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Abstract

We propose a type system to ensure the property of noninterference in a system of concurrent
programs, described in a standard imperative language enriched with parallelism. Our proposal
is in the line of some recent work by Irvine, Volpano and Smith. Our type system seems more
natural and less restrictive than that originally presented by these authors for the concurrent case.
Moreover, we show how to extend the language in order to formalise scheduling policies for
systems of sequential threads. The type system is extended to the new constructs, and we show
that noninterference still holds, while remaining in a nonprobabilistic setting. c© 2002 Elsevier
Science B.V. All rights reserved.

1. Introduction

The aim of this paper is to study the property of secure information 3ow, and more
speci4cally of noninterference (a notion 4rst introduced by Goguen and Meseguer
in [6]) in the setting of concurrency. Here noninterference means that variables of
a given security level do not interfere with those of lower or incomparable levels.
More precisely, the values of variables at some level are not dependent on the values
of variables of higher or incomparable level. Noninterference is meant to model the
absence of information 3ow from any security level �0 to another one �1, except when
this is explicitly allowed, that is �06�1. Such information 3ow is considered insecure,
as it amounts to the disclosure of secret information into the public domain. In this
introduction, and in the examples given in the paper, the security levels will simply
be high (H), or secret, and low (L), or public. However, all results will be given
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� : if PIN = 0 then t� := tt else t� := tt

� : while t� �= tt do nil ; r := 0 ; t� := tt

� : while t� �= tt do nil ; r := 1 ; t� := tt

PIN ; t�; t� : boolean variables of type H

r : boolean variable of type L

Fig. 1. Information 3ow through control 3ow.

for an arbitrary lattice of security levels. For some concrete examples using a more
sophisticated lattice of security levels, see for instance [3].

Our starting point is the paper [21] by Volpano et al. and the subsequent paper
[18] by Smith and Volpano, where noninterference is enforced by means of a simple
type system in an imperative language with security levels. The language considered
in [21] is purely sequential, and is extended in [18] with asynchronous parallelism
(interleaving). In such a language, insecure 3ow can be explicit, when assigning the
value of a high variable to a low variable, or implicit, when testing the value of a high
variable and then assigning to a low variable a value depending on the result of the test,
for instance. In the approach of [21,18], explicit 3ow is prevented by requiring that the
level of the assigned variable be at least as high as that of the source variable, while
implicit 3ow is prevented by asking that the level of the commands in the branches of
a conditional (the level of a command being that of its lowest assigned variables) be at
least as high as that of the tested variable. Implicit 3ow can also arise in while-loops,
and is prevented by a similar condition on the type of the body of the loop.

In fact, because of while-loops, the de4nition of noninterference is more precise than
what is stated above: it says that no change in the values of low-level variables should
be observed as a consequence of a change in high-level variables, provided that the
program terminates successfully. Using subscripts to explicitly indicate the security
level of a variable, let us consider the following program, that terminates if xH �= 0 and
loops forever (doing nothing) otherwise:

while xH = 0 do nil; yL := 1 (1)

Should this program be accepted, that is, should it be typable? According to the above
de4nition of noninterference the answer is “yes”, since whenever the program termi-
nates it produces the same value yL = 1 for its low-level variable. Indeed, this program
is typable in the original system of Volpano et al. [21], since the loop is typable and
the sequential composition of typable programs is always typable.

However, accepting such a program leads to problems when parallelism is introduced
in the language. These problems can be concisely described as “disguising information
3ow as control 3ow”. Let us illustrate the problem by means of an example, which is
a simpli4ed version of the PIN example given by Smith and Volpano in [18]. In this
example, given in Fig. 1, three threads �, � and � are run (asynchronously) in parallel.
There are four variables, a high-level variable PIN tested by thread �, two high-level
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variables t� and t� serving as “triggers” for threads � and �, and a low-level variable r
written by � and �. As can be easily seen, with initial values t� = t� = 3 the eKect of
this program is to copy the value of the secret variable PIN into the public variable r.
The illicit information 3ow from PIN to r is implemented through the control 4ow
from � to � or �. However, if we assume that a system of concurrent threads is typable
provided each component is typable, as would be natural, this particular system is to
be accepted.

To circumvent this problem, Smith and Volpano propose in [18] to forbid the use
of high-level variables in guards of while-loops, and more speci4cally 1 to accept only
while-loops of low level. While ruling out the program in (1), and also the threads �
and � of the PIN example, this solution seems a bit drastic. It excludes inoKensive
programs such as while xH = 0 do nil. We shall propose here a diKerent solution
to the problem raised by while-loops in the presence of parallelism, which allows this
program to be typed, while ruling out the programs of example (1) and Fig. 1. Our
solution is based on the observation that a program such as

while xH = 0 do nil

should indeed be considered with some care in a concurrent setting, but only as a
“guard”, that is, as regards what may follow it. In the context of concurrent threads, if
the control comes back to this while loop, this may be with a value for xH diKerent
from 0, contrarily to what happens in a sequential setting. In other words, this program
may observe the behaviour of other, concurrent components, in the course of their
execution, and in3uence accordingly the behaviour of the thread in which it participates.
Our aim is then to ensure a stronger form of noninterference, where the course of values
—not just the 4nal value—of a low-level variable does not depend upon the value of
high variables. Typically, program (1) is no longer interference-free in this stronger
sense. In order to reject it, we introduce a re4nement of the notion of type, and a new
type system, where the level of loop guards—the expressions tested by while loops—
is taken into account in sequential composition. The basic idea is that assigning to a
low variable must not depend upon consulting the value of a high variable. Then also
conditional guards—the expressions tested by conditional statements—will be taken
into account (we will see an example in the next section).

We will also examine the situation where a scheduling policy is in force in a thread
system of sequential programs: we will introduce a couple of new programming prim-
itives to describe formally such a situation, and show how to extend the type system
to this new setting, where new interference phenomena arise. We show that our type
system still ensures the noninterference property in this case, while imposing a less
severe restriction than that pre4gured in [18].

The rest of the paper is organised as follows. In Section 2 we introduce the language,
its operational semantics and its type system. Section 3 presents the properties of typed
programs, including subject reduction and noninterference. Finally, in Section 4 we
consider the extended language with scheduling policies for sequential threads.

1 Assuming, in the case of an arbitrary lattice of security levels, that there is a lowest level ⊥.
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2. The language and type system

The language we consider is essentially that of [18] (where e stands for a boolean
or arithmetic expression, whose syntax we do not detail here). We use the following
two-level syntax, where U; V denote sequential programs, while P;Q denote general
(concurrent) programs:

U; V : : : ::= nil | x := e | U ;V | if e then U else V

| while e do U

P; Q : : : ::= U | U ;P | if e then P else Q | (P ‖Q)

Note that on the left of a sequential composition, we must have a sequential program.
Thus programs of the form (P ‖Q);R are not allowed. With this restriction, our lan-
guage is still more general than that of [18], which describes concurrent systems as
collections of threads, thus allowing only top-level parallelism, while we allow the
dynamic spawning of new threads (although in a limited way).

The operational semantics of the language is given in terms of transitions between
con4gurations (P; �)→ (P′; �′) where P; P′ are programs and �; �′ stand for memories,
that is mappings from variables to values. These mappings are extended in the obvious
way to expressions, whose evaluation is assumed to be atomic as in [18]. We use the
notation �[v=x] for memory update. The rules specifying the operational semantics of
programs are presented in Fig. 2. The semantics used here is a small step semantics,
as opposed to the big step semantics of [21]. 2 The rules are fairly standard, and we
shall not comment on them.

In the introduction we argued that, in a concurrent setting, program (1) should be
treated as another case of implicit information 3ow. Intuitively, when exiting a loop
one gets some information about its guard; it seems then appropriate to require that
what follows the loop–its “continuation”–have level at least as high as that of the loop
guard. This will be the basic idea of our new type system, which is closely inspired
by that given by Volpano et al. [21]–however as suggested by the above Example (1)
it will be more restrictive than that of [21] on the sequential sublanguage, because of
our more detailed observation of programs, where an attacker is allowed to read the
low part of the memory at any time.

The types of data and expressions are security levels, that is elements of a lattice
(T;6). We denote the operations of meet and join, respectively, by � and � . These
types are ranged over by �; �: : : : In the examples, the lattice of security levels will
simply be {L; H}, with L¡H . The types of variables (when used in the left-hand side
of an assignment) are of the form � var. Our 4rst point of departure from [21] concerns
the types for programs. Type judgements in [21] are of the form � 	P : � cmd , where
� is a mapping from variables to types of variables, i.e. elements of {� var | �∈T}.
The meaning of � 	P : � cmd is that in the type environment �, the type � is a lower

2 In [18], the semantics is a mixture of small and big step semantics: transitions are given between con-
4gurations but there are two kinds of con4gurations, intermediate and 4nal ones, suggesting that termination
should be observed.
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(ASSIGN-OP)
(x := e; �)→ (nil; �[�(e)=x])

(SEQ-OP1)
(U; �)→ (U ′; �′)

(U ;P; �)→ (U ′;P; �′)

(SEQ-OP2)
(P; �)→ (P′; �′)

(nil;P; �)→ (P′; �′)

(COND-OP1)
�(e) = tt

(if e then P else Q; �)→ (P; �)

(COND-OP2)
�(e) �= tt

(if e then P else Q; �)→ (Q; �)

(WHILE-OP1)
�(e) = tt

(while e do U; �)→ (U ; while e do U; �)

(WHILE-OP2)
�(e) �= tt

(while e do U; �)→ (nil; �)

(PAR-OP1)
(P; �)→ (P′; �′)

(P ‖Q; �)→ (P′ ‖Q; �′)

(PAR-OP2)
(Q; �)→ (Q′; �′)

(P ‖Q; �)→ (P ‖Q′; �′)

Fig. 2. Operational semantics for parallel programs.

bound for the level of the assigned variables of P. In line with this intuition, subtyping
for programs is contravariant, that is � cmd6 �′ cmd if �′6�. Thus for instance any
program of type H cmd can be downgraded to type L cmd . A program of type H cmd
is guaranteed not to contain any assignment to a low variable.

As we said previously, we have to take into account the level of loop guards in
typing. To deal with possible divergence (and, as we shall see, with the scheduling
of threads) we also have to record the level of the tested expression in conditional
branching, which we regard as a guard as well. Thus we shall use here more re4ned
types (�; �) cmd , where the 4rst component � plays the same role as in the type � cmd ,
while the second component � is the guard type, an upper bound on the level of the
loop and conditional guards occurring in a program. Accordingly, the subtyping for
programs is contravariant in its 4rst component and covariant in the second:

(�; �)cmd 6 (�′; �′) cmd if �′ 6 � and �6 �′:

The guard type will be set up by while-loops and conditional branchings, and looked
up by sequential composition. The complete type system for programs is shown in
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(NIL)
� 	nil : (�; �) cmd

(ASSIGN)
� 	e : �; �(x) = � var

� 	x := e : (�; �) cmd

(SEQ)
� 	U : (�; �) cmd ; � 	P : (�′; �′) cmd ; �6�′

� 	U ; P : (�� �′; �� �′) cmd

(COND)
� 	e : �; � 	Pi : (�; �) cmd ; �6�

� 	if e then P0 else P1 : (�; �� �) cmd

(WHILE)
� 	e : �; � 	U : (�; �) cmd ; �� �6�

� 	while e do U : (�; �� �) cmd

(PAR)
� 	Pi : (�; �) cmd

� 	P0 ‖P1 : (�; �) cmd

(SUBTYPING)
� 	P : (�; �) cmd ; �′6�; �6�′

� 	P : (�′; �′) cmd

Fig. 3. Typing rules for concurrent programs.

Fig. 3, where we assume given a system allowing us to infer judgements � 	e : � about
the security level of an expression. These are used in the (ASSIGN), (COND) and (WHILE)
rules. Notice that the guard type plays no particular rôle in rules (NIL) and (ASSIGN),
which are plain adaptations of the ones in [21]. As in that paper, the side condition
�6� in the rules (COND) and (WHILE) is meant to avoid implicit insecure 3ow. Let
us comment a little on the rules for conditional branching, while-loops and sequential
composition, which are the main novelty w.r.t. [21,18]. As explained, the guard type
is at least � for a conditional branching or a while-loop testing an expression of level
�, and from then onwards it should remain at least � to prevent concatenation with
programs of a lower or incomparable level. Rule (SEQ) is precisely designed to avoid
sequencing “low” assignments after a program with “high” guards. This rules out the
kind of implicit 3ow exhibited by program (1). It also rules out the (semantically
equivalent, in a sequential setting) program

if xH = 0 then while tt do nil

else nil ;

yL := 1 (2)

which is not interference-free in our sense. Indeed, this example shows why the level
of conditional guards should be recorded as a guard type. The side condition �6� in
the rule (WHILE) is needed for the preservation of types during execution, as one can
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see from the unfolding of while e do P into if e then P; while e do P else nil.
Notice that if P0 and P1 are both typable in the typing context �, say with respective
types (�0; �0) cmd and (�1; �1) cmd , then their parallel composition (P0 ‖P1) is typable,
since both P0 and P1 have type (�0 � �1; �0 � �1) cmd , thanks to the (SUBTYPING) rule.

3. Properties of typed programs

In this section we prove some desired properties of our type system. The 4rst prop-
erty, subject reduction, states that types are preserved along execution.

Theorem 3.1 (Subject reduction). If � 	P : (�; �) cmd and (P; �)→ (P′; �′), then � 	
P′ : (�; �) cmd .

Proof. By induction on the inference of � 	P : (�; �) cmd , and then case analysis on
the last rule used in this inference. If this rule is the subtyping rule, we simply use
the induction hypothesis. We examine the main cases:

(ASSIGN). Here we have P= x := e with � 	e : � and �(x) = � var. Moreover, it must
be that P′ = nil and �′ = �[�(e)=x]. The theorem is trivial in this case, since � 	nil :
(�; �) cmd .

(SEQ). Here P=U ;Q with � 	U : (�1; �1) cmd , � 	Q : (�2; �2) cmd , �= �1 � �2 and �=
�1 � �2 with �16�2. There are two possibilities for a transition (P; �)→ (P′; �′).
If this results from (U; �)→ (U ′; �′), by means of (SEQ-OP1), we have P′ =U ′;Q,
where � 	U ′ : (�1; �1) cmd by induction, and we conclude using the rule (SEQ). If (SEQ-
OP2) is used, we have U= nil with (Q; �)→ (P′; �′). By induction � 	P′ : (�2; �2)cmd ,
and we use the subtyping rule to conclude.

(WHILE). Here P= while e do U and � 	U : (�; �′) cmd , with �= �� �′ and �6�.
If �(e) = tt we have P′ =U ;P, and since �′6� we may use the rule (SEQ) to conclude
� 	P′ : (�; �) cmd . Otherwise P′ = nil, and this case is trivial.

All the other cases are similar (in the case of (COND) we use subtyping).

We shall use the following assumptions about expressions:

Assumption 3.2 (Termination of expression evaluation). For any memory � and ex-
pression e, the value �(e) is de7ned.

Notice that this implies for instance that for any sequential program U �= nil ; · · · ;
nil and for any � there exist U ′ and �′ such that (U; �)→ (U ′; �′).

Assumption 3.3 (Simple security). If � 	e : �, then every variable occurring in e has
type �′ var in �, with �′6�.

We introduce now a notion of equality on memories, depending on a given type
environment � and a given set L⊆T of security levels, which are to be understood
as “low” security levels. In the following, L will always denote a downward-closed
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set of security levels, that is a set satisfying

� ∈ L & �6 � ⇒ � ∈ L:

Two memories are (�;L)-equal if they coincide on variables to which � assigns a
level in L. Intuitively, such memories are indistinguishable for an observer which has
access only to information of level in L.

De�nition 3.4 ((�;L)-Equality of memories). �=L
� �⇔def ∀x: �(x)=� var&�∈L⇒

�(x) = �(x).

In the examples we implicitly used the particular case ={L}
� , which is denoted ∼�

in [18]. As it has become standard, we use the notion of bisimulation [11,13] to (state
and) establish the security properties of concurrent programs. We shall actually use
several kinds of bisimulations. To de4ne these notions, it is convenient to introduce
some notations. First, we denote by � the re3exive closure of → , that is,

(P; �)� (P′; �′) ⇔def P′ = P & �′ = � or (P; �) → (P′; �′):

As usual, ∗→ is the re3exive and transitive closure of → . We say that P′ is a derivative
of P, denoted P P′, if for some � and �′ we have (P; �) ∗→ (P′; �′). Then, given a
typing context � and a set L of (low) security levels, we denote by P�;L the set
of “(semantically) high” programs, that is programs that never modify the low part of
the memory:

P ∈ P�;L ⇔def ∀P′; �; P′′; �′: P  P′ & (P′; �) ∗→(P′′; �′) ⇒ �′ =L
� �:

Clearly, if P ∈P�;L and P′ is a derivative of P then P′ ∈P�;L.

De�nition 3.5 ((�;L)-Bisimulation). A relation R on con4gurations is a (�;L)-
bisimulation if R is symmetric and (P; �)R (Q; �) implies
(i) �=L

� �
(ii) (P; �)→ (P′; �′)⇒ ∃Q′; �′: (Q; �)� (Q′; �′) & (P′; �′)R (Q′; �′).
The relation R is a strong (�;L)-bisimulation if it satis4es the conditions above,
where � is replaced by → . The (�;L)-bisimulation equivalence on con4gurations,
noted ≈L

� (resp. the strong (�;L)-bisimulation equivalence, noted ∼L
� ) is the largest

(�;L)-bisimulation (resp. the largest strong (�;L)-bisimulation).

Clearly, we have ∼L
� ⊆ ≈L

� , and the inclusion is strict, since for instance, for any
memories � and � such that �=L

� �, we have

(nil; �) ≈L
� (while tt do nil; �):

This is a consequence of the following:

Lemma 3.6 (Bisimilarity of high programs). The relation

R�;L
0 = {((P; �); (Q; �)) |P ∈ P�;L; Q ∈ P�;L & � =L

� �}
is a (�;L)-bisimulation.
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Proof. This is immediate, because if (P; �)→ (P′; �′) then P′ ∈P�;L and �′ =L
�

�=L
� �.

For technical reasons we introduce one last notion of bisimulation:

De�nition 3.7 (Quasi-strong (�;L)-bisimulation). A relation R on con4gurations is a
quasi-strong (�;L)-bisimulation if R is symmetric and (P; �)R (Q; �) implies
(i) �=L

� �:
(ii) P ∈P�;L and Q∈P�;L, or

(P; �)→ (P′; �′)⇒∃Q′; �′: (Q; �)→ (Q′; �′) & (P′; �′)R (Q′; �′):

The quasi-strong (�;L)-bisimulation equivalence on con4gurations, noted �L
� , is the

largest quasi-strong (�;L)-bisimulation.

It should be clear that a quasi-strong (�;L)-bisimulation is also a (�;L)-
bisimulation, and that a strong (�;L)-bisimulation is also a quasi-strong (�;L)-
bisimulation, and therefore we have ∼L

� ⊆ �L
� ⊆ ≈L

� . As in [16], we shall say, by
abuse of language, that a relation S on programs is a (strong, quasi-strong) (�;L)-
bisimulation if the relation

{((P; �); (Q; �)) |PSQ & � =L
� �}

is a (strong, quasi-strong) (�;L)-bisimulation. For instance, Lemma 3.6 shows that
the relation S�;L

0 given by

PS�;L
0 Q ⇔def P ∈ P�;L& Q ∈ P�;L

is a (�;L)-bisimulation. Observe also that quasi-strong bisimulation is not preserved
by parallel composition, as shown by

(nil ‖yL := 0) ��L
� (while tt do nil ‖yL := 0):

One should note that although there exists a largest (�;L)-bisimulation on programs
(since the union of a family of such relations is a (�;L)-bisimulation), that we still
denote ≈L

� , this is not a re3exive relation, since for instance the program yL := xH

is not bisimilar to itself. However, the relation ≈L
� on programs is a nonempty

(as shown by Lemma 3.6) partial equivalence relation. The domain of ≈L
� char-

acterizes the secure programs:

De�nition 3.8 (Secure programs). A program P is secure in the typing context � if
and only if P≈L

� P for any downward-closed set L of security levels.

We let the reader check that, for instance, the program of Example (1) is not secure
in this sense.

To establish the noninterference result, stating that a typable program is secure,
we need some preliminary lemmas. The following two lemmas con4rm the intuition,
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discussed earlier, behind the type judgements � 	P : (�; �) cmd . Both results are easily
proved by induction on the inference of type judgements.

Lemma 3.9 (Con4nement). If � 	P : (�; �) cmd then every variable assigned to in P
has type � var in �, with �6�.

Lemma 3.10 (Guard safety). If � 	P : (�; �) cmd then every loop or conditional guard
in P has type � in �, with �6�.

De�nition 3.11 (L-Boundedness). A program P is L-bounded in � if � 	P : (�; �)
cmd implies �∈L.

We shall often use the complementary notion of non L-boundedness: P is not L-
bounded in � if there exist �; �, with � =∈L, such that � 	P : (�; �) cmd .

De�nition 3.12 (L-Guardedness). A program P is L-guarded in � if there exist
�∈L and � such that � 	P : (�; �) cmd .

In the following, we shall most often use the terminology “(non)L-bounded” and
“L-guarded” without any explicit reference to the current typing context �. As a
consequence of subject reduction, both non L-boundedness and L-guardedness are
preserved by execution. Note that for any downward-closed L, by the Con4nement
Lemma a program which is not L-bounded cannot write on variables of low level, that
is in L, and therefore such a program is “high”, that is in P�;L. Note however that,
in general, a high program is not necessarily non L-bounded. For instance, assume
that the lattice of security levels is {L; A; B; H} with L=A�B and H =A�B. Then if
L= {L}, the program xA := 0;yB := 0 is high and L-bounded in this case. Similarly,
by the Guard Safety Lemma, a program which is L-guarded does not contain loop
guards of high level, that is not in L.

Lemma 3.13 (Behaviour of L-guarded programs). If P is L-guarded in � and �
=L

� �, then (P; �)→ (P′; �′) implies (P; �)→ (P′; �′), with �′ =L
� �′.

Proof. By induction on the inference of � 	P : (�; �) cmd , where �∈L, and by case
analysis on the last rule used in this inference. We examine the main cases.

(ASSIGN). Here P= x := e with � 	e : �, �(x) = � var, P′ = nil and �′ = �[�(e)=x]. By
Assumption 3.2, �(e) is de4ned. Let �′ = �[�(e)=x]. It is easy to see that �′ =L

� �′,
since if � =∈L then �′ =L

� �′ by the De4nition 3.4, while if �∈L then �(e) = �(e) by
Assumption 3.3.

(SEQ). Here P=U ;Q, � 	U : (�1; �1) cmd and � 	Q : (�2; �2) cmd with �= �1 � �2

and �16�2. If the transition (P; �)→ (P′; �′) is proved by means of (SEQ-OP1), that
is P′ =U ′;Q with (U; �)→ (U ′; �′), then we use the induction hypothesis, since �1 �
�2 ∈L⇒ �1 ∈L. This will give us (U; �)→ (U ′; �′), with �′ =L

� �′, and by (SEQ-OP1)
we conclude that (P; �)→ (U ′;Q; �′), as required. In the case where (SEQ-OP2) is used,
with U = nil and (Q; �)→ (P′; �′), we simply use the induction hypothesis.



G. Boudol, I. Castellani / Theoretical Computer Science 281 (2002) 109–130 119

(COND). Here P= if e then P1 else P2 with � 	e : �, � 	Pi : (�; �′) cmd , with �6�
and �= �� �′. Since �∈L, also �∈L, and thus �(e) = �(e) by Assumption 3.3.
Hence a transition (P; �)→ (Pi; �) is matched by (P; �)→ (Pi; �).

(WHILE). Here P= while e do U and � 	e : �, � 	U : (�; �′) cmd , with �6� and �= �
� �′. Clearly �∈L implies �∈L, therefore �(e) = �(e) by Assumption 3.3, and thus a
transition of the loop, which is necessarily of the form (P; �)→ (P′; �), will be matched
by (P; �)→ (P′; �).

The case of (PAR) is easy, since the components have the same type as the whole
program, and the case of (SUBTYPING) is immediate by induction.

This lemma is crucial for the proof of our main results, namely that typable programs
(and, in the next section, scheduled thread systems) are secure. Obviously, it could not
be stated in the original system of Volpano et al. [21], where the level of guards is
not recorded in the type.

Now, given � and L, let us de4ne inductively the relation S�;L
1 on sequential

programs as follows: U S�;L
1 V if and only if U and V are typable in �, and one of

the following holds:
1. U S�;L

0 V , that is U ∈P�;L and V ∈P�;L, or
2. V =U and U is L-bounded in �, or
3. U =U0;W and V =V0;W , where U0 S

�;L
1 V0 and W is not L-bounded in �.

Lemma 3.14. (i) The relation S�;L
1 is symmetric.

(ii) If U is typable in � then U S�;L
1 U .

(iii) If nilS�;L
1 V then V ∈P�;L.

Proof. The 4rst point is easy to check, by induction on the de4nition of S�;L
1 . For

the second point, if U is typable in � then either U is L-bounded in �, in which
case U S�;L

1 U by clause 2, or not, in which case U ∈P�;L, as we have seen, hence
U S�;L

1 U by clause 1. Finally, observe that if nilS�;L
1 V , this must be by clause 1

or 2, and in both cases this implies V ∈P�;L.

Theorem 3.15 (Sequential noninterference). The relation S�;L
1 is a quasi-strong

(�;L)-bisimulation, and therefore if U is typable in � then U is secure in �.

Proof. Let

R�;L
1 = {((U; �); (V; �)) |U S�;L

1 V & � =L
� �}:

By construction, (U; �)R�;L
1 (V; �) implies �=L

� �. We show, by induction on the
de4nition of S�;L

1 , that either U and V are both in P�;L, or if (U; �)→ (U ′; �′)
and (U; �)R�;L

1 (V; �) then there exist V ′ and �′ such that (V; �)→ (V ′; �′), with
(U ′; �′)R�;L

1 ; (V ′; �′). The case where U and V are both in P�;L, that is the case
of clause 1 is trivial, and therefore for the rest of the proof we assume that U and V
are not both in P�;L. In this proof we implicitly use the Subject Reduction Theorem,
which is needed to check that we are dealing with typable terms.
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Clause 2. We proceed by induction on the structure of U .

Assignment: Here U = x := e, U ′ = nil and �′ = �[�(e)=x]. Then the matching move is
(U; �)→ (nil; �′), where �′ = �[�(e)=x]. Indeed from �=L

� � we deduce �′ =L
� �′ since

U is L-bounded, and thus by Assumption 3.3 �(e) = �(e).

Sequence: Here U =U0;W . We distinguish two cases, according to which of the rule
(SEQ-OP1) or (SEQ-OP2) is used to deduce the transition (U; �)→ (U ′; �′).
1. If (U; �)→ (U ′; �′) is proved by means of (SEQ-OP1), that is U ′ =U ′

0;W with
(U0; �)→ (U ′

0; �
′), then there are two possibilities:

1.1. W is L-bounded in �: then � 	W : (�2; �2) cmd implies �2 ∈L, therefore
since U is typable there exist �1; �1 such that � 	U0 : (�1; �1) cmd , with �1 ∈L
(this is where we use the side condition of the rule (SEQ)). Thus U0 is
L-guarded. Then by Lemma 3.13 we have (U0; �)→ (U ′

0; �
′), with �′ =L

� �′.
Therefore (U; �)→ (U ′

0;W; �′) by (SEQ-OP1), which is the required matching
move by clause 2 again since U ′

0;W is L-bounded (because �2 ∈L implies
�1 � �2 ∈L).

1.2. If W is not L-bounded, then W ∈P�;L. Since we assumed U =∈P�;L, U0

must be L-bounded, and by induction on the structure of the programs, there
exist U ′′

0 and �′ such that (U0; �)→ (U ′′
0 ; �

′) with U ′
0 S

�;L
1 U ′′

0 and �′ =L
� �′.

Then (U; �)→ (U ′′
0 ;W; �′) by (SEQ-OP1), which is the required matching move

by clause 3.
2. Let (U; �)→(U ′; �′) be proved by means of (SEQ-OP2), with U0 =nil and (W; �) →

(U ′; �′). Since we assumed U =∈P�;L, W must be L-bounded, and by induction
on the structure of the programs, there exist U ′′ and �′ such that (W; �)→ (U ′′; �′)
with U ′ S�;L

1 U ′′ and �′ =L
� �′. Then (U; �)→ (U ′′; �′) by (SEQ-OP2), which is the

required matching move.

Conditional: Here U = if e then U1 else U2 with � 	e : �, � 	Ui : (�; �′) cmd , with
�6� and �= �� �′. Then �∈L implies �∈L, and by Assumption 3.3 we have
�(e) = �(e). Thus the move (U; �)→ (Ui; �) is matched by (U; �)→ (Ui; �), since S�;L

1
is re3exive. The case of a while-loop U = while e do W is similar.

Clause 3. Here U =U0;W and V =V0;W , where U0S
�;L

1 V0 and W is not L-bounded
in �. We assumed that U and V are not both in P�;L. Then U0 �= nil, since otherwise
we would have V0 ∈P�;L by Lemma 3.14(iii), hence U ∈P�;L, and V ∈P�;L, for
W ∈P�;L. Therefore the transition (U; �)→ (U ′; �′) must be proved by means of (SEQ-
OP1), that is U ′ =U ′

0;W with (U0; �)→ (U ′
0; �

′), and we use the induction hypothesis
related to U0 S

�;L
1 V0 (notice that, due to our assumption about U and V , U0 and V0

cannot be both in P�;L).

To extend this result to concurrent programs, we de4ne inductively the relation S�;L
2

as follows: PS�;L
2 Q if and only if P and Q are typable in �, and one of the following

holds:
1. PS�;L

0 Q, that is P ∈P�;L and Q∈P�;L, or
2. Q=P and P is L-bounded in �, or
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3. P=U ;R and Q=V ;R, where U S�;L
2 V and R is not L-bounded in �, or

4. P=P1 ‖P2 and Q=Q1 ‖Q2 with Pi S
�;L
2 Qi.

It is easy to see that Lemma 3.14 holds, replacing sequential programs by concurrent
ones, for this relation too.

Theorem 3.16 (Concurrent noninterference). The relation S�;L
2 is a (�;L)-

bisimulation, and therefore if P is typable in � then P is secure in �.

Proof. For the clauses 1, 2 and 3, the proof is mostly the same as in the previous
theorem (using the proof of Lemma 3.6). The remaining cases only concern parallel
composition (in clauses 2 and 4), and are trivial, using the induction hypothesis.

Observe that if �1 and �2 are incomparable levels in (T;6), they may be separated
by a downward-closed set L, namely L= {� | �6�1}, and therefore a typable program
cannot yield any 3ow from level �2 to �1 (and conversely). In other words, information
3ow arising from typable programs is indeed of the kind allowed by the security lattice,
that is from � to � where �6�.

As we have seen, (P ‖Q) is typable as soon as both P and Q are. Therefore, the
previous result means that there can be no information leakage from one secure program
to another, concurrent one. Then one may say that our result shows that typed programs
are “internally secure”, that is they are guaranteed against attacks coming from other,
concurrent programs. Notice that, assuming that there is a lowest security level ⊥, a
program that has direct access only to the lowest information is always typable, with
type (⊥;⊥) cmd . Such a program may be regarded as a potential attacker.

As is well-known, bisimulation equivalence is a strong relation, and therefore our
noninterference result is quite sharp. In particular, bisimulation equivalence is usually
stronger than trace semantics, and therefore we can draw some consequences of our
result regarding the trace behaviour of programs. To this end, let us introduce a nota-
tion: we write (P; �)�L

� (P′; �′) if and only if �′ �=L
� � and there exist P0; �0; : : : ; Pn; �n

(possibly with n= 0) such that �i =L
� � for all i and

(P; �) = (P0; �0) → (P1; �1) → · · · (Pn; �n) → (P′; �′):

Given an initial memory �0, let us de4ne the set, denoted TraceL� (P; �0), of (L; �)-
traces of the program P as the set of 4nite or in4nite sequences �0; �1; : : : ; �n : : : such
that there exist P1; : : : ; Pn : : : with

(P; �0)�L
� (P1; �1)�L

� · · · (Pn; �n)�L
� · · ·

Note that, by de4nition, �i+1 �=L
� �i for all i. The (�;L)-equality of memories is easily

extended into a (�;L)-equality of traces of the same length, as follows:

�0; �1; : : : ; �n : : : =L
� �0; �1; : : : ; �n : : : ⇔def ∀i: �i =L

� �i:

Then we can show that a typable program has the same traces (up to =L
� ) when

execution starts from (�;L)-equal memories:
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Corollary 3.17 (Trace equivalence). Let L be a downward-closed set of security lev-
els. If P is typable in � and �=L

� � then for any trace t ∈ TraceL� (P; �) there exists
t′ ∈ TraceL� (P; �) such that t′ =L

� t.

Proof. By the Theorem 3.16, we have (P; �)≈L
� (P; �), and it is easy to see that

(P; �) �L
� (P′; �′) and (P; �)≈L

� (Q; �) implies that there exist Q′ and �′ such that
(Q; �)�L

� (Q′; �′).

4. Scheduling sequential programs

As pointed out by Smith and Volpano in [18], their noninterference result for con-
current threads relies on the hypothesis of a purely nondeterministic execution. This
result breaks down if particular scheduling policies are enforced. We recall the exam-
ple given in [18]. Assume a round robin time slicing scheduler, with a time slice of t
steps, t¿2, and consider the composition P=U1 ‖U2 of the following two threads:

U1 = if xH = 0 then V else nil ;

yL := 0

U2 = yL := 1 (3)

Then, supposing that V is a convergent program that takes at least t − 1 steps to
execute, and that the scheduler gives precedence to U1, the value of yL will depend
on that of xH. The solution proposed in [18] to preserve noninterference in the pres-
ence of an arbitrary scheduler consists in forbidding conditionals with high guards, 3

that is, again assuming that there is a lowest security level, to accept only conditional
branching on low-level expressions. This condition, combined with the exclusion of
loops with high guards, required for multi-threading, resulted in [18] in a very severe
limitation: the impossibility for any program to test a variable, except at the lowest
level. Let us immediately point out that, with the typing we propose in this paper, we
cannot accept any scheduling policy. For instance, if the scheduling of two concur-
rent threads consists in performing the 4rst, up to completion, and then the second,
we may reproduce the insecure 3ow exhibited by program (1), simply by executing
(while xH = 0 do nil ‖yL := 1) under this scheduling. Therefore, we have to reject
some scheduling policies, and the way we do that is by encoding these policies into
programs, and reject the non typables ones.

One may observe that the program U1 of Example (3) is actually ruled out by our
typing rule for conditional branching, which ensures that low assignments cannot be
performed after a high test (cf. Example 2). To show that our typing is indeed adequate
for dealing with scheduling, we 4rst formalise what it means for a system of concurrent
programs to be controlled by a scheduler. Essentially, this means running the system

3 It is also suggested there that a better approach to scheduling would be probabilistic. Indeed, a whole
line of research on probabilistic noninterference has been developed, but this will not be our concern here,
where we stick to a possibilistic setting.
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(WHEN-OP1)
�(e) = tt; (U; �)→ (U ′; �′)

(when e do U; �)→ (when e do U ′; �′)

(WHEN-OP2)
�(e) = tt; (U; �)9

(when e do U; �)→ (when e do U; �)

(CONTROL-OP1)
(P; �)→ (P′; �′); (T; �)→ (T ′; �′′)

(P[T ]; �)→ (P′[T ′]; �′ � ��′′)

(CONTROL-OP2)
(P; �)→ (P′; �′); (T; �)9

(P[T ]; �)→ (P′[T ]; �′)

Fig. 4. Additional operational rules for systems.

in lockstep with a program that implements the scheduling policy. To describe con-
trolled execution, we use a construction P[Q], which makes P and Q move hand
in hand, but allows the controller, P, to proceed by itself whenever Q is unable to
move. Then a system consisting of n sequential programs Ui controlled by a scheduler
Sched will be described as

Sched[T1‖ · · · ‖Tn];

where the Ti are adaptations of the Ui, so that the threads can be triggered and sus-
pended by the scheduler. To this end we introduce a new construct when e do U ,
whose semantics is that U is allowed to proceed, for one step, when the condition e
holds. It is technically convenient to introduce two more levels in the syntax: besides
the sequential and concurrent programs U and P, written according to the grammar
given in Section 2, there is a set of “thread systems” T , and a set of “controlled thread
systems” S built as follows:

T ::= when e do U | (T‖T );

S ::= P[T ]:

Letting w(P) denote the set of variables written (assigned to) by P, and similarly for
w(T ), the construct P[T ] is only legal under the condition w(P) ∩ w(T ) = ∅.

Notation 4.1. We use (T; �)→ to mean ∃T ′; �′ such that (T; �)→ (T ′; �′), and (T; �)9
for the negation of (T; �)→ (and similarly for the other syntactic categories).

The semantics of the new constructs is given in Fig. 4, where �′ � � �′′ represents
the memory � with the conjunction of the updates operated by P and by T , that is
�′\� ∪ �′′\� ∪ (�′ ∩ �′′). As we said, the scheduled sequential programs are written
Ti = when ei do Ui where the expression ei is the “proceed” signal for program Ui,



124 G. Boudol, I. Castellani / Theoretical Computer Science 281 (2002) 109–130

(WHEN)
� 	e : �; � 	U : (�; �) cmd ; �6�

� 	when e do U : (�; �) cmd

(CONTROL)
� 	P : (�; �) cmd ; � 	T : (�; �) cmd ; �¿�

� 	P[T ] : (�; �) cmd

Fig. 5. Additional typing rules for systems.

set up by the scheduler. For instance, assuming that each ei is a variable si, initially
false, the following program

Rt
n = i := 0 ;

while tt do k := 0;

(while k ¡ t do si+1 := tt; si+1 := 3 ; k := k + 1);

i := [i + 1]mod n

describes a scheduler for a system of n threads, implementing round robin with time
slice t. It is easy to imagine how to program other scheduling policies in a similar
style. For instance, assuming that there is a random function in the language, such
that the evaluation of random(n) consists in randomly choosing an integer i such that
16i6n, then

while tt do (i := random(n); si := tt; si := 3 )

describes a uniform probabilistic scheduler. Notice also that, if the controlled threads
have the form when s ∧ si do Ui, the scheduling enforced by

s1 := tt; · · · ; sn := tt; s := tt; while tt do nil

is—assuming that s is initially false—simply the nondeterministic interleaving of the
Ui’s. We see from these examples that the scheduler usually needs some time to
determine the index of the next thread to execute, and this is why we need the rule
(CONTROL-OP2). This rule also allows one to ignore a terminated thread, and therefore
the rule (WHEN-OP2), which is technically convenient, is harmless.

The typing rules for the new operators are given in Fig. 5. The side-conditions in
rules (WHEN) and (CONTROL) need some comments. First, note that a when statement
can induce an implicit 3ow, just like the conditional and while statements, as for
instance in the system:

when xH = 0 do yL := yL + 1:

This explains the requirement �6� in rule (WHEN). Now let us discuss the side con-
dition in the rule (CONTROL). In a controlled thread system P[T ] where

T = (when e1 do U1‖ · · · ‖when en do Un);
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the conditions ei are normally managed by the controller process P. Then if the Ui’s
have types (�i; �i) cmd , to type P[T ] the conditions ei must be chosen so that they
have types �i satisfying

� = �1 � · · · � �n6�1 � · · · � �n = �:

If that is the case, P[T ] may be typed with (�; �) cmd , regardless of the �i’s, thanks
to the side condition in rule (WHEN), and to the fact that we only record the level
of the condition as a guard in this rule. Therefore, the side condition �¿� in the
rule (CONTROL) is more a constraint for the scheduler P than for the thread sys-
tem T . Typically, programs of (L; ) cmd type can only be controlled by schedulers of
type (L; L) cmd . One can see for instance that the round robin scheduler Rt

n has type
(L; L) cmd in a context where the variables i, k and si have type L var. Therefore, for
any typable Ui’s (in this context 4), the system

Rt
n[when s1 do U1‖ · · · ‖when sn do Un]

is typable. The side condition �¿� in the rule (CONTROL) precludes, for instance,
schedulers whose unique type is (L; H) cmd . Indeed, it would be unsafe to accept
programs of this kind as schedulers. For instance, if

P = s := tt ; while xH = 0 do nil;

U = yL := 0 ; yL := yL + 1;

then the system P[when s do U ] is not interference-free, and would be typable without
the side condition in the rule (CONTROL), with �(s) =L var. Let us see another, similar
example. Suppose for instance that we wish to design a scheduler which is able to
detect the termination of a thread Ui, and then to skip it from execution. Then we
may transform Ui into when ei do (Ui ; ti := tt) where the variable ti is a termination
signal, initially false. Now if Ui has type ( ; H) cmd , then ti must be high. Certainly,
the scheduler will have to test the value of this variable, and therefore it must have
type ( ; H) cmd , but then, due to the condition �¿� in the (CONTROL) rule, it must
have type (H;H) cmd , and it can only control programs of type (H; ) cmd . Indeed,
checking the termination of a program with high guards may be dangerous, as shown
by the system—with a mistaken, still typable scheduler:

P[when s1 do (U ; t1 := tt) ‖ when s2 do (yL := 0 ; yL := yL + 1)];

where

P = s1 := tt ; s2 := tt ; while not t1 do nil:

It is easy to check that the Subject Reduction Theorem and the Con4nement Lemma,
and therefore also Lemma 3.6, extend to the new language. Similarly, the de4nitions
of (strong, quasi-strong) (�;L)-bisimulation and L-boundedness remain formally the

4 Note that the controlled programs Ui usually do not contain the control variables manipulated by the
scheduler. Indeed, i and k should be local to Rt

n—for a treatment of local variables, see [21].
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same as those for the base language (modulo the replacement of programs by systems),
as well as the de4nition of secure systems. Given a typing context � and a downward-
closed set L of security levels, let us de4ne the relation S�;L

3 on controlled thread
systems as follows: S0 S

�;L
3 S1 if and only if S0 and S1 are both typable in �, and

S0 = P[when e1 do U1 ‖ · · · ‖ when en do Un];

S1 = P[when e1 do V1 ‖ · · · ‖ when en do Vn]

with
1. P is L-guarded in �, and
2. for all i there exists �i ∈L such that � 	ei : �i, and
3. Ui �L

� Vi for all i.

Lemma 4.2. The relation S�;L
3 is a strong (�;L)-bisimulation.

Proof. Let �=L
� � and (S0; �)→ (S ′

0; �
′). There are two cases:

1. If this transition is proved by means of (CONTROL-OP1) then

S ′
0 = P′[· · · ‖ when ei do U ′

i ‖ · · ·];
where (P; �)→ (P′; �0), (when ei do Ui; �)→ (when ei do U ′

i ; �1) and �′ = �0 � ��1.
Since P is L-guarded in �, by Lemma 3.13, there exists �0 such that (P; �)→ (P′; �0)
with �0 =L

� �0. Regarding the transition of the thread system, there are again two cases:
1.1. The transition is proved by means of (WHEN-OP1), that is �(e) = tt and (Ui; �)→

(U ′
i ; �1). Since Vi �L

� Ui, either there is a transition (Vi; �)→ (V ′
i ; �1) such that

V ′
i �L

� U ′
i and �1 =L

� �1, or both Ui and Vi are in P�;L. By the Assumption 3.3
we have �(ei) = �(ei) = tt (since ei is low in �), and therefore in the 4rst case
(when ei do Vi; �)→ (when ei do V ′

i ; �1) by (WHEN-OP1), hence

(S1; �) → (P′[· · · ‖ when ei do V ′
i ‖ · · ·]; �′);

where �′ = �0 � ��1 =L
� �′, and this is the required matching move. Otherwise,

Ui ∈P�;L and Vi ∈P�;L, and we distinguish again two cases: either there exist V ′
i

and �1 such that (Vi; �)→ (V ′
i ; �1), and then �1 =L

� �=L
� �=L

� �1, and we conclude
as in the previous case, or (Vi; �)9 . Then (when ei do Vi; �)→ (when ei do Vi; �)
by (WHEN-OP2), with �=L

� �=L
� �1, and

(S1; �) → (P′[· · · ‖when ei do Vi‖ · · ·]; �0)

is the required matching move in this case.
1.2. The transition is proved by means of (WHEN-OP2), that is �(e) = tt, (Ui; �)9 and

U ′
i =Ui and �1 = �. Since Vi �L

� Ui, we have Vi ∈P�;L, and we distinguish two
cases, depending on whether (Vi; �) may perform a transition or not. We conclude
as in the previous case.

2. If this transition is proved by means of (CONTROL-OP2) then S ′
0 =P′[T0] with

(P; �)→ (P′; �′) and (T0; �)9 , where

T0 = (when e1 do U1‖ · · · ‖when en do Un):
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It is easy to see that (T0; �)9 implies �(ei) = 3 for all i, and therefore also �(ei) = 3
by Assumption 3.3 since the ei’s are low in �. Then (T1; �)9 where

T1 = (when e1 do V1 ‖ · · · ‖ when en do Vn):

Since P is L-guarded in �, by Lemma 3.13, there exists �′ such that (P; �)→ (P′; �′)
with �′ =L

� �′, and therefore (S1; �)→ (P′[T1]; �′), and this is the required matching
move.

We are now ready to prove our main result:

Theorem 4.3 (Noninterference for controlled thread systems). If S is a controlled
thread system typable in � then S is secure in �.

Proof. Given a downward-closed set L of security levels, let us still denote by P�;L

the set of high programs and systems (of any kind), and by S�;L
0 the cartesian product

P�;L ×P�;L. It is easy to see (as in Lemma 3.6) that this is a (�;L)-bisimulation,
and therefore the relation

S�;L
4 = S�;L

0 ∪S�;L
3

is a (quasi-strong) (�;L)-bisimulation, by the previous lemma. We show that if S
is typed in � then SS�;L

4 S. This is obvious if S is not L-bounded in �, by the
(extended) Con4nement Lemma, since S is in P�;L in this case. If S is L-bounded
in �, and S =P[T ] where

T = (when e1 do U1‖ · · · ‖when en do Un);

then a typing � 	S : (�; �) cmd may be inferred either using the (SUBTYPING) or the
(CONTROL) rule. More precisely, there exist �′ and �′ such that � 	S : (�′; �′) cmd by
the (CONTROL) rule, that is � 	P : (�′; �′) cmd and � 	T : (�′; �′) cmd with �6�′¿�′

and �′6�. Since S is L-bounded in �, we have �′ ∈L, and therefore P is L-guarded
in �. Now � 	T : (�′; �′) cmd may be proved either using the (SUBTYPING) or the (PAR)
rule—or the (WHEN) rule if n= 1. Then it is not diUcult to see that there exist �i,
�i and �i for each i such that � 	ei : �i and � 	Ui : (�i; �i) cmd with �′6�1 � · · · � �n
and �1 � · · · � �n6�′ and therefore �i ∈L for all i. Finally, we have Ui �L

� Ui for all
i by Theorem 3.15, and this concludes the proof.

5. Conclusion and related work

We have addressed the question of secure information 3ow in systems of concurrent
programs. This covers one of the security problems that can arise, for instance, when
a mobile program visits diKerent sites, namely that of preserving the con7dentiality of
the visited sites’ private data. In fact, in [5], it is shown how a form of noninterference
called nondeducibility on composition may be used to model also other security prop-
erties like authenticity, nonrepudiation and fairness. Noninterference thus appears as a
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rather interesting notion to study when security is concerned. On the other hand, it may
be argued [10] that covert channels, that is implicit information 3ows, are unavoidable
in practice, as they can arise also at the hardware level. Thus the aim of statically
ensuring the absence of covert channels might be a hard one to realise. We certainly
do not claim here to cover the whole range of possible attacks from a hostile party.

The issue of noninterference has been largely studied in the literature, using diKer-
ent models, and it is not our intention to review the various approaches. We focused
on the approach of Volpano et al., as it gives an elegant treatment for a fairly stan-
dard language, which can be assumed to be the kernel of more sophisticated practical
languages.

The question of secure information 3ow and noninterference has also been investi-
gated in the setting of process calculi [5,15]. More recently, there have been studies
on noninterference for functional languages [14] and mobile process calculi [9,8,7].
The latter papers are closer to our work, as they use a type system to enforce non-
interference. The treatment in [9,8], however, seems overly restrictive: it amounts (at
least in the core calculus) to forbid all control 3ow from actions on high channels to
actions on low channels. In [9], the core calculus is extended with more sophisticated
constructs; in the extended calculus some actions may be classi4ed as “innocuous”,
and the restriction on control 3ow may be relaxed when these actions are involved.
The papers [14,7] are less restrictive and closer in spirit to our approach, as they try to
distinguish the dangerous control 3ow (implementing information 3ow) from the harm-
less control 3ow which should not be restricted. Another related paper is [1], which
studies secrecy properties in security protocols expressed in the spi-calculus. There
again, a type system is used to ensure the security properties.

As concerns noninterference in the presence of scheduling policies, the most popu-
lar approach has been so far the probabilistic one, taken for instance in [20,16]. Our
intention here was to handle scheduling entirely within a possibilistic setting. It should
be noted, also, that in [20,16] scheduling is introduced at the semantic level (adding
probabilities to the transitions), while we express scheduling policies—which, after all,
are programs—at the syntactic level. This has the advantage of allowing us to type
the schedulers themselves, and express through typing conditions the restrictions one
needs to impose on any reasonable scheduling policy for multilevel systems. This is
in line with the view expressed by Sabelfeld and Sands [16], where a scheduler is
described as a “mechanism for selecting threads which itself satis4es some noninterfer-
ence property”. Moreover, [16] also identi4es a few characteristics which are deemed
necessary for schedulers to be well-behaved in a multilevel security setting. Essentially,
schedulers should be allowed to have access to the low part of the memory (to allow
some interaction with the controlled threads), and be able to use the history of thread
creation=generation along the computation, which may be of high level. In our setting
we are able to express more precise conditions, for instance that schedulers allowed to
test the termination of high threads should themselves be high-level programs. How-
ever, it would be interesting to compare more precisely our syntactic approach with
the probabilistic approach of [20,16].

As we have seen, conditional branchings combined with scheduling can introduce
new interferences due to the unbalanced duration of the branches. Some proposed
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solutions to this problem rely on a controlled execution time for conditional branchings
with high guards. For instance, in [20], a “protect” construct is used to encapsulate these
conditional branchings as atomic operations. Another solution was presented by Agat
[2], and proved correct in [16], where the branches of high-guarded conditionals are
padded so that they always have the same duration. It should be noted that both these
approaches allow loops of low-level only. Here we have adopted a diKerent solution
to this speci4c problem, which allows us to deal uniformly with various notions of
guards. For instance, with our notion of type it is very easy to deal with the standard
wait=signal primitives used for synchronisation and cooperative scheduling.

By the time we started revising this paper, and thanks also to one of the anonymous
referees, we became aware of an independent paper by Smith [17] which was about
to appear (indeed, within a similar time frame as our extended abstract [4]). As it
turns out, Smith’s paper proposes a type system which is identical to ours, with the
additional possibility of recording the running time of programs when this is known
statically, thus incorporating the above-mentioned timing techniques for conditional
branchings in the type system. Indeed, Smith’s concern is in controlling time leaks, of
which scheduling leaks are a particular case. The absence of time leaks is formalised
as a property of probabilistic noninterference. Since our type system is slightly more
restrictive than Smith’s one (in the sense that the class of typable programs is smaller),
it also implies a form of probabilistic noninterference.

Finally, let us mention that the type system presented here is diKerent from the
one of [4], where the level of conditional guards does not need to be taken into
account as long as scheduling is not considered. Instead, the typing rule for loops is
more restricted: loops are only allowed to have uniform types of the form (�; �) cmd .
This alternative type system also guarantees noninterference for concurrent programs
(without scheduling), and we conjecture that it allows a larger class of programs to be
typed. On the other hand, the solution for scheduling we propose here is more generous
than that of [4], as long as we are only interested in scheduling sequential threads.

An issue which has not been addressed here, but is planned for future work, is the
feasibility of checking noninterference using a type inference algorithm, in the line of
[19]. Current work is also oriented towards the treatment of more realistic languages,
as advocated for instance in [12], including exceptions and higher-order constructs.
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