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1. Introduction 
Recently there has been a proliferation of algebraic languages for describing 
concurrent processes. For a representative sample, see [2], [3], [5], [ 151, and [ 161. 
Essentially each such language consists of a set of combinators-or constructors- 
for defining new processes in terms of simpler ones, together with some facility for 
recursive definitions. 

A popular, and very successful, method of providing a semantic theory for these 
languages is via the notion of bisimulution [ 16, 171. A bisimulation between two 
processes p and q is a relation R that provides a simulation of the behavior of p by 
q and simultaneously a simulation of the behavior of q by p. Two processes are 
said to be bisimulation-equivalent if there exists a bisimulation between them. This 
is now a classical way of formalizing the idea that two processes are indistinguishable 
when they show the same behavior, and a considerable amount of research effort 
has been expended in providing axiomatizations for bisimulation equivalence, in 
a variety of settings. 

In this paper we wish to reconsider the notion of bisimulation and suggest a new 
one that preserves more of the structure of processes. Bisimulations are traditionally 
based on a description of processes as sequential transition systems, where transi- 
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tions are labeled by atomic actions. In this view a process evolves by successive 
elementary transitions and a concurrent process is semantically equivalent to a 
sequential nondeterministic one. Such theory of bisimulations ignores the concur- 
rent structure of processes: it provides a so-called interleaving semantics for 
concurrency. 

We would like here to propose a noninterleaving semantic theory that retains 
many of the advantages of the interleaving theories. Unlike [4], where a similar 
goal is achieved by labeling transitions with composite actions, we shall keep here 
to systems labeled by atomic actions. We restrict our attention to a rather simple 
language, the set of finite terms of CCS (Mimer’s Calculus of Communicating 
Systems). This provides a perfectly good framework in which to explain our ideas; 
it should also be adequate for the reader to evaluate them. 

Let us briefly sketch the idea underlying our semantics. We interpret finite CCS 
terms as distributed labeled transition systems. In such a system, each transition 
gives rise to a compound residual ( p’, p”), made out of a local component p’ and 
a global component p”. Thus, a typical transition has the form p 4 (p’, p”), 
where a is an atomic action and p” includes p’ as a component. Intuitively: 
separating the components allows us to distinguish causality, relating the a.ction a 
to the local residual p’, from concurrency, relating a to the “rest of” p”. 

On the basis of these new transitions, we define on processes a behavioral 
equivalence called distributed bisimulation equivalence, which takes into account 
both residuals of transitions. We show that this equivalence distinguishes concur- 
rent behaviors from nondeterministic ones, and thus is more discriminating than 
ordinary bisimulation. 

The paper is self-contained even though some knowledge of [ 111 would be 
helpful. A good introduction to algebraic behavior languages may be found in [ 151. 
We give now a short summary of the work presented. 

In Section 2.1, we reexamine the usual view of processes as labeled transition 
systems, and propose our alternative description within which structural properties 
of processes may be reflected. In Section 2.2, we give the definition of distributed 
bisimulation and contrast it with the standard notion of bisimulation. The new 
equivalence is given a complete algebraic characterization in Section 2.3. This is 
achieved by introducing an asymmetric parallel operator Y, similar to the left- 
merge operator of [3]. 

In Section 3 we apply the theory to a language that includes unobservable actions. 
We obtain a complete axiomatization ofthe corresponding distributed bisimulation 
equivalence by adding to the theory of Section 2 a set of so-called T-laws. These 
include the T-laws of [l 11. In Section 4, we introduce communication into the 
language. The CCS approach to communication is followed: Communica.tion is 
viewed as the simultaneous occurrence of complementary actions. We propose a 
set of axioms for this extended language, but their completeness remains am open 
problem. A brief conclusion follows. 

2. Distributed Bisimulations 

2.1 PROCESSES AS LABELED TRANSITION SYSTEMS. A veryprimitiveoperational 
semantics of processes can be given in terms of labeled transition systems. 

Definition 2. I. A labeled transition system (Its) is a triple (P, A, +), where: 

-P is a given set of processes, 
-A is a given set of actions, 
- + is a relation contained in (P x A X P), called the transition relation. 
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RULES G? 

Rule 1. a: p&p 
Rule 2, p&p’ implies p+q-I;p’ 

q+pSp’ 
Rule 3. p-&p’ implies Pl4~P’l4 

qlp-fi, 4lP’ 

FIG. 1. CCS Transitions 

We usually write p -% q in place of (p, a, q) E +. Intuitively, this means that p 
may perform the action a and thereby be transformed into q. In fact, many different 
interpretations may be placed on these triples and a discussion of these interpre- 
tations, for our particular language, will lead to our new semantics. 

Let A be a given set of unspecified actions. The language we investigate is 
parameterized on A. Let 2, be the signature consisting of 

-NIL, a constant or nullary operator; 
--a. for each a E A a unary operator, called prefixing; 
-+, a binary infix operator, called choice; 
- 1, a binary infix operator, called parallel composition. 

We use L to denote the word algebra generated by Z, . When writing words in 
L, we use the usual conventions of CCS: prefixing has precedence over 1, which in 
turn has precedence over +; prefixed terms such as a.x are abbreviated to ax and 
NIL is often omitted. For example: 

a.(c.NIL) + (b.NIL I (a.NIL + d.(a.NIL))) 

is rendered as ac + b 1 (a + da). It represents a process that can either act like: 

-the process ac, which performs the action a and then the action c; or 
-the process b 1 (a + da), which consists of two subprocesses in parallel, one of 

which can only perform b while the other can either perform a or d followed 
by a. 

To give L the structure of a labeled transition system we let 

-P, the set of processes, be the set of terms in L; 
--A be the set of predefined actions or observations; 
-+=, the transition relation, be the least relation satisfying the axioms in Fig- 

ure 1. 

Here p 4 q is true only if it can be proved using the given three rules. For 
example, ifp denotes ac + b 1 (a + da), then the following are true: 

P 5 c, 

p --% NIL I (a + da), 
p-% b]NIL, 
pd‘bla. 

We can interpret a transition or observation p 4 q as being the response of p to 
some external demand. That is, we can consider the evolution of p as being driven 
by some external experimenter or observer, which at each step asks p for some 
specific task a. If p is able to satisfy this demand, it performs an action a thereby 
evolving into a new system q. This is essentially the interpretation used in [ 1 l] to 
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motivate the definition of observational equivalence. With respect to this interpre- 
tation, Rules 1 and 2 are eminently reasonable. On the other hand, the use of 
Rule 3 for processes of the form p 14 implies that the observer in question is 
ignoring information that should be apparent. At least this is the case if we make 
some reasonable assumptions about processes and observers. Suppose that p 1 q 
describes a process consisting of two independent processes p and q, which are 
physically separated: It represents a distributed system with p in one locality 1, and 
q in another locality &. 

Assuming that the observer is an uncomplicated entity, when he ma.kes an 
observation, he is either at location I, or at location IZ, but not at both. He then 
knows that his demand has been satisfied by some subprocess at his locality and 
that (at least for our simple language) satisfying this demand has not affected the 
components at other localities. 

In proposing a new operational semantics, we do not wish to go as far as to 
assign names to localities and parameterize observers with respect to these localities. 
We shall simply assume that each observer is placed at some definite-but 
unspecified-locality: At each step he can ask for an action from the component 
at his locality, and observe the local result of this action. At the same time, he is 
informed of the global result of his observation. The idea is that the local result 
represents what causally follows the observed action. In this framework, a primitive 
observation takes the form: 

P -S (P’, P”>. 

This is interpreted as 

-an observer demands an action a of process p, 
-satisfying this demand changes the component local to the point of observation 

into p’ and changes the whole process into p”. 

To sum up, each observation consists of some (local) action together with its 
local and global effects. We may add that it is crucial that these two effects should 
be observed together: Conducting a sequence of purely local observations and the 
corresponding sequence of global observations independently would not give us as 
much information. On the basis of our new transitions p * ( p’, p”), we propose 
now the following: 

Definition 2.2. A distributed Its (d&s) is a triple (P, A, +), where: 

-P is a set of processes, 
-A is a set of actions, 
- -+ is a relation contained in (P X A X P X P), called the transition relation. 

We shall write p 4 ( p’, p”) instead of (p, a, p’, p”) E +. According to the 
interpretation given above, the language L can be viewed as a d-Its by using the 
transition relation defined in Figure 2. Rule 1’ merely says that an observer of the 
process ap sees the same local and global effect of the only possible suclcessful 
demand, that of performing an action a. Rule 2’ is the usual interpretation of the 
choice operator +. Rule 3’, the most interesting one, states that ifp can be observed 
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RULES 9’ 

Rule 1’. a: p li, ( p, p) 
Rule 2’. p A (p’, p”) implies p + q -ri, (p’, p”) 

4 + P -s (P’, P”) 
Rule 3’. p A (p’, p”) implies P I9 -s (P’, P” 14) 

4lP-l* (P’> qlp”) 

FIG. 2. Distributed Transitions 

performing an action a, and this observation changes p locally to p’ and globally 
to p”, then p 1 q can also be observed performing an action a, with a local effect 
still amounting to p’, whereas the global effect is p” I q, which includes the further 
unaffected component q. 

For example, if p represents ab + b(d + e) 1 (E + f), the following statements are 
true: 

Ph‘(d+e,(d+e)l(e+f)), 
p 2 (NIL, b(d + e) I NIL), 
p A (NIL, b(d + e) I NIL). 

Note that the transition relation given in Figure 1 can be recovered from the 
distributed one in Figure 2 by ‘ignoring the first component. In fact, as noted 
already, the second component records the global evolution of the system after a 
single action, and this is just what an interleaving semantics describes. This also 
shows very clearly what additional information is used here to acquire more 
discriminating power over the concurrent aspects of systems. 

2.2 BISIMULATIONS. We recall here the definition of bisimulation. Let 
(P, A, +) be an Its. A bisimulation is a symmetric relation R C P X P that satisfies, 
for every (p, q) E R, a E A, the following property: 

P&P’ implies q 5 q’ for some q’ such that (p’, q’) E R. (*) 

If we consider property (*) as a function S on relations, we can rephrase the 
definition as: R is a bisimulation if it is symmetric and R C S(R). Then bisimulation 
equivalence is defined by 

P-9 if (p, q) E R for some bisimulation R. 

This is a slight generalization, due to Park [ 171, of Milner’s notion of observational 
equivalence [ 11, 151, and we refer the reader to these papers for proper motivation. 
In short, each transition p 4 p’ can be viewed as an experiment on p, and two 
processes are equivalent if and only if there is no way of distinguishing them by 
experiments of this kind. The following results are well known. 

LEMMA 2.3 

- is an equivalence relation; 
- is the maximal symmetric fixed-point of the equation R = S(R); 

(c> - is preserved by all operators in 2,) that is, - is a Z ,-congruence. 
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Let US consider the bisimulation equivalence - on our simple language L. It is 
easy to see that - satisfies the expected laws: 

PI9 = 41P, (PI) 
pl(9ir) = (plq)lr, u-9) 
p(NIL = p. (P3) 

We also have the following identification, expressing the simulation of concur- 
rency by nondeterministic interleaving: 

alb - ab + ba. 61) 

We shall now apply exactly the same technique to define a behavioral equivalence 
in a distributed Its. In this setting, equivalence will mean the inability to formulate 
a collection of the more complicated experiments to distinguish between processes. 
More specifically, when testing two processes for equivalence, we shall require that 
both the local and the global results of observations be indistinguishable. 

DeJnition 2.4. Let (P, A, -+) be a d-Its. A distributed bisimulation (d-bisimu- 
lation) is a symmetric relation R C (P x P) satisfying, for every (p, q) E R, a E A, 
the following property: 

P A (PI, P”> implies q G (q’, q”) for some q’, q” 
such that (p’, q’) E R and (p”, q”) E R. (**) 

Again, if we let D(R) denote (**), this amounts to demanding R C D(R) (for a 
symmetric R). We then say that p and q are d-bisimulation equivalent, noted 
~“~4, if (p, q) E R for some d-bisimulation R. 

LEMMA 2.5 

-d is an equivalence relation; 
ii; -d is the maximal symmetric fixed-point of the equation R = D(R); 
(c) -d is a X,-congruence. 

PROOF. The only nontrivial statement is (c). We shall only prove that “d is 
preserved by the operator 1, since the proof is straightforward for the rem.aining 
operators. 

Suppose that p “d q and r is an arbitrary process in L. We must consl.ruct a 
d-bisimulation R such that (p I r, q I r) E R. The required relation is defined 

R = I(P,Ir,PzIr>iPI “dbi u -d. cl 

The new behavioral equivalence -d also satisfies the properties P 1, P2, and P3 
listed above. However, the example of interleaving, L 1, fails: 

alb &dab + ba, 

because a I b 4 (NIL, NIL I b), whereas the only possible observation of an action 
a from (ab + ba) gives the result (6, b), and obviously NIL #d 6. 

As regards the relationship of our new equivalence with the standard bisimulation 
equivalence, it is easy to show that the standard equivalence is a conservative 
extension of the new one, in the following precise sense. 

PROPOSITION 2.6 

(a) UP -d 4, then P - 9. 
(b) If p, q contain no occurrences of 1, then p - q implies p “d q. 
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PROOF 

(a) Let R be a d-bisimulation over L. We show that it is also a bisimulation, that 
is, R G S(R). This relies on the following facts: 

(i) If p 4 Y in the Its, then there exists some q such that p 4 (q, r) in the 
d-lts. 

(ii) If p & (q, r) in the d-lts, then p 4 Y in the Its. 
Both these statements are proved by induction on the length of derivations 
in the respective transition systems. 

(b) Let SL denote the subset of L that does not use the operator I. Now if p E SL 
and p 3 r in the its or p 3 (q, r) in the d-lts, it is easy to check that q and r 
are also in SL. Moreover, for terms of SL, the statements (i) and (ii) above can 
be strengthened to: 

(iii) If p E SL, then p 3 r in the Its iff p + (r, r) in the d-lts 

This is sufficient to prove part (b). For suppose p - q, where p, q E R. Then we 
may use property (iii) to show that R !G D(R), that is, R is a d-bisimulation. Cl 

We conclude this section with a simple proposition, which expresses the relation 
between the local and global residuals of a transition. 

Let = be the congruence on L generated by laws PI-P3. It is easy to show that 

PROPOSITION 2.7. If p 3 (q, r), then 3s such that q 1 s = r. 

This proposition states that the local residual is a parallel component of the 
global residual. This fact will be used in Section 3 to define distributed transitions 
in a more complicated setting. 

2.3 ALGEBRAIC CHARACTERIZATION. In this section we present a complete 
axiomatization for each of the two Z1,-congruences - and -d over L. The former 
is well known and is mentioned only for completeness. The required axioms are 
given in Figure 3. The summation notation used in (IN), namely: 

i &Pi to stand for adh + a.. + ad,, if y1 > 0, 
I=1 NIL, if YI = 0, 

is justified by the associativity of + as expressed by the law A 1. In a summation 
term C:=, sip; we usually drop the reference to n, rendering the term simply as 
C aipi. 

Let &denote the laws A l-A4, IN, as listed in Figure 3. The following result 
is well known (it is essentially Theorem 4.1 of [ 131). 

THEOREM 2.8. The equivalence - is the Z;l-congruence over L generated by the 
axioms & 

This theorem is relatively easy to prove because of (IN). With it, all occurrences 
of 1 can be eliminated, so that in this framework concurrency is reduced to 
nondeterminism. The primitive operators are NIL, prefixing, and choice. 

Let us now turn our attention to the new equivalence -d. We have already seen 
that (IN) is not valid for -d. In the theory generated by -d, we expect 1 to be also 
a primitive operator. 
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Axioms ~2 

(Al)x+(y+z)=(x+y)+z 
(A2) x + y = y + x 
(A3) x + NIL = x 
(A4) x + x = x 

n m 
(IN) If x = C us,, Y = C by,, then 

I=, ,=I 

xly= i d&Iv) + i Mxly,) 
,=I ,=I 

FIG. 3. Axiomatization of -. 

This does not mean, however, that there will be no interesting dependencies 
between the operators. We have, for example, the following identifications: 

(1) If p = @I + Y2) I Sl + rl I (s, + s2), 
then P + hIsI) -dp. 

(2) If 4 = VI + r2) I sI + PI + ~2) Is2 + ~1 I Cc + ~2) + r2lC.h + s2>, 
then q + (rI + r2) I (sl + ~2) -d 4 

Thus, -d allows more complicated absorptions than the one expressed by the 
idempotence law A4. Both (1) and (2) are in fact absorption laws: for instance, 
eq. (1) states that the term (r, I s,) may be absorbed into the term rl I (s, -t s2) + 
(rl + ~2) I s. 

As a matter of fact, we can find arbitrarily complex absorption laws, which are 
all independent. Before giving more examples, let us formalize what we mean by 
absorption of a term into another. 

Definition 2.9. Let p Cl, q w (p + q) -d q. 

If p Cd q, we say that p is absorbed into q. It is clear that p -d q if and only if 
PCdqandq!Lp. 

Thus, in the examples above, we have (r, I s,) Sd p and (r, + r2) I (s, + s;) Cd q. 
Another example (where we use I up to associativity) is 

(3) (r, I sI I u,) Cd 01 + r2) I .s~ 1211 + rl 10, + s2) I UI + rI I SI I Cu, + u2), 

and the reader should be able to modify (2) above to a related but independent 
axiom in which (r, + r2 + r3) I (s, + s2 + sX) is absorbed. 

At this point the situation appears problematic. Let us then look back at the 
operational equivalence -d that we want to axiomatize. It is easy to convince 
oneself that when p 3 (q, r), this is because p contains an initial subterm aq. 
Moreover, we know (by Proposition 2.7) that r = q I s. Here, s represents, intuitively, 
the term which is concurrent to aq in p: We shall call it the coterm of aq in p. 

Now, the operational behavior of a term p is exactly determined by the set of its 
(initial) subterms aq together with their coterms S. Unfortunately, such coterms 
are not, in general, subterms of p. For example, in 

P = ((w I St > + u) I s2, 

the term aq has coterm s = sI I s2, which is not a subterm of p. Intuitively, this is 
because the action a eliminates all subterms in alternative with aq (the subterm u 
in the above example). 

As a consequence, we are not able to prove the equality of two terms by first 
comparing their subterms aq and the respective coterms, as would be natural. To 
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get round this difficulty we introduce a new operator Y in the language, which 
will be used to express a term p in the explicit form CIEI aipi t’ p,! , where for each 
i E I p,! is the coterm of aipi. The operational meaning of Y is, as might be 
expected, specified by the following rules (respectively in the d-lts and in the Its): 

p 5 p” implies p r q 4, p” 1 q (R4) 
p 5 (p’, p”) implies p r q 5 (p’, p” 1 q). W4’) 

As these rules suggest, the operator Y has some similarity with I. In fact, it is 
easy to see that p Y q is absorbed into p I q, that is: p i’ q C,p I q. 

On the other hand p I q is not absorbed in p l’ q, whereas it is absorbed in 
(p Y q + q Y p). Indeed, we have the law 

piq=p rq+q rp. (LPl) 

So t’ can be viewed as a sort of asymmetric parallel operator: In the term p t’ q, 
the components p and q are concurrent but somehow p has an initial dominance 
over q. To be sure, the introduction of Y may seem to bring us back to an 
interleaving semantics. Fortunately, this is not the case; at least in the d-lts. We 
have seen already that the behavioral equivalence -ddoes not satisfy the interleaving 
equation (IN) of Figure 3, and the addition of a new operator could not possibly 
affect this situation. However, the introduction of l’ brings the distinction between 
- and “d into sharper focus. In the extended calculus, an essential property 
of- is 

w r 4= dpld. ( r IN) 

This law is not satisfied by -d, as shown by the following counterexample: 

aNlL Y bNlL #d a(NlL I bNlL). 

In fact, it may be shown that the interleaving equation (IN) is derivable from 
the more primitive equations (LPI) and ( Y IN). Indeed these laws have been used 
by Bergstra and Klop to give a finite axiomatization for the equivalence - in the 
Its (see [3]). We shall return to this point at the end of this section. 

Let us now come back to the properties of Y. An important difference between 
l’ and I is that the former satisfies a distributive law 

(P + 9) r r = (P r r> + (4 r r), WV 

whereas it is well known that this is not the case for I (at least in the theory of 
bisimulations). The law (LP2) will help us a great deal in syntactic manipulations: 
In particular, it will be crucial to reduce a term p to its explicit form C sip, Y p,! . 
The final nontrivial axiom we require of l’ involves a subtle interaction with I 

(P r 4) r r = P r hi r). (LP3) 

The axioms LPI, LP2, and LP3 are very convenient. They can be used to derive 
the laws of I 

PI4 = qlp, (Pl) 
Pl(4lr) = (Pl4)lr, (W 

as well as absorption laws such as (1) and (2) above. The other main property of I 

PINIL = P, (P3) 
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follows from (LPI) above and the additional two axioms: 

p r NIL = p, (LP4) 
NIL Y p = NIL. um 

Let 9 denote the set of axioms A I-A4, LPl-LP5, which are gathered together 
in Figure 4. We can now state the main result of this section. Let & denote the 
signature extended with Y and EL denote the extended-term language. 

THEOREM 2.10 (CHARACTERIZATION). The equivalence -d is the Z2-congruence 
over EL generated by the axioms 9, that is, p =9 q if and only if p “d q. 

The remainder of this section is devoted to the proof of this result. One direction 
is straightforward, and is left to the reader: 

LEMMA 2.11 (SOUNDNESS). If p, q E EL, p =% q implies p “d q. 

The proof of completeness relies, as usual, on a reduction of terms to normal 
forms. We shall adopt as normal forms the explicit forms mentioned earlier on. 

Definition 2.12. x7=, sip, Y p,! is a normal form (nf) whenever all pi, p,! are 
nfs. 

In particular NIL is an nf (for n = 0). We shall often write a normal form 
(different from NIL) simply as C a/pi Y p,! . 

We define now the depth d(p) of a term p as follows: 

d(NIL) = 0; 
d(a.p) = 1 + d(p); 
44 I r> = 44) + d(r); 

if d(q) = 0; 
otherwise; 

We may now prove the following lemma: 

LEMMA 2.13 (NORMALIZATION LEMMA). For any p E EL, there exists a nf n 
such that p =*n. 

PROOF. By induction on the depth of p. We show at the same time that the 
depth of a term is preserved by normalization. The only nontrivial cases are when 
p = q 1 r or p = q Y r. By induction, q and r have normal forms of equal depth. In 
both cases, if either of these is NIL, the arguments are trivial, using LPl, LP4, and 
LP5. Otherwise, we assume that q has the form Zbjqj Y qi . We then have 

(a) q Y r = Z(bjqj Y qi) t’ r, by LP2, 
= z b,qj t’ Cd I r), by LP3. 

By induction each q,! I r has an nf (of equal depth), and the result follows, since 

44 r r> = d(q) + 44 
= max, (d(b,qj I’ q,!)) + d(r) 
= max, (d(b,qj) + d(qJI) + d(r)) = d(Zbjqj t’ (qj 1 r)). 

(b) qlr=q Yr+r Yq, by LPI. 

We know from part (a) that both q Y r and r l’ q have nfs (of equal depth), and 
the result follows since the sum of two normal forms is also a normal form. 
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Axioms D 

(Al) x + (y + z) = (x + y) + z 
(A2) x + y = y + x 
(A3) x + NIL = x 
(A4) x + x = x 

(LP~)XIY=X ry+y rx 
(LP~) (x+ J?) r z =x r 2 + y r z 
(LP~) (X r y) r z = x r (YIZ) 
(LP4) x Y NIL = X 
(LP5) NIL t’ x = NIL 

FIG. 4. Axiomatization of-J. 

Moreover, since we have assumed that q, r have nfs different from NIL, we have 
indeed 

d(q ] r) = d(q) + d(r) = max(d(q l’ r), d(r i’ q)] = d(q t’ r + r t’ q). 0 

The other technical result we need to show completeness is 

p 1 r -d q 1 r implies p -d q. 

The proof is by induction on the size of terms, and to enable the induction to 
proceed smoothly it is necessary to simultaneously prove an auxiliary statement. 

LEMMA 2.14 (SIMPLIFICATION). For anyp, q, r, r’, r” E EL, 

(1) r~(r’,r”)andp~r-dqIr”impfyq~(q’,q”) 
for some q’, q” such that r’ -d q’ and r’ -d q’. 

(2) pjr-dqlrimpfiesp-dq. 

PROOF. We prove the two statements simultaneously, by induction on the sizes 
Of-P, 4. 

(1) Let r 4 (r’, r”). Then, p ] r 4 (r’, p ] r”). There are two ways in which this 
may be matched by a move from q I r”. 

(i) ql Y” & (q’, q” I r”), because qA (q’, 4”). 

In this case r’ -dq’ andp] r” -d q” ] r”. Applying induction [case (2)], we 
obtain p -d q”, and thus q 4 (q’, q”) is the required move of q I r”. 

(ii) q ] r” 3 (s’, q ] s”), because r S, (s’, s”). 

Here r’ -ds’andplr” -dq]SN. Applying induction [case (l)], we obtain 
q & (q’, q”), with q’ “d s’ and p -d q”. From r’ -d s’ we deduce now 
the required q’ -d r’. 

(2) Suppose p 3= (p’, p”). We must find a matching move q S, (q’, q”) such that 
P ’ -d 4’ and p” -d 9”. 

Consider the move p I r + ( p’, p” I r). There are two ways in which this may 
be matched by a move from q I r. 

(i) q I r 3 (q’, q” I r), because q S, (q’, 4”). 

In this case p’ -d q’ and p” I r -d qn I r. Applying induction [case (2)], we 
obtain p” -d q”. 
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(ii) qlr4 (r’, qlr”), because r4 (r’, r”). 

In this case, p’ -d r’ and p” 1 r -d q 1 r”. Applying induction [case (l)], we 
obtain q & (q’, q”), with r’ -d q’ and p” -d 4”. From p’ -d r’ it follows 
that p’ -d q’. 0 

Combining these results, we finally obtain 

PROPOSITION 2.15 (COMPLETENESS). If p, q E EL, p -d q implies p = y4 q. 

PROOF. By induction on the sum of sizes of p, q. Suppose that p -d q. In the 
light of the normalization lemma, (and given the soundness of Z8 for -d) we may 
assume p, q to be normal forms: 

P = C a,pi r PI, q=Cbjqj t’qi. 

We show that q + p =ti q. Then, by a symmetric argument, we have also 
p + q =&p, and by combining these two equalities we obtain the required result: 
p =.rAp + q =* q. To prove q + p = r9q it is enough to show, Vi E I: 

(7 + aipi r p( =M 4. 
Since p 3 (pi, pi Ip,! ) and p “d q, there must exist j E J such that q -% 

(qj, qj I 4: ), with ai = bj and pi -d qj, p; I p( “d 4, I q,’ . Since -d k a COllgIIlCIlCe, 
we can replace pi for qj in the latter equality, to obtain pi I p: -d pi I qi. Then, by 
the simplification lemma, we have p,! “d 4,‘. Now, from pi -d qj, pl! -d q.1, we can 
infer, using induction, that pi =9 qj, p,’ =r9 q,! . Whence by substitution and A4, we 
obtain 

q + aipi I’ p,! =A q + bjqj t’ qi =d q. 0 

We mentioned already that in the theory for - on the extended language the 
interleaving axiom (IN) can be replaced by the law ( Y IN). By adding ( I’ IN) to 
the axioms of Figure 4, we obtain a finite axiomatization for - over EL.. Indeed, 
in the theory for -, our operator I’ has the same meaning as the left-merge operator 
of Bergstra and Klop [3]. 

3. Unobservable Actions 

In this section we develop the theory of distributed bisimulations in the presence 
of unobservable actions. In a fully-fledged language, such actions come about via 
internal communications between the parallel components of a process (for more 
details we refer the reader to [ 151). However, we can start to study the effect of 
unobservable actions on the theory quite independently of how they occur. More- 
over, since the theory of ordinary bisimulations is well understood in this frame- 
work, at least for simple languages such as L [ 1 I], we shall concentrate on 
distributed bisimulations only. 

3.1 WEAK OBSERVATIONS. Let us assume, following Milner [ 151, that the set A 
contains a distinguished symbol 7 representing an internal unobservable action. 
That is, A is now of the form 0 U (7). We shall use a, b, c to represent o.bservable 
actions from 0 and y, u to range over the entire set A. As in Milner [ 151, we wish 
now to replace our observation relations S, by the weaker observation relations 
4, in order to abstract to some extent from internal actions. 

Informally, the meaning of a weak observation p 4 (q, r) is that p can evolve 
internally for some time, then perform an action a and thereafter still possibly 
move internally to reach the state (q, r). Thus, a weak observation 4 involves a 
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transition 4 as well as a (finite) number, possibly equal to zero, of transitions 4 
before and after it. For these unobservable transitions we choose here the simple 
form p 4 q rather than p 4 (q, r). This means that an action T is regarded as 
global, and can be localized only indirectly, if it affects the observable behavior of 
the component where it occurs. For example, the locality of the action r will not 
be observable in the process TP 1 q, whereas it will be in the process (TP + q) I r, 
since here the 7 can prevent the local observer of (7~ + q) from obtaining an action 
of q. In fact, because of the presence of internal actions, an observation 4 may 
have an effect on different components. For example, one would expect 

w I(4 + 71) 25 (P, PI r>, 

since the action 7 of the component (q + Tr) may occur while the a-observation is 
taking place on the component ap. 

Such nonfocal effects of observations will become more pronounced when we 
introduce a form of communication into our language, in the next section. 

Because of the presence of these nonlocal effects, the formal definition of 4 is 
complicated, at least if we retain the present notation. Recall that in p 3 (q, r), 
the term q represents the local residual of the observation, whereas r represents the 
global residual. This global residual r must include the local one q, and it is difficult 
to retain the consistency in (q, r) between q and the copy of q in the global process 
r. Intuitively, r is obtained by placing q in a global context C[ 1. So an observation 
is in fact of the form 

P 4 (4, Ci41). 
In C[q], the occurrence of [] represents the locality of the observation and q 

the local residual. It follows that C[q] contains all the information of the pair 
(q, C[q]). We may therefore formalize an observation simply by an arrow of the 
form 

P a C[ql, 
relating a term p to an instantiated context C[q]. 

In order to avoid confusion, let us formally define what we mean by instantiated 
context. Let the set of generalized terms be defined by the following grammar: 

t::=NILIt+tltltlt rtl[]l[t]. 

Note that all terms in EL are generalized terms. We continue to use p, q, etc. to 
range over EL, and will refer to elements of EL as terms. 

The new syntactic categories we introduce are subsets of the set of generalized 
terms. A context is a generalized term with no occurrence of a subterm of the form 
[t] in it, and at most one occurrence of [ 1. Contexts will usually be denoted by 
C[ 1, C’[ 1, D[ 1, etc., and C[t] will be used to denote an instantiated context, that 
is, the generalized term obtained by substituting t for the unique occurrence of [] 
in C[ 1, if it exists. A process is an instantiated context of the form C[p], where p 
is in EL. In C[p] the occurrence of [p] indicates the locality under scrutiny. We 
shall use P, Q, etc., to range over processes. Note that all terms in EL are also 
processes. 

In fact there are many processes that will never occur in our operational 
framework, but technically there is no need to isolate them. Also, it will sometimes 
be convenient to consider processes as terms in EL simply by ignoring the local 
information, that is, viewing [p] as p. Formally, the term in EL corresponding to 
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the process C[p] is denoted by C(p); it is obtained by substituting p, rather than 
[PI, for [I in CL 1. 

The relations i are defined in terms of the two simpler relations 4 and 4. The 
relation 4 is defined to be the least relation over processes that satisfies the rules 
of Figure 5. The type of the relations 4 is more restricted. They take elements of 
EL and return processes; they are defined to be the least relations-between EL 
and the set of processes-that satisfy the rules in Figure 6. Combining the two 
kinds of arrows, 4 and 4, we get the relations 4, from EL to processes, that form 
the basis of our modified notion of equivalence: 

(0 P 6 4 if pA+ q; 
(ii) p i q if pA* q; 

(iii) p Y C[p’] if p A* q A D[q’] A* C[p’]. 

Here A+ denotes the transitive closure of 4, and 4* its transitive and reflexive 
closure. Thus, p A q means that p may evolve to q by an indeterminate: number, 
possibly zero, of internal moves, while p 5 q means that at least one internal move 
is performed. Hence, p 4 C[p’] allows internal silent moves to be made during 
an a-observation. 

Examples 

apI@+ da [~llr. (1) 
Here the a-observation is performed on the component ap and the local resid- 

ual is p. The global residual is [p] 1 Y because the (nonlocal) internal move 
(q + TY) 4 r is performed during the observation. 

(v+~~)I~(~~+~)I~+~~~~W([~II~. (2) 

Here the local observation is “a(rp + q) performs the action a to be- 
come p”, whereas the nonlocal effect is to transform the global environment 
~~+~~~I~lI~~+~~~~~f~~l~lI~. 

Because of the simplicity of our language the actual form of the global environ- 
ment is very simple. Let = denote equality of terms module associativity and 
commutativity of I, as defined just before Proposition 2.7. It is then easy to 
prove that 

LEMMA 3.1. Zfp 4 C[p’], then 3s E EL such that s I [ ] = C[ 1. 

We can also establish a relation with the more primitive observations of the 
previous section. We leave to the reader the proof of the following proposition: 

PROPOSITION 3.2. If p contains no occurrences of 7, then p & C[q] ifand only 
if3r = C[q] such that p 4 (q, r). 

3.2 WEAKDISTRIBUTEDBISIMULATIONS. In this section, we revise the definition 
of distributed bisimulation, using the weak arrows 4 in place of 4. The result will 
be a behavioral equivalence that abstracts from internal actions. In addition to the 
distributed observation 4 it is convenient to consider also observations that record 
the spontaneous evolution of a process after a finite but indefinite amount of time. 
This amounts to using + as well as 4 in the definition of the weak equivalence. 
It can be argued that this is a natural form of observation, and its presence is 
technically useful. Observations + are also used in the standard theory of bisimu- 
lations [ 15, 161. We give next our definition of weak distributed bisimulation. 
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Rule ~1. 7: PAP 
Rule 72. PAP’ implies P + Q G= P’ 

Q+PAP’ 
Rule ~3. P-L= P’ implies PIQ~P’IQ 

QIPA QIP’ 
Rule ~4. Pit P’ implies P t’ Q A P’ I Q 
Rule 75. PAP’ implies [PI -; [P’l 

FIG. 5. T-Rules (for General Processes) 

Rule El. a: p 5 [p] 
Rule E2. p A C[p’] implies p + q 5 C[p’] 

4 + P 5 UP’1 
Rule E3. p 5 C[p’] implies PlqA C[p’llq 

cJlP& 4lC[P’l 
P r 4 A C[P’I I 4 

FIG. 6. a-Rules (from Terms to Processes) 

Definition 3.3. A symmetric relation R C (EL x EL) is a weak d-bisimulation 
if it satisfies R G WD(R), where WD(R) is defined by 

(p, q) E WD(R) if Va E A: 

(i) p + p’ implies q + q’ for some q’ such that (p’, q’) E R, 
(ii) p i C[p’] implies q & D[q’] for some q’ 

such that (p’, q’) E R and (C[ p’], D[q’]) E R. 

We write p zd q if (p, q) E R for some weak bisimulation. As before, it is 
straightforward to show that =d is an eqUiVak!nCe r&tiOn and iS the maximal 
fixpoint of the mapping WD. Moreover, it is a natural extension of the previous 
notion of d-bisimulation. The reader can easily check the following proposition: 

PROPOSITION 3.4 

(i) p -d q implies p =d q. 
(ii) If p, q contain no occurrences of 7, then p =d q implies p -d q. 

This new equivalence is also preserved by most of our combinators. However, 
as expected from the standard theory of bisimulations, it is not preserved by +; the 
usual counterexample works. 

Example 3. ra =:dabUtb+ra+dbi-a 

We react to this inconvenience in the standard way. We take as our reference 
behavioral equivalence the largest &-congruence generated by =d 

P&4 if for every context C[ ] : C[ p] =d C[q]. 

In the next section, we show that this relation can be characterized equationally 
by adding new equations to those which characterize the simpler equivalence -d. 
These new equations are concerned with internal actions. 

However, to derive this characterization we need to reformulate ~2 in a more 
usable form. This is quite straightforward as the only combinator that misbehaves 
is +. In fact it is easy to prove that 

PROPOSITION 3.5. p =: q iff a + p Ed a + q for some a not in p, q. 
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As an immediate consequence we have the useful property (recall that + = -%+): 

PROPERTY 3.6. p =t; q and p + p’ implies q + q’ for some q’ such that 
P ’ =(j 9’. 

The characterization of Proposition 3.5 will be extensively used in the next 
section. We use it now to establish a close relationship between => and :zd. 

COROLLARY 3.7. p =d q ifand only if one of the following holds: 

(4 P -2 4 
(ii) p “274 

(iii) 7p =i q 

PROOF. The nontrivial direction is to show that p =d q implies one of the three 
alternatives (i), (ii), (iii). We proceed by case analysis. 

(1) Suppose that p 3 p’ and the corresponding move of q is q + q, witlh p’ =:d q. 
In this case we have p ~2 rq. In fact it is easy to check that, if a 4 p, q, then 
p + a =d Tq + a: corresponding to the move p + a + p’ of the first term we 
pick the move Tq + a + q of the second term. 

(2) Symmetrically, if q 3 q’ and p replies with p + p, we have rp =2 q. 
(3) If neither (i) nor (ii) holds, it follows that p + a “d q + a, that is p =:; q. 0 

The next section is devoted to the search of an axiomatization for -2. 

3.3 ALGEBRAIC CHARACTERIZATION. In this section we present a complete set 
of axioms for the weak behavioral equivalence -s. First, we find that the three 
T-laws of [ 111 and [ 151 are valid for = i: 

x + TX = TX, (11) 
pi-x = px, (W 

Ax + TY> + PY = /4x + TY>. 03) 

These three properties can be easily proven for => using the characterization in 
Proposition 3.5. Furthermore, we have a law 

4x I Y) = 7x I Y> 04) 

showing an interesting interaction between 7 and I. 
Here again, however, to obtain a complete axiomatization for our behavioral 

equivalence we need to recourse to the asymmetric operator Y. So, for example, 
the eq. I4 will be derivable from the following two laws of t’: 

TX r Y = 4~ I Y), (NII) 
x ry=x by. (NW 

The law NI1 expresses the globality of T-actions, while NI2 may be viewed as a 
generalization of 12. One further law is required for Y, which is similar in structure 
to 13: 

x r (y + TV) + x r z = x r (y + 7~). (~131 

Let now %? denote the set of axioms B extended with the T-laws (Il)-(13), 
(NI I)-(N13). All these laws are grouped together in Figure 7. We have the following 
characterization for -2. 

THEOREM 3.8. The equivalence -2 is the &-congruence generated by the 
axioms 52 
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Axioms Y= 9U T-laws 

(Al)x+(y+z)=(x+y)+z 
(A2) x + y = y + x 
(A3) x + NIL = x 
(A4) x + x = x 

(LPI) XIY=X ry+y rx 

(LP~) (X + y) r z = x r z + Y r z 
(LP~) (X ry) rz=x r(ytz) 
(LP4) X r NIL = x 
(LP5) NIL Y X = NIL 

Axioms 9+ 

-r-laws 

(II) x + TX = TX 
(12) PTX = I*x 
(13) 14x + TY) + WY = /4x + 7~) 

(Nil) TX r y= T(XIY) 
(N12) x r 7~ = x r Y 
(m) X r (y + 72) + x r Z = X r (Y + 72) 

FIG. 7. Axiomatization of -’ -dr in absence of communication 

The structure of the proof of this first theorem is similar to that of the corre- 
sponding theorem in Section 2.3, but the details are somewhat more complicated. 
We start by showing the following: 

PROPOSITION 3.9 (SOUNDNESS). p =’ q implies p =: q 

PROOF. Because of Proposition 3.5. it is sufftcient to check that a + p ==d a + q 
for every instantiation p = q of the equations in 9, as usual, a should not appear 
in p, q. Note that it would be difftcult to check directly that =: satisfies the 
equations, as we would have to consider all possible contexts. 0 

The converse proposition, namely the completeness of the axioms, relies on a 
more complicated kind of normal form, which we define next. 

Definition 3.10. C sip, t’ p,! + C Tpj is a weak normal form (wnf) whenever all 
p,, p,!, pj are wnfs. 

Again, when both sums are empty we obtain the wnf NIL. We have now the 
following normalization lemma: 

LEMMA 3.11 (WEAK NORMALIZATION). For every p E EL, there exists a wnf n 
such that p =rn. 

PROOF. By induction on the depth of p. As before, the only difftculty is with 
terms of the form q 1 r and q Y r. We consider here only the case of q t’ r, as the 
case q 1 r will then follow by LPI. 

Suppose p = q Y Y. If m = wnf(q) = NIL, we define n = NIL. Then, using 
induction and axiom LP4, we get: p =.Vm Y r = NIL Y r =if,NIL =.Vyl. 

Otherwise, if m = C a,q; Y q( + C Tq, # NIL, we have 

q r Y =rC (ajqi r q,!) r r + C (Tqj r r) by LP2, 
=V C adi r (4; I r) + C T(qj r r) by LP3, NII. 

We may now apply induction on each (q( I r), (qi Y r) to obtain a wnf. 
We also need a simplification lemma, similar to that used in Section 2.3. 
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LEMMA 3.12 (SIMPLIFICATION LEMMA). [fp, q, rE 9’: 

(i) r~rr’andp~r~dq~r’implyq~qq’,~forsomeq’suchthatp=~q’. 
(ii) r 3 [r’] 1 r” and p 1 r zrl q 1 r” imply q & [q’] I q”, fir some q’, q” such that 

r ’ ==d q’ and p =(I q”. 
(iii) Simplification : p I r zrl q I r implies p ==d q. 

PROOF. The three statements are proved simultaneously, by induction on the 
sum of sizes of p, q, r. 

(i) Here p I r + p I r’ and therefore q I r’ must have a matching move (q I r’ 6 
4’lr u zdp I r’, for some q’, r” such that q + q’ and r’ + r”. 
If r” = r’ we may apply induction on part (iii) to get p =d q’. Thus, q * q’ iS 

the required matching move. Otherwise, we apply induction on part (i) to 
obtain q’ + q N zdp. Here the matching move is q + q”. 

(ii) Here p I r 4 p I [r’] I r”. Now q I r” can match this move in two ways: 

(a) q I r” d [q’] I q” I r” because q =% [q’] I q” and r” 3 r”‘, with r’ =d q’ 
and r’ I p I Y =d q’ I q” I r”. Since =:d is preserved by 1, we also have 
r’ IpI rn zd r’ 1 q” 1 r”‘. Whence, by induction on part (iii), we deduce 
PI r” zzd q” I r”‘. 
Now, if r”’ = r”, we can apply the same induction to obtain p =d q”. In 
this case, q & [q’] I q” is the required move of q. 
Otherwise, r” + r”‘, and we can apply induction, part(i), to obtain 
q” & q ,,’ =dp. In this case, the required move of q is q 3 [q’] I 4”‘. 

(b) 41 r” & q’ I [s’] I S” because r” i [s’] I S” and q + q’. Then, r’ =d S' 

and r’lpl r” =dS’Iq’I sn. Again, we have i”IpI YN =dr’Iq’I SN and 
we may apply induction, part (iii), to obtain p I r” =d q’ I s”. We can now 
finally apply induction on part (ii) to get q’ & [q”] I q”‘, and therefore 
q 4 [q”] I q’D, with r” =d q” and p “d 4”‘. 

(iii) To prove p =d q, we show that for any move of p there exists a corresponding 
move of q. The converse will then follow by symmetry. 

(a) p + p’. Then, p I r 3 p’ I r and q I r must have a matchin,g move 
qlr*q’lr’ =dp’ I r, where q & q’ and r + r’. 
If r’ = r, we directly apply induction on part (iii) to get p’ =d q’. 
Otherwise, r 3 r’, and we may apply induction on part (i) to obtain 
q’ + q” =dp’. 

(b) ~4[p’]IpII.ThenpIrY[p’]Ip”Ir.Again,qIrhastwowaystomatch 
this move: 

(I) q I r & [q’] I q” I r’ because q & [q’] I q” and r + r’. We then have 
P ’ Ed q’ and p’ I p” I r =d q’ I qv I r’. 
If r’ = r, we may apply induction, part (iii), to get p’ lp” ==of q’ 14”. 
In this case, q & [q’] I q” is the required move of q. 
Otherwise, r + r’ and we may apply induction on part (i) to obtain 
q’ 1 q” & s’ 1 SN =dp’ If, for some s’, S” such that q’ * s’ and q” 
a s”. Once more we have two cases. Ifs’ = q’, the required :move of 
q is q 4 [q’] I s”. If q’ & s’, we may once more apply induction, part 
(i), to the equation s’ I s” =d p’ I pfl, and obtain sN + sN =d p”. In 
this case the matching move is q A [q’] I s”‘. 

(II) ql r & q’ I [r’] I r” because r & [r’] I r” and q + q’. Then 
Pf =d r’ and p’ Ip” I r =d r’ 1 q’ I rN. Whence we can deduce 
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r’ (p” 1 Y =:d Y’ 1 q’ 1 r”. From the latter equation and induction, 
part (iii), we get p” I r %(I q’ I r”. Applying induction on part (ii), we 
finally obtain q’ 4 [q”] I q”‘, with r’ =‘d q” and p” =d 4”‘. Since 
P ’ zd r’, this is the required move of q. 0 

The proof of our completeness result is more complicated than for -d. Besides 
a normalization lemma, it also requires two absorption lemmas, which show how 
residuals may be absorbed into terms. 

LEMMA 3.13 (T-ABSORPTION LEMMA). [f p is a wnf and p A. p’, then 
p + 7p’ =yp. 

PROOF. The case p 4 q is trivial. The general case is proved by induction on 
the number of r-actions in p. The inductive step uses axiom Il. Cl 

The second absorption lemma, which is somewhat more involved, concerns the 
observations 3. 

LEMMA 3.14 (GENERALIZED ABSORPTION LEMMA). Zf p is a wnf and 
p&C[p’]=[p’]Ir,thenp+ap’ t’r=.yp. 

PROOF. By induction on the length of the derivation p 4 C[p’]. We 
work modulo the relation =, so C[p’] will be rendered as [p’] I r. Let 
p = C aipi Y p: + C rp,. We examine three cases: 

(i) p S, [p’] I r. Thus, there exists i E I such that a = ai, p’ = pi, and r = p,!. We 
then have our result by simple absorption A4. 

(ii) p & [p’] I r because for some j E J: rp, 4 p, & [p’] 1 r. By induction 
p, + ap’ Y r = fF pj. Whence we deduce, using I1 : 

P =rp + TPj, 

=rp + TP, + P,, 
=,fp+7pj+pJ+ap’ r r, 
=vp + ap’ r r. 

(iii) p & [p’] I r because p A [q] I s 4 [p’] I r. By induction, we have p = ‘( p + 
aq Y s. There are now two subcases, according to how the internal move 
[q] I s -1, [p’] I r is made: 

(a) q 4 p’ and s = r. Then q = +, q + up’ by the r-absorption lemma. We 
then have, using axiom 13: 

aq =1 a(q + up’) = Tf a(q + up’) + ap’ = y’ aq + ap’. 

Whence we deduce, using axiom LPI: 

p=yp+aq Yr, 
=cfp+(aq+ap’) rr, 
=,(p+aq Yr+ap’ Yr, 
=?p + ap’ r r. 

(b) s 4 r and q = p’. Again we may use the r-absorption lemma to get 
s =>? s + rr. We may now deduce, using axiom N13: 

p =7.p + ap’ r (s + 7r), 
=vp + ap’ r (S + 7r) + ap’ r r, 
=yp + ap’ r r. 0 
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We are now ready to prove the completeness of the equations. 

PROPOSITION 3.15 (COMPLETENESS). If p, q E EL, p =d q implies p =Y q. 

PROOF. The proof is by induction on the sum of sizes of p, q. Suppose then 
thatp=:q. We may assume p, q to be normal forms: 

P = C &Pi r PI + C TPj, 4 = c bnqn r 4; + c %?I. 

We proceed with our usual method. We show that q + p =% q and the result will 
follow by symmetry. We prove separately 

(0 4+aiPi rP; =%9 ViE I, 
(ii) q+7pj’zq Vj E J. 

PROOF OF (i). We have here p 2 [pi] 1 p,!. Since p =: q, there must exist q’, r 
such that q & [q’] I r, with pi =d q’ and pi] p( =;d q’ ] r. Since =d is preserved 
by 1, we have also q’ ] pi =d q’ ] Y, and applying the simplification lemma, we get 
pl =d Y. Now Corollary 3.7 gives three possible cases for pi =d q’ and p,! =:d r, in 
each of which we can apply induction to obtain pi =LZ q’ or up; =Y q’ or 
pi =%rq’, andpl =*Y or rp,! =%r orp,! =%rr. We then have 

aipi r pJ =*aiq’ r p( possibly using 12, 
=saiq’ r r possibly using N12, 

whence, by the generalized absorption lemma, we finally deduce 

q =yq + ajq’ r r =uq + aipi r PI. 

PROOF OF (ii). Here p =i q and p 4 pj imply q & r for some: r such 
that pi =d r. Using Corollary 3.7 and induction as before, we obtain pj =Y r or 
7pj = Y r or pj =s 71: Then, prefixing both terms by 7 and possibly using 12, we 
have Tpj =%Tr. We may now use the T-absorption lemma to get 

q=sq + 7r =%q + Tpj. Cl 

4. Communication 

In this section we reinterpret the parallel operator ] in order to allow commtmication 
between its components. This is a very straightforward extension, but we still lack 
an equational characterization for the corresponding distributed bisimulation. 

4.1 COMMUNICATION AS MUTUAL OBSERVATION. We adopt Milner’s model of 
communication [ 151, which is one of the standard methods for introducing 
communication into process algebras. We shall recall just the essential features 
here, referring the reader to [ 151 for more details. We assume our set of observable 
actions 0 to be of the form A U x, where A is a given set of observation or action 
names and A is the set of their formal complements, h = (rZ ] a E A}. For 
convenience, we also say that a is the complement of d, that is, ci = a, for any 
a E 0. 

In this setting, communication is defined to be the simultaneous occurrence of 
two complementary actions. So a communication occurs in the process p I q if p 
performs some action a and q simultaneously performs its complement ii. In other 
words, communication is mutual observation between two parallel processes. Any 
communication is treated as an internal action and is therefore denoted by T. 
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RuleF1. p: PA P 
Rule F2. P&P’ implies P+ Q&P’ 

Q+PAP 
Rule F3. P 6 P’ implies PIQ~P’IQ 

QlPL QIP’ 
P Y QAP’lQ 

Rule F4. p IL p’ implies [PI 6 [P’l 
Rule F5. Pcli*P’, Q&Q imply PJQAP’IQ’ 

FIG. 8. Global transitions (for general processes) 

Let us explain how we introduce this kind of communication in our language. 
We want to define weak transitions A where communications are absorbed both 
before and after a transition 4; since the result of a transition 4 is a process of 
the form C[ p], we need a communication rule for processes as well as for terms in 
EL. In order to obtain this, we first extend the transitions 4 to general processes. 

Moreover, since T-actions are taken to be global, a communication transition 
will be inferred from “global” transitions 4 (i.e., transitions that do not introduce 
a locality in the residual). We shall denote these global transitions for processes by 
6, and the resulting T-transitions by A. The relations +,, relating processes to 
processes, are defined in Figure 8. For terms in EL, the transitions A correspond 
precisely to the distributed observations 4 if we ignore the locality in the residual. 
For processes of the form C[p], the global transitions * preserve the existing 
locality, without ever introducing a new one. 

Based on the arrows 6, we may now finally define our communication rule for 
processes (and terms). 

RuleF5. PAP’, QAQ’ imply PIQAP’IQ’. 

The global transitions I% are only used to derive communications. The resulting 
transitions cl, are then used, together with the distributed transitions 4, to define 
the weak relations 4 (and +): 

6) P * 4 
(ii) p * q 

(iii) p 4 C[p’] 

Example 4 

if p A+ q, 
if p IA* q, 
if p A* q S, D[q’] A* C[p’]. 

ah lb + Er) a [PI I r 
because abp 1 (q + &) A [bp] 1 (q + 6r) (:I; 
and [bp] 2~ [p], (q + Fr) I& r, whence [bp] I (q + &) 6 [p] I r. 

The latter transition, combined with (**), gives (*). Graphically, we have the 
following situation: 

Here, the locality of the a-observation is linked to another component of the 
system, and the act of observing the action a via a weak observation 4 effects a 
modification of this remote component. One may easily design examples in which 



908 LCASTELLANI AND M.HlENNESSY 

a local observation effects a long chain of modifications in a collection of increas- 
ingly remote components. 

We can now use our new observations to define a weak distributed bisimulation, 
exactly as we did in the previous section. We still use =d to denote the resulting 
equivalence. A typical identification under =d will be 

Exumple5. Letp=(aq+r)l(aq’+r’).Thenp=dp+T(qjq’). 

This example merely emphasizes the fact that r is synonymous with 
communication. 

As in the previous section, the equivalence =:d is not preserved by the operator 
+ and, as usual, we take as our behavioral relation its closure with respect to 
contexts = i. In the next section, we discuss a possible equational characterization 
of=2 in this new setting. 

4.2 TOWARDS AN ALGEBRAIC CHARACTERIZATION. As noted already, the rela- 
tion =: is difficult to manipulate; we proceed here to define a more amenable 
alternative, as we did in the previous section. We state without proof 

PROPOSITION 4.1. p ~2 q iffa + p zd a + qfor some a not in p, q. 

One virtue of this reformulation of = 2 is that we can check fairly eafsily if it 
satisfies equations. One interesting new equation that it does satisfy is 

(ax + y) I (kc + y’) = (ax + y) 1 (rZx’ + y’) + 7(x 1 x’). (Cl) 

The phenomenon underlying this equation has already been discussed in Ex- 
ample 5. A similar absorption equation is 

abxI6y=abxIFy+ax t’y. (C2) 

Although C2 involves the operator Y, there are instances of this phenomenon in 
the original CCS language: 

abxIb= abx16+ ax. 

Unfortunately, these equations cannot be used as the basis of a complete 
axiomatization. As usual, the key for the axiomatization lies with Y. 

Recall that in Section 4.1 we did not introduce an observation rule corresponding 
to Rule F5 for Y: According to our definition, processes may not communicate 
across Y. For this reason, the law LPl 

XIY=X ry+y rx 

is no longer valid. One way to solve this problem would be to include Y in Rule 
F5. However, this would render some of our axioms unsound. 

Instead we outline a simple approach; we introduce a new operator I c (analogue 
to that used in [3]), which enforces communication between its components. The 
operational semantics of I c is specified by the unique rule: 

RuleT7. PAP’,QAQ’ imply PlcQAP’IQ’. 

So Plc Q can only perform communications, that is, T-moves. In this extended 
language, LPI is replaced by 

XIY=X ry+y ~X+XI.Y. (LPI’) 
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(LPI’) XIY=X ry+y rx+xl,.y 

(-1) Xl<(Y + z) = (XIrY) + (XIJ) 
W2) Xl,.Y = Yl<X 
(CP3) x I <NIL = NIL 

(Cp4) bx r -0 I~V r ~7 = 
{ 

7(xIy) r (x' 1.v'). if fi = v 
NIL, otherwise 

(CPG) U(XIX') r (ylf) E U(CX r XI + V) r (EV r Y' + W) 

FIG. 9. Communication axioms for =;. 

Axiomatizing the properties of lc is straightforward because of its simplicity. The 
operator distributes over + 

Xlc(Y + z) = XICY + Xl& CPl) 

and it only allows communications between its arguments 

WICVY = 7(x I Y), if p = Y, 
NIL, otherwise. 

A more general version of this identity, involving Y, is the law CP4 given in 
Figure 9; CPl-CP3 are the other properties of interest of I c. The law CP5, 
where E is defined by p E q if (p + q) = q, is a general version of the absorption 
equation C2. 

As can be seen from these equations, there is a close analogy between our 
combinator I c and the “communication merge” of [3]. Note also that the law Cl 
above is now a derived equation. 

We would like to show that the new set of equations is complete, but the proof 
eludes us (precisely, we have not been able to generalize the simplification lemma); 
this remains an open problem. However, a complete axiomatization for a slightly 
different formulation of our semantics may be found in [6]. 

5. Conclusion 
We have provided a new “noninterleaving” semantics for simple CCS-like lan- 
guages. This semantics is based on a minor extension of the well-known idea of 
bisimulation; the extension takes into account some information on the distributed 
nature of processes. The result is a semantic theory that takes concurrency into 
account and that can be completely axiomatized, at least for simple languages. The 
major omission in this respect is a treatment of hiding or restriction of channels. 
In an interleaving semantics, such as the standard bisimulation theory, this presents 
no problem although the introduction of hiding into the language increases its 
expressiveness considerably. It enables one to abstract from internal details of a 
process. However, considerable thought is required before we can extend our ideas 
of local and global observations to distributed systems in which the behavior of 
individual components can be influenced by remote components that are linked 
by invisible channels. The basic problem is to decide how to continue the isolated 
observations of such local components and how to formalize this decision as a 
modification of our notion of distributed bisimulation. At least, we hope that the 
present paper convinces the reader that this line of research is worth pursuing. 
When the theory is extended to a more expressive language, such as the whole 
“pure CCS”, the new operator Y will be seen to be more reasonable. One would 
expect then ax Y y to be equivalent to the CCS expression (acux I Gy)\cz, 
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There have been other attempts at providing noninterleaving semantics far CCS. 
For example, in [9] CCS terms are interpreted as Petri nets. However, Petri nets 
are a rather concrete operational model of computation, whose algebraic nature is 
not very well understood. Moreover, their semantics makes distinctions that are 
diflicult to justify intuitively. For example, the terms aNIL and (aNIL +, aNIL) 
are treated differently. Similar remarks apply to translations of CCS int’o event 
structures. Such translations are useful for comparing disparate models of Icompu- 
tation, but these structures are too concrete to provide an abstract behavioral view 
of processes. It may be, however, that behavioral equivalences can be defined 
directly on event structures, which could then be inherited directly by CCS. See 
[4], [6], and [21] for work in this direction. 

Another proposal for a noninterleaving semantics of CCS may be found in [7] 
and other papers by the same authors. Although the starting idea of their semantics 
is very similar to ours (keep to atomic transitions, but identify the component that 
moves at each step), they do not use it to directly define an equivalence relation, 
as we do, but rather to build partially ordered computations for processes. 

More recently, labeled partial orders have been used as semantic domains for 
algebraic concurrent languages, see [4], [ 181, and [ 191 and in this setting there have 
been a number of generalizations of bisimulation equivalence. The essential idea 
is to generalize the simple experiment p 4 q to p 4 q, where o is a labeled. partial 
order giving considerable detail of the computation from p to q. This form of 
experiment is used in [4], [7], and [21] to define new variants of observational 
equivalence. The only complete axiomatization may be found in [4], and it is 
known that their equivalence is coarser than distributed bisimulation. For example, 
the terms 

p = a(b + c) + @lb) + (UIC), 

4 = P + a I (b + cl, 

are identified by pomset bisimulation and distinguished by distributed bisimulation. 
A proof that distributed bisimulation equivalence implies pomset bisimulation 
equivalence, for the language without communication considered in [4], may be 
found in [6]. 

A different generalization of observational equivalence is given in [lo]. Here 
actions are assumed to be nonatomic, having a distinct beginning and end. The 
resulting equivalence on finite CCS terms with communication and T-actions is 
axiomatized. This equivalence is different from distributed bisimulation because it 
does not satisfy the law 

PL(X + 7Y) + PY = /4x + TY). (13) 

Finally, we should mention some attempts at generalizing equivalences other 
than bisimulation to take concurrency into consideration. In [ 11, the testing 
equivalence of [8] is extended to event structures, and in [20], an extension of 
failure semantics for CSP is presented. 
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