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Abstract. We propose a type system to ensure the property of nonin-
terference in a system of concurrent programs, described in a standard
imperative language extended with parallelism. Our proposal is in the
line of some recent work by Irvine, Volpano and Smith. Our type system,
as well as our semantics for concurrent programs, seem more natural and
less restrictive than those originally presented by these authors. More-
over, we show how to adapt the type system in order to preserve the
noninterference results in the presence of scheduling policies, while re-
maining in a nonprobabilistic setting.

1 Introduction

The aim of this paper is to study the notion of secure information flow, and
more specifically of noninterference (a notion first introduced by Goguen and
Meseguer in [4]) in the setting of concurrency. Our starting point is the pa-
per [15] by Volpano, Smith and Irvine, and the subsequent paper [12] by Smith
and Volpano, where noninterference is enforced by means of a simple type system
in an imperative language with security levels. The language considered in [15]
is purely sequential, and is extended in [12] with asynchronous parallelism (in-
terleaving). In this introduction, and in the examples given in the paper, the
security levels will simply be high and low. High-level variables are supposed to
contain secret information, while low-level variables contain public information.
However all results will be given for an arbitrary lattice of security levels.

In Volpano et al.’s work, noninterference means that variables of a given level
do not interfere with those of lower levels: more precisely, the values of low-level
variables are not dependent on the values of high-level variables. Noninterference
is meant to model the absence of information flow from high level to low level.
Such information flow is considered insecure, as it amounts to the disclosure of
secret information into the public domain. Insecure flow can be explicit, when
assigning the value of a high variable to a low variable, or implicit, when testing
the value of a high variable and then assigning to a low variable, for instance.
In the approach of [15,12], these situations are prevented by means of a type
system. More precisely, explicit flow is prevented by requiring that the level of the
assigned variable be at least as high as that of the source variable, while implicit
flow is prevented by asking that the level of the commands in the branches of a
conditional (the level of a command being that of its lowest assigned variables)
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γ : if PIN = 0 then tβ := tt else tα := tt

α : while tα ̸= tt do nil ; r := 0 ; tβ := tt

β : while tβ ̸= tt do nil ; r := 1 ; tα := tt

PIN , tα, tβ : boolean variables of type H

r : boolean variable of type L

γ : thread of type H, α,β : threads of type L

Fig. 1. Information Flow through Control Flow

be at least as high as that of the tested variable. Implicit flow can also arise in
while-loops, and is prevented by a similar condition on the type of the body of
the loop.

In fact, because of while-loops, the definition of noninterference is more pre-
cise than what is stated above: it says that no change in the values of low-level
variables should be observed as a consequence of a change in high-level variables,
provided that the program terminates successfully. Using subscripts to explicitly
indicate the security level of a variable, consider the following program, that
terminates if xH ̸= 0 and loops forever (doing nothing) otherwise:

while xH = 0 do nil ; yL := 1 (1)
Should this program be accepted, that is, should it be typable? According to
the above definition of noninterference the answer is “yes”, since whenever the
program terminates it produces the same value yL = 1 for its low-level variable.
Indeed, this program is typable in Volpano and Smith’s type system, since the
loop is typable and the sequential composition of typable programs is always
typable.

However, accepting such a program leads to problems when parallelism is
introduced in the language. These problems can be concisely described as “dis-
guising information flow as control flow”. Let us illustrate the problem by means
of an example, which is a simplified version of the PIN example given by Smith
and Volpano in [12]. In this example, given in Figure 1, three threads α,β and
γ are run (asynchronously) in parallel. There are four variables, a high-level
variable PIN tested by thread γ, two high-level variables tα and tβ serving as
“triggers” for threads α and β, and a low-level variable r written by α and β. As
can be easily seen, with initial values tα = tβ = ff the effect of the program is to
copy the value of the secret variable PIN into the public variable r. The illicit
information flow from PIN to r is implemented through the control flow from γ
to α or β. However, if we assume that a system of concurrent threads is typable
provided each component is typable, this particular system is to be accepted.

To circumvent this problem, Smith and Volpano propose in [12] to forbid the
use of high-level variables as guards in while-loops, that is, assuming that there
is a lowest security level, to accept only while-loops of low level. While ruling
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out the program in (1), and also the threads α and β of the PIN example, this
solution seems a bit drastic. It excludes inoffensive programs such as while xH =
0 do nil. We shall propose here a different solution to the problem raised by
while-loops in the presence of parallelism, which allows this program to be typed,
while ruling out the programs of example (1) and Figure 1. Our solution is based
on the observation that a program such as

while xH = 0 do nil

should indeed be considered with some care in a concurrent setting, but only as
a “guard”, that is, as regards what may follow it. In the context of concurrent
threads, if the control comes back to this while loop, this may be with a value for
xH different from 0, contrarily to what happens in a sequential setting. In other
words, this program may observe the behaviour of other, concurrent components,
in the course of their execution, and influence accordingly the behaviour of the
thread in which it participates. Technically, this means that we will abandon the
big-step semantics which is the basis of Volpano et al.’s analysis in favor of a small
step semantics for programs, which is the approach usually adopted in dealing
with parallelism. Our aim is then to ensure a stronger form of noninterference,
where the course of values – not just the final value – of a low-level variable does
not depend upon the value of high variables. Typically, the program (1) is no
longer interference-free in this stronger sense. In order to reject it, we introduce
a refinement of the type system, where the level of a guard – the expression
tested by a while loop – is taken into account in sequential composition.

We will also examine the situation where a scheduling policy is in force in a
thread system: we will introduce a few new programming primitives to describe
formally such a situation, and show how to adapt the type system for this new
setting, where new interference phenomena arise. As can be expected, this will
result in a slight restriction on the type of certain programs, though not as severe
as that prefigured in [12].

The rest of the paper is organised as follows. In Section 2 we introduce the
language, its operational semantics and its type system. Section 3 presents the
properties of typed programs, including subject reduction and noninterference.
Finally, in Section 4 we consider the extended language with scheduling policies.
The proofs are omitted from this extended abstract. They are to be found in the
full version of the paper [2].

2 The Language and Type System

The language we consider is essentially that of [12] (where e stands for a boolean
or arithmetic expression, whose syntax we do not detail here). We use the follow-
ing two-level syntax, where U, V denote sequential programs, while P, Q denote
general (concurrent) programs:

U, V . . . := nil | x := e | U ; V | if e then U else V | while e do U

P, Q . . . := U | U ; P | if e then P else Q | while e do P | P ∥ Q



Noninterference for Concurrent Programs 385

Note that on the left of a sequential composition, we must have a sequential
program. Thus programs of the form (P ∥ Q); R are not allowed. With this
restriction, our language is still more general than that of [12], which describes
concurrent systems as collections of threads, thus allowing only top-level paral-
lelism, while we allow the dynamic spawning of new threads.

The operational semantics of the language is given in terms of transitions
between configurations (P, µ) → (P ′, µ′) where P, P ′ are programs and µ, µ′

stand for memories, that is mappings from variables to values. These mappings
are extended in the obvious way to expressions, whose evaluation is assumed to
be atomic as in [12]. We use the notation µ[v/x] for memory update. The rules
specifying the operational semantics of programs are presented in Figure 2. As
pointed out already in the introduction, the semantics used here is a small step
semantics, as opposed to the big step semantics of [12]1. The rules are fairly
standard, and we shall not comment on them.

In the introduction we argued that, in a small-steps semantics, the pro-
gram (1) should be treated as another case of implicit information flow. Intu-
itively, when exiting a loop one gets some information about its guard; it seems
then appropriate to require that what follows the loop – its “continuation” –
have level at least as high as that of the loop guard. This will be the basic idea
of our new type system, which is closely inspired by that given by Volpano et
al. in [15] – however as suggested by the above example it will be more restrictive
than that of [15] on the sequential sublanguage, because of our more detailed
observation of programs.

The types of data and expressions are security levels, that is elements of a
lattice (S,≤). We denote the operations of meet and join respectively by ⊓ and &.
These types are ranged over by τ,σ. In the examples, the lattice of security levels
will simply be {L, H}, with L < H. The types of variables (when used in the left-
hand side of an assignment) are of the form τ var. Our first point of departure
from [15] concerns the types for programs. Type judgements in [15] are of the
form Γ ⊢ P : τ cmd, where Γ is a mapping from variables to types of variables,
i.e. elements of {τ var | τ ∈ S}. The meaning of Γ ⊢ P : τ cmd is that in the
type environment Γ , τ is a lower bound for the level of the assigned variables
of P . In line with this intuition, subtyping for programs is contravariant, that is
τ cmd ≤ τ ′ cmd if τ ′ ≤ τ . Thus for instance any program of type H cmd can
be downgraded to type L cmd. A program of type H cmd is guaranteed not to
contain any assignment to a low variable.

To take into account loop guards, we shall use here more refined types
(τ,σ)cmd, where the first component τ plays the same rôle as in the type τ cmd,
while the second component σ is the guard type, an upper bound on the level of
the loop guards occurring in a program. Accordingly, the subtyping for programs
is contravariant in its first component and covariant in the second:

(τ,σ) cmd ≤ (τ ′,σ′) cmd if τ ′ ≤ τ and σ ≤ σ′

1 In fact, the semantics of [12] is a mixture of small and big step semantics: tran-
sitions are given between configurations but there are two kinds of configurations,
intermediate and final ones, suggesting that termination should be observed.
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(Assign-Op)
(x := e, µ)→ (nil, µ[µ(e)/x])

(Seq-Op1)
(U, µ)→ (U0, µ0)

(U ; P, µ) → (U0; P, µ0)

(Seq-Op2)
(P, µ)→ (P 0, µ0)

(nil; P, µ)→ (P 0, µ0)

(Cond-Op1)
µ(e) = tt

(if e then P else Q, µ) → (P, µ)

(Cond-Op2)
µ(e) ̸= tt

(if e then P else Q, µ) → (Q, µ)

(While-Op1)
µ(e) = tt

(while e do P, µ) → (P ; while e do P, µ)

(While-Op2)
µ(e) ̸= tt

(while e do P, µ) → (nil, µ)

(Par-Op1)
(P, µ)→ (P 0, µ0)

(P ∥ Q, µ)→ (P 0 ∥ Q, µ0)

(Par-Op2)
(Q, µ)→ (Q0, µ0)

(P ∥ Q, µ)→ (P ∥ Q0, µ0)

Fig. 2. Operational Semantics for Parallel Programs

The guard type will be set up by while-loops and looked up by sequential compo-
sition. The complete type system for programs is shown in Figure 3. Notice that
the guard type plays no particular rôle in rules (Nil), (Assign) and (Cond),
which are plain adaptations of the ones in [15]. Let us comment a little on the
rules for while-loops and sequential composition, which are the main novelty
w.r.t. [15,12]. As explained, the guard type is σ for a while-loop testing an ex-
pression of level σ, and from then onwards it should stay equal to σ to prevent
concatenation with low-level programs. Rule (Seq) is precisely designed to avoid
sequencing “low” assignments after a program with “high” guards. This rules
out the kind of implicit flow exhibited by the program (1). One may notice that
rule (While) imposes types of the form (τ, τ) cmd to while-loops (by subtyping
they also have types (θ,σ) cmd with θ ≤ σ). We let the reader check that, had
we accepted for instance (H, L) cmd, we would not avoid interferences, as shown
by the example
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(Nil)
Γ ⊢ nil : (τ,σ) cmd

(Assign)
Γ ⊢ e : τ, Γ (x) = τ var

Γ ⊢ x := e : (τ,σ) cmd

(Seq)
Γ ⊢ U : (τ,σ) cmd, Γ ⊢ P : (τ 0,σ0) cmd, σ ≤ τ 0

Γ ⊢ U ; P : (τ ⊓ τ 0,σ ' σ0) cmd

(Cond)
Γ ⊢ e : τ, Γ ⊢ P : (τ,σ) cmd, Γ ⊢ Q : (τ,σ) cmd

Γ ⊢ if e then P else Q : (τ,σ) cmd

(While)
Γ ⊢ e : τ, Γ ⊢ P : (τ, τ) cmd

Γ ⊢ while e do P : (τ, τ) cmd

(Par)
Γ ⊢ P : (τ,σ) cmd, Γ ⊢ Q : (τ,σ) cmd

Γ ⊢ P ∥ Q : (τ,σ) cmd

(Subtyping)
Γ ⊢ P : (τ,σ) cmd, τ 0≤ τ, σ ≤ σ0

Γ ⊢ P : (τ 0,σ0) cmd

Fig. 3. Typing Rules for Concurrent Programs

if xH = 0 then while yL = 0 do nil

else nil ;
uL := uL + 1

(2)

Similarly, we have to rule out the insecure program

while tt do ( yL := yL + 1 ; while xH = 0 do nil ) (3)

and this shows why loops having (L, H) cmd as their unique type should be
forbidden.

3 Properties of Typed Programs

In this section we prove some desired properties of our type system. The first
property, subject reduction, states that types are preserved along execution.

Theorem 3.1. (Subject Reduction)
If Γ ⊢ P : (τ,σ) cmd and (P, µ)→ (P ′, µ′), then Γ ⊢ P ′ : (τ,σ) cmd.

Proof: By induction on the inference of Γ ⊢ P : (τ,σ) cmd, and then case
analysis on the last rule used in this inference. ✷
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We shall use the following assumptions about expressions:

Assumption 3.2 (Termination of Expression Evaluation)
For any memory µ and expression e, the value µ(e) is defined.

Assumption 3.3 (Simple Security)
If Γ ⊢ e : τ , then every variable occurring in e has type τ ′ var in Γ , with τ ′ ≤ τ .

We introduce now, for any type environment Γ and security level ω, a notion
of equality on memories which formalises the idea that two memories coincide
on variables of level less than or equal to ω in Γ . Intuitively, such memories are
indistinguishable for an observer of level ω.

Definition 3.4 (ω-Equality of Memories)
µ =ω

Γ ν ⇔def ∀x. Γ (x) = τ var & τ ≤ ω ⇒ µ(x) = ν(x).

Definition 3.5 ((Γ,ω)-Bisimulation)
A relation R on configurations is a (Γ,ω)-bisimulation if (P, µ) R (Q, ν) implies

(i) µ =ω
Γ ν

(ii) (P, µ)→ (P ′, µ′) ⇒ ∃Q′, ν′. (Q, ν)→∗ (Q′, ν′) ∧ (P ′, µ′) R (Q′, ν′)
(iii) (Q, ν)→ (Q′, ν′) ⇒ ∃P ′, µ′. (P, µ)→∗ (P ′, µ′) ∧ (P ′, µ′) R (Q′, ν′)

The (Γ,ω)-bisimulation equivalence on configurations, noted ≈ωΓ , is the largest
(Γ,ω)-bisimulation.

The following two lemmas confirm the intuition, discussed earlier, behind the
type judgements Γ ⊢ P : (τ,σ) cmd.

Lemma 3.6 (Confinement)
If Γ ⊢ P : (τ,σ) cmd then every variable assigned to in P has type θ var in Γ ,
with τ ≤ θ.

Lemma 3.7 (Guard Safety)
If Γ ⊢ P : (τ,σ) cmd then every loop guard in P has type θ in Γ , with θ ≤ σ.

Definition 3.8 (ω-Boundedness)
A program P is ω-bounded if Γ ⊢ P : (τ,σ) cmd implies τ ≤ ω.

Definition 3.9 (ω-Guardedness)
A program P is ω-guarded if there exist τ,σ, with σ ≤ ω, such that Γ ⊢ P :
(τ,σ) cmd.

Note that by the Confinement Lemma, a program which is not ω-bounded cannot
write on variables of level less than or equal to ω. Similarly, by the Guard Safety
Lemma, a program which is ω-guarded does not contain loop guards of level
higher than or incomparable with ω. As a consequence of subject reduction,
both non-ω-boundedness and ω-guardedness are preserved by execution.
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Proposition 3.10 (Bisimilarity of Non ω-Bounded Programs)
Let SΓ,ω be the relation consisting of the pairs ((P, µ), (Q, ν)) such that µ =ω

Γ ν
and there exist τ, σ and τ ′, σ′ with τ ̸≤ ω, τ ′ ̸≤ ω, such that Γ ⊢ P : (τ,σ) cmd
and Γ ⊢ Q : (τ ′,σ′) cmd. Then SΓ,ω is a (Γ,ω)-bisimulation.

Proof: Let ((P, µ), (Q, ν)) ∈ SΓ,ω and (P, µ) → (P ′, µ′). This can be matched
by (Q, ν)→∗ (Q, ν), since by the Confinement Lemma µ′=ω

Γ µ=ω
Γ ν, and by the

Subject Reduction Theorem Γ ⊢ P ′ : (τ,σ). ✷

Note that (Γ,ω)-bisimilarity does not preserve termination. For instance, for any
memories µ and ν such that µ =ω

Γ ν we have:

( nil, µ ) ≈ωΓ ( while tt do nil, ν )

We introduce now a notion which will play a key rôle for noninterference.

Definition 3.11 (ω-Constrainment)
A program P is ω-constrained if there exist τ,σ, with τ ̸≤ ω and σ ≤ ω, such
that Γ ⊢ P : (τ,σ) cmd.

By definition any ω-constrained program is both ω-guarded and not ω-bounded.
It is worth stressing that the converse is not true, as shown by the program
while tt do nil. Clearly, for any type environment Γ , this program is ω-
guarded for any security level ω and not ω-bounded if ω ̸= ⊤. However it is not
ω-constrained, as a consequence of the uniform typing in rule (While). Indeed,
an important property of ω-constrained programs is the following.

Lemma 3.12 (Termination of ω-Constrained Sequential Programs)
If U is ω-constrained, then for any µ there exist µ′, U ′ such that (U, µ) →∗
(U ′, µ′) and U ′ = nil ; · · · ; nil.

Finally we can state our main result:

Theorem 3.13. (Noninterference)
If P is typable in Γ , then (P, µ)≈ωΓ (P, ν) for any µ, ν such that µ =ω

Γ ν.

Proof: We define inductively the relation RΓ,ω
0 on configurations as follows:

(P, µ) RΓ,ω
0 (Q, ν) if and only if P and Q are typable, µ =ω

Γ ν and one of the
following holds:

1. (P, µ)≈ωΓ (Q, ν)
2. P = Q and P is ω-bounded
3. P = U ; R and Q = V ; R, where both U and V are ω-constrained
4. P = U ; R and Q = V ; R, where (U, µ) RΓ,ω

0 (V, ν) and R is not ω-bounded
5. P is not ω-bounded and Q = V ; R, where (nil, µ) RΓ,ω

0 (V, ν) and R is not
ω-bounded (or symmetrically)

6. P = P1 ∥ P2 and Q = Q1 ∥ Q2 with (Pi, µ) RΓ,ω
0 (Qi, ν).

We show that RΓ,ω
0 is a (Γ,ω)-bisimulation. The theorem will be a consequence

of this fact, since if P is typable, then either P is not ω-bounded, in which case
(P, µ) ≈ωΓ (P, ν) by Proposition 3.10, or P is ω-bounded and (P, µ) RΓ,ω

0 (P, ν)
by the second clause of the definition. In the case of Clause 3, we use the
Lemma 3.12. ✷
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4 Adding a Scheduler

As pointed out by Smith and Volpano in [12], noninterference results such as
those of the previous section rely on the hypothesis of a purely nondeterministic
execution of concurrent programs. These results would break down if particular
scheduling policies were enforced. We recall the example given in [12]. Assume
a round robin time slicing scheduler, with a time slice of t steps, t ≥ 2, and
consider the composition P = α ∥ β of the following two threads:

α : if xH = 0 then Q else nil ;

yL := 0 (4)

β : yL := 1

Then, supposing that Q is a convergent program that takes at least t− 1 steps
to execute, and that the scheduler gives precedence to α, the value of yL will
depend on that of xH . The solution proposed in [12] to preserve noninterference
in the presence of an arbitrary scheduler consists in forbidding conditionals with
high guards2, that is, again assuming that there is a lowest security level, to
accept only conditional branching on low level expressions. This condition, com-
bined with the exclusion of loops with high guards, required for multi-threading,
resulted in [12] in a very severe limitation: the impossibility for any program to
test a variable, except at the lowest level.

We present here a different solution for scheduling, which does not rule out
conditionals with high guards. To this end we first formalise what it means for
a system of concurrent programs to be controlled by a scheduler. Essentially,
this means running the system in lockstep with a program that implements the
scheduling policy. To describe controlled execution, we use a construction P [Q],
which makes P and Q move hand in hand, but allows the controller, P , to
proceed by itself whenever Q is unable to move. Then a system consisting of n
parallel programs Pi controlled by a scheduler Sched will be described as:

Sched [P ′1 ∥ · · · ∥ P ′n]

where the P ′i are adaptations of the Pi, so that the processes can be triggered
and suspended by the scheduler. To this end we introduce a new construct
when e do P , whose semantics is that P is allowed to proceed, for one step,
when the condition e holds. It is technically convenient to introduce another
level in the syntax: besides the programs P , written according to the grammar
given in Section 2, there is a set of “systems” S, T built as follows:

S ::= P | S ∥ T | S[T ] | when e do S

Letting w(S) denote the set of variables written (assigned to) by S, the construct
S[T ] is only legal under the condition w(S) ∩ w(T ) = ∅.
2 It is also suggested there that a better approach to scheduling would be probabilistic.

Indeed a whole line of research on probabilistic noninterference has been developed,
but this will not be our concern here, where we stick to a possibilistic setting.
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(Control-Op1)
(S, µ)→ (S0, µ0), (T, µ)→ (T 0, µ00)

(S[T ], µ)→ (S0[T 0], µ0'µ µ00)

(Control-Op2)
(S, µ)→ (S0, µ0), (T, µ) ̸→

(S[T ], µ)→ (S0[T ], µ0)

(When-Op)
µ(e) = tt , (S, µ)→ (S0, µ0)

(when e do S, µ)→ (when e do S0, µ0)

Fig. 4. Additional Operational Rules for Systems

(Control)
Γ ⊢ S : (τ,σ) cmd, Γ ⊢ T : (τ,σ) cmd, τ ≥ σ

Γ ⊢ S[T ] : (τ,σ) cmd

(When)
Γ ⊢ e : θ, Γ ⊢ S : (τ,σ) cmd, θ ≤ τ

Γ ⊢ when e do S : (τ, θ ' σ) cmd

Fig. 5. Additional Typing Rules for Systems

Notation 4.1 We use (S, µ)→ to mean ∃S′, µ′ such that (S, µ)→ (S′, µ′), and
(S, µ) ̸→ for the negation of (S, µ)→.

The semantics of the new constructs is given in Figure 4, where µ′&µµ′′ represents
the memory µ with the conjunction of the updates operated by S and by T , that
is µ′\µ ∪ µ′′\µ ∪ (µ′ ∩ µ′′). Then for instance the scheduled programs may be
written P ′i = when si do Pi where si is the “proceed” signal for program Pi, set
up by the scheduler. The following program

Sched t
n = i := 0 ; while tt do i := [i + 1]mod n; k := 0;

while k < t do si := tt ; si := ff ; k := k + 1

describes a scheduler for a system of n threads, implementing round robin with
time slice t, provided that all the si’s are initially false. It is easy to imagine how
to program other scheduling policies in a similar style.

The typing rules for the new operators are given in Figure 5. The side-
conditions in rules (Control) and (When) need some comments. First, note
that a when statement can induce an implicit flow, just like the conditional and
while statements, as for instance in the system:

when xH = 0 do yL := yL + 1
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This explains the requirement θ ≤ τ in rule (When). On the other hand, the
condition that the guard of the when statement should affect its guard type may
seem superfluous at first sight, since a when statement can never be followed (in
sequential composition) by any other system. The reason for this condition is
that in a controlled system S[T ], a blocked behaviour of the controller S can
create interferences if the controlled system T is low, and this blocked behaviour
of S may be due to a when statement. Consider for instance the system S[T ]
where P is a high program that does at least one step:

S = when xH = 0 do P

T = yL := yL + 1

We let the reader check that this system can lead to interference. Now if the
when statement S were allowed to have type (L, L) cmd, the whole system S[T ]
would be typable.

As regards the rule (Control), the condition τ ≥ σ excludes for instance – if
the security levels are L and H – systems S[T ] whose unique type is (L, H) cmd.
Consider for instance the controlled system S′[T ′], where:

S′ = while xH = 0 do nil

T ′ = yL := 0 ; yL := yL + 1

Here again there is a possible interference due to the blocking of the controller
after one step if the guard of the loop is false. Note that the only possible type
of S′[T ′] would be indeed (L, H) cmd, since it affects a low variable and has a
high loop guard.

To extend our noninterference result to the new setting, we also need to
restrict the typing rule for conditional branching, recording the tested expression
as a guard (note the similarity with the rule for the when statement):

(Cond-Strict)

Γ ⊢ e : θ, Γ ⊢ P : (τ,σ) cmd, Γ ⊢ Q : (τ,σ) cmd, θ ≤ τ

Γ ⊢ if e then P else Q : (τ, θ & σ) cmd

This rules out for instance the thread α of our initial example (4), because a low
assignment can no longer be performed after a high test.

It is easy to check that the Subject Reduction Theorem and the Confine-
ment Lemma extend to the new language. Similarly, the definitions of (Γ,ω)-
bisimulation and ω-boundedness remain formally the same as those for the
base language (modulo the replacement of programs by systems). Obviously,
the Guard Safety Lemma may now be strengthened into:

Lemma 4.2 (Strong Guard Safety)
If Γ ⊢ S : (τ,σ) cmd then every loop, conditional or when statement guard in S
has type θ in Γ , with θ ≤ σ.



Noninterference for Concurrent Programs 393

Lemma 4.3 (Deterministic Behaviour of ω-Guarded Systems)
If S is ω-guarded in Γ and µ=ω

Γ ν, then (S, µ)→ (S′, µ′) implies (S, ν)→ (S′, ν′),
with µ′ =ω

Γ ν
′.

We are now able to generalise our noninterference result.

Theorem 4.4. (Extended noninterference)
If S is typable in Γ , then (S, µ) ≈Γ (S, ν) for any µ, ν such that µ =Γ ν.

Proof: We define inductively the relation RΓ,ω
1 as follows: (S, µ) RΓ,ω

1 (T, ν) if
and only if S and T are typable, µ =ω

Γ ν and one of the following holds:

1. (S, µ) RΓ,ω
0 (T, ν), where RΓ,ω

0 is the relation considered in the proof of The-
orem 3.13

2. (S, µ)≈ωΓ (T, ν)
3. S = T and S is ω-bounded
4. S = S0 ∥ S1 , T = T0 ∥ T1 and (Si, µ)RΓ,ω

1 (Ti, ν)
5. S = when e do S1, T = when e do T1, Γ (e) ≤ ω and (S1, µ)RΓ,ω

1 (T1, ν)

Then we show that RΓ,ω
1 is a (Γ,ω)-bisimulation. In Clause 3, for the case of the

control construct, we use the Lemma 4.3. ✷

5 Conclusion and Related Work

We have addressed the question of secure information flow in systems of con-
current programs. This covers one of the security problems that can arise, for
instance, when a mobile program visits different sites, namely that of preserving
the confidentiality of the visited sites’ private data. In fact, in [3], it is shown how
a form of noninterference called non deducibility on composition may be used
to model also other security properties like authenticity , non repudiation and
fairness. Noninterference thus appears as a rather interesting notion to study
when security is concerned. On the other hand, it may be argued [8] that covert
channels, that is implicit information flows of the kind considered here, are un-
avoidable in practice, as they can arise also at the hardware level. Thus the
aim of statically ensuring the absence of covert channels might be a hard one
to realise. We certainly do not claim here to cover the whole range of possible
attacks from a hostile party.

The issue of noninterference has been largely studied in the literature, using
different models, and it is not our intention here to review the various approaches.
We focussed on the approach of Volpano et al., as it applies to a fairly standard
language, which can be assumed to be the kernel of more sophisticated practical
languages.

The question of secure flow and noninterference has also started to be in-
vestigated in the setting of process calculi, and in particular in mobile process
calculi [6], [7], [10] and [5]. The treatment in the first two papers seems however
overly restrictive: it amounts (at least in the core calculus) to forbid all con-
trol flow from actions on high channels to actions on low channels. In [7], the
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core calculus is extended with more sophisticated constructs; in the extended
calculus some actions may be classified as “innocuous”, and the restriction on
control flow may be relaxed when these actions are involved. The last two pa-
pers, [10] and [5], are less restrictive and closer in spirit to our approach, as they
try to distinguish the dangerous control flow (implementing information flow)
from the harmless control flow which should not be restricted. Another related
paper is [1], which studies secrecy properties in security protocols expressed in
the spi-calculus.

As concerns noninterference in the presence of scheduling policies, the most
popular approach has been so far the probabilistic one, taken for instance in [14]
and [11]. Our stand here was to handle scheduling within a possibilistic setting.

An issue which has not been addressed here, but is planned for future work,
is the feasibility of checking noninterference using a type inference algorithm,
in the line of [13]. Current work is also oriented towards the treatment of more
realistic languages, as advocated for instance in [9], including exceptions and
some form of higher-order.

Acknowledgements. We would like to thank the anonymous referees for help-
ful comments.
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