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Abstract

We study the security property of noninterference for a class of synchronous programs called
reactive programs. We consider a core reactive language, obtained by extending the imperative
language of Volpano, Smith and Irvine with a form of scheduled parallelism and with reactive
primitives that manipulate broadcast signals. The definition of noninterference has to be tuned to
the particular nature of reactive computations, which are regulated by a notion of instant. More-
over, a new form of covert channel may arise in reactive computations, called suspension leak. We
give a formulation of noninterference based on bisimulation, as is now usual for concurrent lan-
guages. We then propose a type system to enforce this property in our language. Our type system
is inspired by that introduced by Boudol and Castellani, and independently by Smith, for a parallel
language with scheduling. We establish the soundness of our type system with respect to our new
notion of noninterference. We finally show that this notion of noninterference refines in several
aspects the standard one for imperative languages.

1 Introduction
Controlling information flow in computing systems has been a long-standing problem. It has recently
acquired new relevance with the advent and deployment of mobile code technology. Indeed, to be
fully exploitable this technology should provide formal guarantees about the security of the flow of
information that takes place between a mobile program and its hosting environment. For instance,
foreign code should not be allowed to corrupt, nor to disclose, secret data owned by its execution
context: the first property is usually referred to as integrity and the second as confidentiality.

In a recent paper [11], we introduced a core programming model for mobile code called ULM,
advocating the use of a locally synchronous programming style [9] in a globally asynchronous com-
puting context. We argued that such a combination of synchronous and asynchronous paradigms
could be appropriate to deal with the characteristics of mobile programming in large or “global” net-
works. For instance, in such networks the failure of a node may be indistinguishable from its absence
of response within a given time, and synchronous programming provides time-out mechanisms that
allow programs to control their waiting time when trying to communicate with a distant node.

This paper is a step towards the analysis of security issues in the ULM programming model. We
concentrate here on confidentiality, and more specifically on the noninterference property, for a sim-
plified version of the ULM language that does not include its mobility fragment nor its functional
fragment. We simply deal with the imperative and reactive parts of the language, and with their com-
bination. A study of noninterference and nondisclosure (a generalisation of noninterference allowing
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for declassification) has now been carried out in [4] also for the functional kernel of ULM, extended
with dynamic thread creation and a declassification construct, but not including reactive constructs.
A similar study has then been proposed for an extension of this language with mobility in [2, 3]. The
next step will be to combine all these contributions into a global treatment of information flow for the
whole language ULM.

Let us start by recalling the main features of the synchronous programming style [9], in its control-
oriented incarnation:

Broadcast signals Program components react to the presence or absence of signals, by computing
and emitting signals that are broadcast to all components of the same “synchronous area”.

Suspension Program components may be in a suspended state, because they are waiting for a signal
which is absent at the moment when they get the control.

Preemption There are means to abort the execution of a program component, depending on the
presence or absence of a signal.

Instants Instants are successive periods of the execution of a program, where signals are consistently
seen as present or absent by all components.

The so-called reactive variant of the synchronous programming style, designed by Boussinot, has
been implemented in a number of languages and used for various applications, see [17, 15]. It dif-
fers from the synchronous language ESTEREL [10], for instance in the way it handles the absence
of signals: in reactive programming, the absence of a signal can only be determined at the end of
an instant, and reaction is postponed to the following instant. In this way, one can avoid the causal
paradoxes that arise in ESTEREL, making reactive programming well suited for systems where con-
current components may be dynamically added or removed, as is the case with mobile code.

We consider here a core reactive language, which is a subset of ULM that extends the sequen-
tial language of Volpano, Smith and Irvine [27] with reactive primitives and with an operator of
alternating parallel composition (incorporating a fixed form of scheduling). As expected, these new
constructs add expressive power to the language and induce new forms of security leaks. Moreover,
the two-level nature of reactive computations, which evolve both within instants and across instants,
introduces new subtleties in the definition of noninterference. We shall give a formulation of nonin-
terference based on bisimulation, as is now standard for concurrent languages [24, 22, 23, 13]. We
will then define a type system to enforce this property, along the lines of that proposed by Boudol and
Castellani [14], and independently by Smith [23], for a parallel language with scheduling.

Let us briefly recall the intuition about noninterference (referring the reader to [21] for a complete
survey). The idea is that in a system with multiple security levels, information should only be allowed
to flow from lower to higher levels [18]. Security levels are usually assumed to form a lattice. In most
of our examples we shall use only two security levels, low (public) and high (secret). In our language
security levels will be attributed to both variables and signals, and we will often use subscripts to
specify them: for instance xH will denote a variable of high level and aL a signal of low level.

In a sequential imperative language, an insecure flow of information, or interference, occurs when
the initial values of high variables influence the final values of low variables. The simplest case of
insecure flow is the assignment of the value of a high variable to a low variable, as in yL := xH . This
is called explicit (insecure) flow. More subtle kinds of flow, called implicit flows, may be induced by
the structure of control. A typical example is the program

if xH = 0 then yL := 0 else yL := 1 (1)

where the final value of yL may give information about the initial value of xH . Moreover, programs
may be considered secure or not depending on the context in which they appear. For instance, the
program

(while xH 6= 0 do nil) ; yL := 0 (2)
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may be viewed as safe in a sequential setting (as for instance, in the language of [27]), since whenever
it terminates it produces the same value for yL

1. However this program becomes unsafe in the pres-
ence of asynchronous parallelism, as is now well known (see e.g. [24, 22, 23, 13, 14]). To pinpoint
the problem, let us examine the program (P ‖Q), where ‖ denotes asynchronous parallel composition
(interleaving), and P and Q are given by:

P : (while xH 6= 0 do nil) ; yL := 0 ; xH := 1
Q : (while xH = 0 do nil) ; yL := 1 ; xH := 0

(3)

Here the low variable yL will be given different final values depending on the initial value of xH .
Hence the whole program is insecure. This means that in a concurrent setting the components P
and Q should themselves be viewed as insecure. In a type system designed to enforce security,
such programs can be ruled out by requiring that high loops (loops with a high condition) should
never be followed by low assignments (assignments to low variables). This solution was proposed
in [23, 14]. A more drastic solution, forbidding altogether the use of high loops, had been previously
suggested in [24] and adopted by a number of authors, e.g. [22].

Similar examples can be given to show that the use of high conditionals should also be restricted.
In [24, 22], this restriction consists in forbidding loops in the branches of high conditionals. On the
other hand, in [23, 14], the requirement proposed for high conditionals is similar to that for high
loops, namely, none of these statements should be followed by low assignments. This choice results
in a type system where program types have two components, the first representing a lower bound on
the security level of assigned variables (this component coincides with the usual type for programs
in security type systems) and the second an upper bound on the security level of guards (conditions).
Then, in order to type the sequential composition (P ; Q), where P has type (θ1,σ1) and Q has type
(θ2,σ2), one must make sure that the condition σ1 ≤ θ2 is satisfied. Clearly, programs P and Q
above violate this condition. Importantly, this type system is robust with respect to the introduction
of scheduling, as shown in [23, 14].

When moving to a reactive setting, we must reconsider the security of programs with respect to
the new reactive contexts. In the ULM model there are two kinds of parallel composition:

1. The global asynchronous composition of “reactive machines” (synchronous areas): this is sim-
ilar to the parallel composition usually considered in the literature, with the difference that no
specific scheduling is assumed at this level. We do not consider this global composition here,
and we expect it could be dealt with in a standard compositional way.

2. The local synchronous composition of threads within each reactive machine. As in the imple-
mentation of reactive programming [15], we assume a deterministic cooperative scheduling
discipline on threads. It is well known that scheduling introduces new possibilities of flow (see
e.g. [24, 22, 14]), and this will indeed be the case with the scheduling that we adopt here. Not
surprisingly, we shall need a type system tailored for scheduling, similar to that of [23, 14].

Let us illustrate with some examples the use of reactive constructs and the security leaks they
can generate. Reactive constructs allow programs to emit signals, create local signals, and suspend
their execution while waiting for a signal to be emitted by a concurrent program. Furthermore, the
synchronous parallel operator, denoted �, is quite different from the asynchronous parallel operator
‖ (interleaving) that is usually adopted in concurrent languages. Indeed, while ‖ corresponds to a
fully nondeterministic or preemptive scheduling, � imposes a deterministic cooperative scheduling
discipline on reactive programs. More precisely, (P � Q) executes P until it terminates or suspends,

1The notion of noninterference we consider here for sequential programs is the same as that adopted in [27], namely
termination insensitive noninterference (we follow here the terminology of [21]), which is not able to distinguish termination
from nontermination and simply ignores nonterminating computations since they do not produce a final value.
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and then gives the control to Q, which similarly executes until termination or suspension; then, since
Q may have emitted signals that unblock P, the control is given back to P, and so on in an alternating
fashion, until both components are terminated or suspended.

Programs are executed in the context of a memory, which consists of a variable store, as usual, and
of a signal environment which records the signals that have been emitted within an instant. Besides
cooperative scheduling, the main characteristics of reactive computations are suspension, preemption
and the subdivision of execution into instants. We examine each of these features in turn.

Suspension

Suspension is introduced by the construct (when a do P), whose behaviour is to execute P when signal
a is present in the signal environment and suspend its execution otherwise. Consider the program:

when aH do yL := 0 (4)

This program sets yL to 0 if aH is present in the signal environment, and suspends otherwise. It could
be seen as a reactive counterpart of program (1). A reactive analogue of program (2) could be:

(when aH do nil) ; yL := 0 (5)

However, the analogy is not completely stringent since suspension is a specific program status, which
lies somewhere in between normal termination and nontermination: like nontermination, it prevents
the rest of the program from being executed; like termination, it causes the control to be handed to
another component or, if all parallel components are terminated or suspended, it provokes a transition
to the following instant (as will be explained shortly). Let us see a couple of examples illustrating the
difference between suspension and nontermination.

Suppose we compose program (5) with a program that simply emits aH :

((when aH do nil) ; yL := 0) � emit aH (6)

Then the resulting program is secure. Indeed, no matter whether aH is present or not in the initial
signal environment, the low assignment will always take place: if aH is initially present then the
first component exits the when statement and executes the assignment, hence the second component
gets the control and emits aH ; if aH is initially absent then the first component suspends, the second
component takes over and emits aH , and finally the first component can perform the assignment.
From the standpoint of a low observer, having access only to the low part of the memory, there is no
difference between the two cases. The same holds if we replace program (5) by (4) in this example.

On the other hand, if we compose program (2) with a program that sets variable xH to 0:

((while xH 6= 0 do nil) ; yL := 0) � xH := 0 (7)

then the situation is quite different. Here, if xH is initially equal to 0, then the loop is immediately
exited and the low assignment is performed, before the second component gets the control. Instead,
if xH is initially different from 0, the first component loops forever and the second component never
gets the control (note the difference with ‖, which would allow the second component to unblock the
first). This brings up an important aspect of cooperative scheduling: whereas it ensures the atomicity
of thread computations (since a thread cannot be interrupted unless it decides to), to work properly
this type of scheduling requires each thread to “cooperate” and yield the control after a finite number
of steps. Conditions that guarantee the absence of divergence within an instant (and even bound the
length of admissible computations within an instant, as well as their memory consumption), have
been recently examined in the literature [8, 7]. We shall not be concerned with this question here.
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Preemption

A crucial feature of reactive programs is preemption, provided by the construct (do P watching a),
whose behaviour is to execute P until the end of the current instant and then to abort if signal a is
present, while staying unchanged otherwise. Indeed, the two constructs when and watching take
their full significance when used in combination with each other. Consider the following program,
which includes (4) as a subprogram:

emit cL ; do (when aH do yL := 0) watching cL (8)

Whether aH is present or not, this program always terminates, because the watching construct is
killed at the end of the instant (if not already terminated). However the low assignment is performed
only if aH is present. Hence this program is insecure, and therefore so is program (4). Note that if we
plug program (5) instead of (4) in this example, we obtain essentially the same behaviour. This means
that program (5) is insecure too. Indeed, as a consequence of cooperative scheduling, programs (4)
and (5) are equivalent in any reactive context. Note that this would not be the case if the asynchronous
parallel operator ‖ (amounting to preemptive scheduling) was used instead.

So far we have seen simple examples of reactive programs, having the same flavour as those
for imperative programs, and calling for similar restrictions in the type system. A larger, practical
example will be given in Section 3, once the language has been formally introduced. There is, in fact,
an additional issue to face when considering the security of reactive programs, associated with the
passage of instants.

Instants

A fundamental characteristic of the reactive model is the passage from an instant to the next. An
instant is an interval of computation where all threads execute up to termination or suspension, and
reach a consistent view of the presence or absence of signals. An instant change occurs when, pos-
sibly after several rounds of execution, all threads become inactive (either terminated or suspended).
One of the effects of an instant change is to reset all signals to “absent”. Another effect is to kill all
watching commands whose controlling signal is present, thus unblocking some of the suspended
threads. Let us consider an example, which builds on Example (8) above, except that the low assign-
ment is now performed after the watching statement, and dependent on the presence of cL:

emit cL ; do (when aH do nil) watching cL ; when cL do yL := 0 (9)

Here, in case aH is present, the first when statement terminates and so does the watching statement,
then giving control to the second when statement. Since cL has been emitted, the low assignment
can be performed. On the other hand, if aH is absent then the program suspends on the first when
statement, and since there are no other threads, the instant terminates. At this point, the body of the
watching statement is killed because signal cL is present, and a new instant starts, where the signal
cL is absent. In this case the second when statement suspends and the assignment does not take place.

Example (9) shows how instant changes may prevent some behaviours, as a consequence of the
reset of signals. On the other side, instant changes may also allow new behaviours, by deleting parts
of programs that are suspended. Consider for instance the program, obtained from (9) by composing
a new thread to the right of the second when statement:

emit cL ; do (when aH do nil) watching cL ; ((when cL do yL := 0) � (emit cL ; yL := 1)) (10)

Note that this program always terminates: if aH is present it terminates in the first instant executing
yL := 0 and then yL := 1, while if aH is absent it suspends at the first instant and terminates at the
second instant executing yL := 1 before yL := 0. Thus the order in which the assignments are executed
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depends on the occurrence or not of an instant change. Information leaks caused by suspension, as
those of Examples (8), (9), (10), will be called suspension leaks.

Instant changes may be programmed. Indeed, with the constructs of our language we are able to
write, for any security level, a program pause, whose behaviour is to suspend for the current instant,
and then terminate (this program, which makes use of the local signal declaration, will be described
in detail in Section 2.2). With the help of pause we may then write the following:

emit aL ; if xH = 0 then nil else pause (11)

This program starts by emitting signal aL. Then, depending on the value of xH , it either terminates
within an instant, in which case aL remains present, or suspends and changes instant, in which case aL
is withdrawn. However, since instant changes are not statically predictable (they may be implemented
in a variety of ways), it is not possible to rule out programs such as (11) by means of a type system.
Indeed, such programs will be considered safe according to our security notion. This is because
the reset of low signals at instant change will not be observable per se, but only if it is followed by
changes in the low memory as in Examples (9) and (10).

The rest of the paper is organized as follows. In Section 2 we introduce the language and its
operational semantics. Section 3 presents the type system and some properties of typed programs.
We then proceed to define noninterference and prove the soundness of our type system. We finally
compare our security notion with a more standard one, and prove that ours is stronger in various
respects. This paper is the full version of [5], completed with proofs, with an additional result and
with more elaborate examples.

2 The language

2.1 Syntax
We consider two infinite and disjoint sets of variables and signals, Var and Sig, ranged over by x,y,z
and a,b,c respectively. We then let Names be the union Var∪Sig, ranged over by n,m. The set Exp
of boolean and arithmetic expressions, ranged over by e,e′, is obtained by applying the usual total
operations to constants and variables. We shall not detail this set further here, as it is entirely standard.
For convenience we have chosen to present the type system only in Section 3.1. However types, or
more precisely security levels, ranged over by δ ,θ ,σ , already appear in the syntax of the language.
Security levels, whose structure will be described in Section 3, constitute what we call simple types,
and are used to type expressions and declared signals. In Section 3 we will see how more complex
types for variables, signals and programs may be built from simple types.

Definition 2.1 (Reactive language)
The language of reactive programs (or processes, or threads) P,Q ∈ Proc is defined by:

P ::= nil | x := e | let x : δ = e in P | if e then P else Q | while e do P | P ; Q

emit a | local a : δ in P | do P watching a | when a do P | (P � Q)

Note the use of brackets to make explicit the precedence of � (which, as we shall see, is a non
associative operator). The construct let x : δ = e in P binds free occurrences of variable x in P.
Similarly, local a : δ in P binds free occurrences of signal a in P. The free variables and signals
of a program P, denoted by fv(P) and fs(P) respectively, are defined in the usual way, as well as
the bound variables and signals of P, denoted by bv(P) and bs(P). The types of local names must
be specified in the local declaration constructs because, as we shall see, the type environment only
assigns types to free names. We shall use the following abbreviations: await a =def (when a do nil)
and loop P =def (while true do P). Most of the language constructs have been informally described
in the Introduction. The next section defines their formal semantics.
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2.2 Operational Semantics
Programs are executed in the context of a memory, made of a variable store and a signal environment,
and relative to a type environment. Formally, the operational semantics is defined on configurations,
which are quadruples C = 〈Γ,S,E,P〉 composed of a type environment Γ, a variable store S, a signal
environment E and a program P, where the first three components are defined next. Since Γ is meant
to specify the types of variables and signals, which are formally introduced only in Section 3.1, let us
just mention here that these types have the form δ var and δ sig respectively.

A type environment Γ is a mapping from a finite subset of names to the appropriate types. Since
the set of names is infinite, it is always possible to find a fresh name not in the domain of Γ. We
denote the update of Γ by a variable x of type δ var by {x : δ var}Γ. Similarly we denote the update
of Γ by a signal a of type δ sig by {a : δ sig}Γ.

A variable store S is a mapping from a finite subset of variables to values, elements of a set Val.
By abuse of language we denote by S(e) the atomic evaluation of the expression e under S, which
always terminates by definition of Exp. We denote by {x 7→ S(e)}S the update or extension of S with
the value of e for the variable x, depending on whether the variable belongs or not to the domain of S.

A signal environment E is a finite subset of signals, representing all signals that have been emitted
during a given instant. A signal environment E may be updated in two ways: by including signal a
into E when the statement emit a is executed, or by resetting E to /0 when a new instant starts, as will
be explained in Section 2.2.2. Note that E is not a multiset, so multiple emissions of the same signal
during an instant are equivalent to a single emission.

Finally, a memory M is a pair 〈S,E〉, where S is a variable store and E is a signal environment.
We shall restrict our attention to well-formed configurations, defined as follows:

Definition 2.2 (Well-formed configuration)
A configuration C = 〈Γ,S,E,P〉 is well-formed if it satisfies the three conditions:

i) fs(P)⊆ dom(Γ);

ii) fv(P)⊆ dom(S);

iii) dom(S)∪E ⊆ dom(Γ).

We shall see in Section 2.2.3 that well-formedness is preserved by execution, as expected.

A distinguishing feature of reactive programs is their ability to suspend while waiting for a signal.
The suspension predicate ‡ is defined inductively on pairs 〈E,P〉 by the rules in Figure 1. The
meaning of 〈E,P〉‡ is that program P is suspended under the signal environment E. Suspension is
introduced by the construct (when a do P), in case signal a is not present in the signal environment.
The suspension of a program P is propagated to the contexts (when a do P), (do P watching a),
(P ; Q) and (P � Q). Processes of these forms will then be called suspendable processes.

We extend suspension to configurations by letting 〈Γ,S,E,P〉‡ if 〈E,P〉‡.

An instant is a sequence of moves leading all threads to termination or suspension. There are two
forms of transitions between configurations: simple moves, denoted by the arrow C →C′, and instant
changes, denoted by C ↪→ C′. These are collectively referred to as steps and denoted by C 7−→ C′.
The reflexive and transitive closures of these transition relations will be denoted with a ‘∗’ as usual.
The next section defines simple moves and the following one defines instant changes.

2.2.1 Moves

The operational rules for deriving simple moves C →C′ are given in Figures 2 and 3, for imperative
and reactive constructs respectively. These rules describe the execution of programs within a given
instant. The notation {n/m}P stands for the (capture avoiding) substitution of m by n in P.
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(WHEN-SUS1)
a /∈ E

〈E,when a do P〉‡
(WHEN-SUS2)

〈E,P〉‡
〈E,when a do P〉‡

(WATCH-SUS)
〈E,P〉‡

〈E,do P watching a〉‡

(SEQ-SUS)
〈E,P〉‡

〈E,P ; Q〉‡
(PAR-SUS)

〈E,P〉‡ 〈E,Q〉‡
〈E,P � Q〉‡

Figure 1: Suspension predicate

The rules for the imperative constructs are standard. Termination is dealt with by reduction to nil.
The local variable declaration is similar to the local signal declaration, described next. Consider now
the rules for the reactive constructs. Signal emission adds the emitted signal to the signal environment:
this signal will then be viewed as present until the end of the instant. The local signal declaration adds
to the typing environment a fresh signal name, with the declared type. Note that this name is not added
to the signal environment: this means that the signal is known (and thus not available for a further
declaration), but it is not considered as present as long as it has not been emitted. The way we handle
local names may seem non standard here: in fact, it mimics what is done in most implementations and
allows for a greater accuracy in the definition of noninterference, as we shall see in Section 3. The
watching construct allows the execution of its body until this terminates or an instant change occurs;
in the latter case its execution will abort or resume at the next instant depending on the presence or
not of the tested signal (as will be explained in Section 2.2.2). The when construct executes its body
under the control of a signal: if the signal is present it proceeds, otherwise it suspends. Note that both
the when and watching operators are static, in the sense that they remain present after a transition if
their body is different from nil. However, while the when construct checks the presence of its signal
at every step, the watching construct only checks it at the end of the instant (this is the reason why
the test does not appear in the rules of Figure 3 but rather in those of Figure 4).

The synchronous parallel composition � implements a kind of co-routine mechanism. It executes
its left component until termination or suspension, and then gives the control to its right component,
provided this one is not already suspended (this can happen for instance if the right component is of
the form (when a do R) and signal a is absent). Technically, the passage of control is achieved by
swapping the two components. Since each component can emit signals that unblock the other, the
control keeps alternating between the two components until neither of them can move any more. At
this point the whole program is either terminated or suspended. As noted in the Introduction, the
operator � incorporates a cooperative scheduling discipline. To work fairly, it requires each thread to
“play the game” and yield the control after a finite number of steps : indeed, in the program P � Q,
if P does not terminate then Q will never get the control. In recent studies, conditions have been
proposed to ensure both a fair and tractable behaviour of reactive threads [8, 7]. We shall leave this
question aside here, and we will not make any assumption about the behaviour of threads.

Let us illustrate the use of reactive constructs with a couple of examples. Here we focus on the
operational semantics of programs and thus we shall not be concerned with security levels, hence
we do not consider the type environment. Similarly, in these two examples the variable store is not
relevant, thus we ignore it, while the signal environment is assumed to be initially empty.

The first example emphasizes the alternation of control that results from the combination of the
� and when constructs, and the second shows that the operator � is not associative, that is, that the
grouping of components matters. We shall use underbraces to indicate the suspension of the executing
thread (the one in head position).
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(ASSIGN-OP) 〈Γ,S,E,x := e〉 → 〈Γ,{x 7→ S(e)}S,E,nil〉

(SEQ-OP1) 〈Γ,S,E,nil ; Q〉 → 〈Γ,S,E,Q〉

(SEQ-OP2)
〈Γ,S,E,P〉 → 〈Γ′,S′,E ′,P′〉

〈Γ,S,E,P ; Q〉 → 〈Γ′,S′,E ′,P′ ; Q〉

(LET-OP)
x′ /∈ dom(Γ)

〈Γ,S,E,let x : δ = e in P〉 → 〈{x′ : δ var}Γ,{x′ 7→ S(e)}S,E,{x′/x}P〉

(COND-OP1)
S(e) = true

〈Γ,S,E,if e then P else Q〉 → 〈Γ,S,E,P〉

(COND-OP2)
S(e) = false

〈Γ,S,E,if e then P else Q〉 → 〈Γ,S,E,Q〉

(WHILE-OP1)
S(e) = true

〈Γ,S,E,while e do P〉 → 〈Γ,S,E,P ; while e do P〉

(WHILE-OP2)
S(e) = false

〈Γ,S,E,while e do P〉 → 〈Γ,S,E,nil〉

Figure 2: Operational semantics of imperative constructs
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(EMIT-OP) 〈Γ,S,E,emit a〉 → 〈Γ,S,{a}∪E,nil〉

(LOCAL-OP)
a′ /∈ dom(Γ)

〈Γ,S,E,local a : δ in P〉 → 〈{a′ : δ sig}Γ,S,E,{a′/a}P〉

(WATCH-OP1) 〈Γ,S,E,do nil watching a〉 → 〈Γ,S,E,nil〉

(WATCH-OP2)
〈Γ,S,E,P〉 → 〈Γ′,S′,E ′,P′〉

〈Γ,S,E,do P watching a〉 → 〈Γ′,S′,E ′,do P′ watching a〉

(WHEN-OP1)
a ∈ E

〈Γ,S,E,when a do nil〉 → 〈Γ,S,E,nil〉

(WHEN-OP2)
a ∈ E 〈Γ,S,E,P〉 → 〈Γ′,S′,E ′,P′〉

〈Γ,S,E,when a do P〉 → 〈Γ′,S′,E ′,when a do P′〉

(PAR-OP1) 〈Γ,S,E,nil � Q〉 → 〈Γ,S,E,Q〉

(PAR-OP2)
〈Γ,S,E,P〉 → 〈Γ′,S′,E ′,P′〉

〈Γ,S,E,P � Q〉 → 〈Γ′,S′,E ′,P′ � Q〉

(PAR-OP3)
〈E,P〉‡ ¬〈E,Q〉‡

〈Γ,S,E,P � Q〉 → 〈Γ,S,E,Q � P〉

Figure 3: Operational semantics of reactive constructs
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Example 1 (Thread alternation) In this example three threads are queuing for execution in an
empty signal environment (left column). The first two threads are suspended and thus so is their
composition. Then by rule (PAR-OP3) the third thread pops in head position and emits signal a
reducing to nil, and then disappearing (rules (EMIT-OP), (PAR-OP2) and (PAR-OP1)). Now the
remaining two threads can execute one after the other (we let the reader work out the rules to be
used) until termination of the whole program. Summing up, the emission of signal a by the third
thread unblocks the first suspended thread, which in turn unblocks the second.

{} ((when a do emit b) � (when b do emit c)︸ ︷︷ ︸) � emit a

→ {} emit a � ((when a do emit b) � (when b do emit c))
→? {a} (when a do emit b) � (when b do emit c)
→? {a,b} when b do emit c
→? {a,b,c} nil

Example 2 (Synchronous composition � is not associative) The operator � is non commutative with
respect to execution traces, as shown by the programs (emit a � emit b) and (emit b � emit a),
which emit signals a and b in different orders. It is also non associative, as shown by the programs:

((when a do emit b) � emit a) � emit c and (when a do emit b) � (emit a � emit c)

The first program emits the signals in the order a,b,c, while the second emits them in the order
a,c,b. Here the operational rules that come into play are the three rules for the operator �, the rules
(WHEN-OP1) and (EMIT-OP), as well as the clause (WHEN-SUS1) for the suspension predicate.

We have seen that suspension of a thread may be lifted during an instant upon emission of the
required signal by another thread in the pool. This is no longer possible in a program in which all
threads are suspended. When this situation is reached, the program (or rather, the configuration) is
said to be inactive and an instant change occurs. This will be the subject of the next section.

2.2.2 Instant changes

Suspension of a configuration marks the end of an instant. At this point, all suspended subprocesses
of the form (do P watching a) whose tested signal a is present are killed, and all signals are reset to
absent, that is, the new signal environment becomes the empty set. The watching construct provides
a mechanism to recover from suspension and from deadlock situations originated by when commands,
as will be illustrated by Example 4 below.

The semantics of instant changes is described in Figure 4. The operational rule (INSTANT-
OP) is the only rule by which a transition C ↪→ C′ can be derived. It specifies how a suspended
configuration can evolve, in the transition from an instant to the next, to a new configuration, possibly
active since the function bPcE may prune off some suspended parts of P. The function bPcE is meant
to be applied to suspended processes (see Figure 1) and therefore it is defined only for the subset
of programs that can suspend. It may easily be seen, by inspection of the various clauses, that if P
contains no watching commands, then bPcE coincides with P. Note that the two clauses for the
statement (when a do P) correspond to the two reasons why this program may suspend: in particular,
if the reason is the absence of signal a, then the control is blocked on this waiting point and thus the
body P cannot contain suspended subprograms. This point is best illustrated with an example:

Example 3 Let E = {b,c} and P be the program (suspended in E) defined as follows:

P = do (when b do (do (when d do Q) watching c)) watching a

We let the reader verify that bPcE = do (when b do nil) watching a.

11



(INSTANT-OP)
〈E,P〉‡

〈Γ,S,E,P〉 ↪→ 〈Γ,S, /0,bPcE〉
where

bdo P watching acE
def=

 nil if a ∈ E

do bPcE watching a otherwise

bwhen a do PcE
def=


when a do bPcE if a ∈ E

when a do P otherwise

bP ; QcE
def= bPcE ; Q

bP � QcE
def= bPcE � bQcE

Figure 4: Operational semantics of instant changes

In the sequel we assume programs run in the empty signal environment if not otherwise specified.
The following is an example where an instant change breaks a causality cycle:

Example 4 (Break of causality cycle) Consider the following program, where a causality cycle is
initially present between the emissions of signals b and c:

emit a ; ((when b do emit c) � (do (when c do emit b) watching a) ; emit b)

Here the whole program suspends after the emission of a. Then, since a is present, the watching
construct is killed and a new instant starts, during which b is emitted, thus unblocking the other thread
and allowing c to be emitted. This is an example of a deadlock situation which is exited at the end of
an instant thanks to the watching construct.

Instant changes are programmable: we hinted in the Introduction at the possibility of encoding a
primitive pause that enforces suspension of a thread until instant change. This is defined as follows.

Example 5 (The primitive pause) The program pause is defined by:

pause =def local a : δ in (local b : θ in (emit b ; do (when a do nil) watching b))

Here the local declaration of signal a ensures that the signal cannot be emitted outside the scope of
its declaration, and thus the program will suspend when reaching the subprogram (when a do nil).
At this point, the presence of b is checked: since it has been emitted, the subprogram (when a do nil)
is aborted at the beginning of the next instant. Formally, the execution of pause goes as follows:

{} local a : δ in (local b : θ in (emit b ; do (when a do nil) watching b))
→? {} emit b ; do (when a do nil) watching b
→? {b} do (when a do nil) watching b︸ ︷︷ ︸
↪→ {} nil

We may note here that the program pause does not suspend immediately but only after performing
a few “administrative moves”. This implies for instance that the program (pause ; P) � (pause ; Q)
evolves to the program Q � P after a change of instant, since the second component gets the control
before the suspension of the whole program. On the other hand, no switch of control occurs in
(pause ; P) � (when a do Q) since in this case the second component suspends immediately. Hence
this program will evolve to P � (when a do Q) at instant change.
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To see this style of programming at work, let us now consider a more practical example, adapted
from [16]. Suppose we want to model the replacement of a service during execution (also called
“hot-plug replacement”). We assume the service, henceforth called standard service, to run until the
emission of a signal switch, which can be viewed as representing an internal failure or an external
interrupt. At this point, a supply service takes over and runs for a fixed amount of time. We want the
replacement to preserve two properties: (1) continuity of service, meaning that there is no temporal
delay between the end of the first service and the start of the second, and (2) coherence, meaning that
there is no overlapping between the two services.

Example 6 (A practical example: service replacement)
We model a service replacement system. Let Service1 and Service2 denote respectively the standard
service and the supply service. We consider an elementary notion of service, which consists simply
in incrementing a counter. This is admittedly oversimplified, since we abstract even from the fact
that a service responds to a client’s request. In practice, this simple instruction will be replaced by a
more elaborate finite task, triggered by an external request. Each Servicei follows a basic protocol:
it waits for signal goi to be emitted and then, at every instant, it increments the variable counti and
suspends until the end of the instant. As long as goi is not present (a period that can span through
several instants), Servicei is blocked. However, the services are not completely symmetric: Service1
can be killed, at the end of the instant where signal kill is emitted, while Service2 terminates on its
own, in a delay d ≥ 1 after the emission of go2. Formally, the services are defined by:

Service1 : do (await go1 ; loop (count1 := count1 +1; pause)) watching kill

Service2 : await go2 ; j := 0; while j < d do ( j := j +1; count2 := count2 +1; pause)

The system includes two more components: Service-Switcher, which emits the signal switch at a
predefined time t ≥ 1, and Service-Controller, which triggers Service1 via signal go1, and then stops
it via signal kill when switch is emitted, subsequently triggering Service2 via signal go2. These two
components are defined by:

Service-Switcher : k := 1; while k < t do (k := k +1; pause) ; emit switch

Service-Controller : emit go1 ; await switch ; emit kill ; pause ; emit go2

The whole system is then defined by

SR-System = (Service-Switcher � Service-Controller) � (Service1 � Service2)

Note that both services are programmed to increment their counter at least once. Signal kill is emitted
at the t-th instant of the system’s execution, while go2 is emitted at the following instant, due to the
intervening pause instruction. The reason for postponing the emission of go2 is that, since Service1 is
killed only at the end of instant t, the start of Service2 should be delayed till instant t +1, otherwise the
property of coherence would not hold. Note also that both Service-Switcher and Service-Controller
terminate as soon as their job is completed, that is, at time t and t +1 respectively.

It is now easy to convince oneself that SR-System satisfies the properties of continuity of service and
coherence, since Service1 stops at the end of instant t and Service2 starts at the beginning of instant
t +1. Indeed, the synchronous computational model ensures that Service1 actually stops at time t, that
is, at the same time when the switch signal is emitted, as witnessed by the final value of the counter
count1. Such a behaviour would not be possible to program in an asynchronous model, since in that
case Service1 could always “refuse” to receive signal kill even though it has been emitted.
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2.2.3 Computations

In this section, we establish a few properties of computations. An important property of reactive com-
putations is their determinacy (up to a renaming of local variables). Indeed, this property is often put
forward as an advantage of synchronous programming over other styles of concurrent programming.
We start by giving some definitions.

Definition 2.3 (States of a configuration)
A configuration C is said to be:

• active, if there exists C′ such that C →C′, which we denote by C →;

• alive, if there exists C′ such that C 7−→ C′, which we denote by C 7−→;

• terminated, if it is not alive, which we denote by C 67−→.

Similarly, we denote by C ↪→ the fact that there exists C′ such that C ↪→C′. Clearly, if C is active then
it is also alive. If a configuration C = 〈Γ,S,E,P〉 is able to perform a step, the form of this step, simple
move or instant change, will depend on whether P is suspended or not in the signal environment E.
This leads us to the following definition:

Definition 2.4 (Computation)
A computation with initial configuration C = 〈Γ,S,E,P〉 is a sequence of transitions of the form:

〈Γ,S,E,P〉 →? 〈Γ1,S1,E1,P1〉 ↪→ 〈Γ1,S1, /0,bP1cE1
〉 →? 〈Γ2,S2,E2,P2〉 ↪→ . . .

where all the configurations 〈Γi,Si,Ei,Pi〉 are suspended.

We establish now a few properties of computations. Recall that a memory is a pair 〈S,E〉. It is easy
to see from the semantic rules that computations may affect a type environment only by extending
it with a fresh name. Similarly, they may affect a store only by updating it (changing the value of
a variable or extending it with a fresh variable). As concerns the signal environment, this may only
be affected by the addition of a new signal, in case of simple moves, or by a reset to /0, in case of
an instant change. These facts are summarized in the following proposition, which we state without
proof. By abuse of notation, we use {n : δ name}Γ to stand for either {x : δ var}Γ or {a : δ sig}Γ.

Proposition 2.1 (Simple properties of computations)

1. If 〈Γ,S,E,P〉 7−→ 〈Γ′,S′,E ′,P′〉, then Γ′ = Γ or Γ′ = {n : δ name}Γ for some n /∈ dom(Γ).

2. If 〈Γ,S,E,P〉 7−→ 〈Γ′,S′,E ′,P′〉, then dom(S′) = dom(S) or there exists x /∈ dom(S) such that
dom(S′) = dom(S)∪{x}.

3. If 〈Γ,S,E,P〉 → 〈Γ′,S′,E ′,P′〉, then E ′ = E or E ′ = E ∪{a} for some a ∈ dom(Γ)\E.

We show that computations preserve well-formedness of configurations. Recall from Definition 2.2
that C = 〈Γ,S,E,P〉 is well-formed if fs(P)⊆ dom(Γ), fv(P)⊆ dom(S) and dom(S)∪E ⊆ dom(Γ).

Proposition 2.2 (Well-formedness is preserved by computations)
If C is a well-formed configuration and C 7−→ C′ then C′ is also a well-formed configuration.

Proof Let C = 〈Γ,S,E,P〉 and C′ = 〈Γ′,S′,E ′,P′〉. We must show that C′ satisfies the properties
fs(P′) ⊆ dom(Γ′), fv(P′) ⊆ dom(S′) and dom(S′)∪ E ′ ⊆ dom(Γ′). We distinguish the two cases
C ↪→C′ and C →C′.
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1. Instant change. If C ↪→ C′ then Γ′ = Γ,S′ = S,E ′ = /0 and P′ = bPcE . It is easy to see that
fv(bPcE)⊆ fv(P). Then the required properties for C′ follow immediately from those for C.

2. Simple move. Suppose now C →C′. We prove the required properties by induction on the
proof of the transition. There are several base cases to consider. Indeed, the only cases
where induction is used are those of rules (SEQ-OP2), (WATCH-OP2), (WHEN-OP2) and
(PAR-OP2). Note that in all base cases apart from (LET-OP), we have fv(P′) ⊆ fv(P) and
dom(S′) = dom(S), so the property fv(P′)⊆ dom(S′) is trivial. Similarly, in all base cases apart
from (LET-OP) and (LOCAL-OP), we have fs(P′) ⊆ fs(P) and dom(Γ′) = dom(Γ), so the
property fs(P′)⊆ dom(Γ′) is trivial. As for the property dom(S′)∪E ′ ⊆ dom(Γ′), it is trivial in
all cases where Γ′ = Γ,S′ = S and E ′ = E. We examine some of the remaining cases.

• (ASSIGN-OP) Here Γ′ = Γ,dom(S′) = dom(S) and E ′ = E, hence the property dom(S′)∪
E ′ ⊆ dom(Γ′) follows immediately from that for C.

• (SEQ-OP2) Here P = P1;P2, P′ = P′1;P2, and the transition C →C′ is deduced from
〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉. By induction fs(P′1) ⊆ dom(Γ′), fv(P′1) ⊆ dom(S′) and
dom(S′)∪ E ′ ⊆ dom(Γ′). Hence the last property for C′ is already given. Now, since
C is well-formed, we know that fs(P2) ⊆ dom(Γ) and fv(P2) ⊆ dom(S). By Proposi-
tion 2.1 dom(Γ)⊆ dom(Γ′) and dom(S)⊆ dom(S′), whence fs(P′1;P2) = fs(P′1)∪fs(P′2)⊆
dom(Γ′) and fv(P′1;P2) = fv(P′1)∪fv(P′2)⊆ dom(S′).

• (LET-OP) Here P = let x : δ = e in P1 and P′ = {x′/x}P1, for some x′ not in dom(Γ) and
thus not in dom(S) nor in fv(P). We have Γ′ = {x′ : δ var}Γ, S′ = {x′ 7→ S(e)}S, E ′ = E.
Since fs(P′) = fs(P) and fv(P′) = fv(P)∪ {x′}, it follows that fs(P′) ⊆ dom(Γ) ⊆
dom(Γ′) and fv(P′) ⊆ dom(S) ∪ {x′} = dom(S′). Similarly, we have dom(S′) ∪ E ′ =
dom(S)∪{x′}∪E ⊆ dom(Γ)∪{x′}= dom(Γ′).

• (EMIT-OP) Here P = emit a and we have Γ′ = Γ,S′ = S and E ′ = E ∪{a}. Since C is
well-formed, we know that fs(P) ⊆ dom(Γ), hence a ∈ dom(Γ). We can then conclude
that dom(S′)∪E ′ ⊆ dom(Γ′).

• (LOCAL-OP) Here P = local a : δ in P1 and P′ = {a′/a}P1 for some a′ not in dom(Γ).
Since Γ′ = {a′ : δ sig}Γ, S′ = S and E ′ = E, we have fs(P′) = fs(P)∪{a′} ⊆ dom(Γ)∪
{a′}= dom(Γ′) and dom(S′)∪E ′ = dom(S)∪E ⊆ dom(Γ)⊆ dom(Γ′).

• (WATCH-OP2) Here P = do P1 watching a, P′ = do P′1 watching a and the transition
C →C′ is deduced from 〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉. By induction we have fs(P′1) ⊆
dom(Γ′), fv(P′1)⊆ dom(S′) and dom(S′)∪E ′ ⊆ dom(Γ′). Thus the third property is given.
Moreover fv(P′) = fv(P′1), so we only have to prove the first property. By Proposition 2.1
dom(Γ) ⊆ dom(Γ′). Since C is well-formed, we know that fs(P) ⊆ dom(Γ), thus a ∈
dom(Γ)⊆ dom(Γ′). Whence fs(P′) = fs(P′1)∪{a} ⊆ dom(Γ′)∪{a}= dom(Γ′).

2

By virtue of this result, we may always assume configurations to be well-formed. We shall generally
do so without explicitly mentioning it. As a first consequence of well-formedness, we will show that
a configuration is terminated if and only if the executing process is syntactically equal to nil.

Proposition 2.3 A configuration C = 〈Γ,S,E,P〉 is terminated if and only if P = nil.

Proof We prove that P 6= nil implies C 7−→, by induction on the structure of P. Recall that by
definition C = 〈Γ,S,E,P〉 ↪→ if and only if 〈E,P〉‡. We examine some sample cases.

• P = x := e. Since C is well-formed, we have fv(e)⊆ dom(S) and thus the value S(e) is defined.
Then C → 〈Γ,{x 7→ S(e)}S,E,nil〉 by (ASSIGN-OP).
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• P = P1 ; P2. If P1 = nil, then C → 〈Γ,S,E,P2〉 by (SEQ-OP1). If P1 6= nil then by induction
either (E,P1)‡ or ∃Γ′,S′,E ′,P′1 such that 〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉. In the first case we
have (E,P1;P2)‡ by (SEQ-SUS) and C ↪→ 〈Γ,S, /0,bP1cE ;P2〉 by (INSTANT-OP), while in the
latter we have C → 〈Γ′,S′,E ′,P′1;P2〉 by (SEQ-OP2).

• P = let x : δ = e in P1 . Since dom(Γ) is finite and Var is infinite, we can always find x′ such
that x′ /∈ dom(Γ), hence we may apply (LET-OP) to deduce C →.

• P = if e then P1 else P2. By well-formedness we know that S(e) is defined (and we may
assume it to be a boolean value, by some implicit typing). Then we deduce C →, using rule
(COND-OP1) or rule (COND-OP2) depending on the value S(e).

• P = when a do P1. If a /∈ E, then we have (E,when a do P1)‡ by (WHEN-SUS) and by
(INSTANT-OP) we deduce C ↪→ 〈Γ,S, /0,bwhen a do P1cE〉. Assume now a ∈ E. If P1 = nil,
then C → 〈Γ,S,E,nil〉 by rule (WHEN-OP1). If P1 6= nil, then we use induction exactly as
in the case P = P1 ; P2.

• P = P1 � P2. If P1 = nil, then C → 〈Γ,S,E,P2〉 by (PAR-OP1). If P1 6= nil then by in-
duction either (E,P1)‡ or ∃Γ′,S′,E ′,P′1 such that 〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉. In the lat-
ter case C → 〈Γ′,S′,E ′,P′1 � P2〉 by (PAR-OP2). In the former case either also (E,P2)‡ and
thus (E,P1 � P2)‡ by (PAR-SUS) and C ↪→ 〈Γ,S, /0,bP1cE � bP2cE〉 by (INSTANT-OP), or
¬(E,P2)‡ and C → 〈Γ,S,E,P2 � P1〉 by (PAR-OP3).

2

We are now able to prove an important property of reactive programs, namely their deterministic
behaviour up to the choice of local names. For C a configuration, let {n/m}C be the pointwise
substitution of name n for name m in all components of C.

Proposition 2.4 (Determinism) Let C = 〈Γ,S,E,P〉 be an alive configuration. Then:

• If C is suspended, then there exists a unique C′ such that C ↪→C′ ;

• If C is active, then there exists a configuration C′ = 〈Γ′,S′,E ′,P′〉 such that C → C′, and for
any C′′ = 〈Γ′′,S′′,E ′′,P′′〉 such that C →C′′, one of the following holds:

– C′′ = C′;
– for some a,b ∈ Sig\dom(Γ), we have dom(Γ′)\dom(Γ) = {a}, dom(Γ′′)\dom(Γ) = {b}

and C′′ = {b/a}C′;
– for some x,y ∈ Var\dom(Γ), we have dom(Γ′)\dom(Γ) = {x}, dom(Γ′′)\dom(Γ) = {y},

C′′ = {y/x}C′ and S′′(y) = S′(x).

Proof By Proposition 2.3 we know that P 6= nil. If 〈E,P〉‡, the only rule that applies to C is
(INSTANT-OP), yielding the transition C ↪→C′ = 〈Γ,S, /0,bPcE〉. If ¬〈E,P〉‡, then it may be easily
checked, by inspection of the rules in Figures 2 and 3, that exactly one rule will be applicable to C,
yielding a unique transition C → C′ if this rule is different from (LET-OP) or (LOCAL-OP). If the
rule is (LET-OP) or (LOCAL-OP), then C has an infinity of moves, one for each choice of the new
name, and clearly the resulting configurations are the same up to a renaming of this name.

2

3 Noninterference
In this section we present our security type system and prove some of its properties. We then formalise
our noninterference property as a form of self-bisimilarity, and prove that the type system guarantees
this property. Finally, we compare our notion of security with a more standard one, and show that our
property is stronger (and thus closer to the notion of typability) in several respects.
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3.1 Type System
The role of a security type system is to rule out insecure programs. Now, what exactly should be the
security property in our language? As usual, we shall require that a low observer, i.e. a potentially
malicious one, should only have access to the low memory, that is, in our setting, to the state of low
variables and low signals. It remains to establish at which points of execution this access could take
place. Since reactive computations are described by a small-step semantics and involve two kinds of
transitions, within instants and across instants, several possibilities can be envisaged.

For instance, observation could be restricted to final states of computations, as is the case for
sequential languages [27], or, on the opposite, it could be taken to cover all intermediate states of
possibly nonterminating computations, as is the case for most concurrent languages [24, 22, 14]).
The choice is not immediately obvious, since synchronous concurrency in our language amounts to
a deterministic interleaving of cooperative threads, and thus some of the well known problems of
input-output semantics in a concurrency scenario (like the non-reproducibility of results and the lack
of compositionality) do not arise in the reactive setting. However, it is clear that plain input-output se-
mantics is not appropriate for reactive programming, for the same reason for which it is not suited for
other kinds of concurrent programming: indeed, in a concurrent setting many useful programs (like
controllers, schedulers, service providers and other programs reacting to environment requests) are
explicitly designed to be persistent. On the other hand, reactive programs execute along a sequence
of instants, and it is generally agreed that an instantly diverging program (that is, a program which
loops within an instant, also called instantaneous loop) should be rejected2. In other words, a “good”
nonterminating reactive program should span over an infinity of instants. One could then envisage
adopting an intermediate semantics, where states are observed only at the end of instants (during
which computations are guaranteed to terminate if programs are well-behaved), over a possibly infi-
nite sequence of instants. We shall leave this question open for future investigation, and adopt here
a fine-grained observation where all states are taken into account, as in previous work on concurrent
languages. Note that a compositional static analysis will itself verify a fine-grained security property,
since each instruction is individually checked.

We may then informally define noninterference to be the property of programs whose low memory
(value of low variables and presence of low signals) is never affected, at any stage of execution, by
changes in the high memory (value of high variables or presence of high signals). With this intuition
in mind, let us now proceed to identify the kinds of insecure information flows, or information leaks,
which may arise in reactive programs. We shall essentially consider here succinct examples, grouping
them into categories for easy reference. For more interesting examples the reader may want to look
back at those presented in the Introduction or in Section 2. Later in this section, we shall reexamine
the service-replacement example of Section 2, and establish under which assignments of security
levels it may be considered secure.

In the next examples, the derived program pause will be used as if it were a primitive construct.
This is justified by the fact that pause is indeed usually assumed to be primitive in reactive languages
(we chose here to define it as a derived construct to emphasize the expressiveness of our language).
Moreover, for any program context it is possible to type pause in such a way that it is compatible
with that context, in the sense that the program obtained by plugging pause in the context is typable.

Explicit flow yL := xH

Here the value of xH is directly written into yL. This kind of flow is also called direct flow and can
be excluded by a very simple typing rule. Note that the introduction of signals does not generate new
explicit flows. Indeed, there is no direct way to equalize the status (present or absent) of two signals.
This can only be done by means of the constructs when or watching, as we shall see next.

2This is because, as we saw earlier, such an instantly diverging thread would keep the control forever, thus preventing all
the other threads from executing.
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Simple implicit flows

(5.1) if xH = 0 then yL := 0 else yL := 1

(5.2) while xH 6= 0 do (yL := yL +1; xH := 0)

}
imperative constructs

(5.3) (when aH do emit bL) � (emit cL ; emit aH)

(5.4) emit cL ; (do (when aH do emit bL) watching cL)

(5.5) do (when bL do emit cL) watching aH � (pause ; emit bL )

 reactive constructs

Implicit flows are induced by the control structure of a program. The first two programs are classical
examples of implicit flows associated with conditionals and while loops. In both cases the final value
of yL depends on the initial value of xH . Note that if a terminating program is found to be insecure
by looking at its final states, it will a fortiori be insecure under a more fine-grained observation. The
standard way for ruling out these kinds of flows in imperative programs consists in forbidding low
assignments in the body of conditionals or loops with a high condition. We shall use a similar rule
here, forbidding also low signal emissions in the body of such statements.

Let us now consider the last three programs, which only involve reactive constructs. Note that
under a fine-grained observation the order in which signals are emitted is observable. Suppose we
execute program (5.3) in the empty signal environment. Then, since aH is initially absent, the first
component suspends and the the second component emits cL and then aH , thus unblocking the first
component which can now emit bL. If instead we execute program (5.3) in the signal environment
{aH}, then bL will be emitted before cL. Hence program (5.3) is insecure, because its component
(when aH do emit bL) is insecure.

Program (5.4) is a variant of Example (8) discussed in the Introduction. Here, if aH is present
then bL is emitted and the program terminates at the first instant. If aH is absent then the program
suspends and the body of the watching construct is killed at the end of the instant. In this case the
signal bL is not emitted. Hence this program is insecure, again because of (when aH do emit bL).

It may be worth noting here that our fine-grained observation is insensitive to the program status,
i.e. unable to detect whether a program is terminated, suspended or active in a given memory state.
Under such an observation, the program (when aH do emit bL) is insecure even when run in isolation.
In fact, if aH is present then the program moves and emits bL, whereas if aH is absent it stays in its
initial state and this state is observed (as producing no low change) even though it is suspended.
However, we chose here to use terminating programs to illustrate implicit flows, as these may be
easier to comprehend for the reader at this stage. Moreover it is interesting to have examples of
programs that are insecure for any kind of observation.

Consider now program (5.5). If we run it in the empty signal environment, then the first compo-
nent suspends and the second takes over, suspending after a few steps. At this point an instant change
occurs and since aH is absent, the first component remains unchanged. On the other hand the second
component can now move and emit bL, unblocking the first component which can then emit cL and
terminate. Suppose now program (5.5) runs in the signal environment {aH}. In this case, when the
instant change occurs, the first component reduces to nil and thus only signal bL is emitted in the
whole computation. Hence program (5.5) is insecure, because of its watching subprogram.

To rule out implicit flows in when and watching statements, we shall use the same rule as for
conditionals and loops, namely forbid low signal emissions and low assignments in the body of when
and watching statements whose controlling signal is high.

Note that all the above implicit flows are due to the flow of control within a single command,
which tests a high variable or signal and performs a low memory change in its body. We turn now to
more complex indirect flows, associated with nontermination, suspension and scheduling.
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Nontermination leaks

A well known indirect information flow arising in standard concurrent languages is the so-called
(non)termination leak. This kind of leak occurs when the result of a fine-grained observation of
the low memory3 depends on the termination or nontermination of some subprogram, which itself
depends on the state of the high memory. Typical examples of nontermination leaks are:

(5.6) (while xH 6= 0 do nil) ; yL := yL +1

(5.7) (if xH 6= 0 then (loop nil) else nil) ; yL := yL +1

In both these examples the increment of the low variable yL will take place if and only if the preceding
program does not diverge, that is, if and only if the value of the high variable xH is equal to 0. Note
that the possibility of divergence occurs in the first component of the sequential composition, while
the low memory change occurs in the second component. Indeed, this kind of leak depends on
the occurrence or not of the passage of control in the sequential composition statement. Note that
there would be no difference if the low memory change took place later in the program, that is, in
subsequent sequential components.

A first proposal to rule out nontermination leaks such as those of programs (5.6) and (5.7) was
put forward in [24] and adopted by a number of other authors, e.g. [22, 1]. The solution consisted
in forbidding high loops (that is, loops with a high condition) completely, and forbidding loops in
the branches of high conditionals. A second proposal, presented in [23] and independently in [14],
was based on the observation that, in the above examples, the high loop and high conditional are not
insecure as such (since they do not affect the low memory) but only as far as they are followed, in
sequence, by changes in the low memory. The suggested solution was then to forbid the sequential
composition (P ; Q) whenever P contains a high loop or high conditional and Q performs low memory
changes. This solution has the advantage of being less restrictive than the previous one as concerns
the use of high loops, and to be robust with respect to the introduction of scheduling.

Note that programs (5.6) and (5.7) contain instantaneous loops. Indeed, nontermination leaks
would not arise in a restricted language where only well-behaved reactive programs could be defined.

Busy waiting leaks

Another kind of leak associated with high loops in a concurrent setting, which is closely related to
the previous one, is the busy waiting leak. Such leaks are not usually distinguished from nontermi-
nation leaks, on the grounds that they originate from similar programs. Here we choose to treat busy
waiting leaks separately, because they do not involve divergence. We recall from the Introduction the
following example of busy waiting leak for asynchronous parallelism. Consider the program P ‖ Q,
where ‖ stands for nondeterministic interleaving and P and Q are given by:

Example 7 (Busy waiting with asynchronous concurrency)

P : (while xH 6= 0 do nil) ; yL := 0 ; xH := 1
Q : (while xH = 0 do nil) ; yL := 1 ; xH := 0

Note that this program always terminates, so the issue of termination versus nontermination does not
arise here. However, this program is insecure, since it produces different values for yL depending on
the initial value of xH . The insecurity stems from the same situation exhibited in program (5.6) above,
namely the sequential composition between a high loop and a low assignment. Not surprisingly, this
kind of leak can be prevented by the same restrictions used to cope with nontermination leaks.

3This kind of leak only appears with a fine-grained observation, or with a termination sensitive notion of noninterfer-
ence [25], as otherwise nothing can be observed of nonterminating computations.
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A natural question to ask is whether such busy waiting leaks can also occur in a reactive setting.
Indeed, while in an asynchronous model a busy waiting loop can be unblocked by a parallel thread,
as shown by the above example, in the reactive model a purely imperative loop cannot be unblocked
by another thread, since an executing thread releases the control only by terminating or suspending.
Hence, loops cannot give rise to busy waiting leaks in a reactive scenario. In fact, one of the points of
reactive programming is precisely to eliminate busy waiting in favour of suspension, which is deemed
to be a healthier status in that it allows other threads to proceed or a new instant to start. However, a
sort of “light” busy waiting behaviour can still be encoded in our language. Consider the following
program, which exhibits a healthy loop whose body suspends at each iteration:

(5.8) ((while xH 6= 0 do pause) ; yL := 0) � (yL := 1; xH := 0)

Here the first thread suspends, by executing the pause statement, if and only if xH 6= 0. If it suspends,
the second thread takes over and the low variable yL gets the value 1 before the value 0. If it does not
suspend, the low variable yL gets the value 0 before the value 1. Hence this program is insecure. This
means that even in a restricted language with no instantaneous loops (and hence no nontermination
leaks), high loops may be dangerous if they are sequentially followed by low memory changes.

Suspension leaks

We come now to a kind of insecure flow which is specific to our reactive setting, since it originates
from the possibility of suspension. This sort of leak will be called suspension leak, conveying the
idea that high tests may influence the suspension of threads and thus their order of execution, or their
persistence after an instant change, possibly leading to insecure flows if these threads perform low
memory changes. We already saw some simple examples of suspension leaks at page 18, caused by
when or watching commands with a high control signal.

Another kind of suspension leak, associated with the passage of control in the sequential compo-
sition, may be observed in the following program (a variant of example (5) seen in the Introduction):

(5.9) (when aH do nil) ; yL := yL +1

This program is insecure because if aH is present it increments yL and if aH is absent it suspends, per-
forming no observable memory change. Note that we can easily turn this program into a terminating
one by surrounding it with a watching statement whose control signal is present. Let us also point
out the similarity between the suspension leak in (5.9) and the nontermination leak in (5.6), although
the two programs behave very differently when plugged in watching or � contexts. This example
shows that a secure when statement with a high control signal should not be followed in sequence by
a low memory change. A similar example could be given for the watching statement.

Note that Example (5.8) above is also an example of suspension leak, where the insecurity orig-
inates from the possibility of executing the pause statement. A simpler example is the following,
where the increment on yL will be performed if and only aH is absent:

(5.10) do (pause ; yL := yL +1) watching aH

On the basis of Examples (5.1)–(5.10), we may conclude that, although the phenomena involved are
slightly different, the rule of thumb for typing reactive programs will be similar to that for parallel
programs in [23, 14]. This rule prescribes that high tests, i.e. tests on high variables or signals, should
not be followed, whether in the same construct or in sequence, by low writes, i.e. assignments to low
variables or emissions of low signals. In particular, the rule for typing sequential composition will
require that the level of tests in the first component be lower than or equal to the level of writes in the
second. We shall call this condition, for short, the BCS-condition (from the names of its promotors).
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However, there is a further element to consider. Let us look at a more elaborate example, which obeys
the BCS-condition (“no low writes after high tests”) and yet exhibits an intriguing suspension leak.
Here the culprit appears to be the combination of suspension with our particular scheduling.

Example 8 (Scheduling leak)

Consider the program (P � Q) � R, running in two different signal environments E1 = {aH ,bH} and
E2 = {bH}:

P : pause ; xL := 1
Q : do (when aH do nil) watching bH � when cL do xL := 0

R : pause ; emit cL

Here threads P and Q contain different assignments to xL. Thread P starts executing and suspends
after a few steps. Now thread Q may either suspend immediately, in the environment E2 where
signal aH is absent, or execute its left branch before suspending, in the environment E1 where sig-
nal aH is present. Therefore P and Q will switch positions in the environment E1 but not in the
environment E2. In any case their composition will eventually suspend and thread R will gain
the control, suspending as well after a few moves. At this point a change of instant occurs, af-
ter which the system is either in the state emit cL � (when cL do xL := 0 � xL := 1) or in the state
emit cL � (xL := 1 � (nil � when cL do xL := 0)), depending on whether the starting environment
was E1 or E2. In any case signal cL is emitted and we are left with either (when cL do xL := 0 � xL := 1)
or (xL := 1 � (nil � when cL do xL := 0)). In the first case the assignment xL := 0 will be executed
first, while in the second it will be executed after xL := 1.

This example shows that a scheduling leak (which we may consider as a case of suspension leak)
may be caused by the coexistence of a high test in a thread with a low write in another thread4. This
will lead us to impose conditions in the typing rules for the operator � , which are similar to those
required for sequential composition in [14, 23], demanding that the level of tests in one component be
lower than or equal to the level of writes in the other component. Moreover in the case of P � Q this
will have to hold in both directions, since the roles of P and Q may be interchanged during execution.

Types and typing rules

Let us now present our security type system. As mentioned in Section 2, expressions are typed with
simple types, which are just security levels δ ,θ ,σ . As usual, these are defined to form a lattice
(T ,≤), where the order relation ≤ stands for “less secret than” and ∧,∨ denote the meet and join
operations. To keep full generality we shall not assume our lattice to be finite nor complete (although
the existence of bottom and top elements would allow us to simplify some of the typing rules).
Starting from simple types we build variable types of the form δ var and signal types of the form
δ sig, collectively called name types. We shall use δ name to denote either δ var or δ sig.

Program types have the form (θ ,σ) cmd, as in [14, 23]. Here the first component θ represents a
lower bound on the level of written variables and emitted signals, while the second component σ is
an upper bound on the level of tested variables and signals.

Our type system is presented in Figure 5. Concerning the imperative part of the language, it is
the same as that of [14, 23]. The rules for the reactive constructs have been mostly motivated by the
above examples. Let us just note that the rules for the when and watching commands are similar
to those for the while command. This is not surprising since all these commands consist of the
execution of a process under a guard. As concerns reactive parallel composition, the introduction of
side conditions similar to those for sequential composition is motivated by Example 8 above.

4Note that this problem would not arise with a nondeterministic scheduler, which, however, would cause other kinds of
leaks which do not occur here, as shown for instance in [23, 14].
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(NIL) Γ ` nil : (θ ,σ) cmd

(ASSIGN)
Γ ` e : θ Γ(x) = θ var

Γ ` x := e : (θ ,σ) cmd

(LET)
Γ ` e : δ {x : δ var}Γ ` P : (θ ,σ) cmd

Γ ` let x : δ = e in P : (θ ,σ) cmd

(SEQ)
Γ ` P : (θ1,σ1) cmd Γ ` Q : (θ2,σ2) cmd σ1 ≤ θ2

Γ ` P ; Q : (θ1∧θ2,σ1∨σ2) cmd

(COND)
Γ ` e : δ Γ ` P : (θ ,σ) cmd Γ ` Q : (θ ,σ) cmd δ ≤ θ

Γ ` if e then P else Q : (θ ,δ ∨σ) cmd

(WHILE)
Γ ` e : δ Γ ` P : (θ ,σ) cmd δ ∨σ ≤ θ

Γ ` while e do P : (θ ,δ ∨σ) cmd

(EMIT)
Γ(a) = θ sig

Γ ` emit a : (θ ,σ) cmd

(LOCAL)
{a : δ sig}Γ ` P : (θ ,σ) cmd

Γ ` local a : δ in P : (θ ,σ) cmd

(WATCH)
Γ(a) = δ sig Γ ` P : (θ ,σ) cmd δ ≤ θ

Γ ` do P watching a : (θ ,δ ∨σ) cmd

(WHEN)
Γ(a) = δ sig Γ ` P : (θ ,σ) cmd δ ≤ θ

Γ ` when a do P : (θ ,δ ∨σ) cmd

(PAR)
Γ ` P : (θ1,σ1) cmd Γ ` Q : (θ2,σ2) cmd σ1 ≤ θ2 σ2 ≤ θ1

Γ ` P � Q : (θ1∧θ2,σ1∨σ2) cmd

(SUB)
Γ ` P : (θ ,σ) cmd θ ≥ θ ′ σ ≤ σ ′

Γ ` P : (θ ′,σ ′) cmd

(EXPR)
∀xi ∈ fv(e).δ ≥ θi where Γ(xi) = θi var

Γ ` e : δ

Figure 5: Typing Rules
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One may notice that these side conditions restrict the compositionality of the type system and in-
troduce some overhead (two comparisons of security levels) when adding new threads in the system.
This is the price to pay for allowing loops with high guards such as (while xH = 0 do nil) (which
are rejected by previous type systems, like those of [24, 22]) in the context of a co-routine mecha-
nism. However, it may be worth examining if this restriction could be lifted by means of techniques
proposed for other concurrent languages ([19, 28]). We also conjecture that this restriction could be
removed by adapting our scheduling policy so that the “scheduler counter” points to the same thread
at the beginning of each instant (or rather, to the first created thread among the alive ones).

As an application of our type system, let us reconsider the service-replacement example from
Section 2. Assume our lattice is {L,H}, with L≤H. Suppose the time of replacement t is a sensitive
information. Then t will have security level H. Now, as we have seen, the final value of count1
depends on t. This means that count1 should not have security level L, otherwise the system would
be insecure. We let the reader verify that, in the hypothesis that t has type H var, the type system
requires count1 to have type H var too.

3.2 Properties of typed programs
In this section we prove some important properties of our type system, namely subject reduction,
guard safety and confinement. The first is the classical type preservation property, stating that types
are preserved by execution, while the last two properties formalise the intended meaning of types.

It is easy to see that if a program is typable in a type environment Γ, it is also typable with the same
type in any environment Γ′ extending Γ. This fact, together with a simple property of substitution, is
stated here without proof:

Proposition 3.1 (Simple properties of typed programs)

1. If Γ ` P : (θ ,σ) cmd and Γ′ ⊇ Γ, then Γ′ ` P : (θ ,σ) cmd.

2. If {n : δ name}Γ`P : (θ ,σ) cmd and n′ /∈ dom(Γ), then {n′ : δ name}Γ` {n′/n}P : (θ ,σ) cmd.

In order to establish one of the main properties of our type system, subject reduction, we start by
showing that types are preserved by instant changes. The proofs of the next two results are quite
standard, but we include them for completeness.

Lemma 3.2 (Instant changes preserve types)

If 〈E,P〉‡ and Γ ` P : (θ ,σ) cmd, then Γ ` bPcE : (θ ,σ) cmd.

Proof By induction on the proof of Γ ` P : (θ ,σ) cmd. We only have to consider the cases of
suspendable processes (see Figure 1), corresponding to the typing rules (WHEN), (WATCH), (SEQ),
(PAR) and to the subtyping rule (SUB).

• (WHEN) Here P = when a do P1 and Γ ` P : (θ ,σ) cmd is deduced from Γ(a) = δ sig, Γ `
P1 : (θ ,σ1) cmd, δ ≤ θ and σ = δ ∨σ1. If a /∈ E we conclude immediately since bPcE = P. If
a ∈ E then bPcE = when a do bP1cE . By induction Γ ` bP1cE : (θ ,σ1) cmd, hence, using rule
(WHEN) again, we deduce Γ ` bPcE : (θ ,σ) cmd.

• (WATCH) Here P = do P1 watching a and Γ ` P : (θ ,σ) cmd is deduced again from Γ(a) =
δ sig, Γ ` P1 : (θ ,σ1) cmd, δ ≤ θ and σ = δ ∨σ1. If a ∈ E we have bPcE = nil and we can
conclude immediately by rule (NIL). If a /∈E then bPcE = do bP1cE watching a. By induction
Γ ` bP1cE : (θ ,σ1) cmd, hence Γ ` bPcE : (θ ,σ) cmd by rule (WATCH).

• (SEQ) Here P = P1 ; P2 and Γ ` P : (θ ,σ) cmd is deduced from Γ ` P1 : (θ1,σ1) cmd, Γ `
P2 : (θ2,σ2) cmd, θ = θ1 ∧ θ2, σ = σ1 ∨σ2, σ1 ≤ θ2. We have bP1 ; P2cE = bP1cE ; P2. By
induction Γ ` bP1cE : (θ1,σ1) cmd, hence Γ ` bPcE : (θ ,σ) cmd by rule (SEQ).
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• (PAR) Here P = P1 � P2 and Γ ` P : (θ ,σ) cmd is deduced from Γ ` P1 : (θ1,σ1) cmd, Γ `
P2 : (θ2,σ2) cmd, θ = θ1 ∧ θ2, σ = σ1 ∨ σ2, σ1 ≤ θ2, σ2 ≤ θ1. We have bP1 � P2cE =
bP1cE � bP2cE . By induction Γ ` bP1cE : (θ1,σ1) cmd and Γ ` bP2cE : (θ2,σ2) cmd, hence
Γ ` bPcE : (θ ,σ) cmd by rule (PAR).

• (SUB) Here Γ ` P : (θ ,σ) cmd is deduced from Γ ` P : (θ ′,σ ′) cmd for some θ ′,σ ′ such that
θ ≥ θ ′ and σ ≤ σ ′. By induction Γ ` bPcE : (θ ′,σ ′) cmd, hence, using rule (SUB) again, we
deduce Γ ` bPcE : (θ ,σ) cmd.

2

Theorem 3.3 (Subject reduction)
If Γ ` P : (θ ,σ) cmd and 〈Γ,S,E,P〉 7−→ 〈Γ′,S′,E ′,P′〉 then Γ′ ` P′ : (θ ,σ) cmd.

Proof Let C = 〈Γ,S,E,P〉 and C′ = 〈Γ′,S′,E ′,P′〉. We want to show that Γ′ ` P′ : (θ ,σ) cmd. We
distinguish the two cases C ↪→C′ and C →C′.

1. Instant change. If C ↪→C′ then Γ′ = Γ and P′ = bPcE . We then conclude by Lemma 3.2.

2. Simple move. Suppose now C →C′. We show that Γ′ ` P′ : (θ ,σ) cmd by induction on the
proof of Γ ` P : (θ ,σ) cmd. We examine the cases where P is not terminated nor suspended.
Note that in the cases (ASSIGN) and (EMIT) we have P′ = nil and thus we can conclude
immediately using rule (NIL). We consider some of the other cases.

• (LET) Here P = let x : δ = e in P1 and Γ ` P : (θ ,σ) cmd is deduced from Γ ` e : δ

and {x : δ var}Γ ` P1 : (θ ,σ) cmd. Since C →C′ is derived by (LET-OP), we have Γ′ =
{x′ : δ var}Γ and P′ = {x′/x}P1 for some x′ /∈ dom(Γ). Then by Proposition 3.1 we can
conclude that {x′ : δ var}Γ ` {x′/x}P1 : (θ ,σ) cmd.

• (SEQ) Here P = P1 ; P2 and Γ ` P : (θ ,σ) cmd is deduced from the hypotheses Γ ` P1 :
(θ1,σ1) cmd, Γ ` P2 : (θ2,σ2) cmd, θ = θ1∧θ2, σ = σ1∨σ2, σ1 ≤ θ2.

– If P1 = nil, then C →C′ is derived by (SEQ-OP1) and thus Γ′ = Γ and P′ = P2. Since
θ1∧θ2 ≤ θ2 and σ1∨σ2 ≥σ2, by rule (SUB) we have Γ′ `P2 : (θ1∧θ2,σ1∨σ2) cmd.

– If P1 6= nil then C →C′ is derived from the hypothesis 〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉
using rule (SEQ-OP2). We then have P′ = P′1 ; P2. By induction Γ′ `P′1 : (θ1,σ1) cmd.
By Proposition 2.1 dom(Γ) ⊆ dom(Γ′), hence by Proposition 3.1 we get Γ′ ` P2 :
(θ2,σ2) cmd. Then by rule (SEQ) we obtain Γ′ ` P′1 ; P2 : (θ1∧θ2,σ1∨σ2) cmd.

• (COND) Here P = if e then P1 else P2 and Γ ` P : (θ ,σ) cmd is deduced from Γ `
e : δ , Γ ` P1 : (θ ,σ ′) cmd and Γ ` P2 : (θ ,σ ′) cmd where σ = δ ∨σ ′.

– If S(e) = true, then C →C′ is derived using rule (COND-OP1) and we have Γ′ = Γ

and P′ = P1. Since Γ′ ` P1 : (θ ,σ ′) cmd and σ ≥ σ ′, by (SUB) we have Γ′ ` P1 :
(θ ,σ) cmd.

– The case S(e) = false is symmetric.

• (WHILE) Here P = while e do P1 and Γ ` P : (θ ,σ) cmd is deduced from Γ ` e : δ ,
Γ ` P1 : (θ ,σ ′) cmd and δ ∨σ ′ ≤ θ where σ = δ ∨σ ′.

– If S(e) = true, then C →C′ is derived using rule (WHILE-OP1) and we have Γ′ = Γ

and P′ = P1 ; while e do P1. Since Γ ` P1 : (θ ,σ ′) cmd and σ ≥ σ ′, by (SUB) we
have Γ ` P1 : (θ ,σ) cmd. Since σ ≤ θ , we may then use (SEQ) to deduce Γ′ ` P′ :
(θ ,σ) cmd.
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– If S(e) = false, then C →C′ is derived using rule (WHILE-OP2). Then Γ′ = Γ and
P′ = nil, and we may conclude immediately by rule (NIL).

• (WATCH) Here P = do P1 watching a and Γ ` P : (θ ,σ) cmd is deduced from Γ(a) =
δ sig, Γ ` P1 : (θ ,σ ′) cmd and δ ≤ θ , where σ = δ ∨σ ′.

– If P1 = nil, then C →C′ is derived using rule (WATCH-OP1). Then Γ′ = Γ and
P′ = nil, and we conclude immediately by rule (NIL).

– If P1 6= nil, then C →C′ is derived using rule (WATCH-OP2) from the hypothesis
〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉. In this case P′ = do P′1 watching a. By induction Γ′ `
P′1 : (θ ,σ ′) cmd, so using (WATCH) again we conclude that Γ′ ` do P′1 watching a :
(θ ,σ) cmd.

• (PAR) Here P = P1 � P2 and Γ ` P : (θ ,σ) cmd is deduced from Γ ` P1 : (θ1,σ1) cmd,
Γ ` P2 : (θ2,σ2) cmd, θ = θ1∧θ2, σ = σ1∨σ2, σ1 ≤ θ2, σ2 ≤ θ1.

– If P1 = nil, then C →C′ is derived using rule (PAR-OP1). Then Γ′ = Γ and P′ = P2.
Since θ1∧θ2 ≤ θ2 and σ1∨σ2 ≥ σ2, by rule (SUB) Γ′ ` P2 : (θ1∧θ2,σ1∨σ2) cmd.

– If P1 6= nil and ¬〈E,P〉1‡ then C →C′ is derived using rule (PAR-OP2) from the
hypothesis 〈Γ,S,E,P1〉 → 〈Γ′,S′,E ′,P′1〉. We then have P′ = P′1 � P2. By induction
Γ′ ` P′1 : (θ1,σ1) cmd. By Proposition 2.1 dom(Γ) ⊆ dom(Γ′), hence we may use
Proposition 3.1 to get Γ′ ` P2 : (θ2,σ2) cmd. Then, using rule (PAR) again, we obtain
Γ′ ` P′1 � P2 : (θ1∧θ2,σ1∨σ2) cmd.

– If P1 6= nil and 〈E,P〉1‡ then C →C′ is derived using rule (PAR-OP3) and C′ =
〈Γ,S,E,P2 � P1〉. In this case we can immediately conclude using rule (PAR), since
this is symmetric with respect to the two components P1 and P2.

• (SUB) Here Γ ` P : (θ ,σ) cmd is deduced from Γ ` P : (θ ′,σ ′) cmd for some θ ′,σ ′

such that θ ≥ θ ′ and σ ≤σ ′. By induction Γ′ `P′ : (θ ′,σ ′) cmd, hence, using rule (SUB)
again, we deduce Γ′ ` P′ : (θ ,σ) cmd.

2

Our next result ensures that program types have the intended meaning. Let us first introduce some
terminology. A program P is said to be in standard form (or standard) if all bound names of P are
distinct and no name is simultaneously free and bound in P. Note that every program can be put into
standard form using α-conversion. For P in standard form, we use the generic term guard to denote
any variable appearing in the condition of a loop or of a conditional in P, and any signal controlling
a when or watching statement in P. Formally, if var(e) is the set of variables occurring in the
expression e, the guards of P are defined as follows:

Definition 3.1 (Guard)
The set of guards of a standard program P, denoted guards(P), is defined inductively as follows:

• guards(nil) = guards(x := e) = guards(emit a) = /0 ;
• guards(let x : δ = e in Q) = guards(local a : δ in Q) = guards(Q) ;
• guards(if e then P1 else P2) = var(e) ∪ guards(P1) ∪ guards(P2) ;
• guards(while e do Q) = var(e) ∪ guards(Q) ;
• guards(do Q watching a) = guards(when a do Q) = {a} ∪ guards(Q) ;
• guards(Q � R) = guards(Q ; R) = guards(Q) ∪ guards(R) ;

For instance, x is a guard in the program (while x≤ y do y := y−1) and a is a guard in the program
x := 0; (when a do x := 1).
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Moreover, if P is in standard form and P is typable in the type environment Γ, we say that a variable
x (resp. a signal a) of P has security level δ in Γ if we are in one of two cases:

i) x (resp. a) is free in P and Γ contains the pair (x,δ var) (resp. (a,δ sig)).
ii) x (resp. a) is bound in P by a declaration let x : δ = e in Q (resp. local a : δ in Q).

Note that for case ii) the environment Γ is actually immaterial.

Lemma 3.4 (Guard safety and confinement)

1. If Γ ` P : (θ ,σ) cmd then every guard in P has a security level δ in Γ such that δ ≤ σ .

2. If Γ ` P : (θ ,σ) cmd then every written variable or emitted signal in P has a security level δ

in Γ such that θ ≤ δ .

Proof Proof of 1. By induction on the inference of Γ ` P : (θ ,σ) cmd.

• (NIL), (ASSIGN), (SEQ), (COND), (WHILE), (SUB): these cases correspond to imperative
constructs. The proof is the same as in [14] and is thus omitted. We examine some of the
remaining cases.

• (LET) Here P = let x : δ = e in Q, with {x : δ var}Γ ` Q : (θ ,σ) cmd and Γ ` e : δ . By
induction every guard in Q has a security level δ ′ ≤ σ in the type environment {x : δ var}Γ.
Then every guard of P different from x has a security level δ ′ ≤ σ in the type environment Γ.
As for x, it has the security level δ given by its declaration, and if it appears as a guard in P
that’s because it appears as a (free) guard in Q, in which case we know by induction that δ ≤ σ .

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig, Γ `Q : (θ ,σ ′) cmd and σ = δ ∨σ ′.
By induction every guard in Q has a security level δ ′ ≤ σ ′, and therefore δ ′ ≤ δ ∨σ ′ = σ .
Hence the guard a introduced by the watch construct, which has security level δ , satisfies the
constraint δ ≤ σ .

• (PAR) Here P = P1 � P2 with Γ ` P1 : (θ1,σ1) cmd, Γ ` P2 : (θ2,σ2) cmd and σ = σ1∨σ2. By
induction every guard in Pi has a level δi ≤ σi. Since σi ≤ σ1∨σ2 we can then conclude.

Proof of 2. By induction on the inference of Γ ` P : (θ ,σ) cmd. The proof for (NIL), (ASSIGN),
(SEQ), (COND), (WHILE), (SUB) is as in [14]. We consider some of the other cases.

• (LET) Here P = let x : δ = e in Q, with {x : δ var}Γ ` Q : (θ ,σ) cmd and Γ ` e : δ . By
induction every written variable or emitted signal in Q has a security level δ ′ such that θ ≤ δ ′

in the type environment {x : δ var}Γ. Then every written variable or emitted signal different
from x in P has a security level δ ′ such that θ ≤ δ ′ in the type environment Γ. The bound
variable x has the security level δ given by its declaration. In case x is written in Q, we know
by induction that θ ≤ δ .

• (EMIT) Here P = emit a, and Γ(a) = θ sig. This case is trivial since the only emitted signal
has security level θ .

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig and Γ ` Q : (θ ,σ ′) cmd. By in-
duction every written variable or emitted signal in Q has a security level δ ′ such that θ ≤ δ ′.
Whence the conclusion, since P does not introduce any written variables nor emitted signals.

• (PAR) Here P = P1 � P2 with Γ ` P1 : (θ1,σ1) cmd, Γ ` P2 : (θ2,σ2) cmd and θ = θ1∧θ2. By
induction every written variable or emitted signal in Pi has a security level δi with θi ≤ δi. Since
θ1∧θ2 ≤ θi we can then conclude.

2
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3.3 Security notion
In this section we introduce our security notion and formalise it as a kind of bisimulation, which we
call reactive bisimulation. We start by introducing some terminology that will be useful to define our
notion of indistinguishability. We use L to designate a downward-closed set of security levels, that is
a set L ⊆T satisfying (θ ∈L & σ ≤ θ ) ⇒ σ ∈L . The low memory is the portion of the variable
store and signal environment to which the type environment associates “low” security levels, that is,
security levels in L . Two memories are said to be low-equal if their low parts coincide:

Definition 3.2 (L ,Γ-equality of stores, signal environments and memories)

Let S1,S2 be variable stores, E1, E2 be signal environments, Γ be a typing environment and P1,P2 be
programs. The low equality =Γ

L on stores and signal environments is defined by:

S1=Γ
L S2 if for any x ∈ dom(Γ) : (Γ(x) = θ var ∧ θ ∈L ) ⇒ ((x ∈ dom(S1)⇔ x ∈ dom(S2)) ∧

(x ∈ dom(Si ) ⇒ S1(x) = S2(x)))

E1=Γ
L E2 if for any a ∈ dom(Γ) : (Γ(a) = θ sig ∧ θ ∈L ) ⇒ (a ∈ E1 ⇔ a ∈ E2)

Then =Γ
L is extended pointwise to memories by: 〈S1,E1〉=Γ

L 〈S2,E2〉 if S1=Γ
L S2 and E1=Γ

L E2

There is a class of programs for which the security property is particularly easy to establish because
of their inability to change the low memory. We will refer to these as high programs. We shall
distinguish two classes of high programs, based respectively on a syntactic and a semantic analysis.

Definition 3.3 (High programs)

1. Syntactically high programs

The set H Γ,L
syn

is inductively defined by: P ∈H Γ,L
syn

if one of the following holds:

• P = (x := e) and (Γ(x) = θ var implies θ /∈L )

• P = (emit a) and (Γ(a) = θ sig implies θ /∈L )

• P = (let x : δ = e in Q) and Q ∈H Γ∪{x:δ var},L
syn

• P = (local a : δ in Q) and Q ∈H Γ∪{a:δ sig},L
syn

• P = (while e do Q) or P = (when a do Q) or P = (do Q watching a), and Q ∈H Γ,L
syn

• P = (P1 ; P2) or P = (if e then P1 else P2) or P = (P1 � P2), and ∀i∈ {1,2}.Pi ∈H Γ,L
syn

2. Semantically high programs

The set H Γ,L
sem

is coinductively defined by: P ∈H Γ,L
sem

implies both of the following:

• For any S,E,〈Γ,S,E,P〉 → 〈Γ′,S′,E ′,P′〉 implies 〈S,E〉=Γ
L 〈S′,E ′〉 and P′ ∈H Γ′,L

sem

• For any S,E,〈Γ,S,E,P〉 ↪→ 〈Γ′,S′,E ′,P′〉 implies P′ ∈H Γ′,L
sem

Let us comment briefly on these definitions. The notion of syntactic highness is quite straightforward.
Essentially, a program is syntactically high if it does not contain assignments to low variables or
emissions of low signals. Note that P = let x : δ = e in Q (as well as P = local a : δ in Q) is
considered syntactically high even if δ ∈L , provided Q is syntactically high in the extended typing
environment. The notion of semantic highness is a little more subtle. The first clause ensures that
the low memory is preserved by simple moves. Note that the comparison of memories is carried out
in the starting typing environment Γ. This means that in case Γ′ 6= Γ, the newly created variable or
signal will not be taken into account in the comparison; however, since its creation turns it into a free

27



variable or signal, it will then be considered in the following steps. For instance, assuming δ ∈ L ,
the program (local a : δ in nil) is semantically high while (local a : δ in emit a) is not. The
second clause of Definition 3.3.2 concerns instant changes. As argued in the Introduction, we do not
consider as observable the reset of the low signal environment that is induced by instant changes. This
is reflected by the absence of the low equality condition in the second clause of Definition 3.3.2 (recall
that the variable store S is not modified during an instant change). Thanks to this weaker requirement
at instant changes, it may be easily shown that syntactic highness implies semantic highness:

Fact 3.5 For any Γ and for any downward-closed set L of security levels, H Γ,L
syn

⊆H Γ,L
sem

.

As can be expected, the converse is not true. An example of a semantically high program that is not
syntactically high is (if true then nil else yL := 0).

Clearly, both properties of syntactic and semantic highness are preserved by execution. Moreover:

Fact 3.6 If for some θ /∈L there exists σ such that Γ ` P : (θ ,σ) cmd, then P ∈H Γ,L
syn

.

Proof Immediate, by the Confinement lemma (Lemma 3.4.2). 2

We introduce now the notion of L -Guardedness, borrowed from [14]. This formalises the property
of programs containing no high guards.

Definition 3.4 (L -guardedness)
A program P is L -guarded in Γ if for some θ , there exists σ ∈L such that Γ ` P : (θ ,σ) cmd.

Fact 3.7 If P is L -guarded in Γ then every guard in P has a security level δ in Γ such that δ ∈L .

Proof Immediate, by the Guard safety lemma (Lemma 3.4.1). 2

We shall sometimes use the complementary notion of non-L -guardedness in Γ, for a program P
which is typable in Γ but for which there does not exist σ ∈L and θ such that Γ ` P : (θ ,σ) cmd.
We now proceed to prove two results which will be the basis of our soundness proof. The proofs
will therefore be presented in full detail. The first result concerns L -guarded programs: it states that
such programs, when run in low-equal memories, produce at each step equal typing environments
and programs, and low-equal memories.

Theorem 3.8 (Behaviour of L -guarded programs)

Let P be L -guarded in Γ and 〈S1,E1〉=Γ
L 〈S2,E2〉. Then

1. (Instant change) 〈Γ,S1,E1,P〉 ↪→ 〈Γ′,S′1,E ′
1,P

′〉 implies 〈Γ,S2,E2,P〉 ↪→ 〈Γ′,S′2,E ′
2,P

′〉 and
〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉.

2. (Simple moves) 〈Γ,S1,E1,P〉 → 〈Γ′,S′1,E ′
1,P

′〉 implies 〈Γ,S2,E2,P〉 → 〈Γ′,S′2,E ′
2,P

′〉 and
〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉.

Proof Proof of 1. By induction on the inference of Γ ` P : (θ ,σ) cmd where σ ∈ L , and then
by case analysis on the definition of 〈E1,P〉‡ (Figure 1). We only have to consider suspendable
processes (Figure 1), corresponding to the typing rules (WHEN), (WATCH), (SEQ), (PAR) and
to the subtyping rule (SUB). Note that it is enough to show that 〈E1,P〉‡ implies 〈E2,P〉‡, be-
cause in this case rule (INSTANT-OP) yields the transitions 〈Γ,S1,E1,P〉 ↪→ 〈Γ,S1, /0,bPcE1

〉 and
〈Γ,S2,E2,P〉 ↪→ 〈Γ,S2, /0,bPcE2

〉, where 〈S1, /0〉=Γ
L 〈S2, /0〉 follows from 〈S1,E1〉=Γ

L 〈S2,E2〉.
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• (WHEN) Here P = when a do Q and Γ`P : (θ ,σ) cmd is deduced from the hypotheses Γ`Q :
(θ ,σ ′) cmd, Γ(a) = δ sig, δ ≤ θ and σ = δ ∨σ ′. There are two cases to consider for 〈E1,P〉‡,
depending on the last rule used to prove it:

1. 〈E1,P〉‡ is deduced by rule (WHEN-SUS1): in this case a 6∈ E1. Note that δ ≤ σ implies
δ ∈L and therefore, since E1 =Γ

L E2, a ∈ E1 ⇔ a ∈ E2. Then also a 6∈ E2 and we can
apply rule (WHEN-SUS1) to deduce 〈E2,P〉‡.

2. 〈E1,P〉‡ is deduced by rule (WHEN-SUS2) from the hypothesis 〈E1,Q〉‡. Since σ ′ ≤ σ

implies σ ′ ∈L , Q is L -guarded. Then we have 〈E2,Q〉‡ by induction, whence by rule
(WHEN-SUS2) we obtain 〈E2,P〉‡.

• (WATCH), (SEQ), (PAR) By straightforward induction as in the second case of (WHEN).

• (SUB) Here Γ ` P : (θ ,σ) cmd is deduced from Γ ` P : (θ ′,σ ′) cmd for some θ ′,σ ′ such that
θ ′ ≥ θ and σ ′ ≤ σ . Thus σ ′ ∈L and we can conclude using induction.

Proof of 2. By induction on the inference of Γ ` P : (θ ,σ) cmd where σ ∈ L . We examine all
representative cases.

• (ASSIGN) Here P = x := e with Γ ` e : θ and Γ(x) = θ var. By rule (ASSIGN-OP) we then
have 〈Γ,S1,E1,P〉 → 〈Γ,S′1,E1,nil〉 and 〈Γ,S2,E2,P〉 → 〈Γ,S′2,E2,nil〉, where S′1 = {x 7→
S1(e)}S1 and S′2 = {x 7→ S2(e)}S2. It is easy to see that 〈S′1,E1〉=Γ′

L 〈S′2,E2〉 since Γ′ = Γ and
thus E1 =Γ′

L E2 is already known, while S′1 =Γ′
L S′2 follows from S1 =Γ

L S2 if θ 6∈L , and from
the additional fact that S1(e) = S2(e) if θ ∈L .

• (LET) Here P = let x : δ = e in Q , and Γ ` P : (θ ,σ) cmd is deduced from Γ ` e : δ and
{x : δ var}Γ ` Q : (θ ,σ) cmd, where σ ∈L . Then 〈Γ,S1,E1,P〉 → 〈Γ′,S′1,E1,P′〉 is inferred
by rule (LET-OP), and for some x′ /∈ dom(Γ), we have Γ′ = {x′ : δ var}Γ, S′1 = {x′ 7→ S1(e)}S1
and P′ = {x′/x}P. Then, using rule (LET-OP) again and choosing the same x′ we obtain
〈Γ,S2,E2,P〉 → 〈Γ′,S′2,E2,P′〉, where S′2 = {x′ 7→ S2(e)}S2. Now E1 =Γ′

L E2 follows from
E1 =Γ

L E2 and the fact that x′ 6∈ E1 and x′ 6∈ E2, while S′1 =Γ′
L S′2 follows, as in the previous

case, from the fact that S1 =Γ
L S2 if θ 6∈L , and from the fact that S1(e) = S2(e) if θ ∈L .

• (SEQ) Here P = Q ; R and Γ ` P : (θ ,σ) cmd is deduced from the hypotheses Γ ` Q :
(θ ′,σ ′) cmd, Γ ` R : (θ ′′,σ ′′) cmd, θ = θ ′∧θ ′′, σ = σ ′∨σ ′′, σ ′ ≤ θ ′′.

1. If Q = nil, then by rule (SEQ-OP1) we have both 〈Γ,S1,E1,Q;R〉 → 〈Γ,S1,E1,R〉 and
〈Γ,S2,E2,Q;R〉 → 〈Γ,S2,E2,R〉, so we can conclude immediately.

2. If Q 6= nil, then the transition 〈Γ,S1,E1,Q;R〉 → 〈Γ′,S′1,E ′
1,P

′〉 is derived by rule (SEQ-
OP2) from the hypothesis 〈Γ,S1,E1,Q〉 → 〈Γ′,S′1,E ′

1,Q
′〉, and P′ = Q′;R. Since σ ′ ≤ σ ,

Q is L -guarded. Hence by induction 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′
2,Q

′〉 with 〈S′1,E ′
1〉 =Γ′

L
〈S′2,E ′

2〉. We then have 〈Γ,S2,E2,Q;R〉 → 〈Γ′,S′2,E ′
2,Q

′;R〉 by (SEQ-OP2) and we can
conclude.

• (COND) Here P = if e then Q else R and Γ`P : (θ ,σ) cmd is deduced from the hypotheses
Γ ` e : δ , Γ ` Q : (θ ,σ ′) cmd, Γ ` R : (θ ,σ ′) cmd, where δ ≤ θ and σ = δ ∨σ ′. Since P is
L -guarded in Γ, σ ∈L . Then also δ ∈L and therefore, since by rule (EXPR) each variable
occurring in e has level less than or equal to δ , we have S1(e) = S2(e). Now, if Si(e) = true,
then by rule (COND-OP1) 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,Q〉 and 〈Γ,S2,E2,P〉 → 〈Γ,S2,E2,Q〉 and
we can conclude immediately. The case where Si(e) = false is symmetric.
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• (EMIT) Here P = emit a, where Γ(a) = θ sig. By rule (EMIT-OP) we have for i = 1,2 the
transition 〈Γ,Si,Ei,emit a〉 → 〈Γ,Si,E ′

i ,nil〉, where E ′
i = {a}∪Ei. Then all we have to show

is that E ′
1 =Γ

L E ′
2. If θ 6∈ L this follows immediately from E1 =Γ

L E2; if θ ∈ L , it also uses
the fact that a ∈ E ′

i for both i.

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig, Γ ` Q : (θ ,σ ′) cmd, δ ≤ θ and
σ = δ ∨σ ′.

1. Q = nil. In this case by rule (WATCH-OP1) we have 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,nil〉
and 〈Γ,S2,E2,P〉 → 〈Γ,S2,E2,nil〉, so we can conclude immediately.

2. Q 6= nil. Then 〈Γ,S1,E1,do Q watching a〉 → 〈Γ′,S′1,E ′
1,do Q′ watching a〉 is de-

rived by rule (WATCH-OP2) from 〈Γ,S1,E1,Q〉 → 〈Γ′,S′1,E ′
1,Q

′〉. Note that σ ′ ≤ σ

implies σ ′ ∈ L , thus Q is also L -guarded. Then by induction we have a transition
〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′

2,Q
′〉, with 〈S′1,E ′

1〉 =Γ′
L 〈S′2,E ′

2〉. Whence by (WATCH-OP2)
we deduce 〈Γ,S2,E2,do Q watching a〉 → 〈Γ′,S′2,E ′

2,do Q′ watching a〉, which is the
required matching transition.

• (WHEN) Here P = when a do Q, with Γ`Q : (θ ,σ ′) cmd, Γ(a) = δ sig, δ ≤ θ and σ = δ ∨σ ′.
As in the previous case, there are two possibilities:

1. Q = nil. In this case by rule (WHEN-OP1) we have 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,nil〉.
Note that δ ≤ σ implies δ ∈ L and therefore, since E1 =Γ

L E2, a ∈ E1 ⇔ a ∈ E2. We
know that a ∈ E1, thus also a ∈ E2. We can then apply rule (WHEN-OP1) again to get
〈Γ,S2,E2,P〉 → 〈Γ,S2,E2,nil〉.

2. Q 6= nil. Then 〈Γ,S1,E1,when Q do a〉 → 〈Γ′,S′1,E ′
1,when Q′ do a〉 is derived by rule

(WHEN-OP2) from 〈Γ,S1,E1,Q〉 → 〈Γ′,S′1,E ′
1,Q

′〉. Since σ ′ ≤ σ implies σ ′ ∈L , Q is
L -guarded. Then by induction 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′

2,Q
′〉, with 〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉.
Then since a ∈ E2 we have then 〈Γ,S2,E2,when Q do a〉 → 〈Γ′,S′2,E ′

2,when Q′ do a〉 by
rule (WHEN-OP2) and we conclude.

• (PAR) Here P = Q � R with Γ `Q : (θ ′,σ ′) cmd, Γ ` R : (θ ′′,σ ′′) cmd and σ = σ ′∨σ ′′. Since
σ ′ ≤ σ and σ ′′ ≤ σ , Q and R are also L -guarded. There are three possibilities:

1. Q = nil. In this case by rule (PAR-OP1) we have 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,R〉 and
〈Γ,S2,E2,P〉 → 〈Γ,S2,E2,R〉, and we can conclude.

2. Q 6= nil and ¬〈E1,Q〉‡. Then 〈Γ,S1,E1,Q � R〉 → 〈Γ1,S′1,E
′
1,Q

′ � R〉 is derived us-
ing rule (PAR-OP2) from the hypothesis 〈Γ,S1,E1,Q〉 → 〈Γ1,S′1,E

′
1,Q

′〉. By induction
〈Γ,S2,E2,Q〉 → 〈Γ2,S′2,E

′
2,Q

′〉 with 〈S′1,E ′
1〉=Γ′

L 〈S′2,E ′
2〉. Then using again (PAR-OP2)

we deduce 〈Γ,S2,E2,Q � R〉 → 〈Γ2,S′2,E
′
2,Q

′ � R〉.
3. 〈E1,Q〉‡ and ¬〈E1,R〉‡. Then 〈Γ,S1,E1,Q � R〉 → 〈Γ,S1,E1,R � Q〉 by (PAR-OP3).

Since Q and R are also L -guarded, by Clause 1. of the theorem statement we have
〈E2,Q〉‡ and ¬〈E2,R〉‡. Then we may apply (PAR-OP3) again to deduce the transition
〈Γ,S2,E2,Q � R〉 → 〈Γ,S2,E2,R � Q〉 and we conclude.

• (SUB) Here Γ ` P : (θ ,σ) cmd is deduced from Γ ` P : (θ ′,σ ′) cmd for some θ ′,σ ′ such that
θ ′ ≥ θ and σ ′ ≤ σ . Thus σ ′ ∈L and we can conclude using induction.

2
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The second key result for proving soundness is the following theorem, which states that a typable
non L -guarded program preserves low-equality of memories as long as it encounters only low tests,
and becomes syntactically high as soon as it meets a high test. Note that while L -guardedness is
preserved by subterms (and by execution), the complementary property, non L -guardedness, is not.
Therefore the next theorem will make use of Theorem 3.8.

Theorem 3.9 (Behaviour of non L -guarded programs)

Let P be typable and non L -Guarded in Γ and let 〈S1,E1〉 =Γ
L 〈S2,E2〉. Then either P ∈H Γ,L

syn
or

one of the following holds:

1. (Instant change) 〈Γ,S1,E1,P〉 ↪→ 〈Γ′,S′1,E ′
1,P

′〉 implies 〈Γ,S2,E2,P〉 ↪→ 〈Γ′,S′2,E ′
2,P

′〉 and
〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉.

2. (Simple moves) 〈Γ,S1,E1,P〉 → 〈Γ′,S′1,E ′
1,P

′〉 implies 〈Γ,S2,E2,P〉 → 〈Γ′,S′2,E ′
2,P

′〉 and
〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉.

Proof The proof amounts to trying to show the properties 1. and 2. of Theorem 3.8 also for non
low-guarded programs and, in case these properties do not hold, to show that P is syntactically high.
We prove the two clauses separately, by induction on the inference of Γ ` P : (θ ,σ) cmd.

Proof of 1. We start by showing that if 〈E1,P〉‡ then either 〈E2,P〉‡ (in which case the transi-
tion 〈Γ,S1,E1,P〉 ↪→ 〈Γ,S1, /0,bPcE1

〉 is matched by 〈Γ,S2,E2,P〉 ↪→ 〈Γ,S2, /0,bPcE2
〉 using rule

(INSTANT-OP), as in the proof of Theorem 3.8), or P ∈ H Γ,L
syn

. Again, we only have to exam-
ine suspendable processes, corresponding to the typing rules (WHEN), (WATCH), (SEQ), (PAR) and
to the subtyping rule (SUB).

• (WHEN) Here P = when a do Q and Γ ` P : (θ ,σ) cmd is deduced from Γ ` Q : (θ ,σ ′) cmd,
Γ(a) = δ sig, δ ≤ θ and σ = δ ∨σ ′. There are two cases for 〈E1,P〉‡:

1. 〈E1,P〉‡ is deduced by rule (WHEN-SUS1): in this case a 6∈ E1. Then either a 6∈ E2 and
we can conclude using rule (WHEN-SUS1), or a∈ E2. In the latter case, since E1 =Γ

L E2,
it must be δ /∈ L . Whence, since δ ≤ θ , we deduce that also θ /∈ L . Then by the
Confinement Lemma 3.4 we conclude that P is syntactically high.

2. 〈E1,P〉‡ is deduced by rule (WHEN-SUS2) from the hypothesis 〈E1,Q〉‡. By induction
either 〈E2,Q〉‡, in which case also 〈E2,P〉‡ by rule (WHEN-SUS2), or Q is syntactically
high. In the latter case by Definition 3.3 also P is syntactically high.

• (WATCH) Easy induction as in the second case of (WHEN).

• (SEQ) Here P = Q ; R and Γ ` P : (θ ,σ) cmd is deduced from the following hypotheses:
Γ ` Q : (θ ′,σ ′) cmd, Γ ` R : (θ ′′,σ ′′) cmd, θ = θ ′∧θ ′′, σ = σ ′∨σ ′′ and σ ′ ≤ θ ′′.

In this case 〈E1,P〉‡ is deduced by rule (SEQ-SUS) from 〈E1,Q〉‡. By induction either 〈E2,Q〉‡,
in which case 〈E2,P〉‡ by rule (SEQ-SUS) again, or Q is syntactically high and, by virtue of
Theorem 3.8, not L -guarded. This means that σ ′ /∈L and thus, since σ ′ ≤ θ ′′, also θ ′′ /∈L .
Then by the Confinement Lemma 3.4 R is syntactically high and thus, by Definition 3.3, also
Q;R is syntactically high.

• (PAR) Here P = Q � R and Γ ` P : (θ ,σ) cmd is deduced from the hypotheses Γ ` Q :
(θ ′,σ ′) cmd, Γ ` R : (θ ′′,σ ′′) cmd, θ = θ ′∧θ ′′, σ = σ ′∨σ ′′, σ ′ ≤ θ ′′ and σ ′′ ≤ θ ′.

There are three possibilities:
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1. both Q and R are non L -guarded. This means that both σ ′ /∈ L and σ ′′ /∈ L and
thus, since σ ′ ≤ θ ′′ and σ ′′ ≤ θ ′, also θ ′′ /∈ L and θ ′ /∈ L . Hence by the Confine-
ment Lemma 3.4 both Q and R are syntactically high and thus by Definition 3.3 also
P = Q � R is syntactically high.

2. one of Q and R is L -guarded and the other is not. Suppose Q is L -guarded and R is not
(the other case is symmetric). We know that 〈E1,P〉‡ is deduced by rule (PAR-SUS) from
〈E1,Q〉‡ and 〈E1,R〉‡. Since Q is L -guarded, by Theorem 3.8 we have 〈E2,Q〉‡. Since
R is not L -guarded we know by induction that either 〈E2,R〉‡ or R is syntactically high.
If 〈E2,R〉‡ we may apply rule (PAR-SUS) to get 〈E2,P〉‡. Otherwise we use the fact that
σ ′′ /∈L (because R is not L -guarded) and thus, since σ ′′ ≤ θ ′, also θ ′ /∈L . Then by the
Confinement Lemma 3.4 Q is syntactically high and thus also the composition P = Q � R
is syntactically high.

3. both Q and R are L -guarded (note that this is possible although P is non L -guarded).
As in the previous case, we know that 〈E1,Q〉‡ and 〈E1,R〉‡. Then by Theorem 3.8 we
obtain 〈E2,Q〉‡ and 〈E2,R〉‡. Whence by (PAR-SUS) we may conclude that 〈E2,P〉‡.

• (SUB) Here Γ ` P : (θ ,σ) cmd is deduced from Γ ` P : (θ ′,σ ′) cmd for some θ ′,σ ′ such that
θ ′ ≥ θ and σ ′ ≤ σ . Then we may conclude immediately, using Theorem 3.8 if σ ′ ∈ L , and
induction otherwise.

Proof of 2. We consider now the case where ¬〈E1,P〉‡. For the rules (ASSIGN), (LET), (EMIT),
(LOCAL) the result is proved exactly as for Theorem 3.8, since in these cases it does not depend on
the hypothesis of L -guardedness. We examine the remaining cases.

• (SEQ) Here P = Q ; R and Γ ` P : (θ ,σ) cmd is deduced from the hypotheses Γ ` Q :
(θ ′,σ ′) cmd, Γ ` R : (θ ′′,σ ′′) cmd, θ = θ ′∧θ ′′, σ = σ ′∨σ ′′, σ ′ ≤ θ ′′.

1. If Q = nil, then by rule (SEQ-OP1) we have both 〈Γ,S1,E1,Q;R〉 → 〈Γ,S1,E1,R〉 and
〈Γ,S2,E2,Q;R〉 → 〈Γ,S2,E2,R〉, so we can conclude immediately.

2. If Q 6= nil, then 〈Γ,S1,E1,Q;R〉 → 〈Γ′,S′1,E ′
1,P

′〉 is derived by rule (SEQ-OP2) from the
hypothesis 〈Γ,S1,E1,Q〉 → 〈Γ′,S′1,E ′

1,Q
′〉, and P′ = Q′;R. There are two possibilities:

– Q is L -guarded. Then by Theorem 3.8 we have 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′
2,Q

′〉with
〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉. Hence by (SEQ-OP2) we can conclude.
– Q is not L -guarded. By induction we know that either 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′

2,Q
′〉

with 〈S′1,E ′
1〉=Γ′

L 〈S′2,E ′
2〉, and we conclude using (SEQ-OP2) as in the previous case,

or Q is syntactically high. In this case, we use the fact that σ ′ 6∈L (because Q is not
L -guarded) and therefore, since σ ′ ≤ θ ′′, also θ ′′ 6∈ L . Then by the Confinement
Lemma 3.4 R is syntactically high, and thus by Definition 3.3 we conclude that Q;R
is syntactically high.

• (COND) Here P = if e then Q else R and Γ`P : (θ ,σ) cmd is deduced from the hypotheses
Γ ` e : δ , Γ ` Q : (θ ,σ ′) cmd, Γ ` R : (θ ,σ ′) cmd, where δ ≤ θ and σ = δ ∨σ ′.

If δ ∈ L we have S1(e) = S2(e) and we can conclude easily as in the proof of Theorem 3.8.
Otherwise δ /∈L . Then, since δ ≤ θ , also θ /∈L and by the Confinement Lemma 3.4 both Q
and R are syntactically high. Hence by Definition 3.3 also P is syntactically high.

• (WATCH) Here P = do Q watching a, with Γ(a) = δ sig, Γ ` Q : (θ ,σ ′) cmd, δ ≤ θ and
σ = δ ∨σ ′. We distinguish two cases:
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1. Q = nil. In this case by rule (WATCH-OP1) we have 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,nil〉
and 〈Γ,S2,E2,P〉 → 〈Γ,S2,E2,nil〉, so we can conclude immediately.

2. Q 6= nil. Then 〈Γ,S1,E1,do Q watching a〉 → 〈Γ′,S′1,E ′
1,do Q′ watching a〉 is de-

rived by rule (WATCH-OP2) from 〈Γ,S1,E1,Q〉 → 〈Γ′,S′1,E ′
1,Q

′〉. There are two sub-
cases:

– Q is L -guarded. Then by Theorem 3.8 we have 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′
2,Q

′〉,
with 〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉. Then by rule (WATCH-OP2) we get the matching transi-
tion 〈Γ,S2,E2,do Q watching a〉 → 〈Γ′,S′2,E ′

2,do Q′ watching a〉.
– Q is not L -guarded. Then by induction either 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′

2,Q
′〉 with

〈S′1,E ′
1〉 =Γ′

L 〈S′2,E ′
2〉 and we conclude as in the previous case, or Q is syntactically

high. In the latter case by Definition 3.3 also P is syntactically high.

• (WHEN) Here P = when a do Q, with Γ`Q : (θ ,σ ′) cmd, Γ(a) = δ sig, δ ≤ θ and σ = δ ∨σ ′.
Assume a ∈ E1 (otherwise this case is vacuous). There are two possibilities:

1. Q = nil. Then by rule (WHEN-OP1) we have 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,nil〉. If δ ∈L
then a ∈ E1 ⇔ a ∈ E2 and we proceed as in the proof of Theorem 3.8. If δ /∈ L , since
δ ≤ θ , also θ /∈ L . Hence by the Confinement Lemma 3.4 Q is syntactically high and
thus by Definition 3.3 also P is syntactically high.

2. Q 6= nil. Then 〈Γ,S1,E1,when a do Q〉 → 〈Γ′,S′1,E ′
1,when a do Q′〉 is derived by rule

(WHEN-OP2) from 〈Γ,S1,E1,Q〉 → 〈Γ′,S′1,E ′
1,Q

′〉. There are two subcases:

– Q is L -guarded. Then by Theorem 3.8 we have 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′
2,Q

′〉,
with 〈S′1,E ′

1〉 =Γ′
L 〈S′2,E ′

2〉. Since δ /∈ L then a ∈ E2 and we use (WHEN-OP2) to
deduce 〈Γ,S2,E2,when Q do a〉 → 〈Γ′,S′2,E ′

2,when Q′ do a〉.
– Q is not L -guarded. Then by induction either 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′

2,Q
′〉 with

〈S′1,E ′
1〉 =Γ′

L 〈S′2,E ′
2〉, or Q is syntactically high. In the latter case we conclude im-

mediately, by Definition 3.3, that P is syntactically high. In the former case, there
are two possibilities: if δ ∈L then a ∈ E2 and we can apply rule (WHEN-OP2) as
in the case where Q is L -guarded; if δ /∈ L , since δ ≤ θ also θ /∈ L . Then by
Lemma 3.4 Q is syntactically high, hence P is syntactically high.

• (PAR) Here P = Q � R and Γ ` P : (θ ,σ) cmd is deduced from the hypotheses Γ ` Q :
(θ ′,σ ′) cmd, Γ ` R : (θ ′′,σ ′′) cmd, θ = θ ′∧θ ′′, σ = σ ′∨σ ′′, σ ′ ≤ θ ′′ and σ ′′ ≤ θ ′. We dis-
tinguish two cases, depending on whether 〈E1,Q〉‡ or ¬〈E1,Q〉‡. Assume first that ¬〈E1,Q〉‡.
There are two possibilities :

1. Q = nil. In this case by rule (PAR-OP1) we have 〈Γ,S1,E1,P〉 → 〈Γ,S1,E1,R〉 and
〈Γ,S2,E2,P〉 → 〈Γ,S2,E2,R〉, and we can conclude.

2. Q 6= nil. Then 〈Γ,S1,E1,Q � R〉 → 〈Γ1,S′1,E
′
1,Q

′ � R〉 is derived by (PAR-OP2) from
〈Γ,S1,E1,Q〉 → 〈Γ1,S′1,E

′
1,Q

′〉. There are two subcases:

– Q is L -guarded. Then by Theorem 3.8 we have 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′
2,Q

′〉with
〈S′1,E ′

1〉=Γ′
L 〈S′2,E ′

2〉. Hence by (PAR-OP2) we can conclude immediately.
– Q is not L -guarded. By induction we know that either 〈Γ,S2,E2,Q〉 → 〈Γ′,S′2,E ′

2,Q
′〉

with 〈S′1,E ′
1〉=Γ′

L 〈S′2,E ′
2〉, and we conclude using (PAR-OP2) as in the previous case,

or Q is syntactically high. In the latter case, we use the fact that Q is not L -guarded
to deduce that σ ′ 6∈L and therefore, since σ ′ ≤ θ ′′, also θ ′′ 6∈L . Then by the Con-
finement Lemma 3.4 R is syntactically high, and thus by Definition 3.3 also Q � R is
syntactically high.
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Consider now the case where 〈E1,Q〉‡. In this case it must be ¬〈E1,R〉‡ and by (PAR-OP3)
〈Γ,S1,E1,Q � R〉 → 〈Γ,S1,E1,R � Q〉. Here there are four possibilities:

1. Q and R are both non L -guarded. Then, as in the corresponding case of Part 1, we deduce
that both Q and R are syntactically high and thus also P = Q � R is syntactically high.

2. Q is L -guarded and R is not. In this case we may use Theorem 3.8 to obtain 〈E2,Q〉‡.
Since R is not L -guarded we know by induction that either ¬〈E2,R〉‡ or R is syntacti-
cally high. If ¬〈E2,R〉‡ we may use rule (PAR-OP3) to conclude. Otherwise we use the
fact that σ ′′ /∈ L (because R is not L -guarded) and thus, since σ ′′ ≤ θ ′, also θ ′ /∈ L .
Then by the Confinement Lemma 3.4 Q is syntactically high and thus also P = Q � R is
syntactically high.

3. R is L -guarded and Q is not. By Theorem 3.8 we have that ¬〈E2,R〉‡. By induction we
know that either 〈E2,Q〉‡ or Q is syntactically high. If 〈E2,Q〉‡ we use rule (PAR-OP3)
to conclude. Otherwise we use the fact that σ ′ /∈ L (because Q is not L -guarded) and
thus, since σ ′ ≤ θ ′′, also θ ′′ /∈L .Then by the Confinement Lemma 3.4 we know that R
is syntactically high and thus also P = Q � R is syntactically high.

4. Q and R are both L -guarded. In this case by Theorem 3.8 we have 〈E2,Q〉‡ and¬〈E2,R〉‡,
and we conclude immediately using rule (PAR-OP3).

• (SUB) Here Γ ` P : (θ ,σ) cmd is deduced from Γ ` P : (θ ′,σ ′) cmd for some θ ′,σ ′ such that
θ ′ ≥ θ and σ ′ ≤ σ . We may then conclude immediately, using Theorem 3.8 if σ ′ ∈ L , and
induction otherwise.

2

We are now ready to define our notion of security for programs. This will be formalised as usual as
a kind of self-bisimulation: a program is secure if it behaves in the same way in all low-equivalent
memories. In fact our bisimulation is slightly non-standard, in that it factors out high programs
(first clause of the forthcoming Definition 3.5) instead of requiring them to preserve low-equality
of memories, as required for “low” programs (second and third clause of Definition 3.5). This can
be explained as follows. Recall that in reactive computations all signals are reset to absent at the
beginning of an instant. This means that the low signal environment is not, in general, preserved by
instant changes. As a consequence, two semantically high programs resulting from a fork after a high
test may have different effects on the low signal environment, since one of them may jump to the next
instant while the other one does not. Since this difference does not arise from low assignments or low
signal emissions, but only from the passage of instants, it seems reasonable to abstract from it. On
the other hand, the passage of instants will be observable for “low” programs.

As for the low store, it will have to be preserved both by low and high programs: in case of seman-
tically high programs, this is implied by the first clause of our bisimulation. Indeed, a semantically
high program preserves the low store by definition (cf Def. 3.3). So, if the two compared programs
are semantically high, when run in low-equal stores they will again produce low-equal stores. In fact,
in the next section we will show that our reactive notion of security implies a more standard one,
which ignores signals and only requires the low store to be preserved.
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Definition 3.5 (Reactive L -bisimulation) The partial equivalence ∼L is the largest symmetric
relation R on configurations such that C1 = 〈Γ1,S1,E1,P1〉 R 〈Γ2,S2,E2,P2〉 = C2 implies that
〈S1,E1〉=Γ1∩Γ2

L 〈S2,E2〉 and one of the following properties holds, where C′
i = 〈Γ′i,S′i,E ′

i ,P
′
i 〉:

1. Pi ∈H Γi,L
sem

for i = 1,2, or

2. C1 ↪→C′
1 implies C2 ↪→C′

2 with C′
1 RC′

2 , or

3. 〈Γ1,S1,E1,P1〉 → 〈Γ′1,S′1,E ′
1,P

′
1〉 with (n ∈ dom(Γ′1−Γ1) ⇒ n /∈ dom(Γ2)) implies

〈Γ2,S2,E2,P2〉 → 〈Γ′2,S′2,E ′
2,P

′
2〉 with (n ∈ dom(Γ′2−Γ2) ⇒ n ∈ dom(Γ′1−Γ1))

and 〈Γ′1,S′1,E ′
1,P

′
1〉 R 〈Γ′2,S′2,E ′

2,P
′
2〉.

Some further comments will be helpful. As explained above, as soon as two programs become
semantically high in low-equal memories, they are immediately ∼L -related by Clause 1. Note that
this separation between high and “low” programs allows us to use strong bisimulation requirements
in Clauses 2 and 3, which would have to be weakened if they had to apply also to high programs.
Moreover the two conditions on new names in Clause 3 ensure that, when playing the bisimulation
game on two programs, one does not fail to equate or distinguish them for bad reasons, to do with the
choice of new names. To this end, the first program should choose new names which are not free in
the second program, and the second program should mimic the choice of new names of the first5.

Let us illustrate more precisely the use of these conditions with a couple of examples. Consider
the program P = (let x : L = 0 in yL := x). Let Γ1 and Γ2 be the type environments defined by
Γ1 : yL 7→ L , Γ2 : x 7→ L, yL 7→ L . Note that P is not semantically high in Γ1, Γ2. Then, without
the first condition of Clause 3 we would have C1 = 〈Γ1,S1, /0,P〉 6 ∼L 〈Γ2,S2, /0,P〉 = C2, where
S1, S2 are the two low-equal stores S1 : yL 7→ 0, S2 : x 7→ 1, yL 7→ 0. Indeed, if C1 was allowed to
choose x as its new name, then C2 would not be able to respond by picking the same name because
x ∈ dom(Γ2), and if C2 were allowed to pick a different name x′ (supposing the second condition was
not there to forbid it), then the resulting store S′2 would not be low-equal to S′1 since it would give a
different value to x. Note that the pair of configurations (C1,C2) is reachable6 by running the program
Q = (if zH = 0 then (nil;P) else (let x : L = 1 in P)) in two identical typing environments Γ̄i :
yL 7→ L,zH 7→ H and in any pair of low-equal stores S̄1, S̄2 such that S̄1(zH) = 0 and S̄2(zH) 6= 0.
Although Q is not typable, it seems reasonable to consider it secure since the two branches have the
same effect on the low memory. To sum up, the first condition ensures that local and global names
are not confused and that configurations are not distinguished by accident. This condition is always
satisfiable since the set of names is countable.

As for the second condition of Clause 3, it ensures that the security notion properly takes into
account local names. Consider for instance the programs P1 = (let x : L = 0 in x := x+1) and P2 =
(let x : L = 1 in x := x+1), which only differ for the initial value of the local name. Without the
second condition we would have C1 = 〈 /0, /0, /0,P1〉 ∼L 〈 /0, /0, /0,P2〉= C2, because in response to the
choice of a local name x1 by C1, a different local name x2 could be chosen by C2 and the resulting
memories would be trivially equivalent because their domains are disjoint. In other words, without
the second condition we could possibly elude the comparison of “local memories”. On the contrary,
we take here the position that local memories should be part of what is observable by a possibly
malicious party. Then, the possibility that P1 and P2 act differently on the local store should appear,
and the way to enforce it is to require that the second process chooses exactly the same local name
as the first. Indeed, with the second condition we have C1 6∼L C2. Note that, as in the previous
example, the pair of configurations (C1,C2) is reachable6, by running the (not semantically high)
program Q = (if zH = 0 then P1 else P2) in the identical typing environments Γ̄i : zH 7→ H and in

5In fact, these two conditions on new names are not necessary for our soundness result, but they make sense for arbitrary
configurations and they render our security notion stronger, as will be made clear in the following discussion.

6up to the addition of the global variable zH to both the Γi’s and the Si’s.
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any pair of low-equal stores S̄1, S̄2 such that S̄1(zH) = 0 and S̄2(zH) 6= 0. Hence the second condition
is somehow dual to the first, in that it ensures that configurations are not equated by accident.

The set of secure programs is now defined, as usual, to be the reflexive kernel of ∼L , namely
the set of programs which are bisimilar to themselves in any two low-equivalent memories:

Definition 3.6 (Γ-Secure Programs) P is secure in Γ if for any downward-closed set L of security
levels and for any Si,Ei such that 〈S1,E1〉=Γ

L 〈S2,E2〉, we have 〈Γ,S1,E1,P〉 ∼L 〈Γ,S2,E2,P〉.

As a matter of fact, since the environment Γ is part of our configurations and, when comparing a pro-
gram with itself in Definition 3.6, we require it to be the same in the two initial configurations, it will
turn out that the two conditions of Clause 3 in Definition 3.5 are not necessary to prove our soundness
result. Indeed, for that purpose Clause 3 will only be applied to pairs of configurations C1,C2 such
that Γ1 = Γ2 and P1 = P2, which may always evolve, by Theorems 3.8 and 3.9 to configurations C′

1,C
′
2

such that Γ′1 = Γ′2 and P′1 = P′2, thus trivially satisfying the two conditions on new names. However
these conditions make sense when comparing arbitrary configurations, where the executing program
is not necessarily typable, as shown by the examples above. Moreover the first one will be necessary
for proving Theorem 3.11, which compares our bisimulation with a more standard one.

3.4 Soundness of the type system
In this section we establish our soundness result, i.e. we prove that every typable program is secure.
This result rests heavily on the Theorems 3.8 and 3.9 proved in the previous section, which describe
the one-step behaviour of typable programs (respectively low-guarded and non low-guarded). We
also introduce another notion of bisimulation, and prove that it is weaker than reactive bisimulation.

Theorem 3.10 (Typability ⇒ Noninterference) If P is typable in Γ then P is Γ-secure.

Proof For any downward-closed L , define the relation SL on configurations as follows:

C1 = 〈Γ1,S1,E1,P1〉 SL 〈Γ2,S2,E2,P2〉= C2 if and only if Pi is typable in Γi for i = 1,2, and

• 〈S1,E1〉=Γ1∩Γ2
L 〈S2,E2〉

• and one of the following holds:

1. Pi ∈H Γi,L
syn

for i = 1,2, or

2. 〈Γ1,P1〉= 〈Γ2,P2〉.

Note first that if P is typable in Γ and 〈S1,E1〉 =Γ
L 〈S2,E2〉, then 〈Γ,S1,E1,P〉 SL 〈Γ,S2,E2,P〉 by

Clause 2. We prove now that SL ⊆ ∼L by showing that SL is a ∼L -bisimulation. Suppose
C1 SL C2. Then 〈S1,E1〉=Γ1∩Γ2

L 〈S2,E2〉 and we are in one of two cases:

1. Pi ∈ H Γi,L
syn

for i = 1,2, by Clause 1. Since H Γi,L
syn

⊆ H Γi,L
sem

we have then Pi ∈ H Γi,L
sem

and
therefore C1 ∼L C2 by Clause 1 of Def. 3.5.

2. 〈Γ1,P1〉 = 〈Γ2,P2〉, by Clause 2. We may assume Pi /∈H Γi,L
syn

, since otherwise we would fall
back in the previous case. Suppose C1 ↪→C′

1 (respectively, C1 →C′
1), where C′

1 = 〈Γ′1,S′1,E ′
1,P

′
1〉.

Then, using Theorem 3.8 or Theorem 3.9 depending on whether P1 is low-guarded or not (in
the latter case we also use the fact that P1 /∈H Γ1,L

syn
) we may deduce C2 ↪→C′

2 (resp., C2 →C′
2),

for some C′
2 = 〈Γ′2,S′2,E ′

2,P
′
2〉 such that 〈Γ′1,P′1〉= 〈Γ′2,P′2〉 and 〈S′1,E ′

1〉=Γ′1∩Γ′2
L 〈S′2,E ′

2〉. In the
case where C1 →C′

1 is matched by C2 →C′
2, the condition (n∈ dom(Γ′1−Γ1) ⇒ n /∈ dom(Γ2))

is satisfied because Γ2 = Γ1, and the condition (n ∈ dom(Γ′2 −Γ2) ⇒ n ∈ dom(Γ′1 −Γ1)) is
satisfied because additionally Γ′2 = Γ′1. In all cases we have C′

1 SL C′
2 and we may conclude.
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2

To show that our approach “conservatively extends” previous ones, we shall now turn to a different
notion of security, based on a more standard kind of bisimulation where programs are only required
to preserve the low store and semantically high programs are not distinguished from the others. As a
counterpart, some of the observation power on local names (including variables) will be lost.

Definition 3.7 (Weak reactive L -Bisimulation) The partial equivalence 'L is the largest sym-
metric relation R on configurations such that 〈Γ1,S1,E1,P1〉 R 〈Γ2,S2,E2,P2〉 implies:

• S1 =Γ1∩Γ2
L S2 and

• 〈Γ1,S1,E1,P1〉 7−→ 〈Γ′1,S′1,E ′
1,P

′
1〉 with (n ∈ dom(Γ′1−Γ1) ⇒ n /∈ dom(Γ2) ) implies

〈Γ2,S2,E2,P2〉 7−→? 〈Γ′2,S′2,E ′
2,P

′
2〉 with 〈Γ′1,S′1,E ′

1,P
′
1〉 R 〈Γ′2,S′2,E ′

2,P
′
2〉.

Note that the second condition on new names of Definition 3.5 does not appear here. Indeed, the
requirement that new names should be chosen in the same way on both sides would be neutralized
in Definition 3.7 by the possibility that a move be simulated by the empty move. To see this, let us
look back at the first pair of programs P1 and P2 defined at page 35. Clearly, the second condition
of Definition 3.5 would not help us distinguish C1 = 〈 /0, /0, /0,P1〉 and C2 = 〈 /0, /0, /0,P2〉. Indeed, in
response to the choice of a local name x1 by C1, C2 could idle for one turn and then choose a different
local name x2 at the next step. Thus we have that C1 'L C2, with or without the condition. This
example suggests that 'L is weaker than ∼L not only because it ignores signals, but also because,
by treating in a uniform way high and “low” programs, it is less constraining on the latter.

As for the first condition, it may be justified by the second example (C1,C2) used for ∼L at
page 35, since without this condition C1 could choose x as its new name and C2 would not be able to
respond, neither by picking the same name, since x ∈ dom(Γ2), nor by idling since S′1(x) 6= S2(x).

Associated with the bisimulation 'L , we have a new notion of security:

Definition 3.8 (Γ- Weakly Secure Programs) P is weakly secure in Γ if for any downward-closed
L ⊆T and for any Si,Ei such that 〈S1,E1〉=Γ

L 〈S2,E2〉, we have 〈Γ,S1,E1,P〉 'L 〈Γ,S2,E2,P〉.

We show now that reactive bisimulation ∼L is strictly included in weak reactive bisimulation
'L . To see that 'L 6⊆ ∼L consider the program P = (if xH = 0 then emit aL else emit bL).
Clearly, if Γ is the typing environment specified by the subscripts and S1,S2 are stores such that
S1(xH) = 0 and S2(xH) 6= 0, then 〈Γ,S1, /0,P〉 'L 〈Γ,S2, /0,P〉 but 〈Γ,S1, /0,P〉 6∼L 〈Γ,S2, /0,P〉.

Theorem 3.11 ( ∼L is a refinement of 'L )

Let L be a downward-closed set of security levels. Then ∼L ⊆ 'L .

Proof Define the relation RH as follows:

RH = {(C1,C2) |Ci = 〈Γi,Si,Ei,Pi〉, Pi ∈H Γi,L
sem

,S1 =Γ1∩Γ2
L S2}

We show that R = ∼L ∪ RH is a weak reactive bisimulation. Let Ci = 〈Γi,Si,Ei,Pi〉 and assume
first that C1 ∼L C2. Then 〈S1,E1〉=Γ1∩Γ2

L 〈S2,E2〉, and thus the condition S1 =Γ1∩Γ2
L S2 is satisfied.

Suppose now C1 7−→ C′
1 = 〈Γ′1,S′1,E ′

1,P
′
1〉, with n ∈ dom(Γ′1 −Γ1) ⇒ n /∈ dom(Γ2). There are two

cases to consider:

1. Pi ∈H Γi,L
sem

for i = 1,2. We distinguish two subcases, depending on whether the transition is a
simple move or an instant change:
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• C1 →C′
1. Then by Definition 3.3 we have P′1 ∈H

Γ′1,L
sem , with 〈S1,E1〉=Γ1

L 〈S′1,E ′
1〉. Cor-

respondingly we can choose C2 →? C′
2 = 〈Γ′2,S′2,E ′

2,P
′
2〉, with C′

2 = C2 and thus Γ′2 = Γ2,
S′2 = S2, E ′

2 = E2 and P′2 = P2. Then P′2 ∈ H Γ2,L
sem

and what is left to show is that

S′1 =Γ′1∩Γ2
L S2. Since n ∈ dom(Γ′1 − Γ1) ⇒ n /∈ dom(Γ2), we have Γ′1 ∩ Γ2 = Γ1 ∩ Γ2.

Moreover, since x ∈ dom(S′1 − S1) implies x /∈ dom(Γ1) (because of the condition in the
operational rule (LET)) and a fortiori x /∈ dom(Γ1∩Γ2), the property S′1 =Γ1∩Γ2

L S2 follows
from S1 =Γ1∩Γ2

L S2. We conclude that C′
1 RH C′

2.

• C1 ↪→ C′
1. Again, by Definition 3.3 we have P′1 ∈H

Γ′1,L
sem . Moreover, since the transition

is deduced by rule (INSTANT-OP), we know that Γ′1 = Γ1, S′1 = S1 and E ′
1 = /0. Cor-

respondingly we choose again the transition C2 7−→? C2. Then, as in the previous case,

P′2 ∈H Γ2,L
sem

and what is left to show is that S′1 =Γ′1∩Γ2
L S2. But this follows immediately

from S1 =Γ1∩Γ2
L S2, since S′1 = S1 and Γ′1 = Γ1. Hence C′

1 RH C′
2.

2. Pi /∈ H Γi,L
sem

for some i ∈ {1,2}. Then, if the transition is of the form C1 ↪→ C′
1 we know

by Clause 2 of Definition 3.5 that there is a matching transition C2 ↪→ C′
2 with C′

1 ∼L C′
2.

Similarly, if the transition is of the form C1 →C′
1, with n ∈ dom(Γ′1−Γ1) ⇒ n /∈ dom(Γ2), we

know by Clause 3 of Def. 3.5 that C2 →C′
2, with C′

1 ∼L C′
2.

Assume now that C1 RH C2. This case is handled in exactly the same way as Case 1 above, since
the additional hypothesis of Case 1, namely E1 =Γ1∩Γ2

L E2, is not used in its proof.
2

A natural question to ask now is whether the two partial equivalence relations (and therefore the
two security notions) coincide on the subset of imperative programs. It turns out that this is not the
case. Consider P = if xH = 0 then (let u : L = 0 in u := 0) else (let v : L = 1 in v := 1). This
program is not secure (note that it is not semantically high) but it is weakly secure because if one
branch picks a new name, the other can idle for one turn and then choose a different name. Instead,
Q = if xH = 0 then (let u : L = 0 in zL := u) else (let v : L = 1 in zL := v) is neither secure nor
weakly secure, since it may assign different values to the low global variable zL.

Indeed, there are at least three reasons why ∼L is stronger than 'L . The first is that ∼L

looks at the signal environment while 'L does not. This difference of course disappears on the
subset of imperative programs. The second reason is that 'L allows a move to be simulated
by the empty move, thus relaxing the matching requirement on new names, as illustrated by the
example above and by the first example at page 37. The third reason has to do with the difference in
granularity between the two bisimulations, namely with the fact that reactive bisimulation compares
two configurations whose programs are not both semantically high by running them in lockstep (one
step must be simulated by exactly one step), while weak reactive bisimulation allows one step of
one configuration to be always simulated by a sequence of steps of the other. Consider the program
P = if xH = 0 then loop (yL := 0; yL := 1) else loop (yL := 1; yL := 0). Let us call P1 and P2 the
two branches of the conditional, and suppose P runs in the type environment Γ : yL 7→ L,xH 7→H and
in any pair of low-equal stores S1,S2 such that S1(xH) = 0, S2(xH) 6= 0 and Si(yL) 6∈ {0,1}. Then, P
will evolve to P1 when run in the first memory and to P2 when run in the second. If now P1 moves
to P′1, then the value of yL will be changed to 0. This move cannot be simulated by a single move of
P2, while it can be simulated by a sequence of two moves. Hence program P is weakly secure but not
secure in Γ.
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4 Conclusion
In this paper we have addressed the question of noninterference for reactive programs. We have
presented a type system guaranteeing noninterference in a simple imperative reactive language. We
aim to extend our results to a fully-fledged call-by-value language for mobility built around a reactive
core, called ULM [11], which is currently under study. For this purpose, we intend to put together the
results and techniques developed in the present paper with the work of [4] on the non-disclosure policy
for the functional kernel of ULM (extended with thread creation and a declassification construct), and
with the work on non-disclosure for mobile programs carried out in [2, 3].

We have studied information flow for a concurrent language involving explicit synchronization
primitives, showing that new kinds of leaks arise from synchronization. Another paper that examines
the impact of synchronization on information flow is [20]. However the analogy between [20] and
our work cannot be pushed very far, since [20] does not consider explicitly the scheduling or a notion
of instant, relying instead on asynchronous parallel composition.

As has been observed, reactive programs obey a fixed scheduling policy, which is enforced here
in a syntactic way by means of the synchronous parallel construct �. Other approaches to the study
of noninterference in the presence of scheduling include the probabilistic one, proposed for instance
in [26] and [22]. In these papers scheduling is introduced at the semantic level (adding probabilities to
the transitions), and security is formalized through a notion of probabilistic noninterference. It should
be noted that, unlike [14], which allows different scheduling policies to be expressed, and [22], which
accounts for an arbitrary scheduler (satisfying some reasonable properties), here the scheduling is
fixed. Indeed, the novelty of our work resides mainly in addressing the question of noninterference
in a reactive scenario, as well as proposing a type system to ensure it, according to a now classical
methodology.

From this starting point, a few improvements may be envisaged, concerning both the scheduling
policy and the type system. We are currently investigating a different scheduling policy for the purely
reactive language of [6], which records the order of creation of threads in such a way that the thread
pointer of the scheduler can be reset to the first (live) created thread at the beginning of each instant.
We hope in this way to be able to lift the constraint for typing synchronous parallel composition,
which is at the moment quite restrictive and makes our type system somehow “non compositional”
(in the sense that composing two typable programs in parallel does not always result in a typable
program). As concerns the type system, it would be worth studying a refinement along the lines of
the recent work [12]. Indeed, as noted in Section 3, with cooperative scheduling some typical leaks
arising with nondeterministic scheduling can be avoided, like those originated by high conditionals
with terminating branches of different lengths. We could then relax the typing rule for conditionals
by stipulating that they contribute to the guard level only if one of their branches does not terminate
(a sufficient condition for termination being the absence of loops and when commands).

Another issue that deserves more investigation is the security notion. We have examined two
notions here, incorporating a different observation of the allocation of local names. According to our
first notion, reactive bisimulation, the name allocator itself needs to be “secure”, in the sense that
the same sequence of low-observable names must be generated in low-equivalent runs of a secure
program. The second notion, weak reactive bisimulation, implements a laxer observation of local
names. One can imagine further variations on these notions, where the observation of local names
is only allowed indirectly, that is, when they are used to implement an illegal flow towards a global
name. A final point to note about our notion of security is that, given the determinacy of reactive
computations, it could as well be defined as a trace equivalence rather than as a bisimulation. The
trace-based definition can be easily derived from the bisimulation-based one, in a way similar to that
used in [14] for a different language. It may be worth noting here that this trace-equivalence would
coincide with reactive bisimulation and not with the weak reactive one. Indeed, as shown by the last
example at page 38, weak reactive bisimulation does not respect execution traces.
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