
GRAPH GRAMMARS FOR DISTRIBUTED SYSTEMS

by llaria Castellani and Ugo Montanari

Istituto di Scienze dell'Informazione

University of Pisa, Italy

Abstract

In the paper we define grammars on a class of labeled, partially ordered

hypergraphs, called distributed systems. A distributed system models both the

spatial and the temporal aspects of a real system through the relations of

adjacency and causality. Terminal symbols represent the (deterministic, certain)

past history of the system while nonterminal symbols model the (possibly

nondeterministie, potential) future history of the system. The (context free)

productions of a grammar represent the possible stand-alone evolutions of system

components. From the productions, we obtain a (possibly infinite) number of

rewriting rules, which model the synchronized evolution of adjacent system

components. The (terminal) distributed systems derived within a given grammar

represent the alternative deterministic, concurrent computations of a single

nondeterministic system which is thus completely modeled by the grammar.

i. Introduction

Many models exist in the literature for describing the behaviour of concurrent

programs. Among others, we may mention Petri nets /5/, Hoare CSP /4,6/, Winskel

event structures /7,8/, Milner synchronization trees and synchronous and

asynchronous CCS /2,3/ and Winkowski concurrent systems /9/. The authors have

recently defined a model called Labeled Event Structures (LES) inspired by nets,

synchronization trees and event structures /i0,ii/.

The LES model is characterized by two' aspects. First, it represents a

nondeterministic, concurrent computation as a (possibly infinite) partial order of

events. More precisely, since branches corresponding to different nondeterministic

choices never join again, a computation has the gross structure of a "thick" tree.

Second, the way a concurrent system is interfaced with the external world is

carefully considered, and the notion of concurrent observer is defined.

On many of the above mentioned models, a number of operations is defined,

giving the semantics of basic language constructs. The starting point of the

present work was the observation that essentially all those operations can be

substituted by a single, rather standard type of graph rewriting rule . Grammars

based on such rules provide in our view a clear operational model of the behaviour

of concurrent Communicating systems. In a later paper we plan to show that the

semantics of a grammar could also be expressed by a LES.

21

2. Distributed systems

In this section we introduce our notion of distributed system. As it is the

ease for string grammars, the alphabet is partitioned into a terminal and a

nonterminal alphabet. Furthermore, every symbol has an associated n-arity or rank,

since it represents a subsystem with a fixed number of interaction points with the

external world. Finally, a terminal symbol of rank k is a k-tuple of symbols of a

primitive alphabet. In fact a k-ary terminal symbol represents the synchronized

occurrence of k events on k interaction points. Formally we have:

TI, the primitive terminal alphabet.

Tk=Tk,_ the alphabet of the terminal symbols of rank k, k=l,2,

T= 0 Tk, the t e rmina l ranked a lphabe t .
k=l

N k, k = l , 2 , . . . , the p r i m i t i v e , d i s j o i n t a lphabe t s o f the nonterminal symbgls

of rank k.

N= k~__=, Nk, the nonte rmina l ranked a lphabe t .

Vk=Tk+ NR, the a lphabe t of symbols o f rank k.

V=T+E~= [J VR, the ranked (terminal and nonterminal) alphabet.
k~1=

In our model we will use the concept of hypergraph. We define a hypergraph as

a triple (P,S,f) where P is a set of nodes, S is a set of hyperarcs and f is a

connection function

f: S ~k~=, pk

which assigns to every hyperarc a k-tuple specifying the nodes to which it is

connected. The value k is called the rank of the hyperare. Two hyperares sharing

one or more nodes are called adjacent. Notice that our hypergraphs are the

generalization of directed graphs with multiple parallel arcs. In Fig. i we see an

example of a hypergraph with two hyperarcs of rank one, two of rank two and one of

rank three. Notice that there is a self-adjacent hyperare. On hyperarcs with rank

larger than one, the ordering among the connected nodes will be indicated with

numbers 0,i,... whenever necessary.

The next step is to define our notion of distributed system as a hypergraph,

whose hyperarcs are labeled on V and are partially ordered. The meaning of the

nodes or ports, is the places in space where the various parts of the system

interact. The terminal hyperares represent elementary events having no extension in

time (they are instantaneous) but possibly extension in space (they may be

eonnected to more than one node). The nonterminal hyperarcs represent subsystems

22

having possibly both temporal and spatial extension. The partial ordering

represents the temporal or causal dependency relation among subsystems.

Fig. i A hypergraph

Formally, a distributed system on an alphabet V: D= (P,S,f~l,~) comprises the

following.

i) A hypergraph (P,S,f). The nodes P and the hyperarcs S may be also called

ports and subsystems.

ii A labeling function i: S--~V such that if l(s)=x then the hyperarc s and

the symbol x have the same rank. A subsystem labeled with a terminal

symbol may be called an event. Events must not be self-adjacent.

ill) A partial ordering ~ on S called temporal or causal relation. Two

subsystems s I and s 2 such that either s I ~ s 2 or s 2 ~ s I are called

causally related. Two subsystems which are not causally related are

concurrent. We require the set of all events (i.e. terminal subsystems)

to be left closed, namely that all predecessors of an event are events.

Furthermore, an event cannot be concurrent with an adjacent subsystem

(terminal or not).

The two restrictions in iii) have an intuitive explanation. In fact a

hypergraph in our model intends to represent a system at some stage of its

evolution. The terminal hyperares have the meaning of events which have already

happened at that stage, namely they describe the (deterministic, certain) past

history of the system. Similarly, the nonterminal hyperarcs describe the (possibly

nondeterministic, potential) future history of the system. Thus a non terminal

hyperarc cannot precede a terminal hyperarc. Furthermore, two concurrent subsystems

are meant to be possibly overlapping in time and two adjacent subsystems are meant

23

to be possibly overlapping in space. But at some point in time and space only one

event may happen. Therefore a terminal hyperarc cannot be adjacent and concurrent to

another terminal hyperarc. In fact the two events either are incompatible (i.e.

they represent different activities on the common ports) or they are compatible and

synchronized and thus they should be merged in a single event. Similarly, a

terminal hyperarc cannot be adjacent and concurrent to a nonterminal hyperare. In

fact the event would impose a precise consistency constraint to the (still

unexpanded) nonterminal subsystem, which possibly could not be met. But in this

case the event itself could not have happened. Thus the nonterminal ~perarc should

have been consistently expanded at the same stage of the graph generation process

at which the terminal hyperarc was produced. Notice that as a consequence of the

combination of the two constraints above, a terminal hyperarc must precede an

adjacent nonterminal hyperarc.

The following definition will be useful later. A distributed system DI=(PI,SI~

fl,ll, <i) is called a subgraph of a distributed system D:(P,S,f,I~) on the same

and hs: S1 -~S such that alphabet iff there exist two injective mappings hp: PI--~

for all Sl~S~E S I we have hp(fl(Sl))=f(hs(Sl))9 ll(Sl)=l(hs(Sl)) and Sl_ <Is':l hs(Sl)

--< hs(Sll)" The part of D in correspondence to D1 is called an occurrence of D1 in

D.

In Fig. 2 we show an example of a distributed system. To graphically represent

our distributed systems, we use the two dimensions of the page to express time

(vertical, flowing from top to bottom) and space (horizontal). Thus nodes, which

have only a temporal extension~ are represented usually as vertical lines (of

medium thickness). Terminal (nonterminal) subsystems are expressed by circles

(boxes) and the connection function is described by horizontal thin lines,

decorated when necessary with a natural number giving the ordering of the

connection. The intersection with the node is marked with a dot. Lower (upper) case

symbols in the circles (boxes) represent the labeling function]. Remember that

terminal symbols of rank k are k-tuples of symbols of the primitive alphabet T .
1

Thus in the circles we draw the primitive symbols near the corresponding

connections. Nonterminal symbols of rank 1 are expressed with Ao,AI~... , of rank 2

with BomB1,... and so on. Finally the causal partial ordering is represented by

its Hasse diagram, drawn from top to bottom with thick, nonhorizontal lines.

In our example we have:

D=(P,S,f,I,~), with

24

P: { no,nl,n 2 }

S= { e 0 e 3 , s 0 s 2 }

f(eo)=(no,nl,),f(el)=(nl,n2),f(e2)=(no),f(e3)=(n2),f(So)=(nl,no),f(sl)=(nl,n2)
f(s2)=(n I)

l(eo)=(a,b),l(el)=(c,b),l(e2)=(a),l(e3)=c,l(So)=l(Sl)=Bo,l(s2)=Ao

is the reflexive and transitive closure of the following relation: eo<el,e2;

el~e3,So; e2~So; e3~sl; Sl~ s 2"

eo

e2

8 0

el

--r-J$1

P~2

8 2

Fig. 2 A distributed system

Notice that subsystems s and e are concurrent but not adjacent, e and e
0 3 0 2

are adjacent but causally related, while s and s are adjacent and concurrent but
0 i

both nonterminal.

25

3. Productions

In this section we give our definition of productions. They are essentially

context-free and can be applied to hyperarcs. Thus they describe the evolution of

subsystems as isolated entities, corresponding in this sense to the first step of

the methodology discussed in /i/.

Formally, a production P of rank k on the alphabet V

X k ~ (D , (n 1 n k))

is a pair, whose first (left) element is a nonterminal of rank k and whose second

(right) element is a pair (D,(nl,...,nk)) where D=(P,S,f,I, ~) is a distributed

system on V and where (nl,...,n k) is a k-tuple of distinct nodes of D. We require

that D is rooted, namely that S contains exactly one terminal hyperarc and that

this hyperarc is smaller than any other hyperarc of S in the causal relation ~.

Nodes in (nl,...nk) are called global or external, and the other nodes of P are

called local or internal. We impose the above restrictions since we want to have a

direct correspondence between a generated event and the application of a rule. Thus

two events generated by the same rule could only be contemporary and thus should be

identified. Similarl~ if an event e and a (nonadjacent) nonterminal subsystem s are

generated by a production P, the nonterminal s can be expanded obviously only after

the application of P (i.e. its creation) and thus should be larger than e in the

temporal ordering.

B o 0 I 1

I _
v

Fig. 3 A production

In Fig. 3 we show an example of a production of rank two. We assume that nodes

belonging to the k-tuple in the right member are labeled with natural numbers

O,l,...,k-l.

28

k
Intuitively, a production X ~(D,(nl,...~nk)) can be applied to a graph by

replacing any nonterminal subsystem labeled with X k with graph D. But if we look

for instance at the graph in Fig. 2, we see that the production in Fig. 8 cannot be

applied to subsystem s .In fact the generated event would result, in the obtained
0

graph, both adjacent and concurrent to subsystem s . Thus also s should be
I i

replaced at the same time.

4. Rewriting rules

To express the synchronized application of many productions, we proceed as

follows. We first explain how a rewriting rule can be derived from one or more

(consistent) productions, and then we define how a rewriting rule can be applied to

a distributed system. This corresponds to the second step of the methodology /1/.

Informally speaking, a rewriting rule has a left member specifying how the various

productions should be synchronized and a right member which is obtained by merging

the right members of the productions.

More formally, a rewriting rule r is a pair

DI~(D2,g,R)

whose first (left) element is a distributed system Dl=(Pi,Sl,fl,ll, ~i). We require

that all subsystems of D are nonterminal and pairwise concurrent.
i

The right member (D2,g, R) is a triple, where:

D2=(P2,S2,f2,12, ~2) is a rooted distributed system; let e be the unique event

in $2;
g:Pl----P2 is an injective function called spatial embedding function;

R ~ S x S is the temporal embedding relation. We require that R is invariant
1 2

with respect to right composition with ~2' namely s R x and x'<2 x

implies s R x'. Furthermore for all s in S we must have s R e.
i

The purpose of g and R is to specify how, when applying the rewriting rule, its

right part can be inserted in the original hypergraph. We need a definition which

will be useful later. A node nC P is called a synchronization node iff g(n) is
i

connected with event e.

Now we describe a procedure which, given the left member D of a rewriting
1

rule and a production for every subsystem in it, derives, if possible, the right

member (D2,g,R) of the rule. %Ve proceed as follows.

27

Procedure A

Step i We obtain a first approximation (D'2=(P2,S2,f2,12, __<2),g',R') of the right

member by executing, for every subsystem s of DI, the following operations.

Initially D o ~ is DI, g' is the identity and R' is empty.

k
Let X---(D,(nl,...,nk)) be the production we want to use for subsystem s. %~'e

,
must have ll(S)=xk Let fl (s)=(n~''l "nk) ~e erase s from D , we add D to D'

2

and we merge nodes n and n[, i=l,...,k (~).
i l

Furthermore, we let s R'x for all subsystems x in D.

Step 2 We check if D' is event-connected, namely if for every pair of events e',e"
2

of D 2 there exists a sequence of events e'= el,e2,...,en=e" with e i adjacent

to ei+l, i=l,...,n-l. If D 2 is not event-connected, we do not allow the

derivation of a single rewriting rule, since not all the productions in this

case would be naturally synchronized. Otherwise, a compatibility test is

performed. For every pair of (possibly coincident) adjacent events e I and e 2

of D~,~ let n be any common node, say the i-th for e I and the j-th for e 2.

Thus f'(el)li = f' (e2)lj =n, where I k is the tuple projection operation. VJe

must have l'(el)[i=l ' (e2)lj" If the test is not satisfied, the rewriting rule

cannot be derived since the given rules were incompatible.

Step 3 The final right member (D2,g,R) is obtained as follows. D 2 has the same set

of nodes of D'. All the events in D' are merged in one single event ~. Its
2 2

rank k is thus equal to the number of nodes in D' which at least an event
2

was connected to. These nodes form the k-tuple f2(~), but their ordering in

it is arbitrary, and thus this procedure usually generates more than one

rewriting rule. To define the label of e, let n be any node in the k-tuple

, l j:fi ir above and let e be any event of D 2 connected to node n. Say f' (e) i

=n. We let l(e) li=l'(e)l j" Notice that the choice of e is inessential, since

the test in step 2 was satisfied. The nonterminal subsystems of D and their
2

labels are the same as in D'. Function f is the same, and relations _< and R
2

are the same as in Dj except for the merging above.

(~) Formally, adding D to D~means componentwise union (functions and relations are

considered sets of pairs). Kerging two nodes means to replace each of the nodes

with a single new node in all sets, functions and relations.

28

Formally, given a set of productions P and a rewriting rule r, we say that r

is derivable from P iff for every subsystem in the left member of r there exists a

production in P such that the right member of r can be generated with the above

procedure A.

To exemplify the application of procedure A let us consider as D the left
i

member in Fig. 4. We want to apply the production in Fig. 3 to both s o and s I. The

right member shown in Fig. 4 is the result of step 1 of the procedure above. We

label nodes and hyperarcs related by function g and relation R respectively with

the same marks no,nl,...and So,Sl,... in the right and left members. Since R is

invariant with respect to composition with ~, we maqk in the right member only the

maximal elements of the ordering ~ .

r t O ~ r t 2

8 O Sl

$0 O I B o I I

I1
So sl

, n2

Sl

Fig. 4 An intermediate step in the derivation of a rewriting rule

no ~ r t 2

8 0 81

no~

SO

o

s o sl

n 2

1 _
w

Fig. 5 A rewriting rule derived from the synchronization

of two copies of the production in Fig. 3

29

The test in step 2 is satisfied since here we have only two .adjacent events

and they are compatible, because both of them assign the same character a to the

common node marked n . Thus we can pass to step 3 of our procedure, whose result is
i

the rewriting rule shown in Fig. 5. Here the two events of rank 2 are merged in one

event of rank 3. Notice that the alternative rewriting rules which can be generated

by step 3 would differ from the rule in Fig. 4 only by a permutation of numbers 0,I

and 2 specifying the connection ordering of the event. The association of symbols

b, a and b to nodes marked no, n I and n 2 would not change instead.

Our definition of rewriting rule is in a sense more general than necessary,

since not every rewriting rule can be obtained by the synchronization of suitable

productions. For instance, the rewriting rule in Fig. 6 has a nonterminal sub-

system in its right member which is related with R to two subsystems in the left

member (marked with s O and Sl). It is easy to see that this is never the case for

rewriting rules derived from productions. This property has an intuitive meaning.

In fact, rewriting rules are in general intrinsically context sensitive, since they

allow to recombine subsystems together (for instance the two subsystems labeled B
0

can be replaced by the subsystem labeled C in the rule in Fig. 6), while
0

productions permit only the decomposition of subsystems.

n o ~.

s o S l

~ n 2

S O 81

n2
A

Fig. 6

A rewriting rule which cannot be derived by the synchronization of any production.

30

5. Applying rewriting rules

In this section we define a procedure B, which, given a distributed system

D=(P,S,f,I,~), a rewriting rule r: DI~(D2,g,R) and an occurrence of D I in D

derives, if possible, a new distributed system D'. For simplicity we identify, in

the following,system D I with its occurrence in D.

Procedure B

Step i In this step we evaluate two applicability conditions. The first condition

imposes that no nonterminal subsystem esists in D which is smaller in the

temporal ordering than any subsystem of D . The second condition requires
1

that no subsystem of D which is not in DI, and which is concurrent with all

the subsystems in D is connected to a synchronization node of D . This
1 1

second condition makes sure that the rule synchronizes enough subsystems of

D.

Step 2 In this step we operate the replacement of D I with D 2 in D. %Ve first merge

the pairs of nodes of D and D belonging to function g. Then we increase
1 2

relation ~ as follows. For every (terminal) subsystem s of D smaller than

some subsystem of D I, and for all subsystems s 2 of D2, we let s < s2;

furthermore, for every (nonterminal) subsystem s of D larger than some

subsystem s I of DI, and for all subsystems s 2 of D 2 such that siR s2, we

let s2< s. Finally we erase the subsystems of D I. The resulting system is

D T .

Formally, given two distributed systems D and D' and a rewriting rule r= D
i

~(D2,g,R) we write D r--q~ D' iff there exists an occurrence D I in D such that D'

can be derived with the pracedure B above.

As an example we apply the rewriting rule in Fig. 5 to the graph in Fig. 2.

The resulting graph is shown in Fig. 7. Notice than the rule can be applied to the

subsystems s O and s I since the only smaller subsystems are terminal and the only

other nenterminal that is connected to either n O or n I or n 2 (i.e. to some

synchronization node) is s 2, which however is larger than s I. Notice that after the

replacement, subsystem s becomes larger than only those subsystems which are
2

generated by its former predecessor s I.

31

Fig. 7

A distributed system obtained by applying the rewriting rule

in Fig. 5 to the system in Fig. 2.

32

6. Grammars for distributed systems

A grammar G is a triple (V,Do,P), where V is the alphabet, D O is an initial

distributed system and P is a finite set of productions. Given two distributed

systems D and D' on alphabet V, we write D G- D' iff there exists a rewriting rule

r derivable from P such that D �9 D'. A derivation or computation for G is a

G
�9 , i=O, 1 The (finite or infinite) sequence D O , D 1 , . s u c h t h a t D i ~ Di+ 1

l a n g u a g e L=L(G) g e n e r a t e d by g r a m m a r G i s t h e s e t o f a l l d i s t r i b u t e d s y s t e m s D w i t h

G
o n l y t e r m i n a l s u b s y s t e m s (s h o r t l y t e r m i n a l s y s t e m s) s u c h t h a t D ' P * D, i . e .

0

d e r i v a b l e b y a f i n i t e c o m p u t a t i o n .
/

I n F i g . 8 a , 8b a n d 8c we s e e an e x a m p l e o f a g r a m m a r , a n d i n F i g . 9 we s e e an

i n t e r m e d i a t e s t e p i n a d e r i v a t i o n . The e x a m p l e d e s c r i b e s a t r e e - l i k e s y n c h r o n o u s

c o m m u n i c a t i o n n e t w o r k c o n n e c t i n g a n u m b e r o f s t a t i o n s . The s y s t e m c a n i n c r e a s e i t s

s i z e d y n a m i c a l l y . E v e r y s t a t i o n d e c i d e s a u t o n o m o u s l y e i t h e r t o r e c e i v e a m e s s a g e o r

t o s e n d a m e s s a g e na me d a o r a m e s s a g e n a m e d b . A s e n d e r - r e c e i v e r p a i r c h o s e n a t

r a n d o m among a l l t h e s t a t i o n s w h i c h a r e r e a d y i s a l l o w e d t o c o m m u n i c a t e . The

c o m m u n i c a t i o n i t s e l f i s r e p r e s e n t e d a s a s i n g l e e v e n t i n v o l v i n g a l l n o d e s on t h e

p a t h b e t w e e n t h e s e n d e r a nd t h e r e c e i v e r . The e x a m p l e w a n t s t o show how a

s y n c h r o n i z a t i o n p o l i c y b a s e d on p a i r w i s e s y n c h r o n i z a t i o n (l i k e N i l n e r ' s c o m p o s i t i o n

/2/) can be easily represented in our model.

To describe the example, let us consider first the initial system in Fig. 8c.

There are two concurrent and adjacent subsystems. The rightmost subsystem labeled

Astop can only evolve in a termination event labeled stop (see the production for

Astop in Fig. 8a). Subsystem labeled A can also evolve in a stop event (see the
0

last production for AO), and thus a single stop event is a distributed system

generated by the grammar. Alternatively, a subsystem labeled A 0 can reproduce two

copies of itself connected by an element of the communication network labeled C

(see the first production for AO). We call this triplet a cell of the system.

Notice that subsystem C is the only one connected to the outside world, while the

two subsystems labeled A are both connected to newly generated nodes. Thus
0

iterating the application of this production (which does not need any synchroniza-

tion) we can generate a binary tree of communication elements, whose leaves are A
0

-subsystems. The remaining productions for A correspond to the decisions of either
0

receiving or sending a character (here an a or a b) and in this last case which

character to send. Notice that all these productions create an event (modeling the

33

r t

o 0 ~ 0 IAsb~

A s a

, A r ~- -QO

D- a >- A s b b

w

A r A s t o p

Fig. 8a A set of productions for synchronous communication.

34

C (

w

C
2 :2

0 ,'

!

x : a,b,

a,b

I o : 0

___]

2

x: a,b

,~) ;o

Fig. 8b A set of productions for synchronous communication.

Fig. 8c An initial distributed system.

ct

(1
)

,<

0

c~

G
O

0'

1

36

decision taken) connected to a local port, and thus they do not need any

synchronization. Therefore the involved nondeterminism might be called local. The

subsystems generated in the case of a send decision are labeled with symbols (Asa

and Asb) with only one production. Thus the actual send operation is completely

determinate. On the contrary, the receive symbol Ar can be rewritten in two ways

corresponding to receiving an a or a b (dashed characters are used, to forbid

communication between two senders or two receivers). Since in both cases the event

is connected to an external node, the choice between the two is taken according to

the possibilities of synchronization with external entities (here the communication

network and, eventually, the sender). Thus the involved nondeterminism might be

called global.

Symbol C labeling the elements of the communication network can be rewritten

in 13 ways. The first 8 ways (first row) correspond to events synchronizing an

internal node of the cell with the external node and assigning the same terminal

symbol (a,b,~ or ~) to both nodes. The second 4 ways (second row) correspond to

events synchronising two internal nodes of the cell and thus assign complementary

symbols to the two nodes: One is the sender and the other is the receiver. The last

production (third row) corresponds to termination. Notice that since the

termination event is connected to all the three nodes, the communication network

behaves in this case as a broadcasting network and not as a point-to-point network.

In Fig. 9 we see a distributed system derivable with the productions in Fig.

8a and 8b from the initial system in Fig. 8c. Notice that three start events have

happened, and thus four A subsystems have been generated. Looking at the
0

nonterminal subsystems at the bottom of the figure, we see that the four subsystems

are organized in two cells, plus a central communication element connecting the two

cells. Going back to the events, it is clear that the first communication took

place between the right station of the left cell and the right station of the right

cell. Notice that if all stations decide either to send or to receive, a deadlock

occurs, no rewriting rule is applicable and, according to our definitions, the

computation is aborted since no terminal system can be derived. Going back to the

system in Fig. 9, the next step is the concurrent occurrence of two internal

communications in the two cells. Thus we can say that our communication network has

no centralized control, and two communication paths can be active at the same time,

provided they are disjoint.

The following theorem states the link between the parallelism aspects modeled

37

by the concurrency relation in a (terminal) system and those implicit in the

possibility of applying many independent rewriting rules to the same graph. We need

a definition. Since every rewriting rule generates exactly one event, a finite

computation induces a total ordering on the events of its final system (i.e. its

last element). This ordering is called the generation ordering.

Theorem 6.1. Given a distributed system D= (P,S,f,l, ~) generated by a grammar G,

the possible generation orderings of its events are exactly those total orderings

compatible with (i.e. larger than) the causal ordering ~ of D.

Proof outline. A generation ordering respects the causal ordering.

A nonterminal cannot precede a terminal, and therefore any newly generated event

must be a maximal of the causal ordering.

Every total ordering compatible with the causal ordering is a generation ordering.

Given two total orderings compatible with a partial ordering, it is well known that

it is possible to find a sequence of compatible total orderings between the two

given total orderings, such that two adjacent orderings in the sequence are equal

except for the permutation of two contiguous elements.

Thus the thesis is true provided we show that if two concurrent events are

contiguous in a generation ordering, it is possible to obtain another generation

ordering by permuting the two events. But it is easy to see that two concurrent

contiguous events can be generated only by the consecutive independent applications

of two rewriting rules. Namely, every subsystem rewritten by the second rule is

concurrent with every subsystem generated by the first rule. Thus the rules can

also be applied in the reverse order, without changing the result.

Q.E.D.

7. Conclusions

In the previous section, the language generated by a grammar was defined as a

set of finite, terminal distributed systems. While this was the simplest way of

extending the concepts of formal languages theory to fit our needs, it is not yet

satisfactory as a model of real systems. A number of useful extensions can be

conceived. First, infinite graphs and infinite derivations might conveniently

represent nonterminating systems. Furthermore, a distributed system containing a

nonterminal subsystem which cannot be rewritten, may correspond to a deadlocked

computation, and thus may conceivably appear in the language. Finally, a set of

distributed systems may contain insufficient information, since the exact point (in

38

time and space) where a decision was taken between two possible computations does

not appear in the language. Faetorization of the distributed systems of the

language in the form of a "thick" tree may be possible, thus providing a LES as the

semantics of a grammar.

References

/i/ E.Astesiano, G.Reggio, E.Zucca. Operational Frameworks for Semantic

Description of Concurrent Languages, with an application to ADA-like

languages, Internal Report CNET-61, Dept. of Mathematics, Univ. of Genova.

/2/ R.Milner. A Calculus of Communicating Systems, Springer LNCS n ~ 92, 1980.

/3/ R.Milner. Calculi for Synchrony and Asynchrony, Internal Report CSR-I04-82,

Edinburgh University, February 1982

/4/ C.A.R.Hoare , S.D.Brookes, A.W.Roscoe. A Theory of Communicating Sequential

Processes, Technical Monograph PRG-16, Programming Research Group, Oxford

University, 1981.

/5/ C.A.Petri. Concurrency, Proc. Net Theory and Applications, Springer LNCS n ~

84, 1980, pp. 251-260.

/6/ C.A.R. Hoare. Communicating Sequential Processes, Comm. ACM 21, August 1978,

pp. 6 6 6 - 6 7 7 .

/7/ M.Nielsen, G.Plotkin, G.Winskel. Petri nets, event structures and domains,

part i, TCS 13, 1981.

/8/ G.Winskel. Event structure semantics for CCS and related languages, ICALP

'82, Springer LNCS n ~ 140, July 1982.

/9/ J.Winkewski. Behaviours of Concurrent Systems, TCS ii, 1980, pp. 89-60.

/i0/ U.Montanari, C.Simonelli. On Distinguishing Concurrency from Nondeterminism,

Proc. R6seaux de Petri et Parall61isme, Colleville sur mer, May 1980.

/ii/ I.Castellani, P.Franceschi, U.Montanari. Labeled Event Structures: A Model

for Observable Concurrency, IFIP TC 2 - Working Conference: Formal

Description of Programming Concepts II, Garmisch - Partenkirchen, June 1982,

NorthHolland, to appear.

