
r v

($5) p ~ p'
i t

(s6) p ~ p', ~ r {5,a}

($7) p ~ p' =~
I t

(s8) p[r~cx, p/x] ~ p'
u

l::p ~ l::p'

P l q - - ~ P ' l q

q]P- -~ q lP '

P' t q' P l q ,,n~

p + q ~--~ p'
u

~--~ p~ q + P ,,

p\~ ~ p'\~
u

p(f) f(.___L p,(f)
u

.a pt rec X. p
I t

Figure 1: Static location transitions

-r

Let p ' ~ d q r p ----~s q, and for each a E Act, u E L*, let - ~ d be the least relation
u u

a on LCCS processes satisfying rules ($2), ($3), ($5), ($6), (S7), ($8) and the axiom:
u

a

(D1) a.p T l::p for any l E Loc

Figure 2: Dynamic location transitions

329

4 Dynamic approach

We briefly recall here the dynamic approach of [BCHK91b], and in particular the definitions of

~ t a and ~ ~. In the dynamic approach, locations are associated with actions rather than with
parallel components. This association is built dynamically, according to the rule:

(D1) a.p ~-~dl::p forany 1ELoc
l

In some sense locations are transmitted from transitions to processes, whereas in the static case
we had the inverse situation. Rule (D1) is the essence of the dynamic location semantics. The
remaining rules are just as in the static semantics, see Figure 2. We refer to [BCHK91b] for more
intuition on the dynamic notion of location: let us just observe that these locations increase at
each step, even if the execution goes on within the same parallel component. In fact the location
l which appears in rule (D1) may be seen as an identifier for the action a. Then the location u
of a generic transition p ' ~ d P~ is a record of all the actions which causally precede a, what we

shall call also the access path to a.

Because of rule (D1), the dynamic location transition system is both infinitely branching and
infinitely progressing: it gives infinite representations for all regular processes. Indeed, this has
been the main criticism to this dynamic approach, see [Ace91],[MY92],[MN92]. In fact, while
the infinite branching may be overcome easily (through a canonical choice of dynamic locations,
see [Cas93]) the infinite progression is really intrinsic to this semantics.

Note that for r-transitions, for which we do not want to introduce additional locations, we
simply use the static transition rules. Although this last point differentiates our strong dynamic
location transition system from that originally introduced in [BCHK91b], the resulting weak
(dynamic) location trahsition system is the same. The definition of the weak transitions ~ d

and = ~ d is similar to that of the :~8 and = ~ . u

We define now the dynamic location equivalence ~d and the dynamic location preorder E d
Because of the flexibility in the choice of locations, these definitions are much simpler than in the
static case. In [BCHK91b] the relations .~d and d t are obtained as instances of a general notion
of parameterized location bisimulation. We shall use here directly the instantiated definitions.

Def in i t ion 4.1 (D y n a m i c loca t ion equivalence) A symmetric relation R C_ LCCS x LCCS
is called a dynamic location bisimulation (dlb) ifffor all (p,q) E R and for all a E Act, u E Loc+ :

(1) p ==~dP' =~ 3 q ' e L C C S such that q ~ d q' and (p ' , q ') E R

(2) P=~d P' ~ 3 q ' E L C C S suchthat q ~ d q' and (p',q') E R

The largest dlb is called dynamic location equivalence and denoted ~t d.

We refer to [BCHK91b] for examples and results concerning ~d. Consider now the location

preorder ~ d. Here, instead of requiring the identity of locations in corresponding transitions, we
demand that the locations in the second (more distributed) process be subwords of the locations
in the first (more sequential) process. Formally, the subword relation --<sub o n LOC* is defined
by: v _<sub u ~ 3 V l , . . . , V k ~ 3Wl~... ,wk.4.1 s . t . v ~ - v l . . . v k a n d ?~WlVl . . .WkVkWk.4 .1 .

330

D e f i n i t i o n 4.2 (D y n a m i c loca t ion p r e o r d e r) A relation R _C LCCS x LCCS is called a
dynamic location pre-bisimulation (dlpb) iff for all (p,q) E R and for all a E Act, u E Loc+:

(1) p + ,~ p' ~

(2) q + d q' =*"

T (a) p ~ p

(4) q :::~d q' =;"

3v _<sub u, 3 q l E L C C S such that q + d q' and (p ' , q ') E R

3u.v_<sub u, 3 p ' E L C C S such that p + d p ' and (p,,qt) E R

3 q ' E L C C S such that q ~ d q ' a n d (p ' ,q ')ER
"r 1

3p~E LCCS such that P ~ d P and (p~,q') E R

The largest dlpb is called dynamic location preorder and denoted 1- d

The intuition is as follows. If p is a sequentialized version of q, then each component of p
corresponds to a group of parallel components in q. Then the local causes of any action of q
will correspond to a subset of local causes of the corresponding action of p. This may be easily
verified for the following examples:

E d E x a m p l e 4.3 a.a. a ,,~ ~ a. a [a and a. b + b. a a [b

d We shall not comment further here on the relations ~d and ~ t ' referring again the reader to
[BCHK91b] for more examples and for results concerning these relations. We proceed now to

state our main result, namely that the dynamic relations ~ t d and v d coincide with the static
~ t E s relations ~ and ,,, t introduced in the previous section.

E s d T h e o r e m 4.4 Letp, qE CCS. Then: p , ~ q r p,~dq and P,,~t q r p ~ t q"

To prove this results, we use a new transition system on CCS, cMled occurrence system, which
is essentially a simplification of the event system introduced in [BC91] to compare different
models of CCS. This transition system, which incorporates the information of bo th location
transition systems, is used as an intermediate between the static and the dynamic semantics.
The main point is to prove tha t starting from a static or a dynamic location computation, one
may always reconstruct a corresponding occurrence computation. This means, essentially, tha t
all the information about distribution and local causality is already present in both location
transition systems. The proof may be found in [Cas93].

A c k n o w l e d g e m e n t s

The idea of a static assignment of locations was originally put forward by G. Boudol in the
course of a CEDISYS meeting in Brighton, in September 1990. I would like to thank him for
inspiration and for innumerable comments and advices. I also benefitted from discussions with
L. Aceto, who was the first to formaUse the "static view of locations" for a subset of CCS. I am
grateful to P.S. Thiagarajan, for commenting on an earlier draft of this paper and for raising
several interesting questions. Part of this work was done while visiting Thiagarajan and his
colleagues in Madras. I would like to thank all of them for their interest and comments.

331

References

[Ace91]

[BC91]

[BCHK91a]

[BCHK91b]

[Cas93]

[DD90]

[DDNM87]

[GG89]

[Kie91]

[Mil80]

[MN92]

[MY92]

[Yan93]

L. Aceto. A static view of localities. Report 1483, INRIA, 1991. To appear in
Formal Aspects of Computing.

G. Boudol and I. Castellani. Flow models of distributed computations: three equiv-
alent semantics for CCS. Report 1484, INRIA, 1991. To appear in Information and
Computation. Previous version in Proc. La l~che-Posay, LNCS 469, 1990.

G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Report
4/91, Sussex University, and INRIA Res. Rep. 1485, 1991. To appear in Theoretical
Computer Science. Extended abstract in Proc. MFCS 91, LNCS 520, 1991.

G. Boudol, I. Castellani, M. ttennessy, and A. Kiehn. A theory of processes with
localities. Report 1632, INRIA, 1991. To appear in Formal Aspects of Computing.
Extended abstract in Proc. CONCUR92, LNCS 630, 1992.

I. Castellani. Full version of this paper. Report, INRIA, 1993. To appear.

Ph. Darondeau and P. Degano. Causal trees: interleaving + causality. In Proceed-
ings LITP Spring School, La Roche-Posay, number 469 in LNCS, 1990.

P. Degano, R. De Nicola, and U. Montanari. Observational equivalences for concur-
rency models. In M. Wirsing, editor, Formal Description of Programming Concepts-
III, Proceedings of the 3 *h IFIP WG 2.2 working conference, Ebberup 1986, pages
105-129. North-Holland, 1987.

R.J. van (31abbeek and U. Goltz. Equivalence notions for concurrent systems and
refinement of actions. Arbeitspapiere der GMD 366, Gesellschaft flit Mathematik
und Datenverarbeitung, Sankt Augustin, 1989. Extended abstract in Proc. MFCS
89, LNCS 379, 1989.

A. Kiehn. Local and global causes. Report 342/23/91, Technische Universit~.t
Miinchen, 1991. Submitted for publication.

1L Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

M. Mukund and M. Nielsen. CCS, locations and asynchronous transition systems.
In Proceedings FST-TCS 92, 1992.

U. Montanari and D. Yankelevich. A parametric approach to localities. In Proceed-
ings ICALP 92, number 623 in LNCS, 1992.

D. Yankelevich. Parametric Views of Process Description Languages. Ph.d. thesis~
University of Pisa, 1993.

