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Abstract

Process algebras can be enriched with localities that explicitly describe the dis-
tribution of processes. Localities may represent physical machines, or more generally
distribution units where processes are grouped according to some criterion like the
sharing of resources. In a concurrent process, localities are naturally associated with
(groups of) parallel components. These localities then intervene in the semantics of
processes and become part, to some extent, of their observable behaviour.

In a first line of research, initiated in the early nineties, localities have been used
to give noninterleaving semantics for process algebras, and particularly for Milner’s
calculus CCS. Here localities are used to differentiate parallel components. The re-
sulting semantics, taking into account distribution, is more discriminating than the
standard interleaving semantics of the calculus. It is also incomparable with other
noninterleaving semantics proposed for CCS, based on the notion of causality.

More recently, localities have appeared in a number of new calculi for describing
mobile processes. The idea here is that some “network awareness” is required to model
wide-area distributed mobile computation. In these calculi localities are more than
simple units of distribution. According to the case, they become units of failure, of
communication, of migration or of security.

This chapter reviews in some detail the first body of work, and tries to delineate
the main ideas of the more recent studies, which are still, for the most part, at an
early stage of development.

Keywords: Process algebras and calculi, localities, concurrency, bisimulation, distribu-
tion, causality, mobility, migration, failure.
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1 Introduction

The aim of this chapter is to review some established work on process calculi with explicit
localities or locations1, as has been developed in the last decade by several authors [27, 28],
[5], [115], [37], [113, 167, 114], [116], [48], as well as to delineate new directions of research
in this area that have been spurred by the growing interest in calculi for mobile processes.

The presentation will accordingly be structured in two parts: in the first (Sections
2–3) we shall present the more consolidated work on traditional process calculi, while in
the second (Section 4) we will report more informally on recent proposals for combining
locations and mobility. The emphasis, as well as most of the technical material, will be on
the first part, where locations are used as a means to provide noninterleaving semantics
for process algebras.

The starting idea of the former work is that distribution is an important aspect of paral-
lel systems and should somehow be reflected in their semantics. If systems are modelled in

1We shall use the two words interchangeably throughout the chapter.
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a process calculus equipped with a parallel operator, like Milner’s calculus CCS [106, 108],
this can be achieved by assigning locations to parallel components and then observing
actions together with the location at which they occur. Using these enriched observations,
one obtains so-called distributed semantics for the language, which are more discriminat-
ing than the standard interleaving semantics. The aim of these distributed semantics is
twofold: (1) give a measure of the degree of parallelism present in a system, and (2) keep
track of the local behaviour of components within a system. While (1) can be useful for
implementing a system on a given physical architecture, (2) allows for the detection of
local properties, like a local deadlock or the dependence from a local resource.

The above-mentioned papers are all based on the language CCS, and adopt semantic
notions which are variants of the notion of bisimulation introduced by Park [123] and
Milner [106]. However they differ for the various subsets of CCS they consider. They also
vary according to the way locations are assigned to processes: whether statically, before
processes are run ([5], [115], [37], [116], [113]), or dynamically as the execution proceeds
([27, 28]). We shall refer to the former as “static approaches” and to the latter as “dynamic
approaches”.

The static approaches are further distinguished by the way locations are observed. In
[116], [48] the identities of locations are significant and the resulting semantics is very
concrete: processes are equated if they reside on the same set of locations and present the
same behaviour at each location. In [5], [37], on the other hand, locations are observed up
to a concurrency-preserving renaming which is built incrementally along executions. Here
the resulting semantics is more abstract, identifying processes which are bisimilar in the
classical sense and whose computations exhibit the same degree of distribution and the
same local behaviours. There is a little subtlety to note here, as processes presenting the
same degree of parallelism in each run need not consist of the same number of parallel
components.

In the dynamic approach, which was the first to be developed [27, 28], locations are
associated with actions rather than with parallel components. They are built incrementally
when actions are performed, and then recorded in the residual processes. Here the location
of an action can be viewed as the history of that action in the component where it occurs.

Clearly locations do not have the same intuitive meaning in the two approaches. In the
static approach they represent sites, much as one would expect. In the dynamic approach,
on the other hand, the location of an action is a record of its local causes, the actions that
locally precede it. In spite of this difference in intuition, the dynamic and (abstract) static
approach turn out to yield the same semantic notions of location equivalence and location
preorder [5, 37]. This means that observing distribution - in conjunction with the usual
interleaving behaviour - is essentially the same as observing local causality.

As mentioned previously, these location semantics emerged as particular noninterleav-
ing semantics for process algebras. To provide some historical background, Section 2 will
start with a brief survey of such noninterleaving semantics. A comprehensive presenta-
tion of the abstract location semantics, both static and dynamic, will then be given in
Sections 2.2–2.5. The two approaches will be compared in Section 2.6. Instead, the de-
scription of the concrete model of [116, 48, 45] will be deferred to Section 4.1, as it fits
more naturally with the more recent issues examined in that section.

In Section 3 the abstract location semantics is compared with other distributed seman-
tics (like distributed bisimulation [36, 38, 95], the local mixed-ordering equivalence of [113],
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and variants of them [46, 47]), as well as with noninterleaving semantics based on causality
(like causal bisimulation [49, 50] and history preserving bisimulation [73, 76, 75]). This
comparison will be mainly based on the papers [3], [28], [97]. In particular, we will re-
call in some detail the local/global cause semantics of [97], which incorporates distributed
and causal semantics into a single framework. As it turns out, distributed semantics and
causality-based semantics are orthogonal ways of accounting for the parallelism in systems,
which only agree on the communication-free fragment of CCS, a class of processes also
known as BPP (Basic Parallel Processes).

At the end of Section 3 we present the extension of the location semantics of [28] to
the π-calculus, as proposed by Sangiorgi in [141]. An important result of this work is that
the location machinery of [28] can be encoded into the standard π-calculus, in such a way
that the location semantics reduces to ordinary interleaving semantics.

In Section 4.1, we describe the concrete approach of [116, 48, 45], where the identities
of locations are fully observable. Observability of location names is also the standpoint
adopted in most of the recent studies on languages for mobility and migration surveyed
in Section 4.3.

In Section 4.2, we report on subsequent work dealing with location failure and its
detection ([11], [8], [136]). This has been developed for extensions of CCS and the π-
calculus, with features for creating processes at remote locations, and for testing and
killing locations. Contrarily to the previous line of work, here the emphasis is on location
failure rather than distribution, and locations are only observable in case of failure. While
the previous approaches assumed a global observer for the whole distributed system, here
one adopts the perspective of an individual user, wishing to have transparent access to
resources irrespective of where they are located. This is the so-called network transparency
principle. Awareness of locations is only requested in case of failure: a process that has
spawned activities at another location wants to be notified in case of failure of this location,
in order to stop interacting with it and transfer activities to other locations. This kind
of semantics is particularly appropriate for describing mobile applications in distributed
systems, where it may be important to distinguish between a process executed locally and
a process spawned at a remote location which is liable to failure.

Finally, in Section 4.3, we discuss the use of locations in connection with mobility and
migration in some more recent languages with explicit distribution like the distributed
Join-calculus [69, 67], the distributed π-calculi of [137, 89] and [145], the Ambient cal-
culus [32], the Seal calculus [157] and the language Nomadic Pict [146]. These languages
address some aspects of large-scale distributed computation in a very explicit way. In
particular, most of them abandon the network transparency assumption. For instance,
in the Ambient calculus the details of routing for migrating processes must be exposed.
Similarly, messages are explicitly routed in the distributed π-calculus of [137, 89] and in
the Seal calculus. In general, in these models, processes have to know the locations of
other processes and resources in order to be able to interact with them.

To conclude this introduction we could say that, while in the first approaches locations
were treated simply as units of distribution, in these new languages they acquire additional
meanings. For instance, in languages dealing with failure detection they become units of
failure, in that the failure of a site entails the termination of all processes at that site. They
constitute units of communication in languages with purely local communication, where
processes have to convene in a common location in order to interact. In some languages
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supporting process migration locations are also units of mobility, in that the migration of
a process from a location provokes the simultaneous migration of all processes placed at
the same location. Finally, locations can be used as units of security, in the sense that a
resource access request emanating from the location of the resource is not submitted to
the same security checks as an external request. As their roles progressively accumulate,
locations become more and more an integral part of the semantics of the language.

2 An abstract view of locations

This section reviews the approach to abstract locations as described in [27, 28] and [5, 37].
Generally speaking, this work is concerned with distributed semantics for CCS, which
account for the spatial distribution of processes among different sites or locations. Such
semantics emerged from a line of research on noninterleaving semantics for process alge-
bras, which started in the early eighties and developed at a steady pace in the subsequent
decade. By “noninterleaving semantics” we mean a semantics that does not simulate
parallelism by a nondeterministic choice of sequential interleavings. Typically, such reduc-
tion of concurrency to interleaving is expressed by Milner’s expansion law [106], a simple
instance of which is:

a | b = a.b + b.a(1)

where “|” and “.” stand respectively for parallel and sequential composition, “+” for
nondeterministic choice and a, b are any (non synchronisable) actions. This law is in-
deed valid for bisimulation equivalence, the standard behavioural equality for the calculus
CCS. By contrast, semantic models that reject this equation and insist on treating con-
currency as primitive are sometimes qualified as “true-concurrency” or “nonsequential”
models. Such models mostly evolved from the early ideas of Petri [125]. Paradigmatic
models of this kind are Petri nets [126, 124, 134], event structures [161, 120, 164] and
Mazurkiewicz traces [103, 104]. Similar nonsequential models were studied by Shields [149]
and Winkowski [160]. To provide some background for the coming material on location
semantics, we shall start with a short review of this area of research, focussing on op-
erational semantics for CCS. For a more comprehensive account, covering other process
algebras like ACP [13] and the Petri Box Calculus, the reader is referred to the other
chapters of Part 5 in this volume [16].

2.1 Noninterleaving semantics for process algebras

We give here a brief introduction to noninterleaving operational semantics for process
algebras. We concentrate on branching-time semantics based on variations of the notion
of bisimulation, and will mostly restrict our attention to the calculus CCS.

The search for operational semantics for process algebras accounting for the concur-
rent and causal structure of processes, started roughly around the mid-eighties. Previously,
there had been a few proposals for interpreting languages like CCS, CSP and TCSP into
nonsequential models for concurrent systems such as Petri nets [125, 126, 124] and event
structures [161, 120, 164]. Among these early proposals, we will only mention those by
Winskel [162], De Cindio et al. [44], and Goltz and Mycroft [81]. Many other interpreta-
tions of a similar kind were to be given in subsequent years, on variants of these models
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or on other semantic domains like asynchronous transition systems [14], causal trees [49],
trace automata [12] and transition systems with independence [166]. For instance, Petri
nets have been further used to give semantics for CCS-like languages by Goltz [81, 83, 80],
Winskel [163, 165], Van Glabbeek and Vaandrager [78], Nielsen [119], Degano, De Nicola
and Montanari [59], Degano, Gorrieri and Marchetti [55], Olderog [121, 122], Taub-
ner [150, 151], Boudol and Castellani [26], Montanari and Gorrieri [84], Montanari and
Ferrari [65], and others. Similarly, event structure interpretations have been proposed and
studied, among others, by Winskel [163], Goltz and Loogen [102], Degano, De Nicola and
Montanari [52], Vaandrager [155], Boudol and Castellani [22, 23, 26], van Glabbeek and
Goltz [76, 75], and Langerak [99].

Event-based models like Petri nets and event structures are built from the outset on
the primitive notions of concurrency and causality between events, and therefore naturally
provide a noninterleaving semantics for process calculi. The question was then to devise a
purely operational semantics for processes, by means of labelled transition systems spec-
ified via structural rules (in the style advocated by Plotkin [129], see also Chapter 1.3 in
this issue), which could express the same information about concurrency and causality.

A natural idea was to generalise the labels of transitions, from simple actions to whole
partial orders of actions representing nonsequential computations. The representation of
concurrent computations as partial orders, where the ordering stands for causality (and
the absence of ordering for concurrency), was already standard in nonsequential models
like Petri nets, event structures and Mazurkiewicz traces, where these partial orders were
called respectively abstract processes [82, 133], configurations and dependency graphs.

When dealing with process algebras, a simple way to achieve this generalisation of
actions is to extract the information about concurrency and causality from the syntax of
the terms themselves. More precisely, one looks for structural semantic rules by which the
constructs of sequential and parallel composition are directly transferred from the terms
to the actions labelling their transitions. This idea was successfully applied in [22] to a
simple CCS-like language with sequential composition and disjoint parallel composition
(not allowing communication): using the notion of partially ordered multiset 2, studied by
Grabowski [85], Pratt [130, 131] (who coined for it the term “pomset”) and Gischer [71], a
definition of pomset transition was introduced in [22] for this language, with the associated
notion of pomset bisimulation. This new notion of bisimulation distinguishes the two
processes of equation (1) because the first has a pomset transition

a | b a|b−−→ nil | nil

which the second cannot simulate. The second process has two possibilities for executing
a and b in one step, but in each case the two actions are ordered. One of these pomset
transitions is

a.b + b.a
a.b−−→ nil

To generalise the pomset semantics to the full language CCS [23], on the other hand, it
appeared necessary to use an indirect construction of a pomset transition starting from

2Or pomset, a generalisation of the notion of partial order, which is necessary to deal with homonymous
actions in computations. Formally, pomsets are defined as isomorphism classes of labelled partial orders.
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a class of permutation-equivalent transition sequences3. This construction “a posteriori”
of a partial order from an equivalence class of sequences is similar to the synthesis of a
partial order from a Mazurkiewicz trace [104]. The main novelty of [23] was the use of
enriched transitions for CCS called proved transitions (because they were labelled with a
representation of their proof in the inference system of CCS), from which the concurrency
relation between transitions could be derived by syntactic means. For instance, a sequence
of proved transitions for the process a | b is

a | b |0 a−−→ nil | b |1b−−→ nil | nil

These two transitions are concurrent because they are extracted from two different sides of
the parallel operator (i.e. they are inferred using different rules for |), and this information
is recorded in their labels. The transitions can therefore be commuted and the pomset
corresponding to the equivalence class of this sequence is a | b. On the other hand the
process a.b + b.a has the sequence of proved transitions

a.b + b.a
+0a−−→ b

b−→ nil

where the two transitions cannot be commuted, hence the corresponding pomset is a.b.
Indeed, the permutation semantics of [23] extends the pomset semantics of [22] and

can be applied to more interesting examples. For instance the process (a. γ | γ. b), where
γ and γ are two synchronisable actions, can do the sequence of proved transitions

a. γ | γ. b |0a−−→ γ | γ. b (γ,γ)−−→ nil | b |1b−−→ nil | nil

Here the two transitions a and b, although marked as concurrent by their labels, cannot
be commuted because they are not adjacent. The pomset generated by this transition
sequence is a. τ . b (where τ represents a generic communication action). Indeed, the com-
munication between γ and γ creates a cross-causality between the actions a and b.

Note that while in the direct pomset semantics of [22] atomic actions are replaced
with composite actions representing whole nonsequential computations, in the proved
transition semantics actions remain atomic but are decorated with additional information
that identifies them uniquely in a term. Pomset transitions are retrieved only in a second
step. Indeed, these two proposals by Boudol and Castellani exemplify two different ways
of structuring actions: either relax atomicity of actions so as to obtain compound actions,
or retain portions of their proof in order to pinpoint their identity – we shall speak in this
case of decorated (atomic) actions.

Another track for defining noninterleaving semantics for process algebras was to struc-
ture the states – rather than the actions – of the transition system, so as to mark the
components responsible for each action. This led first to Degano and Montanari’s model
of concurrent histories [56], concrete computations with structured initial and final states,
which could be concatenated while keeping the causality information. From these com-
putations a partial ordering of actions could then be abstracted away. This model was
used by Degano, De Nicola and Montanari to define a partial ordering semantics for CCS

3This is because the class of pomsets is not closed with respect to parallel composition when commu-
nication is allowed.
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in [57, 54]. Here the causality relation on actions is recovered by decomposing each CCS
process into a set of sequential components called grapes, and by causally connecting only
those successive actions that originate from the same component. For example the process
a | b is decomposed into two components a | id and id | b (here the markers | id and id |
are used to specify the access paths of components inside a term, and therefore to identify
them throughout a computation4). We have here a computation

{a | id, id | b} a−→ {nil | id, id | b} b−→ {nil | id, id | nil}

where actions a and b can be seen as emanating from different components and hence are
not causally related5. On the other hand the process a.b + b.a has only one component,
itself. The computation in this case is

{a.b + b.a} a−→ {b} b−→ {nil}

Here actions a and b originate from the same component and thus are causally related.
The resulting partial order semantics is the same as that derived from the previously
mentioned proved transition systems [23]. In both cases a partial order computation is
obtained from a sequential computation together with a relation on transitions (a causality
relation here, and a concurrency relation in [23]).

On the other side, the same idea of structuring states led Castellani and Hennessy to
the definition of distributed transition systems [36, 38], where transitions have distinct local
and concurrent residuals6: that is to say, transitions p a−→ p′ are replaced by transitions
of the form p

a−→< p′`, p
′
c >, where p′` is what locally follows the action a while p′c is

what is concurrent with it. A notion of distributed bisimulation, acting separately on the
two residuals, was then proposed to compare these systems. For the two processes of our
running example, the distributed transitions would be7

a | b a−→ < nil , b >

a.b + b.a
a−→ < b,nil >

and the distributed bisimulation would tell them apart since the residuals are not pairwise
equivalent. It should be pointed out that no partial order computation was synthesized
here. Indeed this particular semantics, which will be reviewed in some detail in Section 3.2,
departed somehow from the main line of research at the time, which aimed at defining par-
tial ordering transitions. It was the first attempt at a distributed semantics, emphasizing
local behaviours rather than the global causal behaviour. Unfortunately this distributed
semantics was defined only for a subset of CCS without the restriction operator, and its
extension to the whole language, investigated by Kiehn in [95], appeared to be difficult.

4Just like the markers |0 and |1 are used to identify occurrences of actions in proved transitions.
5This is a slightly simplified rendering of the semantics of [57]. As a matter of fact, also actions were

enriched in [57, 54] - with a portion of their proof - but this information was somehow redundant, in
particular it was not used to derive the partial order computations.

6This was the original formulation reported in [36]. An alternative formulation in terms of local and
global residuals was considered in [38], as it seemed better suited to deal with the full language CCS.

7To be precise the first transition should be a | b
a−→ < nil ,nil | b >, but we are keeping deliberately

informal here.
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Indeed, the very idea of splitting terms into parts and observing these parts separately
did not seem fully compatible with global operators such as restriction.

The partial ordering approach of [57] was pursued in subsequent works by Degano, De
Nicola and Montanari [52, 59], where the grape semantics was adapted in various ways
to match more closely event structure and Petri net interpretations for CCS. The same
authors presented a different formulation of a partial ordering semantics for CCS in [58],
based on a tree-model called Nondeterministic Measurement Systems (NMS). By applying
so-called observation functions to NMS’s, different equivalence notions could be obtained,
among which a partial ordering equivalence called NMS-equivalence, which turned out to
be unrelated to pomset bisimulation8.

Another rather original tree-model that was put forward in the late eighties, with the
express purpose of reconciling the interleaving and partial order approaches, was Daron-
deau and Degano’s model of causal trees [49, 50]. These are a variant of Milner’s synchroni-
sation trees, where labels of observable transitions carry an additional element representing
the set of causes of the corresponding action. More precisely, these labels are of the form
(a,K), where K is an encoding - in the form of backward pointers in the tree - of the
actions that causally precede a. The bisimulation associated with these new transitions,
called causal bisimulation, was of course stronger than the usual bisimulation, but also
stronger than pomset bisimulation and NMS-equivalence. It may be noted that in causal
trees, the causal information is recorded in both the states (nodes) and the actions. In
fact, this model illustrates a further way of decorating atomic actions, with parts of their
computational history rather than parts of their proof.

The initial criterion for these noninterleaving operational semantics for CCS was their
agreement with “denotational semantics” given by interpretations into event based se-
mantic domains like event structures and Petri nets. Besides the above-mentioned pa-
pers [52, 59], which show the consistency of the grape operational semantics with interpre-
tations of terms into prime event structures and condition/event systems, we can mention
also [23, 24], where the pomset semantics is shown to agree with an interpretation of pro-
cesses into more general event structures, and the work by Olderog [121], where a Petri net
semantics for the language CCSP (a mixture of CCS and TCSP) is derived operationally.
In [26] the results of [23, 24] are extended to Petri nets and asynchronous transition sys-
tems. A correspondence between (a variant of) the proved transition semantics and an
interpretation of processes as trace automata is given by Badouel and Darondeau in [12].
As it were, the search for denotational interpretations of process algebras gave a new im-
pulse to the study of semantic domains, and led to the definition of specific classes of event
structures and nets, such as bundle event structures [99] and flow event structures [24, 39]9,
flow nets [25], and ∆-free event structures [51]. Following the approach of Winskel [163],
many of these denotational models had been meanwhile uniformly formalised in a categor-
ical framework, which facilitated their analysis and comparison: several correspondence
results between the various models, including Mazurkiewicz traces and transition systems
with independence, could be established in this setting [166]10. We refer to this work and

8Examples showing the incomparability of the two equivalences are given by Goltz and van Glabbeek
in [73] and [77].

9Which are both weaker variants of Wisnkel’s stable event structures.
10The correspondence in [166], as in most other cases, is given by the isomorphism of the computation

domains of the models, while in [26] the correspondence between the three considered models was tighter,
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to [143] for a comprehensive survey of such categorical models and their relationships. The
unification of models of concurrency into a common algebraic framework had also been a
central concern of Ferrari and Montanari’s work [63, 65].

In the late eighties, a new criterion for assessing equivalences emerged in connection
with the issue of action refinement. Here, in accordance with the methodology of stepwise
refinement, one wishes to allow for a gradual specification of systems by successive refine-
ments of atomic actions into more complicated behaviours. Then, to be applicable along
such top-down design of systems, equivalence notions are required to be preserved under
action refinement. This means that two equivalent processes should remain equivalent
after replacing all occurrences of an action a by a process r(a). At first, this new criterion
appeared to be a further argument in favour of “true concurrency” semantics, since all the
existing interleaving semantics failed to satisfy it. For instance, as mentioned earlier, the
standard bisimulation equivalence ∼ satisfies the expansion law

a | b ∼ a.b + b.a

On the other hand, if action a is refined into the process a1.a2, the equality no longer
holds

a1.a2 | b 6∼ a1.a2.b + b.a1.a2

since after performing a1 the first process can choose between a2 and b , while the sec-
ond cannot. On the basis of this example, the use of partial ordering semantics was
advocated by Castellano, de Michelis and Pomello as more appropriate for dealing with
action refinement [40]. However, in reaction to this position Goltz and van Glabbeek
showed that none of the existing branching-time partial order equivalences was preserved
by refinement [73, 74]. In particular pomset bisimulation and NMS equivalence11 were
not invariant under refinement. In conclusion it was proved that a finer equivalence called
history preserving bisimulation – first proposed by Rabinovitch and Trakhtenbrot [132] un-
der the name BS-equivalence (Behaviour Structure equivalence) and then reformulated for
event structures by Goltz and van Glabbeek – was indeed preserved by refinement. This
result was first proven in the setting of prime labelled event structures for a restricted
form of refinement [73], and subsequently extended, for more general forms of refinement,
to flow and stable event structures [76, 75, 77], and finally to configuration structures [77].

Well before the start of this debate on refinement, Hennessy had proposed in a some-
what confidential publication [86] a semantics for CCS taking into account beginnings and
endings of actions, and studied the corresponding bisimulation. This equivalence, later
called split bisimulation, was reproposed in [87] in a slightly updated form and subse-
quently studied by Aceto and Hennessy [6, 7] aw well as other authors. It appeared to
be closely related to another equivalence, not conceived for true concurrency but for real-
time, introduced by van Glabbeek and Vaandrager in [78] and named ST-bisimulation.12

While ST-bisimulation is preserved by refinement [72], split bisimulation is only preserved

amounting to the equality of the families of computations.
11Which also coincides with an equivalence proposed by Devillers [61], called weak history preserving

bisimulation by Goltz and van Glabbeek [73].
12This equivalence is finer than split bisimulation in that it matches action endings with specific begin-

nings, but it coincides with it on systems without autoconcurrency (i.e. concurrency between actions of
the same name).
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by refinement on a subset of CCS [6, 79]. Thus ST-bisimulation appeared to be the weak-
est strengthening of ordinary bisimulation which would be a congruence with respect to
refinement. However, since this equivalence is not generally agreed to properly reflect
causality (see [77]), it could not be adopted as a representative for partial order semantics.

Meanwhile, refinement had been studied in the setting of Petri nets [158] and causal
trees [51]13, and history preserving bisimulation had been shown to coincide with con-
current bisimulation [18] on nets, and with causal bisimulation [3, 51] on causal trees.
In [3] Aceto also showed the coincidence of causal bisimulation with the mixed-ordering
equivalence of Degano et al. [53]. These results further consolidated the status of history
preserving bisimulation as the best candidate equivalence when both causality and refine-
ment are of concern [77]. It should be pointed out, however, that only the strong version
of this equivalence was studied, taking into account internal actions as well as visible
ones. This is because the weak version of history preserving bisimulation would not be
preserved by refinement – as is the case, in fact, for most weak equivalences14. For more
about history preserving bisimulation and the question of action refinement, we refer the
reader to [2, 77] and to Chapter 5.4 in this issue.

Most of the noninterleaving semantics reviewed so far are based on the notion of
causality, and can therefore be qualified as causal semantics. By contrast, distributed
semantics focus on the local behaviour of parallel components and aim at capturing local
dependencies. As mentioned earlier, the distributed bisimulation semantics of Castellani
and Hennessy [36, 38], initially defined for a subset of CCS without the restriction operator,
appeared to be hard to extend to the whole language. The problem can be illustrated by
a simple example, where the restriction operator \γ has the effect of forcing actions γ and
γ to occur simultaneously (and unobservably). Consider the process:

p = (a. b. γ | γ. c)\γ

Suppose action a is performed. Then, what should be its local and concurrent residuals?
Clearly, distributing the restriction operator over the two residuals would unduly limit
their behaviour: if we let p = (a. b. γ | γ. c)\γ a−→< (b. γ)\γ, (γ. c)\γ >, then the second
residual would be equivalent to nil , and the whole process p would be equivalent to a. b,
which is not what we expect. A variant of this example shows that we could also make
unwanted distinctions between processes. Let q = (a. γ. b | γ)\γ. Then q should be
equivalent to a. b, since in both cases actions a and b occur in sequence at the same
location. However a transition q = (a. γ. b | γ)\γ a−→< (γ. b)\γ, γ\γ > would yield a
local residual equivalent to nil , and therefore distinguish q from a. b.

The other näıve solution would be to “resolve” the restriction by transforming re-
stricted actions into unobservable τ -actions in the residuals. Again, this would lead to
unwanted identifications and distinctions. For instance, we would have in this case a
transition p = (a. b. γ | γ. c)\γ a−→< b. τ, τ . c > and p would behave like the process
(a. γ. b | γ. c)\γ, where action c can occur before action b. On the other hand, the process
(a | γ. b)\γ, which should be equivalent to just a, would be equated with (a. γ | γ. b)\γ.

13In fact, refinement was prevalently studied as a substitution operation on the semantic domains used
to interpret terms (semantic refinement) rather than on the languages themselves (syntactic refinement).
Among the above-mentioned papers, only [6] and [7] give a syntactic treatment of refinement. For other
references see Chapter 5.4 in this book.

14In [7], Aceto and Hennessy studied a weak equivalence which is preserved by refinement. However this
is essentially a weak ST-bisimulation equivalence.
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In fact, it is not clear how to distribute an encapsulation operator such as restriction
whithout losing information about its scope, which is crucial to determine both the local
and the overall behaviours. For this reason, subsequent studies on distributed bisimu-
lation tended to keep the residuals in their context (while marking them in some way)
rather than observe them in isolation. The alternative formulation in terms of local and
global residuals studied in [38] was a first step in this direction. It did not seem suffi-
cient, however, to overcome the above-mentioned difficulties. Indeed, the later work by
Kiehn [95] showed that in the presence of the restriction operator even rather ingenious
reformulations of the semantics failed to capture some desired operational distinctions (the
later variant considered by De Nicola and Corradini in [47], while getting around Kiehn’s
counterexample, still suffered from the same drawback).

A few years later, a fresh attack on the problem was resumed with the location se-
mantics of Boudol, Castellani, Hennessy and Kiehn [27, 28]. The idea here was to insert
locations into processes and observe actions together with the location at which they oc-
cur. In the initial work [27, 28] locations are created dynamically for actions when they are
executed, and then recorded in the derivative process. The assignment of locations is such
that concurrent actions have disjoint locations, while actions from the same component
have related locations (one is a sublocation of the other). For instance the process a | b
has a sequence of transitions

a | b a−→
`

` :: nil | b b−→
k

` :: nil | k :: nil

where actions a and b occur at different locations. On the other hand the process a.b + b.a
has transitions

a.b + b.a
a−→
`

` :: b b−→
`k

l :: k :: nil

where the location of b is a sublocation of that of a. Note that the idea underlying
this semantics is a natural generalisation of that of splitting residuals: every component
which becomes active is marked with a location which will distinguish it from any other
component running in parallel.

Based on this new transition system, notions of location equivalence ≈` and location
preorder <∼ `

were introduced. The equivalence ≈` formalises the idea that two processes
are bisimilar, in the classical sense, and moreover are equally distributed and have the same
local behaviours in each computationn. Formally, ≈` is just the ordinary bisimulation
associated with the new transition system. It can be easily seen, looking at the transitions
above, that

a | b 6≈` a.b+ b.a

This is expected since the first process is distributed among two different locations while
the second is confined within one location. The location preorder <∼ `

, on the other hand,
relates a process with another which is bisimilar but possibly more distributed. Technically,
the locations of the second process are required to be subwords of the locations of the first.
For example

a.b + b.a <∼ `
a | b

Again, this is expected because the first process is less distributed than the second.
In two subsequent papers, Aceto [5] and Castellani [37] proposed an alternative ap-

proach where locations are assigned statically to parallel components, and observed modulo
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a concurrency-preserving renaming. This approach, although closer to the intuition, had
been initially abandoned in favour of the dynamic one because of some technical difficul-
ties it presented. In the static approach, processes are given an explicit distribution before
they are executed, by inserting locations in front of parallel components. For instance,
two distributions for the processes a | b and a.b + b.a would be

` :: a | k :: b and a. b + b. a

where ` and k are distinct locations, and processes with no explicit location are supposed
to be placed at the location ε of the overall system. The semantics then simply exhibits
the locations along transitions. For instance

` :: a | k :: b a−→
`

` :: nil | k :: b b−→
k

` :: nil | k :: nil

a.b + b.a
a−→
ε

b
b−→
ε

nil

Notions of location equivalence and preorder are now redefined in this setting. An im-
mediate observation is that one cannot require here equality of locations. Otherwise one
would distinguish processes like a | (b | c) and (a | b) | c, whose distributions are of the
form

`1 :: a | k1 :: (`′1 :: b | k′1 :: c) and `2 :: (`′2 :: a | k′2 :: b) | k2 :: c

The idea is then to compare transitions modulo particular associations of their locations.
For this example the required association would be: {(`1, `2`′2), (k1 `

′
1, `2 k

′
2), (k1 k

′
1, k2)}.

Interestingly the two semantics, dynamic and static, yield the same notions of location
equivalence and preorder, in spite of the fact that locations reflect different intuitions in
the two cases. In the static case locations represent sites, while in the dynamic case they
represent local causes for an action. Indeed, in the static case locations may be seen as
part of the proof of a transition, in the sense explained earlier, while in the dynamic case
they are part of its computational history.

We shall not enter in further details here, since the location semantics will be pre-
sented in detail in the next section. Let us just mention that this semantics consistently
extends the distributed bisimulation semantics of [38], while being in general incomparable
with the causality-based semantics discussed earlier15. It therefore offers an interesting
complementary point of view about observing parallelism in processes.

Semantics based on static locations were investigated also by other authors. In [115]
an equivalence analogous to that of [37] was studied by Mukund and Nielsen for a class
of asynchronous transition systems modelling a subset of CCS with guarded sums. It was
conjectured to coincide with the dynamic location equivalence of [28], a result that could
later be subsumed from those of [37]. A transition system for CCS labelled with static
locations, called spatial transition system, was considered by Montanari and Yankelevich
in [167, 114]. In this latter work, however, location transitions are only used as a first
step to build a second transition system, labelled by local mixed partial orders (where
the ordering is a mixture of temporal ordering and local causality), which is then used

15Except on the finite fragment of CCS without communication, where the location semantics coincides
with the causal semantics of [49] and [73].
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to define the behavioural equivalence. This equivalence, a variant of the mixed-ordering
equivalence of [53] called local mixed-ordering equivalence, was shown to coincide with lo-
cation equivalence [167]. The view of location equivalence as capturing local causality was
further substantiated by the work of Kiehn [97], who characterised it as a variant of causal
bisimulation called local cause bisimulation. In the same spirit, in [37] location equivalence
was presented as a local history preserving bisimulation. The first characterisation was car-
ried out within Kiehn’s local/global cause transition system, an enriched transition system
which unifies distributed and causal semantics into a single framework, thus shedding light
on their relationship. In afterthought, the convergence of these three new formulations
of location equivalence was somehow expected since their “global” counterparts (mixed-
ordering equivalence, causal bisimulation and history preserving bisimulation) were known
to coincide from Aceto’s work [3].

A more concrete view of localities was proposed by D. Murphy in [116] (and later
extended to unobservable transitions by Corradini and Murphy in [48]), for a subset of
CCS with only top-level parallelism. Here again localities are assigned statically to parallel
components. The main difference with respect to the other static approaches is that the
names of localities are significant here, and processes are considered equivalent only if
they reside on the same set of localities and present the same behaviour at each locality.
The interest here is centered on implementing a system on a fixed network of processors,
while in the previous cases the notions of local behaviour and degree of distribution where
expressed somewhat abstractly. For instance the two distributed processes

(` :: a | k :: b) and (` :: b | k :: a)

are distinguished in Murphy’s semantics, while they are equated in the other static location
semantics.

More recently, Corradini and De Nicola have reformulated in [47] both the dynamic
location equivalence and a variant of Kiehn’s extended distributed bisimulation [95] within
the grape semantics of [54]. Kiehn’s extended distributed bisimulation was known to be
weaker than location equivalence from [27] and [28]. While exploiting some of Kiehn’s
ideas, Corradini and De Nicola propose here a slightly stronger equivalence, which however
still fails to recover the full power of location equivalence.

We conclude our review of noninterleaving semantics with a remark about structured
actions and states. The idea of decorating atomic actions with (portions of) their proof to
obtain more expressive semantics for CCS culminated on one side in the above-mentioned
proved transition systems [23, 26], and on the other side in Montanari and Ferrari’s struc-
tured transition systems [63, 65, 66]. In the first model only actions are structured while
in the second both states and transitions are structured16. Both these transition systems
retain in some sense a maximal information about the structure of the underlying terms,
which can be weakened in various ways to obtain specialised semantics like pomset or dis-
tributed semantics. For instance the structured transitions of [65] are interpreted through
a mapping into an algebra of observations, and the associated notion of bisimulation is

16In [26] a generalisation of the proved transition system called event transition system is considered,
where also states are structured in order to represent partially executed terms: like the causal trees
of Darondeau and Degano and Kiehn’s local/global cause transition system, these systems incorporate
information about the computational history of processes, and this information needs to be recorded in the
states in order to be correctly propagated along the transitions.
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parameterized with respect to the choice of the algebra. Similarly, proved transitions were
exploited by Degano and Priami in [60] to obtain different semantics for CCS. Here, in or-
der to capture the causal bisimulation semantics of [49], the authors use a simpler model
based on derivation trees – called proved trees – rather than the more general proved
transition systems discussed earlier.

2.2 Motivation for location semantics

In this section we introduce the abstract location semantics proposed in [27, 28] and [5, 37],
by means of simple examples. These will be described using CCS notation (formally
introduced only in the next section), which should be accessible to the unfamiliar reader
with the help of comments and pictures.

The distributed structure of CCS processes can be made explicit by assigning differ-
ent locations to their parallel components. This can be done using a location prefixing
construct l :: p, which represents process p residing at a location l. The actions of such a
process are observed together with their location. We have for instance

(l :: a | k :: b) a−→
l

(l :: nil | k :: b) b−→
k

(l :: nil | k :: nil)

In CCS, parallelism is not restricted to top-level. It may also appear after the execution
of some actions, in which case it is best viewed as a fork operation, a future activation of
two processes in parallel. Then the locations of actions will not be simple letters l, k, . . .
but rather words u = l1 · · · ln, and a “distributed process” will perform transitions of the
form p

a−→
u

p′. For instance, if the process (l :: a | k :: b) is a component of a larger process,
we will have

l′ :: c. (l :: a | k :: b) | k′ :: d c−→
l′

l′ :: (l :: a | k :: b) | k′ :: d a−→
l′ l

l′ :: (l :: nil | k :: b) | k′ :: d

Let us consider a more concrete example, taken from [27]. We may describe in CCS a
simple protocol, transferring data one at a time from one port to another, as follows:

Protocol ⇐ (Sender | Receiver)\α, β
Sender ⇐ in. α. β. Sender

Receiver ⇐ α. out. β.Receiver

where α represents transmission of a message from the sender to the receiver, and β is
an acknowledgement from the receiver to the sender, signalling that the last message has
been processed. In the standard theory of weak bisimulation equivalence, usually noted
≈, one may prove that this system is equivalent to the following specification

PSpec ⇐ in. out.PSpec

That is to say, PSpec ≈ Protocol. The reader familiar with the (weak version of) causal
bisimulation≈c of [49]17, which is a strengthening of≈, should also be easily convinced that
PSpec ≈c Protocol : intuitively, this is because the synchronizations on α, β in Protocol

17This equivalence will be reviewed in Section 3.3.
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create “cross-causalities” between the visible actions in and out, constraining them to
happen alternately in sequence.

In a distributed view, on the other hand, it would be reasonable to distinguish these
two systems, because PSpec is completely sequential and thus performs the actions in and
out at the same location l, what can be represented graphically as follows

PSpec

l ::

in out

while Protocol is a system distributed among two different localities l1 and l2, with actions
in and out occurring at l1 and l2 respectively. Thus Protocol may be represented as

Sender

l1 ::

in Receiver

l2 ::

out

Here the unnamed link represents the communication lines α, β, which are private to
the system. We shall see that PSpec and Protocol will not be equated in the location
semantics. On the other hand they will be related by a weaker relation, a preorder that
orders processes according to their degree of distribution.

Let us consider another example, taken from [28], which describes the solution to a
simple mutual exclusion problem. In the system Mutex, two processes compete for a
device, and a semaphore is used to serialize their accesses to this device

Mutex ⇐ (Proc | Sem | Proc)\{p, v}
Proc ⇐ p. enter. exit. v.Proc
Sem ⇐ p. v. Sem

As a distributed system, Mutex can be pictured as follows, where l1 and l2 are again two
distinct locations (the location of the semaphore is left implicit, since all its actions are
unobservable)

exit

enter
Proc

l1 ::

Sem Proc

l2 ::

exit

enter

Take now a variant of the system Mutex, where one of the processes is faulty and may
deadlock after exiting the critical region (the deadlocked behaviour being modelled here
as nil). This system, FMutex, may be defined by:
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FMutex ⇐ (Proc | Sem | FProc)\{p, v}
FProc ⇐ p. enter. exit. (v. FProc+ v.nil)

where Proc and Sem are defined as above. In the standard theory of weak bisimulation,
the two systems Mutex and FMutex are equivalent. Indeed, they are both observationally
equivalent to the sequential specification:

MSpec ⇐ enter. exit.MSpec

Again, we could argue that these systems should be distinguished in a distributed seman-
tics. Note that FMutex has a distributed representation similar to that of Mutex, with
FProc replacing the second occurrence of Proc. Then Mutex and FMutex should have
different behaviours, because FMutex may reach a state in which no more actions can
occur at location l2, while this is not possible for Mutex. In other words, there is a local
deadlock at location l2 in FMutex, which has no counterpart in Mutex. Moreover, both
systems should be distinguished from the specification MSpec, because both have activities
at distinct locations, while MSpec is confined to a single location. Note that a causal se-
mantics would not help in this case either: we have Mutex ≈c MSpec ≈c FMutex because
the synchronizations on p, v in Mutex and FMutex create cross-causalities between the
critical regions of the two competing processes.

We shall now proceed to a formalisation of these intuitions. In the next two sections
we present the static approach to location semantics, as has been proposed in [5, 37].

2.3 A Language for Processes with Locations

We introduce here a language for specifying processes with locations, called LCCS. This
language is a simple extension of CCS, including a new construct to deal with locations.

We start by recalling some conventions of CCS [106, 108]. One assumes a set of names
∆, ranged over by α, β, . . ., and a corresponding set of co-names ∆ = {α | α ∈ ∆}, where

is a bijection such that α = α for all α ∈ ∆. The set of visible actions is given by
Act = ∆ ∪∆. Invisible actions – representing internal communications – are denoted by
the symbol τ /∈ Act . The set of all actions is then Actτ =def Act ∪ {τ}. We use a, b, c, . . .
to range over Act and µ, ν, . . . to range over Actτ . We also assume a set V of process
variables, ranged over by x, y . . ..

In addition to the operators of CCS, the language LCCS includes a construct for
building processes with explicit locations. Let Loc, ranged over by l, k, . . ., be an infinite
set of atomic locations. The new construct of location prefixing, noted l :: p, is used to
represent process p residing at location l. Intuitively, the actions of such a process will be
observed to occur “within location l”. The syntax of LCCS is as follows:

p ::= nil | µ. p | (p | q) | (p+ q) | p\α | p 〈f〉 | x | rec x. p | l :: p

Apart from l :: p, all the other constructs are borrowed from CCS. They are: the empty
process nil , action prefixing µ. p (a simplified form of sequential composition), parallel
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composition p | q, nondeterministic choice p + q, restriction p\α, relabelling p 〈f〉18 and
recursion rec x. p. The intuitive meaning of these operators is as follows: nil represents
the terminated process; µ. p is a process that performs action µ and then behaves like
p ; (p | q) represents the concurrent execution of p and q, with possible communication;
(p+ q) behaves like any of p and q, discarding the other; p\α behaves like p but with the
use of actions α, α restricted to internal communications; p 〈f〉 behaves like p with all its
actions relabelled by f , where f : Actτ → Actτ is a function preserving complementation
and τ -actions. Finally, rec x. p denotes a distinguished solution of the recursive equation
x = p. As usual, we shall omit trailing occurrences of nil in terms, writing for instance
a. b instead of a. b.nil .

The basic idea of the semantics is that the actions of processes are observed together
with the locations at which they occur. In general, because of the nesting of parallelism
and prefixing in terms, the locations of actions will not be atomic locations of Loc, but
rather words over these locations. Thus general locations will be elements u, v . . . of Loc∗,
and processes will be interpreted as performing transitions p

µ
−→
u

p′, where µ is an action
and u is the location at which it occurs.

2.4 Static Approach

We start by presenting an operational semantics for LCCS based on the static notion of
location, as described in [3, 37]. The idea of this semantics is very simple. Processes
of LCCS have some components of the form l :: p, and the actions arising from these
components are observed together with their location. The distribution of locations in a
term remains fixed through execution. Location prefixing is a static construct and the
operational rules do not create new locations; they simply exhibit the locations which are
already present in terms. Formally, this is expressed by the operational rules for action
prefixing and location prefixing. Recall that locations are words u, v, . . . ∈ Loc∗. The
empty word ε represents the location of the overall system. The rules for µ. p and l :: p
are respectively:

(S1) µ. p
µ
−→ s
ε

p

(S2) p
µ
−→ s
u

p′ ⇒ l :: p
µ
−→ s
l u

l :: p′

Rule (S1) says that an action which is not in the scope of any location l is observed as a
global action of the system. Rule (S2) shows how locations are transferred from processes
to actions. The rules for the remaining operators, apart from the communication rule, are
similar to the standard interleaving rules for CCS, with transitions

µ
−→ s
u

replacing the

usual transitions
µ−→.

The set of rules specifying the operational semantics of LCCS is given in Figure 119.
The rule for communication (S4) requires some explanation. In the strong location tran-
sition system defined here (where no abstraction is made from τ -transitions), we take the

18Here we adopt the slightly nonstandard notation p 〈f〉 for the renaming operator of CCS, as the
notation p[f ] will be used for renaming of locations later on.

19For convenience we include in the same page the rules for the dynamic transition system, which will
only come into play in Section 2.5. These rules (given in Figure 2) can be ignored for the time being.
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location of a communication to be that of the smallest component which includes the
two communicating subprocesses: the notation u u v in rule (S4) stands for the longest
common prefix of u and v. For instance we have:

Example 2.1 l ::α | k :: ᾱ. (l′ :: β | k′ :: β̄) τ−→ s
ε

l :: nil | k :: (l′ :: β | k′ :: β̄)
τ−→ s
k

l :: nil | k :: (l′ :: nil | k′ :: nil)

There are other possibilities for defining locations of τ -actions representing communication.
In [113] the location of such an action is the pair of locations of the contributing actions.
In the above example, the resulting location would be (l, k) for the first communication,
and (kl′, kk′) for the second. In [27, 28], τ -actions have no location at all. In fact, these
differences are not important since in all these studies the interest is centered on the weak
location transition system, where the locations of τ -actions are simply ignored (since the
actions themselves are not observable).

The weak location transitions a
=⇒s
u

and τ=⇒s are defined by:

p
τ=⇒s q ⇔ ∃u1, . . . , un, p0, . . . , pn, n ≥ 0 s.t. p = p0

τ−→ s
u1

p1 · · ·
τ−→ s
un

pn = q

p
a

=⇒s
u

q ⇔ ∃ p1, p2 s.t. p
τ=⇒s p1

a−→ s
u

p2
τ=⇒s q

The weak location transition system will be the basis for defining notions of location equiv-
alence and location preorder accounting for the distributed behaviour of CCS processes.

The reader may have noticed, however, that applying the rules of Figure 1 to CCS
terms just yields a transition p

µ
−→ s
ε

p′ whenever the standard semantics yields a transition

p
µ−→ p′. In fact, these rules will not be applied directly to CCS terms. Instead, the

idea is to first bring out the parallel structure of CCS terms by assigning locations to
their parallel components, thus transforming them into particular LCCS terms called
“distributed processes”, and then execute these according to the given operational rules.

The set DIS ⊆ LCCS of distributed processes is given by the grammar:

p ::= nil | µ. p | (l :: p | k :: q)︸ ︷︷ ︸
l 6=k

| (p+ q) | p\α | p 〈f〉 | x | rec x. p

Essentially, a distributed process is obtained by inserting a pair of distinct locations in a
CCS term wherever there occurs a parallel operator. This is formalised by the following
notion of distribution.

Definition 2.2 The distribution relation is the least relation D ⊆ (CCS×DIS) satisfying:

- nil D nil and xD x

- pD r ⇒ µ. p D µ. r

p\α D r\α
p 〈f〉 D r 〈f〉
(rec x. p) D (rec x. r)
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For each µ ∈ Actτ , u ∈ Loc∗, let
µ
−→ s
u

be the least relation
µ
−→
u

on LCCS processes
satisfying the following axiom and rules.

(S1) µ. p
µ
−→
ε

p

(S2) p
µ
−→
u

p′ ⇒ l :: p
µ
−→
lu

l :: p′

(S3) p
µ
−→
u

p′ ⇒ p | q µ
−→
u

p′ | q

q | p µ
−→
u

q | p′

(S4) p
α−→
u

p′, q
ᾱ−→
v

q′ ⇒ p | q τ−−−−→
uu v

p′ | q′

(S5) p
µ
−→
u

p′ ⇒ p+ q
µ
−→
u

p′

q + p
µ
−→
u

p′

(S6) p
µ
−→
u

p′, µ 6∈ {α, ᾱ} ⇒ p\α µ
−→
u

p′\α

(S7) p
µ
−→
u

p′ ⇒ p 〈f〉 f(µ)
−−−−→

u
p′ 〈f〉

(S8) p[rec x. p/x]
µ
−→
u

p′ ⇒ rec x. p
µ
−→
u

p′

Figure 1: Static location transitions

Let p
τ−→ d
u

q ⇔def p
τ−→ s
u

q, and for each a ∈ Act , u ∈ Loc∗, let a−→ d
u

be the least

relation a−→
u

on LCCS processes satisfying rules (S2), (S3), (S5), (S6), (S7), (S8) and the
axiom:

(D1) a.p
a−→
l
l :: p for any l ∈ Loc

Figure 2: Dynamic location transitions
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- pD r & qD s ⇒ (p | q) D (l :: r | k :: s) , ∀ l, k s.t. l 6= k

(p+ q) D (r + s)

If pD r we say that r is a distribution of p.

Note that the same pair of locations may be used more than once in a distribution. We
shall see in fact, at the end of this section, that distributions involving just two atomic
locations are sufficient for describing the distributed behaviour of CCS processes in the
static approach. This will not be the case for the dynamic approach of Section 2.5.

2.4.1 Static location equivalence

We shall now introduce an equivalence relation ≈s` on CCS processes, which is based on a
bisimulation-like relation on their distributions. The intuition for two CCS processes p, q
to be equivalent is that there exist two distributions of them, say p̄ and q̄, which perform
“the same” location transitions at each step.

However, we shall not go as far as to observe the concrete names of locations: the
intention here is that locations should serve to reveal the degree of distribution of processes
rather than to specify a placing of processes into a given network. Their precise identities
should therefore not be significant. In fact, even if we want to observe distribution, we still
aim, to some extent, at an extensional semantics. For instance, we do not want to observe
the order in which parallel components have been assembled in a system, nor indeed the
number of these components. We are only interested in the number of active components
in each computation. Then we cannot require the identity of locations in corresponding
transitions. For instance, if we want to identify the following processes:

a | (b | c) and (a | b) | c(2)

a and a | nil(3)

it is clear that, whatever distributions we choose, we must allow corresponding transitions
to have different – although somehow related – static locations.

The idea is to compare transitions modulo an association between their locations.
This was first proposed by Aceto for a subset of CCS called nets of automata [5], where
parallelism is restricted to top-level, and then generalised by Castellani to full CCS in [37].

In the case of nets of automata the structure of locations is flat and the association is
simply a partial bijection between the sets of locations of the two processes. For general
CCS processes the association will not be a bijection, nor even a function. For instance,
in order to equate the two processes (which should be both equivalent to a. b. c):

a. (b. c | nil) and a. b. (c | nil)(4)

we need an association containing the three pairs (ε, ε), (l, ε), (l, l′), for some l, l′ ∈ Loc.
In fact, the only property we will require of location associations is that they respect

independence of locations. To make this precise, let � denote the prefix ordering on Loc∗.
If u� v we say that v is an extension or a sublocation of u. If u 6� v and v 6� u, what we
indicate by u � v, we say that u and v are independent. Intuitively, transitions originating
from different parallel components will have independent locations. On the other hand,
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transitions performed in sequence by the same component (like a and b in the two processes
of example (4)) will have dependent locations: the location of the second transition will
be a sublocation of the location of the first. We shall sometimes by extension talk of
independent or dependent transitions.

We introduce now the notion of consistent location association, as defined in [37]. This
is meant to express the requirement that independent transitions from one process be
matched by independent transitions from the other process.

Definition 2.3 A relation ϕ ⊆ (Loc∗ ×Loc∗) is a consistent location association (cla) if:

(u, v) ∈ ϕ & (u′, v′) ∈ ϕ ⇒ (u � u′ ⇔ v � v′)

The following properties of cla’s are immediate to check:

Property 2.4 (Properties of cla’s)

1. If ϕ is a cla, then ϕ−1 is a cla.

2. If ϕ is a cla and ψ ⊆ ϕ, then ψ is a cla.

3. If ϕ and ψ are cla’s, then ϕ ◦ ψ is a cla.

We will see now that, for a given pair of distributed processes we want to equate, the
required cla cannot in general be fixed statically, but has to be built incrementally. We
will show that this is necessary to ensure such basic identifications as (2) and (3) above.

For consider the two processes, which should certainly be equated if we want parallel
composition to absorb the nil process, and + to be idempotent, which is the very essence
of a bisimulation semantics:

(a | b) and (a | b) + (nil | (a | b) )(5)

Any two distributions of these processes will have the following form, where l 6= k and
li 6= ki for i = 1, 2, 3:

(l :: a | k :: b) and (l1 :: a | k1 :: b) + ( l2 :: nil | k2 :: (l3 :: a | k3 :: b) )

Suppose we want to equate these two distributions using a fixed location association ϕ.
Clearly we will require ϕ to contain the pairs (l, l1), (k, k1), (l, k2l3), (k, k2k3). But then, if
ϕ is to be consistent, k2 must be such that l1 � k2l3 and k1 � k2k3: however this would
imply l1 = k2 and k1 = k2, contradicting the hypothesis l1 6= k1.
Similarly, if we want parallel composition to be associative, we should identify the pro-
cesses:

a | (b | c) and a | (b | c) + (a | b) | c(6)

which have the following generic distributions, where l 6= k and li 6= ki for
i = 1, 2, 3, 4, 5:

( l :: a | k :: (l1 :: b | k1 :: c) )

and ( l2 :: a | k2 :: (l3 :: b | k3 :: c) ) + ( l4 :: (l5 :: a | k5 :: b) | k4 :: c )

22



Here a global location association would have to contain the pairs (l, l2), (kl1, k2l3),
(kk1, k2k3), (l, l4l5), (kl1, l4k5), (kk1, k4). But this would imply l2 = l4 and k2 = l4,
whence the contradiction l2 = k2.

These examples show that, at least if we want to retain a simple notion of location20,
the location association cannot be fixed once and for all, but has to be built dynamically
along computations. In example (5), depending on which summand is chosen in the sec-
ond process, one will use the association ϕ1 = {(l, l1), (k, k1)} or the association ϕ2 =
{(l, k2l3), (k, k2k3)}. In example (6), one can choose ϕ1 = {(l, l2), (kl1, k2l3), (kk1, k2k3)}
for one computation, and ϕ2 = {(l, l4l5), (kl1, l4k5), (kk1, k4)} for the other. Note inciden-
tally that these situations are not due to the phenomenon known as “symmetric confusion”
in Petri nets, and exemplified in CCS by the term (p | q) + r. Similar examples could
be obtained in CCS with guarded sums (the language considered e.g. in [115]), by just
prefixing all summands in the examples above by an action d.

Let us see now how these location associations can be built up dynamically. Let Φ
be the set of consistent location associations. We define particular Φ-indexed families of
relations Sϕ over distributed processes, called progressive bisimulation families (although
the relations that constitute a family are not themselves bisimulations). The idea is to
start with the empty association of locations and extend it consistently as the execution
proceeds.

Definition 2.5 A progressive bisimulation family (pbf) is a Φ-indexed family
S = {Sϕ | ϕ ∈ Φ} of relations over DIS such that, if pSϕq then for all
a ∈ Act , u ∈ Loc∗:

(1) p
a

=⇒s
u

p′ ⇒ ∃ q′, v such that q a
=⇒s
v

q′ , ϕ ∪ {(u, v)} ∈ Φ and p′ Sϕ∪{(u,v)} q
′

(2) q
a

=⇒s
v

q′ ⇒ ∃ p′, u such that p a
=⇒s
u

p′ , ϕ ∪ {(u, v)} ∈ Φ and p′ Sϕ∪{(u,v)} q
′

(3) p
τ=⇒s p

′ ⇒ ∃ q′ such that q τ=⇒s q
′ and p′Sϕq

′

(4) q
τ=⇒s q

′ ⇒ ∃ p′ such that p τ=⇒s p
′ and p′Sϕq

′

We may now define the location equivalence ≈s` on CCS terms as follows

Definition 2.6 (Static location equivalence) For p, q ∈ CCS, let p ≈s` q if and only
if for some p̄, q̄ ∈ DIS such that pD p̄ and qD q̄, there exists a progressive bisimulation
family S = {Sϕ | ϕ ∈ Φ} such that p̄ S∅ q̄.

Let us prove that ≈s` is indeed an equivalence relation. The reader may have noticed that
the inverse D −1 of the distribution relation is a function. If we let π =def D −1, then π(p)
is the pure CCS process underlying the distributed process p. We start by showing that all
distributions of the same process are in the relation S∅ for some progressive bisimulation
family S.

20One could envisage a more structured notion of location, incorporating information about the +
operator; this would mark as conflicting (another form of dependency) the locations of the first and second
summand in the right-hand process of examples (5) and (6). Then, identical locations would be allowed
to be matched by conflicting locations and the counterexamples (5) and (6) would not hold anymore. In
fact, this would bring us close to the notion of proved transition considered in [26], and would certainly
complicate the theory as a new relation of conflict would have to be considered on locations.
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Proposition 2.7 Let p1, p2 ∈ DIS. Then π(p1) = π(p2) ⇒ ∃ pbf S s.t. p1S∅p2.

The proof of this proposition relies on the following definition and lemma.

Definition 2.8 For any p1, p2 ∈ DIS such that π(p1) = π(p2), let ϕ(p1, p2) be the least
relation on locations satisfying:

ϕ(nil, nil) = ϕ(x, x) = ϕ(µ. r1, µ. r2) = ϕ( (r1 + s1) , (r2 + s2) ) = {(ε, ε)}
ϕ( r1\α, r2\α ) = ϕ(r1 〈f〉, r2 〈f〉) = ϕ(r1, r2)

ϕ( r1[rec x. r1/x], r2[rec x. r2/x] ) ⊆ ϕ( rec x. r1, rec x. r2 )

ϕ( (l1 :: r1 | k1 :: s1) , (l2 :: r2 | k2 :: s2) ) = {(ε, ε)}
∪ (l1, l2) · ϕ(r1, r2)
∪ (k1, k2) · ϕ(s1, s2)

where for any relation ϕ, we let (l, l′) · ϕ =def {(lu, l′v) | (u, v) ∈ ϕ}.

It may be easily checked that the relation ϕ(p1, p2) is a consistent location association.
Note that ϕ(p1, p2) only relates those locations of p1 and p2 which are “statically exhib-
ited”, i.e. which do not occur under a dynamic operator. The following lemma establishes
the relation between the association ϕ(p1, p2) and the transitions of p1, p2.

Lemma 2.9 Let p1, p2 ∈ DIS be such that π(p1) = π(p2). Then:

1. p1
a

=⇒s
u

p′1 ⇒ ∃ p′2, v s.t. p2
a

=⇒s
v

p′2 , ϕ(p1, p2) ∪ (u, v) ⊆ ϕ(p′1, p
′
2) and

π(p′1) = π(p′2)

2. p1
τ=⇒s p

′
1 ⇒ ∃ p′2 s.t. p2

τ=⇒s p
′
2 , ϕ(p1, p2) ⊆ ϕ(p′1, p

′
2) and π(p′1) = π(p′2)

Proof: By induction on the proofs of transitions of distributed processes. Note that in
general ϕ(p1, p2) ⊆ ϕ(p′1, p

′
2) because new parallel structure may appear as the compu-

tations proceed.

We may now prove the above proposition.

Proof of Proposition 2.7: Define the family T = {Tϕ |ϕ ∈ Φ} by letting:

Tϕ = { (r1, r2) | π(r1) = π(r2) and ϕ ⊆ ϕ(r1, r2) }

It is clear that r1T∅r2 for any r1, r2 such that π(r1) = π(r2). Let us show that T is a
progressive bisimulation family. Suppose that r1Tϕr2. If r1

a
=⇒s
u

r′1 then by Lemma 2.9

r2
a

=⇒s
v

r′2 , with ϕ(r1, r2)∪ (u, v) ⊆ ϕ(r′1, r
′
2) and π(r′1) = π(r′2) . We want to show that

ϕ′ = ϕ∪ (u, v) is a cla and that r′1Tϕ′r
′
2. But this follows from ϕ ⊆ ϕ(r1, r2) and Lemma

2.9, since ϕ′ = ϕ ∪ (u, v) ⊆ ϕ(r1, r2) ∪ (u, v) ⊆ ϕ(r′1, r
′
2) . 2

Using this proposition, we can now show that:
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Proposition 2.10 The relation ≈s` is an equivalence on CCS processes.

Proof: Reflexivity: Consider the family S = {Sϕ |ϕ ∈ Φ} defined by:

Sϕ =

{
{ (q, q) | q ∈ DIS } if ϕ ⊆ Id

∅ otherwise

It is clear that S is a progressive bisimulation family such that (q, q) ∈ S∅ for any q ∈ DIS.
Hence p ≈s` p for any p ∈ CCS.

Symmetry: Let p ≈s` q. This means that for some p̄, q̄ ∈ DIS such that π(p̄) = p and
π(q̄) = q, there exists a progressive bisimulation family S = {Sϕ | ϕ ∈ Φ} such that
p̄ S∅ q̄. Define now a family R = {Rψ |ψ ∈ Φ} by:

Rψ = { (r, s) | s Sψ−1 r }

Clearly q̄ R∅ p̄. We show now that R is a progressive bisimulation family. Suppose
(r, s) ∈ Rψ: this is because s Sϕ r, with ϕ = ψ−1. Then r

a
=⇒s
u

r′ implies s a
=⇒s
v

s′,

with s′Sϕ∪{(v,u)}r′. Now [ϕ∪ {(v, u)}−1 = ψ−1 ∪ {(u, v)}, thus (r′, s′) ∈ Rψ−1∪{(u,v)}. The
case of unobservable transitions is similar. We can then conclude that q ≈s` p.

Transitivity: Let p ≈s` r and r ≈s` q. This means that for some p̄, q̄, r1, r2 ∈ DIS such that
π(p̄) = p, π(q̄) = q, π(r1) = π(r2) = r, there exist pbf’s R1 and R2 s.t. p̄R1

∅r1, r2R
2
∅q̄.

Moreover, if T is the pbf introduced in the proof of Proposition 2.7, we know (from the
same proposition) that r1T∅r2. Hence if we define a family S = {Sϕ |ϕ ∈ Φ} as follows

(s, s′) ∈ Sϕ ⇔ ∃ t1, t2 ∈ DIS such that π(t1) = π(t2);
∃ pbf ′s S1, S2 , ∃ cla ′s ϕ1, ψ, ϕ2, such that
ϕ ⊆ ϕ2 ◦ ψ ◦ ϕ1 and s S1

ϕ1
t1 Tψ t2 S

2
ϕ2
s′

it is clear that p̄ S∅ q̄. Moreover S is a progressive bisimulation family, since for any
u, v, v′, w we have: ϕ ∪ {(u,w)} ⊆ ϕ2 ∪ {(v′, w)} ◦ ψ ∪ {(v, v′)} ◦ ϕ1 ∪ {(u, v)}. 2

A pleasant consequence of Proposition 2.7 is that≈s` is independent from the particular dis-
tributions we choose. If two CCS terms p and q are equivalent, then any two distributions
of them are related by S∅, for some progressive bisimulation family S = {Sϕ | ϕ ∈ Φ}.

Corollary 2.11 For any p, q ∈ CCS : p ≈s` q ⇔ for all p̄, q̄ ∈ DIS such that pD p̄ and
qD q̄ there exists a progressive bisimulation family S = {Sϕ | ϕ ∈ Φ} such that p̄ S∅ q̄.

By virtue of this result, we can restrict attention to particular “binary” distributions,
systematically associating location 0 to the left operand and location 1 to the right operand
of a parallel composition. A distribution of this kind will be called canonical. Similarly,
elements of {0, 1}∗ will be called canonical locations. These are in fact the locations used
in work by Mukund and Nielsen [115] and, with a slightly different notation, by Montanari
and Yankelevich [113, 167]. In fact, when applied to canonical distributions of CCS terms,
the static transition rules give exactly the same transitions as the spatial transition system
of [113, 167] (except for τ -transitions, for which these papers use pairs of locations). Note
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that since canonical locations can be extracted directly from the structure of terms (in
fact they are just a part of the proof of a transition, in the sense of the proved transition
systems mentioned in section 2.1), in the static approach the extension of the language
with location prefixing is not really necessary. Using canonical locations only, the whole
static location theory could be developed within the standard syntax of CCS. However, it
would then not be possible to relax the theory to allow for the placing of more components
into the same location, a point which will be discussed at page 31.

We show now that location equivalence is finer than the ordinary (weak) bisimulation,
and that introducing locations only adds discriminations between processes in so far as
their distributed aspects are concerned. Let CCSseq be the set of sequential processes
of CCS, built without the parallel operator. On this language location equivalence ≈s`
reduces to the standard weak bisimulation ≈:

Proposition 2.12 For any processes p, q ∈ CCSseq: p ≈s` q ⇔ p ≈ q.

Proof: The proof that p ≈s` q ⇒ p ≈ q is straightforward and left to the reader. We
show here that p ≈s` q ⇐ p ≈ q. Let R be an ordinary weak bisimulation between p, q ∈
CCSseq. Note that the distributions of processes in CCSseq coincide with the processes
themselves, and therefore all their transitions have the form p

µ
−→ s
ε

p′. Let S∅ = {(p, q)}.
Since the location association ϕ = {(ε, ε)} is consistent it is clear that the family of rela-
tions S = {S∅} ∪ {Sϕ | ϕ = {(ε, ε)} and Sϕ = R} ∪ {Sψ | ψ ∈ Φ\{∅, ϕ}, Sψ = ∅} is a
progressive bisimulation family. 2

We give next some simple examples. The reader acquainted with causality-based
equivalences such as the causal bisimulation of [50], will notice here the difference between
location equivalence and causality-based equivalences (the exact relation between these
equivalences will be discussed in Section 3.3).

Example 2.13 a. b+ b. a 6≈s` (a. γ | γ̄. b)\γ + (b. γ | γ̄. a)\γ ≈s` a | b

By Corollary 2.11, to show 6≈s` it is enough to find a pair of distributions for which every
association fails to be consistent. Using canonical distributions, it is easy to see that
the computation a followed by b yields the association ϕ = { (ε, 0) , (ε, 1) } between the
locations of the first two processes, which is not consistent. On the other hand, for the
second and third process we can build the consistent association ϕ1 = { (0, 0) , (1, 1) } for
the computation a followed by b, and the consistent association ϕ2 = { (0, 1) , (1, 0) } for
the computation b followed by a. A related example is:

Example 2.14 [ (a. γ + b. γ̄) | (γ̄. b+ γ. a) ]\γ ≈s` a | b

Again, these two processes are intuitively equivalent since they both perform actions a and
b in either order at different locations. The construction of the appropriate associations is
left to the reader.

Example 2.15 [(α+ b) | ᾱ. b]\α ≈s` b
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Here the observable behaviour consists for both processes in just one action b occurring
at some location. Although the first process may choose its action b from two different
components, this cannot be detected by ≈s` . The reader may want to check this fact using
canonical distributions.

These examples illustrate the extensional character of ≈s` : from Example 2.14 we see
that equivalent processes do not need to be componentwise bisimilar, while Example 2.15
shows that equivalent processes need not even have the same number of parallel compo-
nents. The following is an example of infinite processes which are not equivalent:

Example 2.16 rec x. a. x 6≈s` (rec x. a. x | rec x. a. x)

Note that in the standard CCS semantics these two processes give rise to isomorphic
transition systems. We conclude this section by reconsidering the protocol and mutual
exclusion examples discussed in Section 2.2. We let the reader verify the following.

Example 2.17 PSpec 6≈s` Protocol and Mutex 6≈s` MSpec 6≈s` FMutex 6≈s` Mutex

2.4.2 Static location preorder

We define now a preorder <∼
s

`
on CCS processes, which formalises the idea that one process

is more sequential or less distributed than another. When dealing with noninterleaving
semantics, which are more discriminating than the usual bisimulation semantics, it is
interesting to have such preorder notions to be able to relate, for instance, a sequential
specification with a distributed implementation.

The location preorder <∼
s

`
is obtained by slightly relaxing the notion of consistent

association. The intuition for p <∼
s

`
q is that there exist two distributions p̄ and q̄ of p

and q such that whenever p̄ can perform two transitions at independent locations, then
q̄ performs corresponding transitions at locations which are also independent, while the
reverse need not be true. This is expressed by the following notion of left-consistency:

Definition 2.18 A relation ϕ ⊆ (Loc∗ × Loc∗) is a left-consistent location association if:

(u, v) ∈ ϕ & (u′, v′) ∈ ϕ ⇒ (u � u′ ⇒ v � v′)

Now, if Ψ is the set of left-consistent location associations, we may obtain a notion of pro-
gressive pre-bisimulation family (ppbf) on distributed processes of DIS by simply replacing
Φ by Ψ in Definition 2.5. Again, this gives rise to a relation on CCS processes:

Definition 2.19 (Static location preorder) If p, q ∈ CCS, let p <∼
s

`
q if and only if

for some p̄, q̄ ∈ DIS such that pD p̄ and qD q̄, there exists a progressive pre-bisimulation
family S = {Sψ | ψ ∈ Ψ} such that p̄ S∅ q̄.

It is easy to see that p ≈s` q ⇒ p <∼
s

`
q. As may be expected the reverse is not true. We

have for instance, resuming the examples from the previous section:

Example 2.20 a. b+ b. a <∼
s

`
(a. γ | γ̄. b)\γ + (b. γ | γ̄. a)\γ
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Example 2.21 rec x. a. x <∼
s

`
(rec x. a. x | rec x. a. x)

Example 2.22 PSpec <∼
s

`
Protocol

The reader may want to check, on the other hand, that the two systems Mutex and FMutex
in the mutual exclusion example of p.16 are not related by <∼ `

.
Having introduced both an equivalence ≈s` and a preorder <∼

s

`
based on the same

intuition, we may wonder whether ≈s` coincides with the equivalence 's` =def <∼
s

`
∩ =∼

s

`

induced by the preorder. It is clear that ≈s` ⊆'s` , since we have both ≈s` ⊆<∼
s

`
and ≈s`

⊆=∼
s

`
. On the other hand, the kernel of the preorder is weaker than location equivalence,

as shown by the following example. Consider the two processes:

a. a. a + (a | a | a) and a. a. a + a. a | a + (a | a | a)

These two processes are not equivalent w.r.t. ≈s` , but they are equivalent w.r.t. 's` because
a. a. a <∼

s

`
a. a | a <∼

s

`
a | a | a.

2.5 Dynamic Approach

We present now the dynamic approach introduced in [28]21, and in particular the dynamic
versions of the location equivalence and preorder, noted ≈d` and <∼

d

`
. In the dynamic

approach, locations are associated with actions rather than with parallel components.
This association is built dynamically, according to the rule:

(D1) a. p
a−→ d
l

l :: p for any l ∈ Loc

In some sense locations are transmitted from transitions to processes, whereas in the
static approach we had the inverse situation. Rule (D1) is the essence of the dynamic
location semantics. The remaining rules for observable transitions are just as in the static
semantics, see Figure 2 at p. 20. Note that locations increase here at each step, even if the
execution goes on within the same parallel component. In fact the location l created by
rule (D1) may be seen as an identifier for action a, or more precisely, for that particular
occurrence of a. By inspecting the rules, one can easily see that a generic transition has
the form p

a−→ d
ul

p′, where u ∈ Loc∗: here the string u is a record of all action occurrences

which causally precede action a (through the prefixing operator), what we shall call the
causal path (or access path) to a. The whole string ul will be called the dynamic location
of a.

Let us see some examples of dynamic transitions. The first and third process of Exam-
ple 2.13 may both execute an a action followed by a b action. The corresponding sequences
of dynamic transitions are (for any choice of locations l1, l2 ∈ Loc):

a. b+ b. a
a−→ d
l1

l1 :: b
b−−−−→d

l1 l2
l1 :: l2 :: nil(7)

a | b
a−→ d
l1

l1 :: nil | b
b−→ d
l2

l1 :: nil | l2 :: nil(8)

21An earlier variant presented in [27] will be discussed in Section 3.2.
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The observable dynamic transitions p a−→ d
u

p′ are related to the static transitions p a−→ s
u

p′

in a simple way. To see this, let us introduce a few notations. Let ∆k(p) be the function
that erases the atomic location k in p, wherever it occurs. Formally, ∆ : (Loc×LCCS ) →
LCCS is defined by the clauses:

∆k(p) = p, if p ∈ CCS

∆k(l :: p) =

{
∆k(p) if k = l
l :: ∆k(p) otherwise

together with clauses stating the compatibility of ∆k with the remaining operators (for
instance ∆k(p | q) = ∆k(p) | ∆k(q), etc. ). Also, for any p ∈ LCCS, let Loc(p) be the set
of atomic locations occurring in p, defined in the obvious way. We have then the following
correspondence between the two kinds of location transitions:

Fact 2.23 Let p ∈ LCCS, l /∈ Loc(p). Then:

(i) p
a−→ d
ul

p′ ⇒ p
a−→ s
u

∆l(p′)

(ii) p
a−→ s
u

p′ ⇒ ∃ p′′ s.t. p
a−→ d
ul

p′′ and ∆l(p′′) = p′

The proof, by induction on the inference of the transition, is left to the reader.
Because of rule (D1), the dynamic location transition system is both infinitely branch-

ing and acyclic: it thus gives infinite representations for all regular processes. In fact,
while the infinite branching may be overcome easily (through a canonical choice of dy-
namic locations [167, 37], as will be explained later), the infinite progression is intrinsic
to the dynamic semantics.

For τ -transitions, for which we do not want to introduce additional locations, we simply
use the static transition rules. Although this last point differentiates our strong dynamic
location transition system from that originally introduced in [28], where no locations were
associated with τ -transitions, the resulting weak (dynamic) location transition system is
the same. The definition of the weak dynamic transitions a

=⇒d
u

and τ=⇒d is similar to

that of the static transitions a
=⇒s
u

and τ=⇒s.
For instance, the second process of Example 2.13 has the following sequence of strong

dynamic transitions:

(a. γ | γ̄. b)\γ + (b. γ | γ̄. a)\γ
a−→ d
l1

(l1 :: γ | γ̄. b)\γ τ−→ d
ε

(l1 :: nil | b)\γ
b−→ d
l2

(l1 :: nil | l2 :: nil)\γ

From this one can derive (for instance) the following sequence of weak transitions:

(a. γ | γ̄. b)\γ + (b. γ | γ̄. a)\γ
a

=⇒d
l1

(nil | b)\γ
b

=⇒d
l2

(nil | nil)\γ(9)

We define now the dynamic location equivalence ≈d` and the dynamic location preorder <∼
d

`
.

Because of the flexibility in the choice of locations offered by rule (D1), these definitions
are much simpler than in the static case. In [28] the relations ≈d` and <∼

d

`
were obtained

as instances of a general notion of parameterized location bisimulation. We shall give here
directly the instantiated definitions.
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2.5.1 Dynamic location equivalence

The dynamic location equivalence ≈d` is just the ordinary bisimulation equivalence asso-
ciated with the weak dynamic location transition system.

Definition 2.24 (Dynamic location equivalence) A relation R ⊆ LCCS × LCCS is
called a dynamic location bisimulation (dlb) iff for all (p, q) ∈ R and for all a ∈ Act , u ∈
Loc+:

(1) p
a

=⇒d
u

p′ ⇒ ∃ q′ such that q a
=⇒d
u

q′ and (p′, q′) ∈ R

(2) q
a

=⇒d
u

q′ ⇒ ∃ p′ such that p a
=⇒d
u

p′ and (p′, q′) ∈ R

(3) p
τ=⇒d p

′ ⇒ ∃ q′ such that q
τ=⇒d q

′ and (p′, q′) ∈ R

(4) q
τ=⇒d q

′ ⇒ ∃ p′ such that p
τ=⇒d p

′ and (p′, q′) ∈ R

The largest dlb is called dynamic location equivalence and denoted ≈d` .

For instance, the three processes of Example 2.13 are related as follows (as it is easy to
check by looking at their transition sequences given in (7), (9) and (8) respectively):

Example 2.25 a. b+ b. a 6≈d` (a. γ | γ̄. b)\γ + (b. γ | γ̄. a)\γ ≈d` a | b

In fact, all the examples given in Section 2.4 for the static location equivalence ≈s` equally
apply to the dynamic location equivalence ≈d` . We refer the reader to [28] for more detailed
examples of equivalent and unequivalent processes.

2.5.2 Dynamic location preorder

We consider now the location preorder <∼
d

`
. Here, instead of requiring the identity of

locations in corresponding transitions, we demand that the locations in the second (more
distributed) process be subwords of the locations in the first (more sequential) process.
Formally, the subword relation ≤sub on Loc∗ is defined by:

v ≤sub u ⇔ ∃ v1, . . . , vk , ∃w1, . . . , wk+1 s.t. v = v1 · · · vk and u = w1v1 · · ·wkvkwk+1

Definition 2.26 (Dynamic location preorder) A relation R ⊆ LCCS×LCCS is called
a dynamic location pre-bisimulation (dlpb) iff for all (p, q) ∈ R and for all a ∈ Act , u ∈
Loc+:

(1) p
a

=⇒d
u

p′ ⇒ ∃ v. v ≤sub u, ∃ q′ such that q a
=⇒d
v

q′ and (p′, q′) ∈ R

(2) q
a

=⇒d
v

q′ ⇒ ∃u. v ≤sub u, ∃ p′ such that p a
=⇒d
u

p′ and (p′, q′) ∈ R

(3) p
τ=⇒d p

′ ⇒ ∃ q′ such that q
τ=⇒d q

′ and (p′, q′) ∈ R

(4) q
τ=⇒d q

′ ⇒ ∃ p′ such that p
τ=⇒d p

′ and (p′, q′) ∈ R

The largest dlpb is called dynamic location preorder and denoted <∼
d

`
.
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The intuition is as follows. If p is a sequentialized version of q, then each component of p
corresponds to a group of parallel components in q. Thus the local causes of any action
of q will correspond to a subset of local causes of the corresponding action of p. This may
be easily verified for the following examples:

Example 2.27 a. a. a <∼
d

`
a. a | a and a. b + b. a <∼

d

`
a | b

Let us briefly return to the Protocol example of Section 2.2. This example was already
proposed for study under the static semantics (Examples (2.17) and (2.22)), but it is
somewhat easier to handle in the dynamic semantics. We want to argue that:

Example 2.28 PSpec 6≈d` Protocol but PSpec <∼
d

`
Protocol

Recall that the sequential specification PSpec was given by PSpec ⇐ in. out.PSpec, while
the system Protocol was defined as follows:

Protocol ⇐ (Sender | Receiver)\α, β
Sender ⇐ in. α. β. Sender

Receiver ⇐ α. out. β.Receiver

To see that PSpec 6≈d` Protocol, consider the sequence of transitions of Protocol:

Protocol
in

==⇒d
l

out
==⇒d
k

(l :: Sender | k ::Receiver)\α, β

The specification PSpec can only respond by performing the sequence of transitions:

PSpec
in

==⇒d
l

out
==⇒d
lk

l :: k :: PSpec

Clearly, this transition sequence does not match that of Protocol. Note however that the
locations indexing the transitions of Protocol are subwords of those indexing the transitions
of PSpec. This suggests how to build a dynamic location pre-bisimulation to prove that
PSpec <∼

d

`
Protocol.

All the other examples given in Section 2.4 for the static location preorder <∼
s

`
also

hold for <∼
d

`
. Indeed, as we shall see in the next section, the dynamic relations ≈d` and

<∼
d

`
coincide with the static relations ≈s` and <∼

s

`
introduced in the previous section.

Discussion

We now briefly recount how the static and dynamic approaches to locations presented in
this section emerged. The static approach may appear more natural than the dynamic
one as it matches more closely the intuition behind locations as units of distribution for
processes. However this approach was initially abandoned in favour of the dynamic one,
as it was not clear how to define an equivalence based on static locations. In particular
the idea of dynamic location association did not immediately come to mind. This idea was
first proposed by Aceto in [5] for a class of CCS process with only top level parallelism,
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called nets of automata22, and then extended to the whole language CCS by Castellani
in [37]. Similarly, the coincidence of the static notions of equivalence and preorder with
the dynamic ones (which will be exposed in the next section) was first established for
nets of automata in [5] and then for CCS in [37]. Because of the arbitrary nesting of
parallelism and prefixing in CCS terms, and of the interplay between sum and parallelism,
this extension was not completely straightforward. An intermediate step was taken by
Mukund and Nielsen in [115], where a notion of bisimulation equivalence based on static
locations was introduced for a class of asynchronous transition systems modelling CCS
with guarded sums. This equivalence, similar to that of [37], was already conjectured to
coincide with the dynamic location equivalence of [28].

The first definition of the dynamic location semantics appeared in [27]. In that for-
mulation, rule (D1) generated a location word u for each action, rather than an atomic
location l. As it turned out, the resulting equivalence was slightly too weak23, hence this
first definition was replaced in [28] by the one presented here.

In [27] a logical characterisation is given for the early variant of dynamic location
equivalence, which can be easily adapted to the later variant of [28]. An equational
characterisation for both the location equivalence ≈d` and the location preorder <∼

d

`
is

presented in [28]. This axiomatisation makes use of a new prefixing construct <a@ux>. p,
whose semantics is given by:

<a@ux>. p
a−→ d
ul

p[l/x] for any l ∈ Loc

The idea is to reduce terms to normal forms by replacing the ordinary prefixing a.p with
the new construct, according to the basic transformation law:

a. p = <a@x>. x :: p

In fact, the logical characterisation is based on a very similar idea. Here modalities of the
form <a>u are added to a classical Hennessy-Milner logic, with the following semantics:

p |= <a>u Φ if, for some p′ , p a
=⇒d
u

p′ and p′ |= Φ

Location equivalence also inherits axiomatic characterisations given on various subsets of
CCS for other distributed equivalences24. For instance an equational characterisation was
given for distributed bisimulation in [36, 38], for a subset of CCS with communication but
without restriction. This made use of auxiliary operators of left-merge and communication
merge, taken from [13] and previous work on ACP (interestingly, however, the laws for
these operators were somewhat different from those holding in ACP). A proof system for
local cause equivalence, which also uses these operators (together with a new operator of
cause prefixing, see Section 3.2) and covers all finite CCS processes, is presented by Kiehn
in [96]. An axiomatisation for a related equivalence may also be found in [64].

We conclude this section with a discussion on the choice of the language LCCS as a
basis for the location semantics. The reader may have noticed that, while the relations ≈d`

22For this class of processes a consistent location association is just a partial bijection between two sets
of locations.

23An example of unwanted identification under this equivalence is given in Section 2.6, where this earlier
variant is described.

24These equivalences will be discussed in Section 2.6.
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and <∼
d

`
have been defined on the language LCCS, the static relations ≈s` and <∼

s

`
, on the

other hand, have been defined only on CCS. In fact, these relations are defined on CCS by
lifting them up from relations on DIS, which is itself a proper sublanguage of LCCS. We
shall now briefly comment on this choice, and show that some results, like the coincidence
of the static and dynamic notions of equivalence and preorder, would fail to hold on the
whole language LCCS.

At first sight, we could envisage to extend the static equivalence ≈s` to the rest of
LCCS by letting, for any terms p and q in LCCS\CCS: p ≈s` q if and only if pS∅q for some
progressive bisimulation family S = {Sϕ | ϕ ∈ Φ} (the notion of progressive bisimulation
family being itself generalised). Note that in LCCS the distribution of locations may be
quite liberal: we have for instance terms like (l :: a | l :: b) and (l :: a + k :: b). With our
generalised definition of ≈s` we would have the following identification:

(l :: a | l :: b) ≈s` l :: (a. b + b. a)(10)

Now, if this could be argued to be a reasonable equation in a locality based semantics,
it would not be compatible with our intended interpretation of ≈s` , which is supposed to
preserve the degree of parallelism of processes. In fact, these two processes would not be
equated in the dynamic semantics:

(l :: a | l :: b) 6≈d` l :: (a. b + b. a)(11)

because the first has a computation:

(l :: a | l :: b)
a−→ d
l l1

l :: (l1 :: nil | b)
b−→ d
l l2

l :: (l1 :: nil | l2 :: nil)

which the second is not able to mimic. As it were, the dynamic semantics will always
distinguish between parallel components, no matter what locations have been inserted in
front of them. On the other hand the static semantics can only distinguish between parallel
components that have been previously tagged with disjoint locations. This example also
suggests that ≈s` would not be preserved by parallel composition on LCCS: we would have
for instance l :: b ≈s` k :: b but (l :: a | l :: b) 6≈s` (l :: a | k :: b).

Therefore, it seems fair to say that the appropriate language for defining the static
relations ≈s` and <∼

s

`
is DIS, rather than LCCS. On the other hand, a language larger than

DIS is needed for the dynamic semantics: for example the term (a | l :: b) can arise in the
dynamic semantics as a derivative of some CCS term, for instance of the term (a | c. b).
This is why LCCS was chosen as the basic language in [28]. It was kept as the reference
language in [37], because it is a natural extension of CCS where the dynamic and the
static location transitions can be defined in a simple and uniform way.

Another point which is worth discussing is the possibility of relaxing the location
semantics to allow for the placing of several parallel components on the same location.
Clearly, this would slightly change the focus of the semantics: as it stands, the location
semantics prescribes a maximal distribution of processes, identifying their degree of dis-
tribution with their degree of parallelism. In some cases however, it could be interesting
to dissociate these two measures, allowing the degree of distribution to be lower than the
degree of parallelism. For instance, one may describe in CCS a two-place buffer as a sys-
tem made of two parallel components. As for the Protocol example discussed earlier, the
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location semantics would distinguish this system from its sequential specification (see [27]
for a detailed description of the buffer example). On the other hand, it may seem exces-
sive to view such an elementary system – representing a simple data structure – as being
distributed over different sites. In this and similar cases we may want to allow different
parallel components to be sitting together at the same location.

To accomodate this possibility, the static location semantics would require very little
modification. It would be enough to omit the requirement that parallel components have
different locations in the language DIS. The dynamic semantics, on the other hand, would
be slightly more difficult to adapt: since this semantics is sensitive to the degree of paral-
lelism of processes, as shown by Example (11), it would be necessary to introduce a kind
of sequential encapsulation operator [[p]], whose effect would be to conceal all locations in
p. The semantics of this operator could be given by:

p
a−→ d
u

p′ ⇒ [[p]]
a−→ d
l

l :: [[p′]] for any l ∈ Loc

Then, for instance, the process [[a | b]] would have a sequence of transitions:

[[a | b]]
a−→ d
l

l :: [[l1 :: nil | b]]
b−→ d
lk

l :: k :: [[l1 :: nil | l2 :: nil ]]

Introducing this operator, however, would not have exactly the same effect as allowing
processes of the form (l :: p | l :: q) in the static semantics, since in the latter case the
sublocations of l could still be distinguished, while the operator [[p]] conceals locations in
all the subterms of p. We leave this point open for speculation.
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2.6 Equivalence of the Two Approaches

This section is devoted to showing the equivalence of the static and dynamic approach.
More precisely, we shall establish the following theorem.

Theorem 2.29 Let p, q ∈ CCS. Then: (1) p ≈s` q ⇔ p ≈d` q ; (2) p <∼
s

`
q ⇔ p <∼

d

`
q.

To this end, we introduce a new transition system on CCS, called occurrence transition
system, which in some sense incorporates the information of both location transition sys-
tems. This system will serve as an intermediate between the static and the dynamic
semantics. The main point will be to prove that starting from a static or a dynamic loca-
tion computation, one may always reconstruct a corresponding occurrence computation.
This means, essentially, that all the information about distribution and local causality is
already present in both location transition systems.

The two location transition systems could also be compared directly, without recourse
to an auxiliary transition system. However the occurrence transition system is interesting
in its own right, since it provides a concrete level of description where the notions of
occurrence of an action, computational history of an occurrence and computation state of
a process have a precise definition. Moreover, as we shall see, it allows for the definition of
a notion of local history preserving bisimulation, which turns out to be a third equivalent
formulation of location equivalence.

2.6.1 The occurrence transition system

We define here a new transition system on CCS, called occurrence (transition) system,
whose states represent CCS computation states with a “past”, and whose labels are oc-
currences of actions within a computation. This system, which is based on a syntactic
notion of occurrence of action, is essentially a simplification of the event (transition) sys-
tem introduced in [26] to compare different models of CCS: it is simpler because we do not
try to identify uniquely all occurrences of action in a term, as in [26], but only those which
can coexist in a computation. Moreover, since we are interested here in weak semantics,
we shall not distinguish between different occurrences of τ -actions and we concentrate on
abstract occurrences, in which τ -actions and communications are absorbed. Formally, the
set Oτ of occurrences is defined as Oτ = O ∪{τ} , where the elements of O , the visible
occurrences, are given by:

e ::= a | a e | 0 e | 1 e

The meaning of the occurrence constructors is as follows: a denotes an initial occurrence
of action a (possibly preceded or followed by some τ actions in the computation), a e
denotes the occurrence e after an action a, while 0 e, 1 e represent the occurrence e at the
left, resp. at the right of a parallel operator. Finally the symbol τ is used - with abuse of
notation - to represent any occurrence of a τ -action in a computation. We use e, e′, . . . to
range over the whole set Oτ .

We shall see that a visible occurrence e ∈ O incorporates both its static and its
dynamic location. Note that O could also be defined as:

O = (Act ∪ {0, 1})∗ Act
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Then an occurrence e ∈ Oτ is either τ or a word σa, for some σ ∈ (Act ∪ {0, 1})∗ and
a ∈ Act . The label of e ∈ Oτ is the action of which e is an occurrence:

Definition 2.30 (Label) The function λ : Oτ → Actτ is defined by:

λ(τ) = τ, λ(σa) = a

This alternative presentation of O makes it also particularly easy to define the location
and the causal path (also called access path in [37]) of a visible occurrence e. The location
loc(e) of an occurrence e ∈ O is the canonical location obtained by projecting e onto
{0, 1} (here we use projΣ(w) to denote the projection of a word w on an alphabet Σ):

Definition 2.31 (Location) The function loc : O → {0, 1}∗ is defined by:

loc(e) = proj{0,1}(e)

The prefix ordering on O defines a relation of causality � on visible occurrences:

Definition 2.32 (Local causality) The relation � ⊆ (O × O ) is given by:

e � e′ ⇔ e = e′ or ∃ e′′ s.t. ee′′ = e′

We know that � is a partial ordering. We call � local causality because it connects
occurrences within the same parallel component: e � e′ ⇒ loc(e) � loc(e′). Let e ≺ e′

stand for ( e � e′ & e 6= e′ ). For e ∈ O , we define ↓e = {e′ | e′ ≺ e} to be the set of local
causes of e. Then the causal path of e is the sequence of such causes:

Definition 2.33 (Causal path) For e ∈ O , path(e) =def e1 · · · · ·en, where {e1, . . . , en}
= ↓e and ei ≺ ei+1 , 1 ≤ i < n.

For instance, if e = 0a10b11c, then ↓e = {0a, 0a10b} and path(e) = (0a) · (0a10b). We call
e ∈ O an initial occurrence if ↓e = ∅ (equivalently path(e) = ε). An initial occurrence
has always the form e = loc(e) · λ(e). More generally, if η′ � η and η/η′ is the residual
of η after η′, defined by η/η′ = η′′ if η = η′η′′, we have the following characterisation for
visible occurrences:

Fact 2.34 An occurrence e ∈ O is completely determined by its label, location and causal
path. Namely, if λ(e) = a, loc(e) = η and path(e) = e1 · · · · ·en, n ≥ 1, the occurrence e
is given by e = (loc(e1) ·λ(e1)) ·(loc(e2)/loc(e1) ·λ(e2)) · · · · ·(η/loc(en) ·a). If path(e) = ε
then e = η · a.

Note that loc(e) may be seen as the static location of an occurrence e, while path(e) · λ(e)
represents its dynamic location. We define now the relation of concurrency on visible
occurrences:

Definition 2.35 (Concurrency) The relation ^ ⊆ (O × O ) is defined by:

e ^ e′ ⇔
{
either e = σ 0 e0 & e′ = σ 1 e′0

or e = σ 1 e0 & e′ = σ 0 e′0

where σ ∈ (Act ∪ {0, 1})∗, e0, e′0 ∈ O .
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Clearly, the relation ^ is symmetric and irreflexive, and e ^ e′ ⇔ loc(e) � loc(e′).
The occurrences e will be the labels of the occurrence transition system. Let us now

shift attention to the states of this transition system. As we said, these states are meant
to represent processes with a past. The past records the observable guards which have
been passed along a computation. Formally, the set S of computation states is given by:

ξ ::= nil | µ. p | p+ q | x | rec x. p | â. ξ | (ξ | ξ′) | ξ\α | ξ 〈f〉

where p, q ∈ CCS. The construct â. ξ is used to represent the state ξ with “past” a, that
is, after a guard a has been passed. The idea is that any transition labelled by a visible
occurrence will introduce a “hat” in the resulting state. The basic operational rule is:

(O1) a. p
a−→ â. p

On the other hand an invisible occurrence τ does not leave any trace in the past. This is
expressed by the rule:

(O1′) τ . p
τ−→ p

The hats recorded in states are used to build up “deep” occurrences along computations,
according to the rule:

(O2) ξ
e−→ ξ′ , e 6= τ ⇒ â. ξ

a e−−→ â. ξ′

Occurrences of the form i e, for i = 0, 1, originate from parallel terms ξ | ξ′:

(O3) ξ
e−→ ξ′ , e 6= τ ⇒ ξ | ξ′′ 0 e−→ ξ′ | ξ′′ , ξ′′ | ξ 1 e−→ ξ′′ | ξ′

For defining the whole occurrence system we need a few more notations. First, we extend
action relabellings f to occurrences by letting: f(a e) = f(a) f(e) and f(i e) = i f(e)
for i = 0, 1. Moreover, we shall use an auxiliary function for defining the communication
rule. In the occurrence system communication arises from concurrent occurrences with
complementary labels. However the resulting τ -occurrence should not contribute to the
past, since this only keeps track of observable actions. Thus we need to take back the hats
introduced by the synchronising occurrences. To this end we introduce a function δe(ξ),
which erases the hat corresponding to occurrence e in ξ (somewhat similar to the function
∆k(p) used in Section 2.4). The partial function δ : (O × S ) → S is given by:

δa(â. p) = p
δae(â. ξ) = â. δe(ξ)
δ0e(ξ | ξ′) = δe(ξ) | ξ′
δ1e(ξ | ξ′) = ξ | δe(ξ′)
δe(ξ\α) = δe(ξ)\α
δf(e)(ξ 〈f〉) = δe(ξ) 〈f〉

We have now all the elements to define the occurrence system for CCS. The rules specifying
this system are listed in Figure 3. Note that the condition λ(e) 6= {α, ᾱ} in rule (O6)
could be strenghtened to proj{α,ᾱ}(e) = ε, to prevent transitions like â . b. p

a b−→ â . b̂. p.
However this would make no difference for states ξ obtained via an occurrence computation
from a CCS term (more will be said on this point below). The weak occurrence system is
now given by:
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ξ
τ=⇒ ξ′ ⇔ ∃ ξ0, . . . , ξn , n ≥ 0 s.t. ξ = ξ0

τ−→ ξ1 · · ·
τ−→ ξn = ξ′

ξ
e=⇒ ξ′ ⇔ ∃ ξ1, ξ2 s.t. ξ

τ=⇒ ξ1
e−→ ξ2

τ=⇒ ξ′

Let us examine some properties of this weak occurrence system. It is clear that any term
ξ gives an intensional representation of a CCS computation state. In fact from each state
ξ one may extract the set of visible occurrences that have led to it. Obviously, this set
should be empty for a CCS term. Formally, the set of past occurrences of a term ξ is
defined by:

occ (p) = ∅, if p ∈ CCS
occ (â. ξ) = {a} ∪ a · occ (ξ)
occ (ξ | ξ′) = 0 · occ (ξ) ∪ 1 · occ (ξ′)
occ (ξ\α) = { e ∈ occ (ξ) | λ(e) 6= α, ᾱ }
occ (ξ 〈f〉) = f(occ (ξ))

For states ξ reachable from a CCS term, the clause for restriction reduces to occ (ξ\α) =
occ (ξ). In fact, one may easily verify that such states, what we shall call CCS computation
states, are exactly those ξ whose subterms ξ′\α satisfy α, ᾱ /∈ λ(occ (ξ′)). Moreover for
a CCS computation state ξ each relabelling f is injective on occ (ξ) (this justifies, for
instance, the last clause in the definition of the function δ above).

Remark 2.36 If δe(ξ) is defined, then occ (δe(ξ)) = occ (ξ)− {e}.

The next statements explain how visible occurrences are generated along computations,
and how they are related.

Lemma 2.37 Let ξ be a CCS computation state. Then:

1. ξ
e−→ ξ′, e 6= τ ⇒


(i) occ (ξ′) = occ (ξ) ∪ {e}
(ii) ∀e′ ∈ occ (ξ) : e′ ≺ e or e′ ^ e )

(iii) ↓e ⊆ occ (ξ)

2. ξ
τ−→ ξ′ ⇒ occ (ξ′) = occ (ξ)

Corollary 2.38 Let p ∈ CCS. If p e1=⇒ ξ1 · · · en=⇒ ξn , where ∀i : ei 6= τ , then:

1. ∀i : occ (ξi) = { e1, . . . , ei }

2. i < j ⇒ ei ≺ ej or ei ^ ej

The following proposition shows how local causality may be recovered from static locations
along a computation:

Proposition 2.39 Let p ∈ CCS. If p e1=⇒ ξ1 · · · en=⇒ ξn , where ∀i : ei 6= τ , then:

ei ≺ ej ⇐⇒ i < j and loc(ei) � loc(ej)
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Proof: ⇐: Since i < j, by Corollary 2.38 either ei ≺ ej or ei ^ ej . But it cannot be
ei ^ ej , since this would imply loc(ei) � loc(ej). Thus ei ≺ ej . ⇒: If ei ≺ ej , then it
cannot be j < i, because of Corollary 2.38 again. Moreover, since ei is a prefix of ej , also
loc(ei) is a prefix of loc(ej). 2

We proceed now to define a notion of bisimulation on the weak occurrence system.
Once again we use a notion of consistency and progressive bisimulation family.

Definition 2.40 A consistent occurrence aliasing is a partial injective function g : O →
O which satisfies, for any e, e′ on which it is defined:

(i) λ(e) = λ(g(e))

(ii) e′ ≺ e ⇔ g(e′) ≺ g(e)

Let G be the set of consistent occurrence aliasings on O .

Definition 2.41 A progressive o-bisimulation family is a G-indexed family of relations
over S, R = {Rg | g ∈ G} , such that if ξ0Rg ξ′0 then for all e ∈ O :

(1) ξ0
e=⇒ ξ1 ⇒ ∃ e′, ξ′1 s.t. ξ′0

e′=⇒ ξ′1, g ∪ {(e, e′)} ∈ G and ξ1Rg∪{(e,e′)} ξ
′
1

(2) ξ′0
e′=⇒ ξ′1 ⇒ ∃ e, ξ1 s.t. ξ0

e=⇒ ξ1, g ∪ {(e, e′)} ∈ G and ξ1Rg∪{(e,e′)} ξ
′
1

(3) ξ0
τ=⇒ ξ1 ⇒ ∃ ξ′1 ∈ S s.t. ξ′0

τ=⇒ ξ′1 and ξ1Rgξ
′
1

(4) ξ′0
τ=⇒ ξ′1 ⇒ ∃ ξ1 ∈ S s.t. ξ0

τ=⇒ ξ1 and ξ1Rgξ
′
1

These relations induce an equivalence ≈occ on CCS processes as follows:

Definition 2.42 (Equivalence on the occurrence system) For any p, q ∈ CCS, let
p ≈occ q iff pR∅q for some progressive o-bisimulation family R = {Rg | g ∈ G}.

The reader familiar with the notion of history preserving bisimulation (cf e.g. [73]) may
have noticed the similarity with our definition of ≈occ. In fact history preserving bisimu-
lation is itself a “progressive” notion, and it is clear that a consistent occurrence aliasing
g is nothing else than an isomorphism between two partially ordered sets of occurrences.
In Section 3.3 we give a formal definition of local history preserving bisimulation on the
occurrence system (so-called because the ordering is that of local causality), and show
that it is a direct reformulation of the equivalence ≈occ.

The preorder <∼
occ is obtained using the same definition, after weakening the notion

of consistency as follows:

Definition 2.43 A right-consistent occurrence aliasing is a partial injective function g :
O → O which satisfies, for any e, e′ on which it is defined:

(i) λ(e) = λ(g(e))

(ii) g(e′) ≺ g(e) ⇒ e′ ≺ e

The main result, presented in the next sections, is that the equivalence ≈occ coincides with
both ≈s` and ≈d` , and similarly that <∼

occ coincides with both <∼
s

`
and <∼

d

`
. The proofs

rely on the above properties of the occurrence system, and on proving conversion lemmas
between the different kinds of transitions. Most of these proofs will be omitted or only
outlined. The reader is referred to [37] for a full exposition.
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2.6.2 Occurrence semantics = static location semantics

We establish here the relationship between ≈occ and ≈s` . We saw in Section 2.4 that ≈s`
can be defined in terms of canonical distributions. We recall that these are distributions
always associating location 0 to the left operand and 1 to the right operand of a parallel
composition. Let CDIS denote the set of these canonical distributions, and η, ζ ∈ {0, 1}∗
range over canonical locations. With each state ξ, we associate a distributed process
dis(ξ) ∈ CDIS as follows:

dis(ξ) = ξ, if ξ = nil or ξ = x
dis(a. p) = a. dis(p)
dis(p+ q) = dis(p) + dis(q)
dis(rec x. p) = rec x. dis(p)
dis(â. ξ) = dis(ξ)
dis(ξ | ξ′) = 0 :: dis(ξ) | 1 :: dis(ξ′)
dis(ξ\α) = dis(ξ)\α
dis(ξ 〈f〉) = dis(ξ) 〈f〉

Thus dis(ξ) is the canonical distribution of the CCS term underlying ξ. We can now give
the conversion lemma between occurrence transitions and static location transitions:

Lemma 2.44 (Conversion : static ↔ occurrence) Let p, p′ ∈ CDIS and ξ, ξ′ ∈ S.
Then:

(i) ξ
τ=⇒ ξ′ ⇒ dis(ξ) τ=⇒s dis(ξ′)

(ii) p
τ=⇒s p

′ ⇒ ∀ξ s.t. dis(ξ) = p ∃ ξ′ s.t. ξ τ=⇒ ξ′ and dis(ξ′) = p′

(iii) ξ
e=⇒ ξ′ ⇒ dis(ξ) a

=⇒s
η

dis(ξ′), where a = λ(e) and η = loc(e)

(iv) p
a

=⇒s
η

p′ ⇒ ∀ξ s.t. dis(ξ) = p ∃ e, ξ′ s.t. λ(e) = a, loc(e) = η,

dis(ξ′) = p′ and ξ
e=⇒ ξ′

Using Lemma 2.44 and Proposition 2.39 we may now prove our equivalence result.

Theorem 2.45 For any p, q ∈ CCS : p ≈s` q ⇔ p ≈occ q.

Proof outline. ⇒: Suppose p ≈s` q, and let S = {Sϕ | ϕ ∈ Φ} be a progressive
bisimulation family such that dis(p)S∅ dis(q). Define a G-indexed family of relations
R = {Rg | g ∈ G} as follows:

(ξ, ξ′) ∈ Rg ⇐⇒ there exist occurrence transition sequences

p
τ=⇒ ξ0

e1=⇒ · · · en=⇒ ξn = ξ

q
τ=⇒ ξ′0

e′1=⇒ · · · e′n=⇒ ξ′n = ξ′

such that

(1) g = { (e1, e′1), . . . , (en, e
′
n) }

(2) dis(ξ) Sϕ dis(ξ′) , where ϕ = { (loc(e), loc(e′)) | (e, e′) ∈ g }
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Clearly (p, q) ∈ R∅. It may be shown that R is a progressive o-bisimulation family.

⇐: Suppose p ≈occ q, and let R = {Rg | g ∈ G} be a progressive o-bisimulation family
such that pR∅ q. Consider the family S = {Sϕ | ϕ ∈ Φ} of relations over CDIS given by:

(r, s) ∈ Sϕ ⇐⇒ there exist occurrence transition sequences

p
τ=⇒ ξ0

e1=⇒ · · · en=⇒ ξn = ξ

q
τ=⇒ ξ′0

e′1=⇒ · · · e′n=⇒ ξ′n = ξ′

such that

(1) dis(ξ) = r , dis(ξ′) = s

(2) ϕ = { ( loc(ei), loc(e′i) ) | 1 ≤ i ≤ n }
(3) ξ Rg ξ

′ for g = { (ei, e′i) | 1 ≤ i ≤ n }

It may be shown that S is a progressive bisimulation family. 2

Using a variation of this proof, a similar result can be established for the preorders:

Theorem 2.46 For any p, q ∈ CCS : p <∼
s

`
q ⇔ p <∼

occ
q.

This concludes the comparison between the static location semantics and the occurrence
transition semantics.

2.6.3 Occurrence semantics = dynamic location semantics

We turn now to the relation between ≈occ and ≈d` . To establish the coincidence of the
two equivalences, we will use a property of ≈d` which was first pointed out by Kiehn in [97],
namely that ≈d` only depends on computations where distinct atomic locations are chosen
at each step. We start by recalling some definitions and results from [28]:

Definition 2.47 A location renaming is a mapping ρ : Loc → Loc∗. For any p ∈ LCCS,
let p[ρ] denote the process obtained by replacing all occurrences of l in p with ρ(l), for
any l ∈ Loc.

We use the notation ρ{u/l} for the renaming which maps l to u and acts like ρ on Loc\{l}.
Also, we shall abbreviate p[id{u/l}] to p{u/l}. In what follows, we shall mainly consider
alphabetic renamings ρ : Loc→ Loc. Note that any partial function f : Loc→ Loc may
be seen as a location renaming ρ : Loc→ Loc, by letting:

ρ(l) =

{
l if f(l) is not defined
f(l) otherwise.

For instance the empty function ∅ corresponds to the identity renaming id. In the following
we shall freely use the renaming notation p[f ] whenever f is a partial function f : Loc→
Loc.

The following lemma relates the transitions of p[ρ] with those of p.
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Lemma 2.48 Let p ∈ LCCS. Then for any alphabetic location renaming ρ : Loc→ Loc:

1. a) p
τ−→ d
u

p′ ⇒ ∃v s.t. ρ(u) � v and p[ρ] τ−→ d
v

p′[ρ].

b) p
τ=⇒d p

′ ⇒ p[ρ] τ=⇒d p
′[ρ].

2. a) p[ρ] τ−→ d
v

p′ ⇒ ∃u, p′′ such that ρ(u) � v, p′′[ρ] = p′ and p
τ−→ d
v

p′′.

b) p[ρ] τ=⇒d p
′ ⇒ ∃ p′′ such that p′′[ρ] = p′ and p

τ=⇒d p
′′.

3. a) p
a−→ d
ul

p′ , l /∈ Loc(p) ⇒ ∀ k ∈ Loc , p[ρ]
a−→ d
vk

p′[ρ{k/l}], where v = ρ(u).

b) Same as a), with weak transitions.

4. a) p[ρ]
a−→ d
vl

p′ ⇒ ∃u such that ρ(u) = v and ∀ k /∈ Loc(p) ∃ p′′ such that

p′′[ρ{l/k}] = p′ and p
a−→ d
uk

p′′.

b) Same as a), with weak transitions.

We recall now Kiehn’s definition for ≈d` , and show that it is equivalent to the original one.

Notation 2.49 Let LCCS ν be the set of LCCS processes whose atomic locations are all
distinct.

Definition 2.50 (ν–dynamic location equivalence)

A relation R ⊆ (LCCS ν ×LCCS ν) is a ν–dynamic location bisimulation (ν–dlb) iff for all
(p, q) ∈ R and for all a ∈ Act , u ∈ Loc∗:

(1) p
a

=⇒d
ul

p′, l /∈ Loc(p) ∪ Loc(q) ⇒ ∃ q′ s.t. q
a

=⇒d
ul

q′ and (p′, q′) ∈ R

(2) q
a

=⇒d
ul

q′, l /∈ Loc(p) ∪ Loc(q) ⇒ ∃ p′ s.t. p
a

=⇒d
ul

p′ and (p′, q′) ∈ R

(3) p
τ=⇒d p

′ ⇒ ∃ q′ s.t. q τ=⇒d q
′ and (p′, q′) ∈ R

(4) q
τ=⇒d q

′ ⇒ ∃ p′ s.t. p τ=⇒d p
′ and (p′, q′) ∈ R

The largest ν–dlb is called ν–dynamic location equivalence and denoted ≈ν` .

Fact 2.51 For any processes p, q ∈ CCS: p ≈d` q ⇔ p ≈ν` q.

Proof outline: The ⇒ direction is trivial. For the ⇐ direction, Lemma 2.48 is used in
a straightforward way. 2

We proceed now to show that ≈occ = ≈ν` . To do this, we need to establish a conversion
between occurrence transitions and dynamic location transitions. We start by converting
terms ξ into LCCS terms which represent the same state of computation. The idea is to
replace every “hat” in ξ by a canonical atomic location representing uniquely the corre-
sponding occurrence. The simplest way to do this is to take the occurrences themselves as
canonical (dynamic) locations. We shall then assume, from now onwards, that O ⊆ Loc.
We also introduce, for any γ ∈ Act ∪ {0, 1}, a renaming ργ which prefixes by γ all the
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occurrences appearing as locations in p, namely ργ(e) = γe. Then the canonical LCCS
process proc(ξ) corresponding to a computation state ξ ∈ S is defined by:

proc(ξ) = ξ, if ξ ∈ CCS
proc(â. ξ) = a :: proc(ξ)[ρa]
proc(ξ | ξ′) = proc(ξ)[ρ0] | proc(ξ′)[ρ1]
proc(ξ\α) = proc(ξ)\α
proc(ξ 〈f〉) = proc(ξ)[f ] 〈f〉

Note that in the last clause the first f is a location renaming, while the second is an
action relabelling. We have for instance: proc(â. b̂.nil | c.nil) = 0a :: 0ab :: nil |
c.nil . Similarly, if f is the relabelling given by f(a) = a1, f(b) = b1, f(c) = c1, then
proc((â. b̂.nil | c.nil) 〈f〉) = (0a :: 0ab :: nil | c.nil)[f ] 〈f〉 = 0a1 :: 0a1b1 :: nil | c1.nil . It
can be easily checked that Loc(proc(ξ)) = occ (ξ) and proc(ξ) ∈ LCCS ν .

We give next the conversion lemma between occurrence transitions and dynamic loca-
tion transitions, followed by the coincidence result:

Lemma 2.52 (Conversion : dynamic ↔ occurrence) If ξ, ξ′ ∈ S, f : occ (ξ) → Loc,
then:

(i) ξ
τ=⇒ ξ′ ⇒ proc(ξ)[f ] τ=⇒d proc(ξ′)[f ]

(ii) proc(ξ)[f ] τ=⇒d p
′ ⇒ ∃ ξ′ s.t. proc(ξ′)[f ] = p′ and ξ

τ=⇒ ξ′

(iii) ξ
e=⇒ ξ′ ⇒ ∀l ∈ Loc : proc(ξ)[f ]

a
=⇒d
ul

proc(ξ′) [f{l/e}], where

a = λ(e) and u = f(path(e))

(iv) proc(ξ)[f ]
a

=⇒d
ul

p′ ⇒ ∃ e, ξ′ s.t. λ(e) = a, f(path(e)) = u, ξ
e=⇒ ξ′ and

proc(ξ′) [f{l/e}] = p′

Theorem 2.53 For any p, q ∈ CCS : p ≈occ q ⇔ p ≈d` q.

Proof: ⇒: Let p ≈occ q. Then there exists a G-indexed family of relations R = {Rg |
g ∈ G} such that pR∅q. Define a relation S on processes by:

(r, s) ∈ S ⇐⇒ there exist occurrence transition sequences

p
τ=⇒ ξ0

e1=⇒ · · · en=⇒ ξn = ξ

q
τ=⇒ ξ′0

e′1=⇒ · · · e′n=⇒ ξ′n = ξ′

and there exist two functions:

f1 : {e1, . . . , en} → Loc , f2 : {e′1, . . . , e′n} → Loc

such that

(1) ∀i ∈ {1, . . . , n} : f1(ei) = f2(e′i)

(2) proc(ξ) [f1] = r , proc(ξ′)[f2] = s

(3) ξ Rg ξ′ for g = { (e1, e′1), . . . , (en, e
′
n) }
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It may be shown that S is a dynamic location bisimulation.

⇐: to prove this direction, we use the alternative definition ≈ν` of dynamic location
equivalence. Suppose p ≈ν` q. Define a G-indexed family of relations R = {Rg | g ∈ G}
as follows:

(ξ, ξ′) ∈ Rg ⇐⇒ there exist occurrence transition sequences

p
τ=⇒ ξ0

e1=⇒ · · · en=⇒ ξn = ξ

q
τ=⇒ ξ′0

e′1=⇒ · · · e′n=⇒ ξ′n = ξ′

such that

(1) g = { (e1, e′1), . . . , (en, e
′
n) }

(2) ∃ injection f : {e′1, . . . e′n} → Loc such that :

proc(ξ) [f ◦ g] ≈ν` proc(ξ′)[f ]

Note that proc(ξ) [f ◦ g], proc(ξ′)[f ] ∈ LCCS ν , given that f and g are injections. Also,
it is easy to see that (p, q) ∈ R∅, since proc(p)[∅] = p and proc(q)[∅] = q (recall that
the partial function ∅ corresponds to the identity renaming id). It may be shown that
R = {Rg | g ∈ G} is a progressive o-bisimulation family. 2

We state now the analogous result for the preorders. To prove p <∼
d

`
q ⇒ p <∼

occ
q

one uses a preorder <∼
ν

`
(the obvious variant of ≈ν` ) in place of <∼

d

`
. The proof is an easy

adaptation of that for the equivalences.

Theorem 2.54 For any p, q ∈ CCS : p <∼
d

`
q ⇔ p <∼

occ
q.

This concludes our comparison between the dynamic location semantics and the oc-
currence transition semantics.

Putting together Theorems 2.45 and 2.53, we obtain Theorem 2.29 (1), stating the
coincidence of ≈s` and ≈d` . Similarly the coincidence of <∼

s

`
and <∼

d

`
, stated in Theo-

rem 2.29 (2), follows from Theorems 2.46 and 2.54.
In the light of these results, the location equivalence and preorder will be simply

denoted ≈` and <∼ `
in the following, unless an explicit reference to their specific definition

is required.
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For each e ∈ Oτ let e−→ ⊆ (S × S) be the least binary relation satisfying the following
axioms and rules.

(O1) a.p
a−→ â. p

(O1′) τ.p
τ−→ p

(O2) ξ
e−→ ξ′ , e 6= τ ⇒ â. ξ

a e−−→ â. ξ′

(O3) ξ
e−→ ξ′ , e 6= τ ⇒ ξ | ξ′′ 0 e−→ ξ′ | ξ′′

ξ′′ | ξ 1 e−→ ξ′′ | ξ′

(O2′) ξ
τ−→ ξ′ ⇒ â. ξ

τ−→ â. ξ′

(O3′) ξ
τ−→ ξ′ ⇒ ξ | ξ′′ τ−→ ξ′ | ξ′′

ξ′′ | ξ τ−→ ξ′′ | ξ′

(O4)
ξ0

e0−→ ξ′0 , ξ1
e1−→ ξ′1

and λ(e0) = λ(e1)

}
⇒ ξ0 | ξ1

τ−→ δe0(ξ
′
0) | δe1(ξ′1)

(O5) p
e−→ ξ ⇒ p+ q

e−→ ξ

q + p
e−→ ξ

(O6) ξ
e−→ ξ′ , λ(e) 6∈ {α, ᾱ} ⇒ ξ\α e−→ ξ′\α

(O7) ξ
e−→ ξ′ ⇒ ξ 〈f〉 f(e)−→ ξ′ 〈f〉

(O8) p [rec x. p/x] e−→ ξ ⇒ rec x. p
e−→ ξ

Figure 3: Occurrence transition system

45



3 Extensions and comparison with other approaches

We compare here the location semantics presented in the previous Section with other
noninterleaving semantics that have been proposed for CCS in the literature, all based on
variations of the notion of bisimulation. An extension of the location semantics to the π-
calculus is also presented in Section 3.4. This section is mainly addressed to readers with a
keen interest in understanding the various noninterleaving semantics for CCS. The reader
preferring to keep to the main exposition of location-based semantics may safely skip to
Section 4.3, which surveys more recent approaches to process algebras with localities.

To carry out our comparison we will rely on the local/global cause transition system of
Kiehn [97], which records both local and global causes of actions along computations. This
is a convenient formalism for our purpose, as it brings together the ideas of distributed
and causal semantics. Intuitively, distributed semantics deal with local causality, which
is induced by the structure of terms, while causal semantics are concerned with global
causality, which is determined by the flow of control of computations. We shall see in
fact that both the location semantics of [28] and the causal semantics of [49] can be
characterised as particular instantiations of the local/global cause-semantics.

As announced already in Section 2.2, distributed and causal semantics are in general
incomparable. However they coincide over the communication and restriction-free frag-
ment of CCS, a class of processes often referred to as BPP (Basic Parallel Processes). This
convergence result, first proved for finite processes in [97, 3], has been recently generalised
to recursive BPP processes by Kiehn [94]. For easy reference we recall here the syntax of
BPP:

p ::= nil | µ. p | (p | q) | (p+ q) | x | rec x. p

In BPP, communication is not allowed in parallel composition. The same language, where
communication is allowed, is referred to as CPP (Communicating Parallel Processes). We
will use BPPf (resp. CPPf ) to denote the finite fragment of BPP (resp. CPP).

We start by introducing the local/global cause transition system, which will serve as
our reference model in this section.

3.1 The local/global cause semantics

We present here the local/global cause (lgc) transition system, which was proposed by
Kiehn in [97] (and further studied in [94]) as a unifying framework for studying distributed
and causal semantics. This transition system also provides a new, stronger semantics
arising from the joint observation of local and global causality.

The lgc–semantics is defined on an extended syntax, which we call here LGCCS. This
includes, besides the operators of CCS, a construct of cause prefixing <Λ,Γ> :: p, where
Λ and Γ represent the sets of local causes, respectively global causes, of the process p. Intu-
itively, these causes have been generated along the computation leading to state p. Local
causes correspond to actions wich precede p via the standard prefixing operator, while
global causes may also be inherited from another component by means of a communica-
tion. Thus Λ ⊆ Γ. A CCS process p is identified with the extended process <∅, ∅> :: p.
Formally, Λ and Γ are sets of pairs of the form (a, i), where a is a visible action in Act and
i ∈ IN . For simplicity, a pair (a, i) is rendered as ai (this will imply ai 6= aj for all i 6= j).
We let K = {ai | a ∈ Act , i ∈ IN} be the set of all causes. By construction K ∩ Act = ∅.
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We extend the complementation function to causes by setting (a, i) = (ā, i). We also use
KL(p), resp. KG(p), to denote the set of causes occurring in some Λ, resp. Γ, inside p.
Finally, we let K(p) = KL(p) ∪ KG(p) denote the set of all causes occurring in p.

Note the formal similarity between cause prefixing <Λ,Γ> :: p and location prefixing
l :: p. In fact the semantics will operate much in the same way as the location semantics,
exhibiting the causes of actions in transitions. These transitions have the general form
p
ai, <Λ,Γ>−−−−→ p′, representing an occurrence of action a with set of local causes Λ and set of

global causes Γ. The most notable difference with the (dynamic) location semantics is in
the rule for communication, which propagates the global causes of each communicating
process to the other partner. Again, causes are only assigned to visible actions. Thus
τ -transitions have the form p

τ−→ p′ and are inferred using the standard rules of CCS.
Formally the semantics is given by the rules in Figure 4. We write p obs−−→ p′ when

the actual label of the transition is not important. In the communication rule (LG4) the
notation {Γq/ai} is used to indicate the cause replacement of ai by Γq in p′: this is the
process obtained by removing ai from all local cause sets occurring in p′ and replacing ai
by the elements of Γq in all the global cause sets in p′.

Based on these transitions, one has the following notion of lgc-bisimulation:

Definition 3.1 (Local/global cause bisimulation) A relation R ⊆ LGCCS×LGCCS
is a local/global cause bisimulation (lgc-bisimulation) iff for all (p, q) ∈ R and for each
label obs ∈ {τ} ∪ (K × 2K × 2K):

(1) p
obs−−→ p′ ⇒ ∃ q′ such that q obs−−→ q′ and (p′, q′) ∈ R

(2) q
obs−−→ q′ ⇒ ∃ p′ such that p obs−−→ p′ and (p′, q′) ∈ R

The largest lgc-bisimulation is called local/global cause (bisimulation) equivalence and
denoted ∼`gc.

Local/global cause equivalence requires the equality of both local and global causes
in matching transitions. If this condition is relaxed by allowing obs = ai, <Λ,Γ> to be
matched by another label obs′ = ai, < Λ,Γ′ >, one obtains a weaker equivalence notion
called local cause equivalence and denoted by ∼`c. Similarly, if obs = ai, < Λ,Γ > is
allowed to be matched by obs′ = ai, < Λ′,Γ >, one obtains a weaker equivalence called
global cause equivalence and written ∼gc. In [97] a parametric definition is given in place
of Definition 3.1, where labels obs are filtered through an observation function. Then the
three equivalences ∼`gc, ∼`c and ∼gc, as well as the ordinary bisimulation equivalence
∼, can be obtained as special instances of this parametric definition. In fact, the easiest
way to look upon lc-equivalence and gc-equivalence is to regard them as the bisimulations
associated with the reduced lgc-transition system where cause prefixing < Λ,Γ > :: p
is replaced by Λ :: p and Γ :: p respectively (and the operational rules are simplified
accordingly). We shall call these reduced transition systems the lc-transition system and
gc-transition system.

The weak lgc-transitions are derived from the strong transitions in the standard way,
and induce notions of weak lgc-equivalence, weak lc-equivalence, and weak gc-equivalence,
denoted respectively ≈`gc, ≈`c and ≈gc.

We recall from [97] the main results concerning these equivalences. The first is a simple
consequence of the definitions.
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(LG1) a. p
ai, <∅,∅>−−−−−→ <{ai}, {ai}> :: p ai 6∈ K(p)

(LG2) p
ai, <Λ′,Γ′>−−−−−→ p′ ⇒ <Λ,Γ> :: p

ai, <Λ∪Λ′,Γ∪Γ′>−−−−−−−−−→ <Λ,Γ> :: p′

(LG3) p
ai, <Λ,Γ>−−−−−→ p′, ai 6∈ K(q) ⇒ p | q ai, <Λ,Γ>−−−−−→ p′ | q

q | p ai, <Λ,Γ>−−−−−→ q | p′

(LG4)

p
ai, <Λp,Γp>−−−−−→ p′, q

āj , <Λq ,Γq>−−−−−→ q′

ai 6∈ K(q), āj 6∈ K(p),

KL(p) ∩ KL(q) = ∅

 ⇒ p | q τ−→ p′{Γq/ai} | q′{Γp/āj}

(LG5) p
obs−−→ p′ ⇒ p+ q

obs−−→ p′

q + p
obs−−→ p′

(LG6)
p

ai, <Λq ,Γq>−−−−−→ p′

a 6∈ {α, ᾱ} , Γq ∩ {α, ᾱ} = ∅

 ⇒ p\α ai, <Λq ,Γq>−−−−−→ p′\α

(LG7)
p

ai, <Λq ,Γq>−−−−−→ p′

f(a)j 6∈ K(p 〈f〉)

 ⇒ p 〈f〉
f(a)j , <f(Λq),f(Γq)>
−−−−−−−−−−−→ p′ 〈f〉

(LG8) p[rec x. p/x] obs−−→ p′ ⇒ rec x. p
obs−−→ p′

Figure 4: Local/global cause transitions

Transitions p τ−→ p′ are inferred from (LG4) for communication, from the standard rules
of CCS for the remaining operators, and from the following rule for cause prefixing:

(LG9) p
τ−→ p′ ⇒ <Λ,Γ> :: p τ−→ <Λ,Γ> :: p′

Figure 5: Rules for τ -transitions
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Proposition 3.2 Let p, q ∈ LGCCS. If p ≈`gc q then p ≈`c q and p ≈gc q.

The reverse of this proposition is not true. The following example, taken from [97],
shows that ≈`gc is strictly finer than the intersection of ≈`c and ≈gc.

Example 3.3 For the following processes p and q, we have p ≈`c q and p ≈gc q but not
p ≈`gc q:

p = a | b. c + (a. γ | γ̄. b. δ | δ̄. c)\γ, δ
q = p + (a. γ | γ̄. b. c)\γ, δ

In [97] it is also shown that local cause equivalence and global cause equivalence are
incomparable, even on the simple sublanguage without restriction:

Proposition 3.4 Let p, q ∈ LGCCS. Then p ≈`c q 6⇒ p ≈gc q, and p ≈gc q 6⇒ p ≈`c q.

The proof is given by the example:

Example 3.5

(a. γ | γ̄. b) + a. b
6≈`c
≈gc

(a. γ | γ̄. b)

(a. γ | γ̄. b) + (b. γ | γ̄. a) + a | b ≈`c
6≈gc

(a. γ | γ̄. b) + (b. γ | γ̄. a)

On the other hand, the two equivalences coincide when no communication is allowed.
This is expected since the only rule that differentiates the lc-transition system and the
gc-transition system is the rule for communication.

Proposition 3.6 Let p, q ∈ BPP. Then p ≈`c q ⇔ p ≈gc q.

In fact this coincidence already holds for the strong equivalences ∼`c and ∼gc. The main
results of [97] are the characterisations of location equivalence ≈` and causal bisimulation
≈c [49] for CCS processes, respectively as the local cause equivalence ≈`c and the global
cause equivalence ≈gc. We simply state here these results, referring to Kiehn’s paper for
the proofs.

Proposition 3.7 (Characterisation of location equivalence) Let p, q ∈ CCS.
Then p ≈` q ⇔ p ≈`c q.

Proposition 3.8 (Characterisation of causal bisimulation) Let p, q ∈ CCS. Then
p ≈c q ⇔ p ≈gc q.

A couple of comments may be helpful here. As regards Proposition 3.7, we noted already
the similarity between the lc-semantics and the location semantics. This becomes even
more evident if we consider the lc-transition system to be given by the rules of Figure 4
where < Λ,Γ > :: p is replaced by just Λ :: p. There remain some differences though:
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in the location transition system locations are not required to be new at each step25;
moreover, local causes (locations) are recorded together with their occurrence ordering,
while in the lc-transition system they are just collected into a set. In fact for general
LGCCS processes location equivalence is finer than lc-equivalence. For instance, using
l :: p as an abbreviation for < {l}, ∅ > :: p , the two processes l :: k :: a and k :: l :: a
are local cause equivalent but not location equivalent. Indeed, the fact that ≈` = ≈`c
for CCS processes does not mean that the occurrence ordering of causes is immaterial
here, but rather that for cause-free processes this ordering is already accounted for by the
bisimulation relations.

The relationships between the gc-transition system and the causal transition system
of [49, 50] will be discussed in Section 3.3, where causal bisimulation is reviewed.

3.2 Comparison with other distributed semantics

We examine here how location equivalence relates to an earlier version introduced in [27],
called loose location equivalence. We also compare it with distributed bisimulation ([38],
[36], [95, 47]), the first distribution based equivalence proposed in the literature, and with
the local mixed-ordering equivalence of [167, 114].

We shall arrive at the following picture for distribution based equivalences: for fi-
nite restriction–free processes of CPPf they all coincide; on the whole language CCS,
distributed bisimulation equivalence and loose location equivalence are incomparable, and
both are weaker than location equivalence and local mixed-ordering equivalence, which
coincide.

3.2.1 Loose location equivalence

We start by comparing the dynamic location equivalence ≈d` with its earlier formulation
given in [27]. While the definition of the two equivalences is formally the same, the
underlying location transition systems are slightly different. Transitions in [27] are more
general in that the location allocated at each step is a word u ∈ Loc∗ instead of an atomic
location l ∈ Loc. To avoid confusion the transitions of [27] will be called loose location
transitions, and denoted

a−;
u

. For the loose transition system the rule (D1) of Figure 2 is
replaced by

(LD1) a.p
a−;
u

u :: p u ∈ Loc∗

The rules concerning the other process constructors, the τ -transitions and weak transitions
are the same as for the dynamic location transition system of Section 2.5. We denote the
weak loose transitions by p

a−;−;
u

p′. The location equivalence based on these transitions
is called loose location equivalence and denoted '``.

Although the difference between (D1) and (LD1) may seem quite inoffensive (and
indeed it was thought to be so when the formulation in [27] was chosen), it turns out that
the loose transition system gives more freedom for relating process behaviours. While for

25We have seen already in Section 2.6 that the location equivalence and preorder for CCS processes do
not change if new locations are created at each step. Indeed, this was established by Kiehn in [97] precisely
for the purpose of comparing location equivalence with lc-equivalence.
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the location equivalence ≈`, based on atomic allocation, we implicitly require the equality
of the last allocated locations, this is not true for loose location equivalence. The latter
can introduce more than one atomic location in one step and thus is able to fill up “missing
locations”. The following example (due to Rob Van Glabbeek) shows that loose location
equivalence '`` can equate processes which are distinguished by location equivalence ≈`.
Let p and q represent respectively the processes (l :: α | ᾱ. b)\α and (l :: (α + b) | ᾱ. b)\α.
Then the move of q

(l :: (α+ b) | ᾱ. b)\α b−→
lk

(l :: k :: nil | ᾱ. b)\α

which is also a loose move, can only be matched by a loose move of p, introducing the
location lk in one step:

(l ::α | ᾱ. b)\α
b−;−;
lk

(l :: nil | lk :: nil)\α

Indeed we have p ≈`` q but p 6≈` q. This also implies that the CCS terms (a. α | ᾱ. b)\α
and (a. (α+ b) | ᾱ. b)\α are loosely location equivalent but not location equivalent. Now,
intuitively it is not desirable to equate these processes, since in the first process action b
is not locally dependent upon action a .

From this example we see that the two location equivalences are different for CCS
terms. However the property of filling up “missing locations” only comes into play when
processes containing the restriction operator are considered. It can be shown, in fact, that
for finite restriction-free processes the two equivalences coincide [28]:

Proposition 3.9 Let p, q ∈ CPPf . Then p '`` q ⇔ p ≈` q.

On the full language, on the other hand, location equivalence is finer than loose location
equivalence.

Proposition 3.10 Let p, q ∈ CCS. Then p ≈` q ⇒ p '`` q.

In conclusion, ≈` is stronger than '`` and captures more precisely the intuition about
local dependencies. This explains why in [28] the first formulation of location equivalence
'`` was abandoned in favour of ≈`. The interested reader is referred to this paper for
more details on these results.

3.2.2 Distributed bisimulation

We now turn to the relationship between ≈` and distributed bisimulation. Distributed
bisimulation was the first attempt to define a semantics for CCS taking the distributed
nature of processes into account. It was introduced by Castellani and Hennessy in [36, 38]
and further studied by Kiehn in [95, 94] and by Corradini and De Nicola in [47].

The basic idea is similar to that of location equivalence. The capabilities of observers
are increased so that they can observe actions together with the location where they are
performed. However, locations are not explicitly introduced here; instead, there are mul-
tiple observers which can move from one location to another as the computation proceeds.
When observing an action, the current observer moves to its location and appoints a new
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observer for the remainder of the process. Thus the number of observers increases by one
each time a visible action is performed. In this way locations are observed much in the
same way as in the dynamic approach, but without assigning names to them.

We use here the original definition of distributed bisimulation, as given in [36] for the
subset CPPf of CCS. This is based on a distributed transition system where transitions
give rise to a pair of residuals, a local residual and a concurrent residual (or remote resid-
ual). Intuitively, the first represents what locally follows the action, while the second is
the part of the process which is concurrent with the action26. We shall give here a slightly
different presentation of the operational semantics of [36], which is taken from [95].

We will distinguish the local residual by including it in brackets [ ], as for instance in
(a.nil | [b.nil]) | c.b̄.nil . The syntax for “processes with a local component” is given by
the following grammar, where p stands for any CPPf -term,

P ::= [p] | (P | p) | (p | P )

Let P[ ] denote this language. We use C[p],D[q], . . . to range over P[ ]. In C[p],
p is the local process and C is its context. For example in (a.nil | [b.nil]) | c.b̄.nil the
local process is p = b.nil and the context is C = (a.nil | . ) | c.b̄.nil . We also use the
notation C(p) to represent the CCS process obtained by simply embedding p in C without
the [ ]–brackets. Processes in P[ ] are used to exhibit the location associated with the
last visible action. Visible transitions have the form p

a→d C[p′]. The observer who sees
action a moves to its location, and from then onwards only observes the local component
p′. The newly appointed observer takes care of the remote component C(nil).

The rules for (strong) distributed transitions are given in Figure 6. These rules apply
only to restriction–free terms.

For each a ∈ Act let a→d ⊆ (CPPf × P[ ]) be the least binary relation satisfying the
following axiom and rules.

(D1) a.p
a→d [p]

(D2) p
a→d C[p′] implies p+ q

a→d C[p′]
q + p

a→d C[p′]

(D3) p
a→d C[p′] implies p | q a→d C[p′] | q

q | p a→d q | C[p′]

Figure 6: Distributed Transitions

Weak transitions are derived by the rule

(WD) p
ε⇒ p1

a→d C[p′]
ε⇒ D[p′′] implies p

a⇒d D[p′′]
26An alternative formulation in terms of local and global residuals was proposed in [38].
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where transitions C[p′] ε⇒ D[p′′] are defined in the usual way from the transitions τ−→,
which in turn are based on the relations

µ→ given by the standard operational rules of
CCS together with the rule:

(D4)) p
µ→ p′ implies [p]

µ→ [p′]

For example we can derive

(a | ā.b) | c.b̄ ā→d (a | [b]) | c.b̄
(a | ā.b) | c.b̄ c⇒d (nil | nil) | [nil]

The main difference between the location and the distributed semantics does not lie in
the underlying transition systems but in the way the equivalences work; in the first case
observing a location results in assigning a name to it, while in the latter it results in
splitting the process into a local part and a remote part. Note however that in the
distributed case we have at each step only two “locations”, while in the location semantics
the number of locations appearing in a computation state is unbounded.

Definition 3.11 (Distributed Bisimulation Equivalence)
A symmetric relation R ⊆ CPPf ×CPPf is called a distributed bisimulation iff R ⊆ D(R)
where (p, q) ∈ D(R) iff

(1) p
ε⇒ p′ implies q

ε⇒ q′ for some q′ ∈ CPPf such that (p′, q′) ∈ R

(2) p
a⇒d C[p′] implies q

a⇒d D[q′] for some D[q′] ∈ P[ ] such that
(p′, q′) ∈ R and ( C(nil) , D(nil) ) ∈ R

Two distributed processes p and q are said to be distributed bisimulation equivalent, p ≈d
q, if there is a distributed bisimulation R such that (p, q) ∈ R.

As an example of non–equivalent processes consider a | b and a.b+ b.a. If a.b+ b.a
a⇒d

[b] then a | b can match this move only with a | b a⇒d [nil] | b. So we have to compare the
local subprocesses, b and nil , and the remaining ones, i.e. C(nil) = nil and D(nil) = nil | b.
Obviously in both cases the equivalence does not hold. On the other hand we have

p = (a | ā.b) | c.b̄+ c.b̄ | b ≈d (a | ā.b) | c.b̄ = q

For example the transition p c⇒d [b̄] | b can be matched q c⇒d nil | b | [b̄]; it is obvious that
the processes at the current locations are equivalent and so are the remaining processes
nil | b and nil | b | nil .

We next state the coincidence of ≈` and ≈d on CPPf . The main difference between
these two equivalences resides in the fact that distributed bisimulation acts separately on
the two residuals of a transition. The crux of the proof is a decomposition property for
location equivalence, which allows located terms themselves to be split. This property
says that if u :: p | q ≈` u :: r | s then p ≈` r and q ≈` s. A proof of this property, as well
as of the following coincidence result, may be found in [27].
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Proposition 3.12 Let p, q ∈ CPPf . Then p ≈d q ⇔ p ≈` q.

A consequence of this proposition is that results available for distributed bisimulation
can be reused for location equivalence. For instance, from [36, 38] one gains a complete
axiomatization for location equivalence on CPPf , which is significantly different from that
given in [28].

In [95] the definition of distributed bisimulation was generalised by Kiehn to all finite
CCS processes. We will not give the definition of this generalised distributed bisimulation
here, but simply mention that this equivalence is weaker than ≈`. This is shown by a
rather involved example in [95], which we therefore do not report here.

Intuitively the difference between the two equivalences is that distributed bisimulation
may “forget” locations which have been observed in previous (not immediately preced-
ing) states. Hence, a transition of some component of one process can be matched by a
transition of a component of the other process which originally was “at a different loca-
tion”. This shows that location equivalence is a better choice than generalized distributed
bisimulation when looking for an extension of distributed bisimulation to general CCS
processes.

A further proposal for generalising distributed bisimulation to full CCS was presented
by Corradini and De Nicola in [47]. Here distributed bisimulation is reformulated within
the grape semantics of Degano, De Nicola and Montanari, allowing for a more symmetric
treatment of the local and global residuals with respect to [95]. The resulting equivalence
is finer than Kiehn’s one, but still fails to recover the full power of location equivalence.
An example is provided to show that the grape distributed bisimulation is coarser than
location equivalence. Indeed, as observed by Kiehn in [94], this example illustrates quite
clearly that using a pair of locations (which is essentially what distributed bisimulation
does) is not enough to capture location equivalence. It is also argued by Kiehn that by
suitably generalising this example, one could show that no finite number of locations would
be enough to capture location equivalence.

Since Kiehn’s example from [95] may also be used to show that generalised distributed
bisimulation is weaker than loose location equivalence, which in turn is weaker than lo-
cation equivalence, the relationships among these three equivalences can be sumarised as
follows: for finite and restriction–free processes of CPPf they all coincide; on the whole
language CCS, distributed bisimulation equivalence and loose location equivalence are
incomparable, while location equivalence is finer than both of them.

3.2.3 Local mixed ordering equivalence

A notion of bisimulation based on canonical static locations27, for a class of asynchronous
transition systems modelling a subset of CCS with guarded sums, was proposed by Mukund
and Nielsen in [115]. The resulting equivalence notion is essentially the same as the static
location equivalence reviewed in Section 2.4. Indeed, this notion was conjectured in [115]
to coincide with the dynamic location equivalence ≈d` , a result which was to be subsumed
by those of [37].

Another transition system labelled with canonical static locations, called spatial tran-
sition system, was defined by Montanari and Yankelevich for the whole language CCS

27That is, words over {0, 1}, see the definition at page 25.
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in [167, 114]. Here location transitions are used as a first step to build a second transition
system, labelled by mixed partial orders (where the ordering is a combination of temporal
ordering and local causality), which is then used to define the behavioural equivalence.
This equivalence, a variant of the mixed-ordering equivalence of [53] called local mixed-
ordering equivalence, was shown to coincide with location equivalence, applying techniques
similar to those used in Section 2.6. In [167, 114], the authors also consider the equivalence
obtained by ignoring the temporal ordering and retaining only the local causality order-
ing: this equivalence, which they call abstract location equivalence and provide with some
intuitive justification, does not seem to coincide with any other known notion. The local
mixed-ordering equivalence is obtained in [114] as an instance of a parametric approach; it
thus inherits some general results of this approach, such as a complete axiomatisation [64].

We shall not elaborate further on the notions of [115] and [114] here, and refer the
reader to these papers for further details. Let us only note that in both cases, since
canonical locations can be extracted from the syntax of terms, there is no need to extend
the language with a location prefixing construct. A disadvantage of such implicit locations,
on the other hand, could be the difficulty of adapting the semantics to allow the placing
of several parallel components in the same location (see discussion at page 31).

Another reformulation of the location semantics of [28] was given by Corradini and
De Nicola [47], within the grape semantics of [54]. The resulting equivalence is called
maximal distribution equivalence and shown to coincide with location equivalence. In
fact, their formulation is conceptually very close to the original one, once it is observed
that sequential components themselves (grapes in that approach) can be used to represent
localities.

3.3 Comparison with causal semantics

We compare here the location semantics, which is designed to reflect distribution in space,
with a number of semantics aimed at reflecting global causality. This notion of causality
covers both the local causality determined by the structure of terms, and the inherited
causality induced by the flow of control among different components, which may vary ac-
cording to the computations. Semantics which are based on such notion of global causality
will be collectively referred to as causal semantics.

We shall see that, in general, equivalence notions based on causal semantics, such as
pomset bisimulation and causal bisimulation, are incomparable with equivalences based
on distribution. This is already apparent from the characterisations given by Kiehn [97],
reviewed in the previous section. On the other hand, on the sublanguage BPP all these
equivalences reduce to the same one, apart from pomset bisimulation which is less dis-
criminating than the others.

3.3.1 Pomset bisimulation

We relate here the location equivalence ≈` and preorder <∼ `
with similar notions associ-

ated with pomset semantics. This semantics, where transitions are labelled with partially
ordered multisets (pomsets) of actions, was studied in [22, 23] for a subset of CCS with-
out communication and restriction, essentially the class BPP (in fact, a variation of BPP
with full sequential composition in place of action prefixing), and extended to the whole
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language in [24]. The partial ordering semantics proposed by Degano, De Nicola and
Montanari in [57, 58, 52] were also designed to generate pomset transitions for CCS.

On the language BPP, the pomset semantics can be defined directly by means of
structural rules. We give here the rules for finite processes:

(P1) a. p
a−→ p

(P2) p
u−→ p′ ⇒ a. p

a. u−−→ p′

(P3) p
u−→ p′ ⇒ p+ q

u−→ p′

q + p
u−→ p′

(P4) p
u−→ p′ ⇒ p | q u−→ p′ | q

q | p u−→ q | p′

(P5) p
u−→ p′ , q

v−→ q′ ⇒ p | q u | v−−→ p′ | q′

Figure 7: Pomset transitions

Note how rules (P2) and (P5) are used to build pomsets u, v of actions on top of transitions.
As an operation on pomsets, prefixing a. u is interpreted as generating causality between
a and the actions of u, and parallel composition u | v as generating concurrency between
the actions of u and the actions of v.

The pomset bisimulation on BPP, noted ∼pom, is just the ordinary bisimulation equiv-
alence associated with this transition system [22]. Weak transitions can then be defined
by restricting to visible actions the pomsets labelling the strong transitions. The corre-
sponding weak pomset bisimulation is written ≈pom.

We have seen in the previous section that on BPP location equivalence coincides with
distributed bisimulation, which in turn was known from [36] to be finer than pomset bisim-
ulation on this language. The following is an example of processes which are distinguished
by location (and distributed) bisimulation but equated by pomset bisimulation.

Example 3.13

p = a. (b + c) + (a | b)
6≈`
≈pom

a. (b + c) + (a | b) + (a. b) = q

These two processes are pomset bisimilar because the behaviour of the additional summand
of q can be simulated by p: the transition q a−→ b can be matched by the summand (a | b)
of p, while the transition q a. b−→ nil is matched by the first summand of p.

Using the result of [36], the situation can be summarised as follows.
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Proposition 3.14 Let p, q ∈ BPP . Then p ≈` q ⇒ p ≈pom q but p ≈pom q 6⇒ p ≈` q.

Intuitively, location and distributed bisimulation are stronger than pomset bisimulation on
BPP because they also capture the property that matching computations should always
be extensions of smaller matching computations.

As soon as communication and restriction are introduced in the language, location
equivalence becomes incomparable with pomset bisimulation. We have for instance:

Example 3.15

p = (a. α+ b. β | ᾱ. b+ β̄. a)
≈`
6≈pom

(a. α+ b. β | ᾱ. b+ β̄. a) + (a | b) = q

Similar examples were given in Section 3.2 to differentiate local cause equivalence from
global cause equivalence (Example 3.5). These examples also hold for pomset bisimulation,
replacing ≈gc with ≈pom. For general CCS processes we thus have the following.

Proposition 3.16 Let p, q ∈ CCS. Then p ≈` q 6⇒ p ≈pom q and p ≈pom q 6⇒ p ≈` q.

Let us now turn to the preorder relations. To our knowledge the first definition of a
preorder expressing the idea that one process is more sequential than another was pro-
posed by Aceto in [1] for a subset of CCS. This preorder is based on the pomset transition
semantics: one process is more sequential than another, in notation p <∼ pom

q, when the
pomsets labelling the transitions of p are more sequential than those labelling the transi-
tions of q (this “more sequential than” ordering on pomsets had already been introduced
by Grabowski [85] and Gischer [71]). Thus the intuition underlying Aceto’s preorder is
different from that of the location preorder <∼ `

, in the same way as pomset bisimulation
is different from location equivalence.

Indeed, for the preorders we have a similar situation as for the equivalences: the
causality-based preorder <∼ pom

and the distribution-based preorder <∼ `
are already dif-

ferentiated on BPP. The following example, suggested by Aceto and already reported
in [28], shows that <∼ pom

6⊆ <∼ `
. Let:

p = a. b. c + c. a. b + (a | b | c)
q = p + a. b | c

Then p <∼ pom
q but p 6<∼ `

q (while we have both q <∼ pom
p and q <∼ `

p). To see why

p 6<∼ `
q consider the move q

a−→
l
l :: b | c, due to the summand a. b | c of q. Now p has

two ways to match this transition, namely p
a−→
l
l :: b. c and p

a−→
l
l :: nil | b | c, but

neither of them is appropriate. Another example showing that p <∼ pom
q 6⇒ p <∼ `

q is
Example 3.13.

On BPP, it would be plausible that p <∼ `
q implies p <∼ pom

q (although this has
not been shown, to our knowledge). On full CCS, the two preorders <∼ pom

and <∼ `
are

incomparable. Example 3.15 can be reused here. For the two processes p and q of this
example we have q <∼ `

p but q 6<∼ pom
p. In conclusion we have:
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Proposition 3.17 Let p, q ∈ CCS. Then p <∼ `
q 6⇒ p <∼ pom

q and p <∼ pom
q 6⇒

p <∼ `
q.

3.3.2 Causal bisimulation

The causal bisimulation semantics was introduced by Darondeau and Degano in [49], and
further investigated in relation to action refinement in [51]. The causal transition system
is again defined on an extended language. The new construct here has the form K ⇒ p,
representing process p with set of (global) causes K. The set K is the exact analogue of
the global cause set Γ in the lgc-transition system, which in fact was specifically designed
to encompass both the causal and the location transition systems.

As stated already in section 3.2, causal bisimulation coincides with the global cause
equivalence of Kiehn. Although the language is essentially the same as that considered by
Kiehn, the transition systems present a number of differences.

The first difference is that causes are introduced here in the form of backward pointers
in a computation. A term K ⇒ p represents a CCS process in some computation state,
where it has “accumulated” the causes K. A process in its initial state has the form ∅ ⇒ p.
In K ⇒ p the set K consists of numbers n,m, . . . representing the positions of the causes of
p (as backward displacements along the computation). This backward referencing requires
an updating of pointers at each step, which is not needed in the gc-transition system.

Assuming, for the sake of comparison, that backward pointers are replaced by uniquely
named causes, as in Kiehn’s system, there remain a couple of differences between the two
semantics. In the causal transition system the new cause introduced for an action does
not appear in the label of the transition, but only in the resulting state. Instead of rules
(LG1), (LG2), we have the following rule

(C1) K ⇒ a. p
a,K−−−→ K ∪ {ai} ⇒ p, ai 6∈ K

Finally, the rule for communication resorts here to an auxiliary transition system, whose
transitions have the form

p
a,K,K′

−−−−−→ p′

Intuitively, the set K ′ represents new causes which may be inherited from another compo-
nent via a communication. These new causes are “guessed” by a kind of early instantiation
scheme through the rule:

(CC1) K ⇒ a. p
a,K,K′

−−−−−→ K ∪K ′ ⇒ p

Note that no new cause is created here to represent the action a in the rest of the compu-

tation. This is because the transitions p
a,K,K′

−−−−−→ p′ are only introduced in order to be
used in the communication rule:

(C2) p
a,K,K′

−−−−−→ p′, q
a,K′,K−−−−−→ q′ imply p | q τ−→ p′ | q′

The remaining rules are essentially the same as in the global cause transition system.
Because of these few differences in formulation, the coincidence of ∼gc and ≈c is not

completely straightforward, although intuitively expected. This coincidence allows us to
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merge results obtained for the two equivalences. For instance, the examples given in
Section 3.2 to differentiate local and global cause equivalence may be applied to location
and causal bisimulation. A similar example is the following. Let r = (a. α+b. β | ᾱ. b+β̄. a).
Then

r + (a | b) ≈` r 6≈` r + a. b
6≈c ≈c

Note also that
(a | b) ≈` (r\α, β) ≈c a. b+ b. a

These absorption phenomena, resp. of (a | b) in r w.r.t. ≈` , and of a. b in r w.r.t. ≈c ,
clearly show the difference between the two equivalences: the former equates processes
with the same parallel structure, while the latter equates processes with the same causal
structure. Another interesting example, involving the restriction operator, is the following

p = (a. α. c | b. ᾱ. d)\α
≈c
6≈`

(a. α. d | b. ᾱ. c)\α = q

Here p ≈c q since in both processes actions c and d causally depend on a and b. On the
other hand p 6≈` q since in p action d is not spatially dependent upon action a. One can see
that in a distributed view, the “cross-causalities” induced by communication are observed
as purely temporal dependencies, while in the causal approach they are assimilated to
local causalities.

Let us now revisit the mutual exclusion and protocol examples from Section 2. It is easy
to see that Mutex ≈c MSpec ≈c FMutex, because the synchronizations on p, v in Mutex
and FMutex create cross-causalities between the critical regions of the two competing
processes. The same holds for the protocol example, for which we have PSpec ≈c Protocol.

Causal bisimulation has been shown to coincide with history preserving bisimulation
and with an instance of “NMS equivalence” in [76]. The coincidence of causal and dis-
tributed bisimulations in absence of communication (on BPPf ) was also shown in [4].
Finally, causal bisimulation has been studied in relation to action refinement in [50, 51].
It was shown to be indeed robust with respect to action refinement.

The model obtained by unfolding the causal transition system, called causal trees, has
been used to define a direct “denotational” interpretation of CCS terms, which agrees
with a standard event structure semantics; it has also been taken as the basis for a com-
plete axiomatisation for causal bisimulation [49]. Indeed, one of the initial motivations of
Darondeau and Degano’s work was the search for a tree-model on which standard results
from the usual theory of bisimulation could be carried over.

3.3.3 History-preserving bisimulation

We noted already that the original definitions of history-preserving bisimulation were given
on event structures or similar semantic domains. More precisely, history-preserving bisim-
ulation was originally defined in [132] and [73] for prime event structures, and extended
in [76] and [3] to flow and stable event structures respectively. More recently, this equiva-
lence has also been studied on configurations structures [77]. Two variants of the notion of
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history preserving bisimulation have also been considered: hereditary history preserving
bisimulation [15] and strong history preserving bisimulation [92]. Both are finer than the
original notion.

Using the occurrence transition system of Section 2.6, we may define a notion of lo-
cal history preserving bisimulation for CCS processes. Essentially, a history-preserving
bisimulation is a bisimulation which preserves, at each state of computation, the partially
ordered set of events that led to that state. Moreover, it also accounts for the way this
partial ordering is extended along a computation.

The following definition, taken from [37], differs from that of [73] and [3] in two respects:
it is “syntactic”, in that it is defined directly on (an enrichment of) the CCS transition
system, and it is based on the local rather than the global causality ordering.

The occurrence system provides a notion of state (or configuration) for CCS terms.
For p ∈ CCS, define:

States(p) = { ξ | ∃ ei, ξi s.t. p τ=⇒ ξ0
e1=⇒ · · · en=⇒ ξn = ξ }

Recall that each state ξ has an associated set of events occ (ξ), ordered by the local causality
relation �. Unlike the global causality ordering in flow and stable event structures, which
is relative to a configuration, the local causality ordering �, which is essentially a static
notion, is the same for all computations.

Definition 3.18 (Local history preserving bisimulation)

Let p, q ∈ CCS. A relationR ⊆ States(p)×States(q)×℘( occ (States(p))×occ (States(q)) )
is a local history preserving bisimulation (lhp-bisimulation) between p and q if (p, q, ∅) ∈ R
and whenever (ξ0, ξ′0, g) ∈ R then:

(1) g is an isomorphism between ( occ (ξ0), � ) and ( occ (ξ′0), � )

(2) a) ξ0
e=⇒ ξ1 ⇒ ∃ e′, ξ′1 s.t. ξ′0

e′=⇒ ξ′1 and (ξ1, ξ′1, g ∪ (e, e′)) ∈ R

b) ξ′0
e′=⇒ ξ′1 ⇒ ∃ e , ξ1 s.t. ξ0

e=⇒ ξ1 and (ξ1, ξ′1, g ∪ (e, e′)) ∈ R

(3) a) ξ0
τ=⇒ ξ1 ⇒ ∃ ξ′1 s.t. ξ′0

τ=⇒ ξ′1 and (ξ1, ξ′1, g) ∈ R

b) ξ′0
τ=⇒ ξ′1 ⇒ ∃ ξ1 s.t. ξ0

τ=⇒ ξ1 and (ξ1, ξ′1, g) ∈ R

We say that p and q are local history preserving equivalent, p ≈lhp q, if there exists a local
history preserving bisimulation between them.

We have then the following charcterisation:

Fact 3.19 For any processes p, q ∈ CCS: p ≈lhp q ⇔ p ≈occ q.

Proof: It should be clear that if R = {Rg | g ∈ G} is a progressive bisimulation family

such that pR∅q, then the relation:

S = { (ξ, ξ′, g) | ξ ∈ States(p), ξ′ ∈ States(q), g ∈ G and ξRgξ
′ }
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is a lhp-bisimulation between p and q. In fact, if ξRgξ
′ for ξ ∈ States(p) and ξ′ ∈

States(q), then g is an occurrence aliasing such that occ (ξ) ⊆ dom(g) and occ (ξ′) ⊆
range(g), that is an isomorphism between occ (ξ) and occ (ξ′).

Similarly, if S is a lhp-bisimulation between p and q then the family R =
{Rg | g ∈ G} defined by:

Rg = { (ξ, ξ′) | (ξ, ξ′, g) ∈ S }

is a progressive bisimulation family such that pR∅q. 2

In the light of the results of Section 2.6, we have then also:

Corollary 3.20 For any processes p, q ∈ CCS: p ≈d` q ⇔ p ≈lhp q ⇔ p ≈s` q.

A similar notion of local history preserving preorder, <∼
lhp, can be obtained by requiring

g, in Def. 3.18, to be a bijection between ( occ (ξ0), � ) and ( occ (ξ′0), �) whose inverse
is a homomorphism. This preorder may be shown to coincide with <∼ `

.
Note that the local history-preserving bisimulation just defined is weak, in the sense

that it ignores τ -actions. This distinguishes it from the other notions of history-preserving
bisimulation, which are strong. Indeed, as noted already in Section 2.1, the notion of
history-preserving bisimulation was designed to be robust under refinement, and most
weak equivalences are not. Nevertheless, it could be worth investigating a similar syntactic
definition for the usual notion of (global) history preserving bisimulation, by taking a
slightly more concrete notion of occurrence where communications are pairs of visible
occurrences, and adopting the corresponding global causality ordering (as defined in [26]).

3.4 Extension to the π-calculus

In this section we give an informal account of Sangiorgi’s extension of the location equiv-
alence ≈` to the π-calculus, as presented in [141]. An important result of this research is
that the location machinery of [28] can be implemented in the π-calculus by means of a
fully abstract encoding, in such a way that the study of location equivalence ≈` reduces
to that of ordinary bisimulation equivalence.

The π-calculus is an extension of CCS proposed by Milner, Parrow and Walker in [111]
to deal with mobile processes, building on earlier work by Engberg and Nielsen [62]. In the
π-calculus, processes interact by exchanging channel names (also called simply names) over
channels. In particular, a restricted name can be sent outside its original scope, which is
then enlarged to include the receiver process, a phenomenon known as scope extrusion. The
combination of channel transmission and scope extrusion is the most powerful feature of
the π-calculus with respect to its predecessor CCS. Using these mechanisms, it is possible
to model the creation of unique names and simulate the transmission of resources and
processes. For a formal definition of the π-calculus, the reader is referred to Parrow’s
chapter in this issue. The syntax of (a core version of) the language may also be found at
page 71.

The language used by Sangiorgi is in fact the polyadic variant of the π-calculus, pro-
posed by Milner in [109], which allows names to be transmitted in tuples rather than one
at a time. This variant is particularly useful for writing programming examples as well as
encoding other languages.
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The version of location equivalence used by Sangiorgi is a generalisation of the dynamic
location equivalence ≈d` examined in Section 2.5 (hereafter referred to simply as ≈`). To
accomodate the definition of location equivalence, the syntax and operational semantics
of the π-calculus are enriched with location names, exactly in the same way as for the
language LCCS examined in Section 2. This adaptation can be done quite smoothly, as
name-passing does not introduce additional complications in this respect.

We shall now give an outline of Sangiorgi’s encoding, which maps located π-processes
into more complex π-processes that incorporate the location information. This encoding
exploits in a crucial way the π-calculus ability to generate and transmit unique names.
We shall use E [[P ]] to denote the encoding of the located process P . As can be expected,
locations will be represented by names in E [[P ]]. Let a, b, x, y, z range over names, and 〈ã〉
represent a tuple of names a1, . . . , ak. The idea is the following.

Suppose that P
a〈b̃〉

−−−−→d
ul

P ′. Then E [[P ]] will send an additional name x which will

serve as a “handle” for the observer, enabling him to access both the location ul and the
causal path u of action a. Assume that P is located at y. Then we will have approximately:

E [[P ]]
a〈b̃x〉−−→ (νz)(Loc〈xzy〉 | E [[P ′]] )(12)

where the process Loc〈xzy〉 implements the location mechanism and can be interrogated
by the observer using name x. Here, y is the name representing the causal path u of action
a, while z represents the location ul of the derivative P ′ in E [[P ′]]. The process Loc〈xzy〉
is defined by:

Loc〈xzy〉 = x〈z〉 | ! z. y

In fact, to avoid interference with the environment, the name x needs to be unique in (12).
We give now the formal encoding for input and output processes, where the parameter

y represents the location u of the encoded process (which is initially the empty string ε):

E [[a〈b̃〉. P ]]〈y〉 = (νx) a〈b̃x〉. (νz)(Loc〈xzy〉 | E [[P ′]]〈z〉 )(13)

E [[a(b̃). P ]]〈y〉 = a(b̃x). (νz)(Loc〈xzy〉 | E [[P ]]′〈z〉 )(14)

These two clauses give the essence of the translation; further details are omitted. The
main result is that this encoding is fully abstract, as expressed by the following theorem
by Sangiorgi [141]. Here ≈c and ≈c` are the congruences associated respectively with the
early bisimulation equivalence of the π-calculus and with the location equivalence ≈`.

Theorem 3.21 For any located π-calculus processes P,Q, P ≈c` Q ⇔ E [[P ]] ≈c E [[Q]].

Note that this is essentially an expressiveness result about the π-calculus. In this sense it
falls in the same class as the results by Milner and Sangiorgi [110, 139] on the encoding
of the λ-calculus and higher-order calculi, and that by Walker [159] on the encoding of
object-oriented languages.
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4 A concrete view of locations

In this section we consider a concrete approach to the use of localities in process algebras,
where location identities are significant and cannot be abstracted away as in the abstract
approaches examined in Section 2. In the abstract approaches locations were used essen-
tially to differentiate parallel components. Their exact names were immaterial, as long as
they bore the same dependence or independence relation with each other. In the concrete
approach we shall describe now, on the other hand, location names are important; indeed
the topmost locations of a process may be viewed here as physical addresses in a network.

4.1 A concrete location semantics for CCS

We start with the basic and most concrete approach to processes with explicit locations,
as was originally proposed by Murphy in [116] and further pursued by Corradini and
Murphy in [48] and [45]. Although this concrete approach might be seen as the first step
towards a theory of processes with locations, we postponed its presentation because it is
easier to formalise once the general set-up of location equivalence has been understood.
Indeed, this approach followed, chronologically, the more abstract approaches exposed
in the previous sections. It also responds to a rather different concern: that of placing
parallel processes onto a network of processors with a fixed geometry. In this context, the
identities of locations are significant, as they may refer to physical processors. Accordingly,
the semantics is very concrete: processes are equated if they reside on the same set of
locations and present the same behaviour at each location.

The language considered in [116] and [48, 45] is a simple subset of CCS, essentially a
finite combination of regular processes by means of the static operators of CCS, parallel
composition, restriction and renaming28. This is the same class of processes considered
by Aceto in [5] under the name nets of automata, and we shall retain this terminology
here. In this language all the occurrences of the parallel operator appear at top level, and
locations are assigned to parallel components in the same way as in the static approach
examined in Section 2.4, using the location prefix construct ` :: p. The only difference is
that here the two operands of a parallel composition are allowed to be placed at the same
location. This is required for solving the placing problem, in case the number of processes
is larger than that of processors. It is then immediately clear that locations will not serve
as a measure of parallelism in this model. Also, since there is no nesting of parallelism in
nets of automata, the structure of locations will be flat. Formally, we have the following
two-level syntax.

The set of sequential processes is given by the grammar:

p ::= nil | µ. p | (p+ p) | x | rec x. p

Then the set of (distributed) nets of automata is given by:

n ::= l :: p | (n | n) | n\α | n 〈f〉
28The language studied in [116] and [48] is in fact a slight variant of CCS, with an asymmetric notion

of communication where reception is directed (tagged with the location from which the value is expected
to come) while emission is not. This choice was motivated by a similar asymmetry present in several
synchronisation protocols. Here, for the sake of simplicity and ease of comparison with other approaches,
we take a more standard CCS-like language, as was done already by Corradini in [45].
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In concentrating on this simple language, the authors were motivated by implementation
concerns: they wanted to rule out distributed choices like (` :: p + k :: q), and also terms of
the form (` :: p ‖ k :: q) + r, since in both cases a synchronisation between possibly distant
sites is required.

The original work [116] presents a strong transition semantics for this language, with
the associated strong bisimulation, while [48] and [45] consider the corresponding weak
semantics, abstracting from τ -transitions. We shall mainly consider the latter here.

Formally, the semantics of nets of automata is given by the same rules used for static
location transitions in Figure 1: the transitions are simply indexed by the location at
which they occur. Then the weak located equivalence of Corradini and Murphy [48, 45],
which we denote here by ≈CM , is defined as the ordinary weak bisimulation equivalence
associated with these transitions. We have for instance:

(` :: a ‖ ` :: b) ≈CM ` :: (a.b+ b.a)(15)
(` :: a ‖ k :: b) 6≈CM (` :: b ‖ k :: a)(16)

(` :: (α+ b) | k :: ᾱ. b)\α 6≈CM ` :: b(17)

Note that the nets of examples (16) and (17) are equated by location equivalence ≈` (we
refer here to the static location equivalence ≈s` defined in Section 2). As for the nets
of example (15), these are not admissible distributed processes in the static approach of
Section 2.4, and therefore ≈` is not defined on them29.

In fact, it can be easily shown that the equivalence ≈CM is stronger than location
equivalence ≈` on the intersection of the two languages, that is, on the language of nets
of automata where parallel components have different locations). A proof of this fact may
be found in [48]. In the light of this result it is fair to say that the model of Murphy and
Corradini reflects a concrete view of localities.

It may be remarked that this concrete model could very nearly be simulated in or-
dinary CCS, by using the relabelling operator to distinguish actions of different parallel
components. This is only approximately true, because one should then adopt a slightly
more flexible communication discipline to allow relabelled complementary actions like αi
and ᾱj to synchronise. For instance one could use a communication function as in [13] or
a synchronisation algebra as in [162]. Modulo this little twist in defining communication,
one would indeed be able to define a simple encoding E [[n]] of distributed nets of automata
into CCS, such that

n1 ≈CM n2 ⇔ E [[n1]] ≈ E [[n2]]

where ≈ is the ordinary weak bisimulation of CCS. Note on the other hand that this
would not hold for location equivalence ≈`, even in the simple setting of nets of automata,
as shown by the example:

[ (a. γ + b. γ̄) | (γ̄. b+ γ. a) ]\γ ≈` a | b

It should be clear that any relabelling here would distinguish the two actions a (as well
as the two actions b) in the first process, and therefore the two relabelled processes would
be not be identified by ≈.

29Note on the other hand that the dynamic location equivalence ≈d
` could be applied to these terms and

would distinguish them.
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Concerning located semantics, two additional results were presented in [116] and [48]:
a calculus of efficient placings of processes into networks of processors, and an axiomati-
sation, along standard lines, of the weak located equivalence ≈CM .

An intermediary location semantics, which could be called “super-static”, was also
considered by Corradini in [45]: the idea was to use a static assignment of locations, as
in the calculus here, but compare transitions modulo a static injective renaming of their
locations. This semantics would equate the two systems of example (16) above, while
still distinguishing the systems of example (17). Indeed, it not difficult to show that the
resulting equivalence is strictly included between the located equivalence ≈CM and the
location equivalence ≈` of Section 2.

To conclude this section, let us mention another study on distributed CCS conducted by
Khrisnan in [93], which is also based on a concrete view of locations. The author considers
an extension of CCS with locations and explicit message passing primitives. The semantics
he proposes for the language is rather different from those presented here, and we shall not
attempt a detailed comparison; it is also more directly driven by practical concerns, like the
limitations on the degree of parallelism imposed by a physical architecture. Applications
of the calculus to the description of configuration and routing in distributed systems are
also discussed.

As pointed out already, the names of localities are important in the concrete approach,
since localities are meant to represent physical sites in a distributed architecture. This
leads quite naturally to the treatment of locations in more recent and powerful languages
for distributed mobile computation. These languages will be the subject of Section 4.3.

4.2 The location failure approach

In this section we briefly review the location failure approach, as has been developed
by Amadio and Prasad in [11] and further pursued by Amadio in [8], and by Riely and
Hennessy in [136]. Location failure has been considered also in other calculi, for instance
in the distributed Join calculus [69]. In these latter calculi, however, locations have more
complex meanings, hence their treatment is deferred to Section 4.3.

The standpoint here is rather different from the one taken so far, where a global
observer for a whole distributed system was implicitly assumed, and the issue was to
identify the degree of distribution of the system. In the “location failure” approach, one
starts from the hypothesis that locations - nodes in a distributed system - are liable to
failure. The perspective adopted here is that of an individual programmer or process,
wishing to have transparent access to resources irrespective of where they are located,
at least as long as these locations are running. On the other hand, some awareness of
locations is requested in case of failure: a process that has spawned activities at another
location wants to be notified in case of failure of this location, in order to stop interacting
with it and transfer activities to other locations.

The language considered in [136] is based on pure CCS with no value-passing, while
those of [11, 8] build on more powerful formalisms, respectively the programming language
Facile of [153] and the asynchronous π-calculus [91, 20], which allow for the transmission
of processes, respectively names, in communications.

We will concentrate here on [136] and [8], which have been developed independently
but appear to share several features. Common to both studies is the idea to enrich the
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basic language (CCS and the asynchronous π-calculus30, respectively) with new operators
for spawning a process at a remote location, killing a location and testing the status of a
location. Locations ` ∈ Loc have two possible states, dead and alive. In the case of [8]
locations are also transmissible values – in fact they are just a particular category of
π-calculus names.

Formally, basic processes are built with the standard operators on the underlying
calculus together with the following new operators (taking a blending of the constructs
of [8] and [136]):

• spawn (` , p), which creates a new process p at location `;

• kill `, which kills location `, entailing the termination of all processes running at `;

• if ` then p else q, which evolves to either p or q, depending on whether ` is alive or
dead.

Then distributed processes are built on top of basic processes using the static operators
of the language as well as an operator for locating processes, ` :: p, which represents
process p running at location ` (this is analogous to the construct encountered in the
previous sections, so we use the same notation). We therefore have a two-level syntax
similar to that of [116, 48], although with a richer basic language.

The operational semantics, which we shall not report here, is then defined directly on
distributed processes: as can be expected it makes use of the additional information about
the state of locations (for instance the process ` :: p can only execute if ` is alive), but it is
otherwise very close to the standard semantics of the underlying languages. In particular,
unlike all the semantics considered so far in this paper, it does not record the location at
which actions are performed. In fact, the common intention of the works [8] and [136] is
that distribution should be completely transparent in the absence of failure.

We should point out, however, that the names of locations are significant in this model,
just like in the concrete approach of [116, 48]: for instance the two systems (` :: a ‖ k :: b)
and (` :: b ‖ k :: a), which would be equated by the location equivalence ≈` of Section 2,
can be distinguished here by an observer which has the capability of killing ` or k.

The semantic notion which is adopted in [8] and [136] is a form of contextual equivalence
called barbed equivalence, essentially a bisimulation based on silent transitions and basic
observations called “barbs”, which is further closed with respect to contexts. For more
details on this kind of equivalence see Parrow’s chapter in this issue. In [136] the barbed
equivalence is given a more tractable formulation as a bisimulation relation called located-
failure equivalence, noted ≈LF . An example of distributed processes that are equated by
≈LF is:

P1 = (` :: ᾱ ‖ k :: (α.b))\α
Q1 = ` :: (spawn (k , b))\α

Intuitively, these are equivalent because even an observer capable of killing ` is not able to
tell them apart. In [136], located-failure equivalence is also given an alternative symbolic
characterisation (along the lines of [88]), which further improves its tractability.

30The reader unfamiliar with the π-calculus is referred to Parrow’s chapter in this issue. However,
knowledge of the π-calculus is not strictly necessary for the discussion in this section.
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Given the similarity of the underlying languages, the equivalence ≈LF can be easily
compared with the concrete located equivalence ≈CM of [48] and the location equivalence
≈` of [28]. It turns out that ≈LF is neither stronger nor weaker than either of them.
Here is an example, taken from [136], of processes which are both ≈CM -equivalent and
≈`-equivalent but are distinguished by ≈LF :

P2 = (` ::α ‖ k :: (ᾱ+ τ.b))\α
Q2 = (` :: (α+ τ) ‖ k :: (ᾱ.b))\α

These are not ≈LF -equivalent because if ` is killed by some context, then P2 is capable
of doing a b-transition which Q2 cannot match. In [136] one may find a slightly larger
example, due to F. Corradini, showing that two ≈LF -equivalent processes need not be
≈CM -equivalent nor ≈`-equivalent. Therefore ≈LF reflects indeed a different perception
of localities.

The basic language considered by Amadio in [8] is a “disciplined” asynchronous π-
calculus where for each channel name there is at most one receiver, which can be viewed
as a server for that channel. Calculi of this kind are often said to have the unique receiver
property. To emphasize this property, Amadio calls his language the π1-calculus, and its
located version the π1`-calculus. The π1`-calculus will be further discussed in Section 4.3.

In conclusion of this section, we can remark that in the location-failure approach,
locations are units of failure as well as units of distribution; and while distribution in
itself is not observable, failure may be observed (as the absence of certain communication
capabilities) and thus reveal some parts of the distribution.

4.3 Combining locations and mobility

We give now an overview of some recent work combining locations and mobility. Most of
this work is still at an early stage and therefore our account will be essentially descriptive,
trying to isolate those features that are more relevant to our subject of interest. We
will only consider languages which are presented as process algebras or strongly based
on them, namely distributed versions of the π-calculus [111] and the Join calculus [68],
the Nomadic π-calculus of [147], and new calculi expressly designed with distribution and
security concerns in mind, such as the Ambient calculus of Cardelli and Gordon [32]
and the Seal calculus of Castagna and Vitek [157]. We shall also briefly touch upon a
distributed calculus based on the coordination language Linda, the calculus Llinda of De
Nicola, Ferrari and Pugliese [117].

It can be noted [144] that while most early work on process calculi was centered
around modelling protocols (or other concurrent systems) and reasoning about them, these
new process calculi have been more specifically designed to be the basis of programming
languages. Indeed, a few of them have already given rise to prototypical programming
languages such as the Join Calculus Language [70], Nomadic Pict [148] and Klaim [118].

With the advent of the network as a computing support, mobility is bound to play
an important role in programming. However theoretical models for mobile computation,
such as the π-calculus [111] (see Chapter 3.2 in this issue), were already proposed and
thoroughly studied before the wide generalisation of network programming that we witness
today. This partly explains why, although the very idea of mobility seems to presuppose
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the existence of different sites among which to move, the notion of distribution among
sites was not originally present in calculi for mobile processes. Only very recently have
“distributed versions” of these calculi been defined and started to be investigated. In fact,
there are two aspects to the notion of mobility as it is currently used:

(1) the transmission of processes or links to processes as arguments of communication
along channels. This form of mobility, which could perhaps be better qualified as “process-
passing” and “name-passing” (or “link mobility”), is exemplified by the π-calculus and its
higher-order variants, Chocs [152] and Hopi [139, 140], as well as by the more practical
languages derived from them such as Facile [153] and Pict [128].

(2) the actual movement of processes from one place to another, what is commonly
called migration. This is the kind of mobility emphasized in formalisms such as the
Ambient calculus and the Seal calculus, and also accounted for in the distributed Join
calculus [69, 67] and in distributed versions of the π-calculus such as [8, 145, 89] and
Nomadic Pict [147, 148].

Strictly speaking, only the second form of mobility requires an explicit distribution of
processes among localities, as a kind of “reference frame” for the movement to take place.
For the first form, it may indeed be sufficient to assume an implicit distribution given by
the parallel structure of processes, since mobility is here only a facet of communication.

To fix ideas, we will say that a model or language is “distribution-oriented” or simply
“distributed” if it explicitly integrates some notion of site, locality or domain. In this sense,
current developments of the π-calculus such as Amadio’s π1`-calculus [8], the distributed
π-calculi dpi of Sewell [145] and Dπ of Hennessy and Riely [137, 89], the distributed Join
calculus [69, 67] and Nomadic Pict [148] are distributed, and so are newly proposed
calculi such as the Ambient calculus [32] and the Seal calculus [157]. These are essentially
all the models we shall examine in this section. Now, what exactly is a locality in these
models? According to the model localities may have different attributes, but some common
features can be identified:

• A locality is the host of a number of processes and resources. Sometimes, the locality
itself is assimilated to a particular process (the “locality process” of the π1`-calculus)
which plays the role of a controller for the processes in its scope.

• Localities can be observed or controlled. The need for controlling localities is often
motivated by failure detection or security concerns. The observation of localities is
required to implement migration.

• A locality can be named, and as such designated as the target of a communication
(if communication across localities is allowed) or the destination of a migration.

Moreover, localities have a bearing on the handling of communication. In a distributed
calculus there are two forms of communication: local communication, between processes
at the same locality, and distant communication, between processes at different localities.

Distant communication can be transparent - in the sense that distant destinations are
reachable as if they were local (distributed Join calculus, Amadio’s calculus, Sewell’s dpi-
calculus), restricted to the immediate neighbourhood (Seal calculus), or even completely
forbidden (Ambient calculus, Hennessy and Riely’s Dπ-calculus). In the last case only
local communication is possible, and processes have to convene in a common location in
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order to communicate. Typically, a process wishing to send a message will have to move
to the location of the destination process. Clearly this choice only makes sense in calculi
with a migration primitive, where distant communication can be simulated.

Depending on the form of distant communication allowed, one can distinguish between
global communication, proximity communication and purely local communication models.
In most of these models both local and distant communication are asynchronous (in the
sense that the sending of a message is non-blocking31, see also Chapter 3.2 in this issue).
In general, distributed calculi have tended to adopt asynchronous rather than synchronous
communication, as the former seems more primitive, easier to implement, and closer to the
asynchronous message delivery mechanisms of actual networks. In the Seal calculus, on
the other hand, both local and distant communication are synchronous. This choice may
be due to the fact that the primary concern of this calculus being security, a more rigid
communication discipline is preferred (the implementation issue is less crucial here since
only short-range communication is allowed). Similarly, communication is synchronous in
the Dπ-calculus of Hennessy and Riely, where only local communication is allowed.

The structure of locations can be flat or hierarchical, in which case they can be organ-
ised in two levels or arbitrarily nested in a tree. In a hierarchy of locations, the first level
may be seen as representing physical machines32 while lower levels correspond to software
agents. Locations are flat in Amadio’s π1`-calculus, in Hennessy and Riely’s Dπ-calculus,
and in Nomadic Pict. They have a two-level structure in Sewell’s dpi-calculus and a tree
structure in the distributed Join calculus, the Ambient calculus and the Seal calculus.
Hierarchical locations have a relevance in the presence of failures, since the failure of a
location entails the failure of all its sublocations. In a hierarchy of locations, moreover,
locations may be themselves migrating entities: in this case a migrating location will bring
together its sublocations. Structured locations also allow for a finer control of mobility
and a more flexible handling of security issues when modelling networks partitioned into
administrative or “trust” domains.

Locations are the reference frame for migration. Migration is intended as the movement
of processes or some other entity having executable content (such as locations themselves),
as opposed to simple data transfer. One can distinguish between subjective and objective
migration. In the first case the migration instruction comes from the migrating entity
itself (possibly from a process enclosed in it, if this entity is for instance a location), while
in the second it is outside its control.

A further classification can be made into strong and weak migration. In the first case
a process can be interrupted during its execution and moved together with its current
environment to another location where execution is pursued. In this case, where “active”
code can be moved, one often speaks of migrating agent. In the case of weak mobility,
instead, only “passive” code can be moved. Finally, strong migration can be blocking for
the migrating entity, in the sense that this has to suspend execution until the migration is

31This is not to be confused with the use of “asynchronous” and “synchronous” in reference to Milner’s
calculi CCS and SCCS (Synchronous CCS) [107]. In SCCS synchrony means that parallel components
proceed together in lock-step.

32Although, strictly speaking, this would imply a different treatment of topmost locations, to forbid
them to move or be dynamically generated. This issue is explicitly addressed only in Nomadic Pict,
where the flat space of locations is fixed from the start, and the dpi-calculus, where new locations may
only be created as sublocations of existing ones.
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completed, or asynchronous, as is the case for the migration of localities, which can still
receive messages while being subject to a migration instruction.

In the next sections, we shall examine in some detail a selection of these models for
distributed mobile computation.

4.3.1 Distributed π-calculi

The π-calculus does not have an explicit notion of location, although its constructs are
powerful enough, as shown in Section 2.6, to simulate the location machinery of [28].
Indeed the π-calculus, while being one of the most influential foundational calculi for
mobility, does not provide for direct process mobility. The movement of processes is rep-
resented indirectly via the movement of channels that refer to them: roughly speaking,
two processes move close to each other when they acquire a common channel. It could
then be natural to view the notion of name scoping as an abstraction of that of loca-
tion. However this analogy cannot be brought very far, since processes may share several
names with other processes. For instance one cannot define two processes to be co-located
whenever they share a private name, since this notion of “co-localization” would not be
transitive. A more convincing interpretation of name scoping would then be as “trust
domains” (that is, groups of processes that trust each other), since these are allowed to
overlap and membership to a common trust domain is not expected to be transitive.

To directly model distributed aspects such as migration of agents and failure of ma-
chines, one must add to the π-calculus primitives for grouping processes into units of
migration or units of failure. An early proposal was presented by Amadio and Prasad
in [11], to model the distributed module of the Facile programming language [153]. More
recently, enrichments of the π-calculus with explicit locations have been studied by Ama-
dio [8], Hennessy and Riely [137, 89, 90, 138], Sewell [145], and Sewell et al. [147, 148]. The
emphasis in this work is in developing type systems for mobile distributed computation,
building on existing type systems for the π-calculus. These type systems may serve a va-
riety of purposes. For instance, Amadio’s type system is used to ensure the uniqueness of
receptors on communication channels. The type systems of Hennessy and Riely’s [137, 89]
aim at regulating the use of resources according to permissions expressed by types; these
type systems are further refined in [90, 138], to deal with the case where some components
of the network, representing malicious agents, may not be assumed to be well-typed. The
goal of Sewell’s type system [145] is to distinguish local and remote channels in order to
allow efficient implementation of communication. The language Nomadic Pict [147, 148]
stands a little aside from this track: it is conceived as a distributed layer over the lan-
guage Pict, offering high-level global communication while providing at the same time its
implementation in terms of low-level located communication.

Most of these distributed π-calculi use a flat space of locations, and a primitive for the
migration of processes. In the Dπ-calculus, this primitive is coupled with a purely local
communication mechanism, while in the other calculi communication is global. Other
models like the distributed Join calculus, the Seal calculus and the Ambient calculus,
although strongly inspired by the π-calculus, have rather distinct characteristics. Here
the space of locations is tree–structured, and the hierarchy is relevant for migration as
the units of migration are locations. In these calculi the emphasis is put respectively on
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implementation, security and administration33 issues. Regulation on the use of channels
and migration is imposed mostly by syntactic means. Type systems have not been a main
concern in these models, although they are starting to be actively investigated for the
Ambient calculus.

We proceed now to a more detailed description of the various models. Most of them are
based on the mini π-calculus studied by Milner in [110], or on its asynchronous version [20,
91]. For convenience we recall here the syntax of these calculi, referring to Parrow’s chapter
in this issue for more details. The syntax of the mini π-calculus is given by:

P,Q ::= 0 | x(u). P | x〈u〉. P | P | Q | (νx)P | !P

The asynchronous π-calculus is obtained by replacing the output prefix construct x〈u〉. P
by simple messages x〈u〉, thus preventing output actions from blocking a process. Syntactic
variants may be used: for instance replication may be replaced by general recursion or
by replicated inputs, that is processes of the form !x(u). P . The polyadic version may be
preferred, where input and output prefixes are generalised to allow transmission of tuples
of names, noted x(−→y ) and x〈−→y 〉.

The semantics of these calculi is given by first defining a structural congruence ≡, which
is used to predispose terms for communication, and then a set of reduction rules describing
process execution. This kind of semantics, which factors out structural rearrangements of
terms, was first proposed by Milner in [110], taking inspiration from the Chemical Abstract
Machine (CHAM) style of semantics advocated by Berry and Boudol [17].

The π1`-calculus

The first extension of the π-calculus with locations was proposed by Amadio and Prasad
in [11], to model an abstraction of the failure semantics of the language Facile. The
language considered in that paper, called the π`-calculus, is based on a variant of the
synchronous polyadic π-calculus with guarded sums; moreover, a flat space of locations is
introduced, and failure primitives similar to those described in Section 4.2 are provided.
We shall not describe the calculus in detail, but only mention its main features, some of
which reappear in later calculi.

In the π`-calculus locations are added as a new category of names, which can be
dynamically created and transmitted in communication; all channels and processes are
located. The reduction semantics of the π`-calculus is defined relative to an environment
L, describing the assignment of locations to channels. Communication is global: it may
occur between any two complementary channels irrespective of their location. In general,
locations intervene only in the failure semantics of the language. Although all locations
are “failure-independent” from each other (since they are unstructured), channels are
dependent on the location where they are placed: the failure of a location prevents any
further communication on its channels.

The abstract semantics of the calculus is given by defining a barbed equivalence (see
Parrow’s chapter for a definition of this notion) on configurations (L, p). Although the
observation with failures is rather different from the usual observation of the π-calculus,
an encoding of the π`-calculus into the π-calculus is given, which is proved adequate with
respect to the barbed equivalences of the two languages.

33In the sense of modelling navigation through administrative domains.

71



The π1`-calculus studied subsequently by Amadio in [8] (this is the version of the
calculus we shall refer to in the following) is based on the asynchronous rather than the
synchronous π-calculus. More precisely, the π1`-calculus builds on the π1-calculus, a typed
asynchronous π-calculus satisfying the unique receiver property. This property, which
requires each channel to have at most one receiver, was already mentioned in Section 4.2.
As we shall see, it is a common requirement in mobile distributed calculi, as it simplifies the
implementation of distant communication. It also brings the π-calculus closer to object-
oriented programming, where interaction arises when an object calls a method of another
uniquely determined object. In the π1-calculus, the unique receiver property is enforced
by means of a simple type system. A barbed congruence is also defined on the π1-calculus,
which is characterised as a variant of the asynchronous bisimulation of [10]. The located
π1`-calculus adds to π1 the model of locations and failures of the π`-calculus, together with
a primitive spawn (` , p) for process migration. The failure primitives of the π1`-calculus
have already been discussed in Section 4.2. We shall only add here a few remarks about
semantic and typing issues.

The spawn (` , p) construct provides a form of objective migration: the process contain-
ing the instruction causes process p to move to location `. A distinctive feature of the
π1`-calculus is that locations have an associated controller process, called locality-process,
which records the status of its controlled location and handles messages addressed to the
location, in particular all spawn, test and halt requests34. In the π1`-calculus communica-
tion is global, just like in the π`-calculus. However the asynchronous setting allows for a
more elegant communication rule. In fact, the movement of a message towards its desti-
nation is described in two steps: first, the message is exported in the ether (that is, out
of its current location35), and then it enters the location of the destination process (which
is uniquely determined, because of the unique receiver property). Although divided in
two steps, the routing of messages is completely transparent: indeed, local communication
is implemented in exactly the same way. Note that the movement of messages towards
their destination provides another implicit form of migration, besides that given by the
spawn (` , p) primitive.

To conclude, let us mention a few results established for the π1`-calculus. The type
system proposed in [8] ensures both the unique receiver property and the invariability
of the location of channel receivers. Similar properties, as we shall see, will be imposed
by syntactic restrictions in the distributed Join calculus. Indeed the π1`-calculus shares
several ideas with the distributed Join calculus, like the localization of receptors and the
transparency of distant communication and migration in the absence of failures. Another
notable result of [8], which extends the analogous result for the π`-calculus recalled earlier,
is that the π1`-calculus can be encoded into the π1-calculus, which in turn is sufficiently
expressive to encode the full asynchronous π-calculus. Although applied to different models
of locations, these results are also similar in spirit to the encoding of the location semantics
of [28] into the π-calculus, given by Sangiorgi in [141] (see Section 3.4).

34In Section 4.2 we omitted the controller process, for the sake of simplicity. In fact, this controller may
be seen as a way of implementing side-conditions on the status of locations in the semantic rules.

35What requires this location to be alive, a condition ensured by the controller process. In general,
liveness is required for the source location of a communication or a migration, but not for the target
location.
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The Dπ-calculus of Hennessy-Riely

The Dπ-calculus of Hennessy and Riely is a typed synchronous π-calculus where types are
used for resource access control. The calculus offers constructs for process migration and
local communication. In its simplest form [89], a flat space of locations is introduced. In
the richer variant presented in an earlier paper [137], which we may call the Dπ+-calculus,
structured locations and a primitive for moving locations were also considered; in addition
the issue of site failure was addressed there. Since the treatement of structured locations
and failures in [137] is essentially the same as in the distributed Join-calculus described
in Section 4.3.2, we shall concentrate here on the simpler version of [89], which is also the
one retained by the authors in subsequent papers [90, 138]. At the end of this section
we will briefly discuss an asynchronous “receptive” version of the Dπ-calculus, recently
studied by Amadio, Boudol and Lhoussaine [9].

The basic entities of the Dπ-calculus are threads (or processes), systems and resources.
Threads p, q are processes of the polyadic π-calculus, with an additional operator goto `. p
to allow movement of code p towards location `. This operator is similar to the construct
spawn (` , p) considered by the authors in [136] and by Amadio in [11, 8] (see Section 4.2).
Locations `, k have a flat structure. They are just a particular category of π-calculus
names, and can be created via the operator (ν`) p and transmitted in communication.

Systems P,Q are collections of located threads of the form `[p], also called agents. More
precisely, systems are obtained by combining located threads via the static operators of
parallel composition and name creation (new u : T ) P , an operator similar to restriction
which allows sharing of information among different locations.

The resources of the calculus are channels, supporting synchronous communication
between agents. Channels are also located and communication is restricted to being purely
local: it is only allowed between agents placed at the same location, using channels that
have been allocated at that location. Thus processes wishing to interact first have to move
to a common location. This means that in the Dπ-calculus, as in other languages adopting
the “go and communicate” paradigm, locations are used as units of communication.

The reduction semantics is given directly on systems P . It is defined modulo a struc-
tural congruence ≡ that allows co-located threads to be split and reassembled, that is
`[p | q] ≡ `[p] | `[q], and empty agents to be garbage collected, `[0] ≡ 0. The rules for code
movement and communication36 are the following:

` [ goto k. p ] → k[p]

` [ a〈u〉. p ] | ` [ a(x). q ] → ` [p] | ` [ q{u/x} ]

Then, assuming a is a channel declared in location k, remote communication can be
“implemented” using migration and local communication as follows:

` [ goto k. a〈u〉. p | r ] | k [ a(x). q ] →∗ ` [r] | k [ p | q {u/x} ]

Note that in Dπ, the units of migration are simple threads of the form ` [ goto k. p ]. If
such a thread runs in parallel with other threads located at `, these will stay put while
p moves to k. Moreover process p will only be activated when reaching its destination.

36For simplicity we consider here the monadic version of the calculus.
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Hence migration is weak in Dπ, that is, only passive code can be moved. This makes a
difference with other calculi such as Nomadic Pict, where migrating agents may contain
several threads in parallel, which continue to run until the migration takes effect.

Local communication is the main parting point of the Dπ-calculus with respect to
Amadio’s π1`-calculus (examined in the previous section), at least as far as the untyped
languages are concerned. The type systems of the two languages, on the other hand, are
rather different. While Amadio’s type system is used to ensure uniqueness of receptor
channels, types in the Dπ-calculus are designed to control the use of resources. The idea
is that agents should not be allowed to use a non-local resource before being granted
the appropriate capability. The type system of Dπ is based on a new notion of location
type, which describes the set of resources available to an agent at a particular location.
Resources, that is channels, are themselves equipped with capabilities described by types.
The types of channels describe the values they can transmit. They may be further refined
to prescribe the way in which channels should be used, thus extending the input/output
types studied in previous work by Pierce and Sangiorgi [127].

More formally, a location type has the form loc{−→a :−→A}, where −→a is a tuple of distinct
channel names and −→

A is the associated tuple of capabilities. For instance the location
` : loc{a : A, b : B} offers two channels a and b with capabilities A and B respectively. A
simple channel type has the form chan〈T 〉, where T is the type of the transmitted value.
This value may be a location name, a local channel name, or a remote channel name
marked with its location of creation, written `[a]. Compound names `[a] may only be
used as arguments in communication (not as transmission channels), and their types are
of the form loc[A].

The syntax is then enriched with type information for received values and created
names. The structural congruence ≡ allows manipulations on these terms, like for instance
`[ (new a : A) p ] ≡ ( new `[a] : loc[A] ) `[p]. A new semantic rule for communication of
remote channels is added:

` [ a〈k[b]〉. p ] | ` [ a(z[x] : loc[A]). q ] → ` [p] | ` [ q{k,b/z,x} ]

For process q{k,b/z,x} to be well-typed, it is necessary that the types of names k and b
match those of z and x. Thus the typing ensures that names are received with the same
capabilities they are sent with. In fact, thanks to subtyping, names can be more generally
transmitted with a subset of the sender’s capabilities. This means that a process sending a
name can control the use that will be made of it, which is indeed the property the calculus
was trying to ensure.

A remote procedure call may be described in the calculus as follows:

` [ (νr) goto k. a〈`[r]〉 | r(X). p ] | k [ a( z[x] : loc[A] ). goto z. x〈V 〉 ]

We shall not elaborate further on the type system of [89] here. Let us just recall that this
type system, which is rather sophisticated, satisfies the standard soundness properties of
subject reduction (type preservation) and type safety. In later work [90, 138] the authors
have adapted this type system to guarantee that even a partially typed system (such as
can be an open network with untrusted components) will continue to satisfy the same
property of safe access to resources.

To conclude, we will mention a result established in [9] by Amadio, Boudol and Lhous-
saine, for an asynchronous version of the Dπ-calculus. Combining ideas from previous
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studies by Amadio [8], Boudol [21] and Sangiorgi [142], the authors propose a simple type
system for this calculus, ensuring localization of receptors and receptiveness of channel
names (a kind of input-enabledness). They show that well-typed systems enjoy a local
deadlock-freedom property called “message deliverability”. This property, which states
that every migrating message will find a receiver at its target locality, is particularly
desirable in an asynchronous setting, where there is no control on message consumption.

The dpi calculus of Sewell

The dpi-calculus studied by Sewell in [145] is an asynchronous π-calculus extended with
location and migration primitives similar to those of the Dπ-calculus. Its hierarchical
model of locations, on the other hand, as well as its global communication discipline,
are inspired from those of the distributed Join calculus. A few syntactic variations with
respect to the Dπ-calculus and the distributed Join calculus are worth mentioning: (1)
the dpi-calculus adopts a two-level rather than a tree-structured hierarchy of locations; (2)
locations are associated with each elementary subterm of a system, for instance every prefix
is located; (3) when used for a location u, the construct for name creation ( new u : @` T )
only allows the creation of u as a sublocation of an existing location `. This means that
new locations cannot be created at the topmost level, which is interpreted as a set of
physical addresses.

We shall not dwell longer on the description of the language here, but rather sketch the
main contribution of the paper [145], which is the study of a type system distinguishing
local and global channels with the aim of localizing communication whenever possible.
The idea is that restricting the use of some channels to be local may be useful both for
efficient implementation (these channels do not need to be globally unique nor registered
with a central name server) and for robustness against external attacks.

The proposed type system generalises that of Pierce and Sangiorgi [127], where channel
types are annotated with input and output capabilities. Here the input/output types of
channels are refined to indicate whether their use is allowed to be global or restricted
to be local. Formally, a channel type has the form l(i,o) T , where the input and output
capabilities i and o are taken from the set {G, L,−}. In such a channel’s type the input
(resp. output) capability can be global (G), in which case it can be exercised at any location,
local (L), in which case it may only be exercised at the channel’s location, or absent (-),
in which case the channel cannot be used at all for input (resp. output). For instance, if
x is a channel located at ` of type l(L,G) T , then x can be used for output anywhere, but
for input only at location `. Such a channel may be used, for instance, to send requests
to a server located at `. Note that in calculi enjoying the unique receiver property, such
as the π1`-calculus and the Join calculus (see next section), all channels would have such
a type.

The type system ensures that channel names are used with the appropriate capabilities
and that local capabilities are not sent outside the location they refer to. Subtyping allows
for the transmission of subcapabilities. A type preservation result (subject reduction) is
proven, and a method for inferring the most local capabilities of a channel is proposed.
In the light of these results, it can be said that the dpi-calculus allows for compile-time
optimization of communication, while retaining the expressiveness of global channel com-
munication. The same idea of offering both local and global communication while clearly
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distinguishing between them, may be found also in the language Nomadic Pict [148].

4.3.2 The distributed Join Calculus

The Join calculus was introduced by Fournet and Gonthier in [68], followed shortly later by
its distributed version [69]. As it was presented by its authors in [68], the Join calculus is
“an offspring of the π-calculus, in the asynchronous branch of the family”37. This calculus
was specifically designed to facilitate distributed implementations of channel mechanisms.
Compared to the asynchronous π-calculus, it offers a more explicit notion of places of
interaction. The distributed Join calculus [69, 67] goes farther still, adding to the original
calculus notions of named location and distributed failure.

We start with a description of the basic Join calculus, and then move to its distributed
version. We will mainly follow the presentation of [101], which gives a good overview of
the two calculi and the initial results that have been established for them.

The main feature of the Join calculus is that every input channel is persistent and
enclosed in a definition, a construct that combines scope restriction and replicated recep-
tion.
In the π-calculus, there is no constraint on the use of receptor channels, and it is possible
to write:

x(y). P | x(z). Q | xa

In practice, if the two receptors x(y). P and x(z). Q are far from each other, one faces a
distributed consensus problem, since the two processes have to agree about who takes the
value. The Join calculus tries to avoid this problem by forcing all the receptors on a given
channel to be grouped together in a definition of the form:

def (x〈y〉 . P ) ∧ (x〈z〉 . Q ) in x〈a〉(18)

In a definition def D in R the notation x〈y〉 is overloaded to mean reception of y on x
in the D-part (declaration38 part) and emission of y on x in the R-part (the running part,
or body of the definition). The def construct delimits the scope of its defined names,
that is the receptor channels declared in the D-part. Moreover, the receptors x〈y〉 are
permanently defined and correspond to π-calculus replicated inputs !x(y). P . Thus the
analogue of definition (18) in the π-calculus is:

(νx) ( !x(y). P | !x(z). Q | xa )

An important point to note is that in the Join calculus every receptor channel is statically
defined. Since their names are bound by their definition, receptors cannot be renamed:
two different receptors will never be equated39. Moreover, receptors are replicated in the

37This branch was to grow quite loaded in subsequent years.
38The D-part of a definition construct was also called definition in [68, 69]. For clarity, we prefer to use

“declaration” here.
39Indeed the Join calculus satisfies a property similar to the ouput only capability introduced explicitly in

later calculi [105]. This property says that a transmitted channel name can never be used by the recipient
as a receptor channel.
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definition where they occur, and thus are always available. This gives a precise meaning to
the statement that receptors are localized in the Join calculus (even in its basic version).

As in the asynchronous π-calculus [20, 91], communication is asynchronous in the Join
calculus: the syntax only allows simple messages x〈−→y 〉, without continuation. To provide
some synchronization mechanism, the calculus allows join-patterns in definitions. These
are groups of guards expecting to receive a corresponding group of messages atomically. A
join pattern J is either the reception of a tuple of names, x〈−→v 〉, or a composition J ′ | J ′′
of such receptions. In a join pattern, the names of the receptors are supposed to be all
distinct. A declaration D can then be an elementary declaration J . P , or a conjunction
D′ ∧D′′ of such declarations. It can also be empty. In each conjunct J . P , the names of
the join pattern J are binding for the continuation process P . Join patterns in different
conjuncts need not have disjoint receptor names. For instance, in example (18) above, the
same receptor x was used in two different conjuncts.

Besides messages and the construct def D in R , the calculus has constructs for
termination and parallel composition. An example of a Join process is the following:

def (x〈y〉 | t〈u〉 . P ) ∧ (x〈z〉 | t〈v〉 . Q ) in x〈a〉 | t〈c〉 | x〈b〉

According to our informal description of the def construct, this process may reduce to:

def (x〈y〉 | t〈u〉 . P ) ∧ (x〈z〉 | t〈v〉 . Q ) in P{a,c/y,u} | x〈b〉

The notation P{a,c/y,u} indicates the simultaneous substitution of a for y and c for u. In
this reduction the two messages x〈a〉 and t〈c〉 have been consumed by the first join-pattern,
triggering the process P . Alternatively, the two messages x〈a〉 and t〈c〉 (or also x〈b〉 and
t〈c〉) could have been used to trigger process Q. Thus join-patterns may be a source of
nondeterminism in the language. Note on the other hand that if another message on t
had been available, both P and Q could have been triggered in two successive reduction
steps.

The general form of the reduction above is given by the following rule:

def D ∧ J . P in Jσ | Q → def D ∧ J . P in Pσ | Q(19)

where the substitution σ is an instantiation of the received values of the pattern J . The
semantics of the Join calculus is completely determined by the reduction rule (19), to-
gether with standard contextual rules and the use of a structural congruence ≡ which
allows, for instance, all occurrences of def to be pushed in front of a term40.

The distributed Join calculus (DJoin for short) extends the basic calculus with explicit
locations and primitives for migration. Locations a, b, . . . are introduced in the syntax by
adding a new clause for declarations, the located declaration a[D : P ], which represents a
declaration of input channels located at a. The process P is used to “initialise” location
a when it becomes active. Just like channels, locations are defined together with their
code: in a[D : P ], the name a is a declared name, whose scope ranges over the whole
def expression which contains it. Unlike a receptor, however, a location can only be

40In fact, the semantics of the Join calculus was originally defined using a Chemical Abstract Machine
(CHAM) in the style proposed by Berry and Boudol [17]. The CHAM for the Join calculus is said to
be reflexive in that the definition mechanism of the calculus allows new sets of rules to be added to the
reduction rules of the machine.
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declared once in a definition. For instance, the syntax does not allow the expression
def a[D : P ] ∧ a[D′ : Q] . R in S.

Receptors are required to be declared in the join-patterns of a unique location. For
instance, the expression def a[x〈y〉 . P : Q] ∧ b[x〈z〉 . Q : R] in T is forbidden. On the
other hand def a[x〈y〉 . P ∧ x〈z〉 . Q : R] in S is a correct definition.

Like in the distributed π-calculi examined previously (see Section 4.3.1), in the DJoin
calculus locations are first class objects and can be transmitted in communication. It
is worth stressing that locations are globally declared in the DJoin calculus: just like a
receptor channel, a location a declared in some definition cannot be declared in any other
definition. It can only be used by a process in another definition if it has become known to
it (by effect of a communication). Distant communication is transparent in the calculus:
a message located at b will automatically move to the unique location a of its receptor.

As the syntax allows nested located declarations, locations are hierarchically structured
in a tree. At the top of the tree, there is an unlocated root. Since location names are
required to be globally unique, every proper node in the tree corresponds to a different
location a41. The location path ϕa from the root to a node a represents the position of a
in the location tree. If location b has position ϕaψb, then b is a sublocation of a. The path
ϕa is not necessary to identify a location a (the name a is sufficient, by the uniqueness
assumption); it is useful however to express consistency conditions in the semantic rules,
like the fact that a location does not migrate to a sublocation.

Migration is expressed by a new process construct go 〈a, k〉. A process executing the
instruction go 〈a, k〉 causes its current location, say b, to become an immediate sublocation
of location a; a null message k〈 〉 is emitted on channel k upon termination of the migration.
This message notifies that the migration is completed: it can be used, for instance, to
render a migration blocking. If the position of a in the location tree is given by ϕa, the
new position of location b will be ϕab. For the migration to take effect, it is necessary
that b does not occur in ϕa, that is b is not a superlocation of a. This is because in
the DJoin calculus, like in other calculi with structured locations, a migrating location b
moves together with all its sublocations (the subtree rooted at b). This means that the
location tree may be substantially reconfigurated at each migration. Note that migration
is subjective (since the go instruction applies to its enclosing location), and that the units
of migration are the locations themselves42.

Let us consider an example of reduction in the DJoin calculus. Without entering into
technical details, and borrowing ideas from [137] and the open Join calculus [19], we may
assume a runtime environment L which records the position of locations and declarations
at any given time. Then the reduction relation would be defined on configurations (L, P ).
For instance, supposing the environment L defines the position of b to be ψb, and the
position of a to be a string ϕa not containing b, we would have the following reduction:

(L, def b [D : P | go 〈a, k〉] ∧ D′ in R ) → (L′, def b [D : P | k〈 〉] ∧ D′ in R )(20)

where L′ is obtained from L by replacing all positions of the form ψbψ′ by ϕabψ′. In other
words, the effect of this reduction is to move the tree rooted at b to become an immediate

41This contrasts with other models with structured locations, where a general location is represented by
the whole path from the root to a node and an atomic location may appear in different paths.

42In fact, the movement of messages towards their receptor’s location could also be seen as a simple form
of process migration. This point will be discussed further in Section 4.3.5.
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subtree of the tree rooted at a.
To summarize, the DJoin calculus offers global access to locations as well as to chan-

nels. Once a process knows the name of a channel (resp. a location), it can make direct
use of it independently of its location (resp. its position in the location tree). The dis-
tributed infrastructure required to implement such global mechanisms is simplified by the
assumption of global uniqueness of locations and localization of receptors.

In other calculi, such as Amadio’s π1`-calculus considered in the previous section, the
localization of receptors was ensured by means of a static type system. The DJoin calculus
makes the choice of handling locations directly, without recourse to a type system.

In calculi with global communication and migration one expects a network transparency
result in the absence of node failures. As for the location failure calculi examined in
Section 4.2, this result also holds for the DJoin calculus, on the condition that systems
are free of circular migration (such migration would appear, for instance, in the process of
example (20) if location b were replaced by a). More precisely, under this condition two
processes of the DJoin calculus are equivalent if and only if they are equivalent in the
basic Join calculus once stripped of all location information.

Clearly, one cannot hope for transparency results in the presence of location failures.
Like the calculi for location failure discussed in Section 4.2, the DJoin calculus has been
equipped with a way of marking locations (as dead or alive), and constructs for halting a
location and testing its status. As in Amadio’s π1`-calculus, it is still possible to send a
message or migrate to a dead location. On the other hand emission or migration from a
dead location is ruled out. Rules for communication and migration are then conditioned
on the liveness of the source location. As in other models where locations are struc-
tured, a location fails with all its sublocations. Thus the dependence between locations is
meaningful for failure as well as for migration.

While the location failure calculi in [11] and [136] are synchronous, Amadio’s π1`-
calculus and the DJoin calculus are asynchronous. As observed in [101], in an asyn-
chronous world the assumption of a global knowledge of the liveness of every location may
be unrealistic. For a detailed discussion about the treatment of failures in the DJoin
calculus, and more generally about results concerning the calculus, the reader is invited
to consult Fournet’s thesis [67].

Compared to other calculi described in this section, the Join and DJoin calculi have
a relatively developed theory. Standard equivalence relations (barbed equivalences) have
been defined, although reasoning techniques still have to be worked out. Encodings of the
Join calculus into and from the asynchronous π-calculus have been given in [68, 69, 67].
The paper [19] presents a characterisation of the barbed congruence of the Join calculus as
an asynchronous bisimulation, inspired from [10]. A language based on the Join calculus
has been implemented, the Join Calculus Language presented in [70].

4.3.3 The Ambient Calculus

The ambient calculus of Cardelli and Gordon [32] is a process calculus which emphasizes
process mobility rather than communication. In fact, it appears that the mobility prim-
itives are sufficient to give the calculus its full expressiveness, and the communication
primitives are mostly added for convenience.

An ambient is an area delimited by a boundary, where multi-threaded computation
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takes place. Each ambient has a name, a collection of local processes (or threads) and
a collection of subambients. Thus ambients can be arbitrarily nested in a tree structure.
Processes may cause the enclosing ambient to move inside and outside other ambients.
The form of migration provided by the calculus is therefore subjective.43 Processes may
also “open” an ambient at the same level, that is dissolve its boundary causing its con-
tents to spread into the parent ambient. Finally, processes within the same ambient may
communicate with each other asynchronously, by releasing and consuming messages in
the local ether. The arguments of communication may be names, capabilities (that is,
permissions to operate on ambients with a given name), or sequences of such arguments.
We shall not consider further the communication primitives here.

Ambients move as a whole, bringing together all their threads and subambients. They
are therefore units of migration. The tree structure of ambients allows for a close con-
trol of mobility: an ambient can only enter a sibling ambient and exit a parent ambient.
Similarly, a process can only open an ambient which is enclosed in the same parent am-
bient. This form of mobility, which could be called proximity mobility, is well-suited to
model navigation through a hierarchy of administrative domains, which was the original
inspiration for the calculus. The ability to move and open ambients is regulated by capa-
bilities, possibly acquired through communication. These capabilities model the notion of
authorisation, necessary to regulate access to resources and, before that, the crossing of
administrative domains.

Formally, an ambient is written n[P ], where n is the name of the ambient and P its
contents, described by the following syntax, where M represents one of the capabilities
in n, out n, open n (and the communication primitives are omitted):

P,Q ::= 0 | M.P | P | Q | (νn)P | !P | n[P ]

In n[P ], it is understood that P is actively running, even when the surrounding ambient
is moving. This fact is expressed by a semantic rule saying that any reduction of P can
also take place within n:

P → Q ⇒ n[P ] → n[Q]

The mobility constructs are in n. P (to enter an ambient named n), out n. P (to exit an
ambient named n), and open n. P (to open an ambient named n). Their semantics is given
by the following reduction rules:

n[in m.P | Q] | m[R] → m[n[P | Q] | R]

m[n[out m.P | Q] | R] → n[P | Q] | m[R]

open m.P | m[Q] → P | Q

Clearly, the in and out operations are duals of each other. The open operation, on the
other hand, has a more definitive and disruptive effect. However, its use is regulated by a
capability which must have been given out by the ambient to which it is applied.44

43Indeed the terminology “subjective/objective” for migration was introduced by Cardelli and Gordon.
44Note that the open operation provides a form of objective migration, of the contents of an ambient

into its father ambient.
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Ambient names can be created, and used to name multiple ambients. Ambients with
the same name may coexist both at the same level and at different levels in the hierarchy.
In case a mobility instruction matches several ambients, one of them is chosen nondeter-
ministically. Ambients with the same name have separate identities, and an empty ambient
is still observable through its name. This is expressed by the following inequalities (where
≡ stands for semantic equality) :

n[P ] | n[Q] 6≡ n[P | Q]

n[0] 6≡ 0

An interesting equality which holds for ambients is the so-called perfect firewall equation:

(νn)n[P ] ≡ 0 if n /∈ fn(P )

This law says that a process enclosed in an ambient whose name is not known by the
environment (and cannot be used by the process itself) is equivalent to the terminated
process.

In many ways, an ambient resembles a named location. Like a location, it supports
internal communication and can receive ambients and messages (represented themselves
by ambients) from other places. However, ambients have a more general meaning. For
instance, they can move across places while carrying their running contents with them. In
this respect they behave rather like mobile agents. Moreover, as we have seen, the handling
of names is rather liberal: the same name can be borne by several ambients within the
same scope. In this way, ambients may be used to model service providers, of which there
may be more than one, as long as the same service is granted.

As mentioned earlier, one of the initial motivations for the Ambient calculus was to
model firewall crossing in large networks. In fact, the calculus is rather ambitious, and
intends to model a variety of distributed programming concepts such as channels, network
nodes, packets, services and software agents. Some examples may be found in [32]. In the
same work, it is also shown how the calculus can be used to encode languages such as the
asynchronous π-calculus and some λ-calculi. Current work on the Ambient calculus is
focussed on type systems for controlling mobility and the type of values transmitted within
ambients [31]. In [100], a modified calculus called Safe Ambients is proposed, with a type
system for controlling mobility and preventing so-called “dangerous interferences”. Modal
logics accounting for the spatial structure of ambients via the use of “spatial” modalities
are also under investigation [33].

4.3.4 The Seal Calculus

Like the Ambient calculus, the Seal calculus of Castagna and Vitek [157] is designed
to model distributed computing over large scale open networks. As some of the previ-
ous formalisms examined in this section, the Seal calculus takes the stand of exposing
the network topology and handing over control of localities to the system programmer.
However, compared to other calculi, the Seal calculus focusses more particularly on the
security issues raised by the new paradigm of network programming: it also aims to pro-
vide programmers with protection mechanisms for their resources and against malevolent
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hosts. Among the calculi we have seen, only the Dπ-calculus of Hennessy and Riely and
the Ambient calculus had a strong concern in security.

The Seal calculus may be concisely described as a polyadic synchronous π-calculus
with hierarchical mobile locations and resource access control. The main entities of the
calculus are processes, locations and resources.

A process P is a term of the mini synchronous π-calculus, where channels are tagged
with the relative location to which they belong. This will be explained more precisely
below, when discussing the use of channels for supporting communication and mobility.
Moreover a process can also be a named location containing a process, that is a seal n[P ].

Locations are called seals in the calculus. A seal is written n[P ], where n is a name (not
necessarily unique) and P is the process running inside the seal. Like channel names, seal
names can be transmitted in communication and restricted upon. Since a seal encapsulates
a process, and a seal is itself a process, it is clear that seals are hierarchically structured.
Processes which are not contained in a seal are assumed to be placed at the root’s location,
thus all processes are – explicitly or implicitly – located at some seal. In n[P ], the seals
contained in P are called the children of n, while n is called their parent. Seals are also the
migration units of the calculus. The migration of a seal is ordered by the parent seal, and
a seal can only be moved one level up or one level down the hierarchy. This is achieved,
as we will see, by transmitting the name of the seal to be moved.

As in the Dπ-calculus, the only resources of the Seal calculus are channels. Channels
are used, as usual, for the communication of names. The Seal calculus provides both
local communication, between processes running in the same seal, and linear proximity
communication, between processes placed in the parent-child relationship. No direct com-
munication is possible, for instance, between sibling seals. For distant communication, the
routing of messages in the hierarchy of seals must be explicitly programmed.

Channels are located in seals (inherited from the enclosing process)45, and processes
have access to local channels as well as to their parent’s and children’s channels. To enable
processes to refer to proximity channels, channel names are annotated with tags referring
to their relative place in the hierarchy. Formally, tags are defined by η ::= ? | ↑ | n,
denoting respectively the current seal, the parent seal, and a child seal bearing name n.
Then input and output actions for transmitting channel names are given by:

a ::= xη(−→y ) | xη(−→y )

Two co-located processes communicate via a local channel. We have for instance:

x?(−→z ). P | x?(−→y ). Q → P | Q{−→z /−→y }

For immediate upward or downward communication, a channel of either of the two partners
may be chosen. Therefore the communication will always involve a channel tagged ? and
a complementary channel tagged with ↑ or some name n. For instance we have:

n[x↑(−→z ). P ] | x?(−→y ). Q → n[P ] | Q{−→z /−→y }(21)

In fact, this is only approximately true. Because of the security orientation of the calculus,
a further ingredient will be required for non-local communication to take place. The idea

45Thus channels may be located in different seals.
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is that allowing non-local processes (like x↑(−→z ). P in this example) to use local channels
(like channel x of process x?(−→y ). Q) constitutes a threat to security. Indeed the first
process may have migrated to location n from some untrusted location. Then it should
not be allowed to access the local channel x, unless it is given explicit permission to do so.

To control inter-seal communication, the calculus proposes a protection mechanism
called portal. The idea is the following: for seal A to be able to use a channel x of seal
B, seal B must first open a portal for A at x. A portal is a linear access permission for
a channel: it can only be used once. Formally, a new construct openη x. P (respectively
openη x. P ) is introduced: it denotes a process which opens a portal for seal η allowing
it to perform an input (resp. output) on local channel x, and then continues like P . The
correct reduction replacing (21) is then:

n[x↑(−→z ). P ] | x?(−→y ). Q | openn x. 0 → n[P ] | Q{−→z /−→y } | 0(22)

The last important point to examine is mobility of seals. As mentioned earlier, seals may
be transmitted over channels, and that is the way mobility is modelled in the calculus.
The prefixing actions for exchanging seal names will be written xη{y} and xη{−→y }, to
distinguish them from the actions used for transmission of channel names. Note that an
output action can only send a single seal name, for a reason that will soon be made clear.
The complete syntax for prefixing actions is then:

a ::= xη(−→y ) | xη(−→y ) | xη{y} | xη{−→y }

A seal can only be moved by a process contained in the parent seal. A seal move action,
represented by an output xη{y}, requires that a seal with name y be present in the
current seal, otherwise it blocks. If several seals match the name, then one of them is
chosen nondeterministically. Note the difference with the ambient calculus: migration is
objective here (a process causes a seal at the same level to move), while it was subjective
in the ambient calculus (a process was causing the whole enclosing ambient to move).

The synchronisation of a move action xη{y} with a receive action xη{−→z } where
−→z = z1, . . . , zk has the effect of creating k copies of seal y under the names z1, . . . , zk.
The seal y will disappear from the location of the sender and the copies z1, . . . , zk will
appear at the location of the receptor. Thus seals may be both renamed and duplicated
during a migration. This may be useful respectively for protection and fault tolerance.

Regarded as a tree rewriting operation on the hierarchy of seals, a move xη{y} has
the effect of disconnecting a subtree rooted at seal y and grafting it either onto the parent
of y, or onto one of y’s children, or back onto y itself. Each of these moves can be
accompanied by renaming and introduce copies. For instance, suppose P = x↑{y} . P ′

and R = x?{z} . R′. Then we have the following reduction:

R | n[P | m[Q] | y[S] ] → R′ | z[S] | n[P ′ | m[Q] ](23)

where P causes the seal named y to move into its parent seal (the root seal in this case)
renaming it with z46. This is an example of upward migration. Note that the location
of the transmission channel is not important: the same reduction would have taken place

46Again this is not completely exact, and a portal is needed to authorize the use of non-local channels,
just as for channel name transmission.
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if P = x?{y} . P ′ and R = xn{z} . R′. The direction of the migration is always from the
sender to the receptor seal. The following is an example of downward migration, assuming
P = xm{y} . P ′ and Q = x?{z} . Q′:

P | m[Q] | y[S] → P ′ | m[Q′ | z[S] ](24)

The two reductions (23) and (24) show that the transmission of a seal name is really
a spawn operation in disguise. Its semantics is rather different from that of channel
transmission. The protection mechanism by means of portals, on the other hand, is the
same as for channel names, thus the formulation of migration as a form of communication
is convenient.

Note that as regards protection, the direction (upward or downward) in the hierarchy
of seals makes no difference: portals are used in the same way to protect a seal from its
parent seal or from a subseal. For migration instead this direction is important, since a
(process in the) parent can instruct a child to move but not viceversa.

The Seal calculus was designed to provide protection against attacks from visitor
hosts as well as attacks from the environment. A detailed discussion about the protec-
tion mechanisms of the calculus against various kinds of typical attacks (like disclosure of
information, denial of service and Trojan horses) may be found in [156]. Some program-
ming examples are presented in [157]. An implementation of the calculus is also under
development.

We conclude with a brief comparison with the Ambient calculus, which was one of
the sources of inspiration for the Seal calculus. We have already remarked that seal
mobility is objective while ambient mobility is subjective. Moreover, mobility of ambients
is controlled by capabilities which can be transmitted and used more than once. By
contrast, the Seal calculus gives full control of mobility to the environment; moreover,
this control is fine-grained since permissions must be renewed for each non local access.
Furthermore, the Seal calculus does not allow boundaries to be dissolved: the open
operation of the Ambient calculus is considered dangerous in that it allows a lower-level
agent, which should be subject to some control, to step at the local level. Finally, while the
Ambient calculus focusses on migration rather than communication, the Seal calculus
gives priority to communication, and indeed implements migration via communication.
Like the Ambient calculus, the Seal calculus also satisfies the perfect firewall equation
(ν x)x[P ] ≡ 0, which in this case holds without requirements on P . This equation
states that an arbitrary process can be completely isolated from the rest of the system,
i.e. prevented from any communication with it. It is a useful security property as it
guarantees that a seal trapped in a firewall cannot disclose any information.

4.3.5 Nomadic Pict

The language Nomadic Pict [148] of Sewell, Wojciechowski and Pierce is an extension
of Pict, a strongly-typed high-level concurrent language based on the asynchronous π-
calculus [111, 91, 20], which was developed by Pierce and Turner [154, 128]. Pict supports
a wide range of high-level constructs including data structures, higher-order functional
programming, concurrent control structures and objects. The vocation of Nomadic Pict
is to “complete” Pict to make it suitable for wide-area distributed programming. In
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particular, Nomadic Pict accomodates notions of location, agent and migration. The
language is layered in two levels of abstraction:

• A low level that makes distribution and network communication clear; at this level
one has location-dependent constructs, like agent migration and asynchronous com-
munication between located agents.

• A high level where the distributed infrastructure can be ignored; this level provides
location-independent constructs to allow mobile agents to communicate without hav-
ing to explicitly track each other’s movements.

In this brief description we shall not make a sharp distinction between the language No-
madic Pict itself [148] and the underlying calculus, the Nomadic π-calculus studied
in [147]. We shall essentially present the calculus, but using mostly the notation of [148].

The main entities of the language are sites, agents and channels. Sites may be thought
of as physical machines: they are unstructured and each site has a unique name s. Agents
are units of executing computation that can migrate between sites. At any moment,
an agent is located at a particular site s. Every agent has a name a, which is unique
in the whole network. Channels are the support for communication: they are used for
asynchronous communication both within an agent and between agents (possibly located
at different sites). Channel names c can be created dynamically, as in the π-calculus. New
names of agents can also be created dynamically, while names of sites are fixed once and
for all. All names can be transmitted in communication.

Low-level language

The syntax is rigidly structured into the three categories of sites, agents and processes.
Sites are assumed to be given: they are the set of machines, or rather an instantiation of the
runtime system on these machines. Sites contain a number of agents running in parallel:
the initial assignment of agents to sites is also supposed to be known. Finally, processes
always appear as the body of some agent. They are built with the usual constructs of
the asynchronous π-calculus (with typed channels), together with two new primitives for
agent creation and migration:

agent a = P in Q agent creation

migrate to s. P agent migration

The effect of the first instruction in the body of some agent b is to create a new agent
a[P ] at the same site, with name a and body P . After the creation, both P and Q start
executing in parallel with the rest of agent b. The new name a is unique and is binding in
both P and Q.

The execution of the second instruction in an agent a makes the whole agent move to
site s. After the migration, P starts executing at site s in parallel with the rest of agent
a.

More formally, assuming an environment L recording the sites of agents, with L(a) =
sa, the semantics of these constructs is given by:

(L, a[ (agent b = P in Q) | R ] ) → (L, (νb@sa)( b[P ] | a[Q | R ] ) )

(L, a[ (migrate to s. P ) | Q ] ) → (L{a 7→ s}, a[P | Q] )
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The notation (νb@sa) represents creation of a new name b at site sa, while L{a 7→ s} is
environment update. The semantics of the construct (νa@s) is given by the rule:

(L{a 7→ s}, P ) → (L′{a 7→ s′}, P ′ )
(L, (νa@s) P ) → (L′, (νa@s′) P ′ )

Note that migration is subjective, as in the Ambient and DJoin calculi. It is is also
asynchronous, since processes inside the moving agent a - other than the prefixed process
P - continue to run until the migration takes place. Note also that the migrate instruction
is the only means provided by the syntax to explicitly specify the site of an agent.

Direct communication on channels is only supported between processes running in the
same agent. For interaction between agents, the low-level language provides two distinct
constructs for local and distant communication:

〈a〉c ! v send to local agent

〈a@s〉c ! v send to distant agent

 send to located agent

The construct 〈a〉c ! v in an agent b attempts to deliver the message c ! v (“value” v on
channel c) to agent a on the same site as b. The construct 〈a@s〉c ! v, instead, tries to
deliver the message c ! v to agent a on site s. Both operations fail silently if agent a is
not found on the expected site. The implicit assumption is that at the low level agents
must know each other’s location in order to communicate successfully. In fact, these two
constructs can be derived from another instruction available in the low-level language:

if local 〈a〉c ! v then P else Q test-and-send to local agent

This instruction in the body of an agent b has two possible effects: if agent a is present
on the same site, the message c ! v is delivered to a and process P is spawned in parallel
with the rest of b; otherwise the message is discarded and Q is spawned in parallel with
the rest of b. This construct, which reintroduces some implicit synchrony in the language,
is mainly used for implementing the global communication mechanism of the high-level
language. Formally, its semantics is given by the rule:

(L , a[ if local 〈b〉c ! v then P else Q ] ) →

 (L, b[c!v] | a[P ] ) if L(a) = L(b)

(L, a[Q] ) otherwise

where again a structural congruence is used for splitting and grouping parts of an agent:
b[R] | b[S] ≡ b[R | S]. The test-and-send is the only primitive communication construct of
the low-level language, as the previous two constructs can be encoded as follows:

〈a〉c ! v = if local 〈a〉c ! v then nil else nil

〈a@s〉c ! v = if local 〈a〉c ! v then nil else

agent b = migrate to s. 〈a〉c ! v in nil

High-level language

The high-level language is obtained by adding a single location-independent construct to
the low-level language, namely one for global communication:

〈a@? 〉c ! v send to agent anywhere
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The effect of such a global output is to deliver the message c ! v to agent a, no matter what
its current location and what further migrations it can undergo.

The idea is that at the high level an agent must be able to access all other agents
uniformly, without having to locate them explicitly. It is important to note, on the other
hand, that the global communication construct is not primitive in the language, and has
to be implemented using the low-level communication primitives.

The low-level primitives remain available in the high-level language, for interacting
with agents whose locations are predictable. This possibility of choice is interesting since
global communication is potentially expensive to implement.

As can be seen, the model of Nomadic Pict is very simple. The units of migration
are agents, while sites are simply units of distribution.

The calculus LLinda

Linda [34] is a coordination language where processes share a global environment called
a tuple space, and interact by fetching and releasing tuples asynchronously in this space.
Distributed versions of Linda have been proposed, where multiple tuple spaces are in-
troduced and remote operations on them are provided. A variant considered in [35] also
allows nested tuple spaces. The calculus LLinda of De Nicola, Ferrari and Pugliese [117]
combines a core distributed Linda with a set of operators borrowed from Milner’s calculus
CCS. Both tuple spaces and operations over tuples are located. A primitive for spawning
a process at a remote tuple space is added (generalising an existing operation on tuples).
The located tuple spaces of LLinda have a flat structure, and can be accessed from other
tuple spaces without restrictions. Some typical examples (like a remote procedure call
and a remote server) are provided to illustrate the use of the language for remote pro-
gramming. An evolution of LLinda, the calculus Klaim studied subsequently by the same
authors [118], is also equipped with a type system for checking access rights of mobile
agents. A prototype language based on Klaim has been implemented.

Discussion

To summarize, the models reviewed in this section can be broadly divided in two classes
as regards their treatment of locations:

• Models based on a flat space of locations, where the migrating entities are processes
or agents. These are essentially the distributed π-calculi, excluding the dpi-calculus.
Migration is mostly weak in these calculi; it is only strong (and asynchronous) in
Nomadic Pict. Research has focussed on type systems guaranteeing a correct or
safe use of names, be they locations or channels. In some cases, as in the Dπ-calculus
and in its asynchronous version, locations are also units of communication. In the
π1`-calculus, the only calculus in this category to account for failure, locations are
also units of failure.

• Models based on hierarchical locations, where the migrating entities are locations
themselves. The representation of migration is more sophisticated here, and better
suited for handling failure and security issues. In all these models locations are units
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of migration and migration is strong and asynchronous. In the DJoin calculus47,
locations are also units of failure. In the Ambient calculus and the Seal calculus the
issue of failure is neglected (or judged inappropriate for large networks), and priority
is given to security questions. In the Seal calculus locations are clearly treated as
units of security. In the Ambient calculus locations are units of communication and
it is more debatable whether they can be seen as units of security. In some of these
models, a form of process migration is also provided. This is the case for instance in
the Dπ+-calculus. In the Ambient calculus, process migration is introduced by the
open construct, which allows processes at one location to diffuse into their father’s
location. In the DJoin calculus and in the dpi-calculus, message movement towards
a distant destination may be seen as an elementary form of process migration.

All these languages provide an explicit migration primitive (which in the Seal calculus is
rendered as communication of location names). In all models locations have names which
can be transmitted in communication. In all cases except for Nomadic Pict, where they
are fixed, locations may also be dynamically created; the dpi-calculus forbids creation of
new locations at the top level, since this is meant to represent a fixed architecture of
physical machines.

The main sources for this survey on distributed calculi for mobility were the original
papers cited in the various sections. The references [29] and [144] were also of help.

5 Conclusions

In this chapter we have reviewed two main approaches to process algebras with locations,
which we called abstract and concrete. These approaches respond to different concerns: in
the first case locations are introduced to distinguish parallel components, as the basis for
particular noninterleaving semantics. Locations are treated here as “units of sequential
computation”, although parallel subcomputations may be spawned at sublocations as the
execution proceeds. In the second approach locations are used to support a new style
of network-aware programming. In general, locations contain multi-threaded computation
here, and their space may vary as a consequence of location creation and migration.

In the first approach transitions are indexed by the location where they occur, while in
the second approach there is a variety of possible observations of locations, ranging from
indexed transitions (as in Murphy and Corradini’s model) to more implicit observations.
Locations may even become completely unobservable under certain conditions (for instance
in the Djoin and π1` calculi in the absence of failures).

Since locations are directly reflected in the semantics in the abstract approach and not
in the concrete approach (if we except Murphy and Corradini’s work), the reader might
be puzzled by our terminology “abstract vs concrete”: this refers to the fact that in the
“abstract” case locations are observed modulo a relabelling of their names, while in the
“concrete” case the names of locations, even though their observation is more restricted,
have an absolute meaning and cannot be abstracted upon.

Although locations do not have the same role in the two approaches, the models used
to represent them, be they flat or structured, are not substantially different. Within the

47As in other calculi inspired from it, like the dpi-calculus and the Dπ+-calculus.
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abstract approaches, techniques have been developed for reasoning about traditional (CCS-
like) process calculi enriched with locations, and a body of results have been obtained.
As regards the integration of locations and mobility, on the other hand, interesting calculi
have been proposed, with various foci, but the theory has not yet stabilised. The question
is then: to which extent can techniques and results developed for a simple process calculus
(CCS) in the first approach be extended to the more sophisticated calculi for mobile
computation addressed by the concrete approach?

In exposing the abstract approach, we have concentrated on two different presentations
of location semantics, based respectively on static and dynamic notions of location. The
relation between the two formulations has been examined in full detail. The connection
with other work on noninterleaving semantics for CCS has also been discussed in some
depth. Equational and logical characterisations for the location equivalence and preorder
were also mentioned. Very little has been said, on the other hand, about questions of
decidability and verification for location equivalence and other distributed equivalences.
We shall briefly touch upon such issues here. As regards decidability, a first decision
procedure for distributed bisimulation, based on a tableau method, was presented by
Christensen in [41], for a recursive fragment of CCS with parallelism known as BPP
(Basic Parallel Processes, see Section 3.2). The correctness of this procedure was based
on a cancellation property of the form p | q ∼d p | r ⇒ q ∼d r, which does not hold
for other noninterleaving equivalences such as location equivalence or causal bisimulation.
Building on work by Christensen et al. [42, 43], an alternative method for the decision of
such equivalences over BPP was proposed by Kiehn and Hennessy in [98]. An extension
of this decision procedure to the weak versions of the equivalences over representative
subclasses of BPP is also offered in the same work.

Another concern was to find compact representations for the location transition system
and efficient verification procedures for location equivalence. In its original dynamic for-
mulation of [28], the location semantics associates an infinitely branching transition system
with any non trivial CCS process. As soon as recursion is involved, this transition system
also becomes infinite state. We thus lose the correspondence between regular behaviours
and finite transition system representations that we have in the standard CCS semantics.
Now, while infinite-branching can be easily removed by choosing canonical locations at
each step (as in the numbered transition system of Yankelevich [167] or the occurrence
transition system considered in Section 2.6), the infinite progression is really intrinsic to
the dynamic location semantics (as to any other history dependent semantics).

In its dynamic formulation, location equivalence involves the creation of new locations
at each step. It thus requires the use of specific algorithms. In particular these algorithms
work only on pairs of processes – following the so-called on the fly verification technique
– and do not allow for the definition of minimal representatives for equivalence classes
of processes. To overcome this problem, Montanari and Pistore have proposed in [112]
a model called location automata: these are enriched transition systems where the in-
formation on locations appears on the labels, and is used in such a way that location
equivalence on terms can be reduced to the standard bisimulation on the corresponding
location automata. Moreover, location automata provide finite representations for all fini-
tary CCS processes (those where no parallelism appears under recursion). This has the
pleasant consequence that standard algorithms can be applied for the verification of lo-
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cation equivalence, with a worst case complexity which is comparable to that of verifying
ordinary bisimulation, and minimal representatives for processes can be defined.

Recently, Bravetti and Gorrieri have proposed a technique that improves on Montanari
and Pistore’s model in that it offers a compositional interpretation of processes into a
variation of location automata [30]. Although this technique has been mainly applied to
ST-bisimulation, it may reveal useful also for location bisimulation.

As regards the static definition of location equivalence, a simple algorithm was pro-
posed by Aceto in [5] for checking this equivalence on a subset of CCS (nets of automata).
This line of investigation was not further pursued, however, and no experimentation was
conducted on the static formulation of the equivalence for full CCS.

Concerning the concrete approach to localities, and particularly the new formalisms for
combining locations and mobility, our account in Section 4.3 was admittedly very focussed
and far from complete. For the sake of uniformity, we have concentrated on a family of
calculi derived from the π-calculus. However, mobility of agents and processes is a vast and
rapidly evolving field, and several other languages for mobile agents have been proposed
in the literature in the last decade. To mention but a few, proposals like Telescript, Obliq,
Oz, Kali Scheme, Odyssey, Voyager and Agent Tcl all bear some relation with the calculi
examined here.

Aspects of distribution have also been studied in other settings; most of the languages
cited in the previous paragraph are based on the object-oriented paradigm; for a treatment
of locations in the context of concurrent constraint programming see for instance [135].
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