
Theoretical Computer Science 59 (1988) 25-84
North-Holland

25

OUDOL and I. CASTELLANI
INRIA Sophia-Antipolis, 06560 Valbonne Cedex, France

Abstract. The overall intention of this work is to investigate the ability to regard a finite computa-
tion as a single event, in dealing with the semantics of concurrency. We propose a calculus of
concurrent processes that embodies this ability in two respects: the first one is that of execution,
the second that of operation. As usual, we formalize the execution of a process as a labefled
transition relation. But our point is that at each step the performed action is a compound one,
namely a labelled yoset, not just an atom. The action reflects the causal and concurrent structure
of the process, and we claim that the bisimulation relative to such transition systems brings out
a clear distinction between concurrency and sequential nondeterminism. Next we introduce a
second transition relation, formalizing the operation of a process on data. As in the usual semantics
of sequential programs, a process operates on data by means of its terminated sequences of
computations. Then we obtain atomic actions by abstracting the whole operation of a process as
a single event. We-show that this abstraction mechanism, together with the idea of compound
actions, allows us to deal with a variety of synchronization and communication disciplines.

1. Introduction

The purpose of this paper is twofold: to set up a semantics for “true concurrency”
and to propose a semantics for atomic actions. In developing our proposals we shall
use ideas borrowed from various approaches to the semantics of concurrency.
Milner’s work on calculi of processes [44,46,47] provides our main source of
inspiration. Let us recall the main features of such calculi (cf. [S]): first there is a
syntax which describes abstract programs as terms sf‘ an algebra; second there are
behavioural rules according to which each term may pzrform some actions and
become another term in doing so. This brings in a notion of labelled transitions:

action
process - process’.

execution

Then a semantic equality is defined by means of the well-known notion of bisimula-
tion [Sl, 46,8]. This semantic equality usually complies with algebraic laws, which
may form the basis for an axiomatization.

A common feature of process calculi is that they are based on operational semantics
of programming constructs. This is precisely what we are interested in. ne of the
reasons is the following: although there is some progress towards a Church’s Thesis
for concurrency (cf. [70,63,5,48]), we still lack a mathematical notion of process
which could play a role similar to that of (recursive) function for sequential
languages. A Church’s Thesis would emerge from a collection of results establishing

0304-3975/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland)

26 G. Boudol, I. Castehni

the equivalence of various models. As regards concurrency, the available results of
this kind are not based upon a universally accepted notion of process. Then a
possible preliminary step is to bring out some primitive constructs for “computing
processes”, and to compare them. This was an early purpose of CCS (cf. [43]).
Later on, Milner took the standpoint 146,471, which we adopt, that any abstract
notion of process must be based firmly upon operational semantics.

Informally, we view a concurrent system as made out of autonomous agents which
may communicate during their execution. This is just to point out the difference
from sequential systems, which communicate at the end of their execution. In order
to formalize such a notion of interactive and possibly nonterminating process, one
must take into account concurrency, communication and execution. We shall return
to the first two concepts later. As regards execution, transition systems provide us
with a suitable starting point. As Plotkin shows in [S3], a fairly general model of
the operational semantics of programming languages is that of transitions inferred
by means of structural rules. This also copes with languages for coracurrent and
communicating processes, such as CCS or CSP (cf. [54]).

Bisimulations on transition systems provide a powerful concept (see [63,5, (r]),
but many authors argue ([12,16,59], to mention but a few) that this yields an
inadequate description of concurrency. Specifically what is questioned is Milner’s
expansion theorem [44,30], expressing a simulation of concurrency by sequential
nondeterminism. Roughly speaking, (alb) = ab + ba (we use here a CCS-like nota-
tion), thus the parallel composition operator can be eliminated (from finite terms),
whence it is not primitive. As a contribution to the theory of “true concurrency”,
our paper aims to solve

concurrency # sequentiuli~y + nondeterminispn. (I)

More precisely our thesis is that this can be solved while still dealing with bisimula-
tions on transition systems: we show that the criticism should not be moved against
the expansion theorem, but rather against the lack of structure in the actions of
transition systems.

Evolving from Petri’s ideas [52], there is another way to approach the semantics
of concurrency. Following this way one thinks of sequentiality as arising from causal
structure which prescribes an ordering on events. Dually, two events are concurrent
if they are not causally related. Thus an action is a puhzl~v ordered set of events,
labelled by atoms, rather than a mere sequence. This is by now a widely held point
of view, which we shail survey in a first sectior., of the paper. Let us just say that
our main source of inspiration from this area is Grabowski and Gischer’s theory of
pomsets [27,X], which are partially ordered multisets of atoms. A step towards the
idea of actions as pomsets was already taken in the calculus MEIJE [2,5], where
an action is a multiset, that is, a parallel product of atoms. We can claim that in
MEIJE concurrency is primitive since we have

b)=ub+(ulb)+bu#ub+bu.

Concuwtmcy and atomicity 27

However MEIJ~ does not provide an adequate model for causality since we have
something like

(ab)c) = a(b)c)+(alc)b.

These examples show that there is still a notion of global time in this calculus,
which forces some undesirable causal dependencies. What we seek is an execution
model where causality, as well as concurrency, is properly ta en into account.

Let us now introduce our first contribution: first of all, in order to solve (1) we
must start with a formalism in which one can talk about sequentiality, nondetermin-
ism and concurrency as distinct notions. This is why we adopt as our system model
Winskel’s (labelled) event structures, built upon the exclusive relations of causal
ordering, conflict and concurrency. Each of these relations gives rise to a way of
constructing event structures: one simply juxtaposes two such structures and then
sets the corresponding relation between their events. These operations are sequential
composition (;), sum (+), and parallel composition (II); they provide us with a syntax
for finite event structures. Obviously, the syntactic distinction between the three
operations is too crude: we would like to identify some terms on behavioural grounds.

We now *describe the first main idea. An event structure determines a set of
computations, what Winskel calls configurations: a computation is a conflict-free
“prefix” of the event structure. We shall restrict our attention to finite computations.
Then, defining “what remains of the structure” after a computation we get a notion
of labelled transition: the action (= the computation) is a finite pomset and the
state reached (= what remains . . .) is another event structure. This provides us with
an execution mode2. The point is that we generalize what is usually over the (execu-
tion) arrow: computations are finite and determinate processes, not just single atoms.
Syntactically they are denoted by terms involving sequential and parallel composi-
tion, but not sum.

We then give a structural operational semantics, following Plotkin’s style [53,54],
for our “abstract programs”, and show an exact correspondence between the
semantical and syntactical notions of transition. Since computations may contain
causality and concurrency, we shall have some rules introducing the corresponding
operators over the arrow, namely:

p-spff&gGq’ * p;q-=+

where p’t means that p’ is a

p&~&*-L$ *

Let US see just one example:

(a;b;p,,c;q) -=2

terminated program, and

we have

(PIId*

This shows that our calculus is asynchronous: there is no assumption of global time
since two concurrent processes may independently perform computations of
arbitrary lengths.

28 G. huiol, I. Caste&ml

Next we define our semantic lity, rn the same way as Milner defines his
strong congruence, alri sive an a matization for it. We claim that this notion of
equality solves (1); so posed execution model for “true concur-
rency”.

There is a remairning point in our informal view of a process-as a system made
mmunicating concurrent agents-that of communication. We may roughly
h two kinds of communication: an indirect one, usually asynchronous,

where the agents communiciilve by means of shared objects (variables, buffers, and
so on); a direct one, usually synchronous, where the agents exchange messages. We
can regard a direct communiGation act as a computation of the form (u 11~) since it
requires the participation of at least two concurrent partners. If the communication
is synchronous, one must ensure that in some sense (~11~) cannot be dissociated.
One way to achieve this is to specify it as an uxiom, an interaction law as in Winskel’s
synchronization algebras 1691. For instance, for the calculi CCS, MEIJE/SCCS and
TCSP, we would have something like

ccs: wa=7,
MEIJE/SCCS: (alla--‘) = 1,

TCSP: (4ld=a

There is another way to ensure synchronization, which is to implement it in some
sense. This is the way we shall follow. More specifically, we shall “implement”
direct synchronous communication by means of indirect asynchronous one, using
a formal notion of atomic action. This is the second main idea of the paper: we
want to set up an operational formalism where it is possible to abstract the whole
behaviour of a process as a single atomic o&on, In such a formalism, we shall be
able to say that some “high-level” primitive is implemented at a more concrete level.

In order to introduce the abstraction mechanism, let us return for a while to
communication: for indirect communication, the primitive act is the upplicution of
an action to an object. For instance, this can consist in reading or updating a
variable, or in putting a value into a buffer, or getting a value from that buffer, and
so on. We shall denote by s H” s’ the fact that an action u, when applied to the
object s, operates on it, changing it into s’ (the last part of the paper deals with the
notions of object and operation). Applying an action to an object may consist in
applying an arbitrarily complex process, and it is the whole operation of such a
process that will be abstracted as an atomic action. Therefore we have to define the
operation of processes, not only of actions, on objects. This is formalized as a new
transition relation:

process

object -
operation

object I.

As a matter of fact, the inference rules for operation are fairly simple: they just say
that a process operates by means of its terminated sequencers of computations. This

Concurrency and atomicity 28

operation may be nondeterministic, due to an arbitrary interleaving of the concurrent
components of the process.

Atomic actions are then iutroduced within a definition similar to thar; of abstract
data type, namely o = (s with a1 = pl,. . . , elk = pk), where s is an object, the ai’s are
atom identifiers and the pi’s their respective codes, which are processes. The term
o is an (abstract) object, and the corresponding operation rule for it-that is, the
ahtraction &e-is, roughly speaking, as follows:

‘C PiJail
S--S’ I- (switha,=p,,...,ak=pk)&s’witha,=p,,...,ak=pk)

where u[pi/ai] is the process we get by substituting in u the atoms ai by their codes
pi. This rule clearly states that the operation of atoms on an abstract object is that
of their codes on the concrete representation of the object.

Let us sketch how this can be used to model CCS communication. Let sem be
a given primitive object whose initial state is free, and which (exclusively) accepts
the following operations:

free A busy and busy z free.

This is a kind of boolean semaphore, cf. [21]. We shall see that, as suggested in
[33], a CCS port can be defined as the following communication structure:

port = ((semllsem’) with send = (P; V’), receive = (P’; V))

(with an obvious meaning for sem’, P’ and V’). The mutual inclusion of send and
receive will result from an indivisible interleaving of their codes, as in the sequence
P; P’; V’; V for instance. We shall also see how to define the CCS restriction p\cu in
our calculus.

To sum up, our contribution relies on two main ideas: the first one is that it is
worth putting some structure in what labels the arrows. The second is that it is
worth setting up two kinds of arrows. One can think of CCS and related models as
staying at the execution side, while functional languages stay at the operation side;
what we attempt is to make up a unifying operational framework.

Note. One must regard our semantics of atomic actions as a preliminary proposal,
formalizing the more concrete one of [7]. We do not prove any theoretical result
about them. In particular our operation model is not yet clearly related to the system
model of event structures.

Summary

In the first part we deal with our chosen system model, that of labelled event
structures. We begin with a brief account on partial ordering approaches to concur-
rency. Then we introduce labelled event structures, together with a first syntax where
the primitive constructs are sequential composition, parallel composition and sum.

30 G. Boudol, I. Castelluni

Next we enrich this syntax with recursive definitions and show how to interpret
terms as event structures. The last section of the first part contains a characterization
of the class of event structures which are denoted by finite terms, and gives a
complete axiomatization of the interpretation equality.

The second part of the paper is devoted to the execution model. define our
notion of transition on event structures, and show that this corresponds exactly to
an operational semantics on terms. Then we discuss the associated strong bisimula-
tion, which is called here equipollence, and give a complete axiomatization for it
(for finite terms).

This third part presents the operation model, and our full calculus. We first
introduce the notion of operation of programs on data. Then we give a syntax for
data, which are called objects here. The syntax of terms is extended with constructs
allowing processes to operate on objects. The transition relation of execution is
extended to processes, and we introduce the transition relation on objects that
formalizes the operation of processes. The last sections are concerned with abstrac-
tion and atomic actions. In particular, we show how to formulate some classical
synchronization and communication primitives as atomic actions.

The reader will find in the three appendices a recapitulation of the technical
material: the first one recollects the syntax, the second one contains the axioms and
equational theories, and the third includes the rules of operational semantics.

PART I: THE SYSTEM MODEL

2. Syntax and interpretation

2.1. Algebras of posets: a survey

One of the first proposals in the area of partial order semantics of concurrency
may be found in the work of Mazurkiewicz [40]. His formalization describes
concurrency as an independence relation on actions, while causality is represented
as sequencing of actions in a behaviour. This gives the notion of trace which is the
equivalence class of a sequence up to commutation of independent actions (a more
common meaning of the word “trace” is just that of a sequence, such as used by
Hoare [32]). For instance, let A = {a, b, c, d} be the set of actions and I =
((a, b), (b, c), (c, d)} the independence relation; then the trace deter
word abed is the set

(abed, bacd, acbd, abdc, bade}.

One can see that in the words of this set, b always precedes d, and a always precedes
c and d. us one can represent this trace by a labelled poset N

Concuwency and atomicity

a b

I\1
c d

(in this figure the order increases downwards). The partial ordering associated with
a trace is the intersection of the linear orderings given by the words of the trace.
This representation of traces by labelled pose&-up to isomorphis;,;_-is

azurkiewicz in [409 411. One may even characterize the labelled posets
resent traces, up to isomorphism, as shown by Shields [62] and Vieunot [6S]-
another such characterization is given by Grabowski 127).

The set of traces on a set of actions A has an obvious algebraic structure: it
inherits the structure of a monoid from the set A* of sequences of actions, the
operation being concatenation up to commutation of independent actions.
Mazurkiewicz shows in [41] that such monoids satisfy some simplification properties,
and Viennot [65] shows how to define directly the product of labelled posets
representing traces. In fact, this kind of monoids, called commutation manoids, was
introduced by Cattier and Foata in Ll l] to study combinatorial properties of
rearrangements of sequences. Concurrency is implicit in the algebra of traces: there
is only one operation to compose traces, namely that of concatenation. Let us now
assume that we have two explicit construrts for programs: sequential and parallel
composition. Then we can write, using a KS-like syntax, a “program” (abla),
where a and b are actions. But there is no trace to represent its semantics. What
we could do here is to interpret the parallel composition as the shuffle and thus get
the set of behaviours {aab5 aba}. However, as noted by Pratt [SS], there is no longer
uniqueness of labelled posets represented by this set; for example (aab, aba} is the
set of linearizations (or sequentializations) of both the labelled posets

a a a

The second one can be regarded as the interpretation of the term a(bla).
Labelled posets (up to isomorphism) seem to provide a sharp interpretation of

concurrent programs. Let us give the definition: an A-labelled poset is a structure
(E, s, A) where < is an ordering on the set E of events and A : E + A Zs the labelling.
Informally an event e E E is an occurrence of the action A(e), and e s e’ means that
e necessarily precedes e’. If two events e and e’ are incomparable, we say that they
are concurrent, and write e - e’. Structures of this kind have been introduced by
Winkowski in [66,67]; he imposes however a somewhat unfortunate restriction on
his “partial sequences”, namely that two concurrent events do not carry the same
action. This rules out (ala)

As a matter of fact, labelled posets appear very often in the literature: they bear
the name of “partial word” for Grabowski 1275, of ” omset” (partially ordered

32 G. Boudo& I. Castellani

multiset) for Pratt and Gisher [24], of “A-poset” for Shields [62], and SO on. Degano
and Montanari propose in [17,18] posets called “concurrent histories” in which
they distinguish two kinds of labels (process types and actions). Petri net theory
also uses a semantical object which is a special case of poset, that of “occurrence
net”, from which Reisig [SS] extracts the “abstract processes” to formalize the
computation of nets-the same notion was introduced by Grabowski 1271. In this
paper we shall adopt Pratt’s pomset terminology, cf. [58].

Assuming that pomsets are an appropriate model for concurrent programs, the
question is: can they be supplied with an algebraic structure? In other words, we
ask fo? a syntax to denote pomsets. An answer is given by Grabowski [27] who

mset may be built from atoms by means of sequential
3 a family of (multi-valued) operations called “sec-

re similar to the parallel composition by intersection of
conjunction 146,481. However, this result essentially

concerns posets, where the labelling is injective. Thus one has to assume an infinite
ctions A, which means that one cannot in general present the class of

A-labelled posets as a free algebra generated by A, at least not with Grabowski’s
9 problem of finding a set of operators which are both operationally
d sufficiently expressive does not yet have a satisfactory solution.
ntent ourselves with the above mentioned constructs (parallel and

osition). Now the question is: which class of pomsets can we describe
ain the answer comes from Grabowski-and independently
is class is exactly that of finite N-free pomsets. We shall see

of the N-freeness property. Roughly, an N-free pomset
is one chat does not contain the previously encountered pomset N. There exist some
variatjons of this property: for example, one can consider pomsets or posets which
do IP strictly contain N, that is, do not contain an N-configuration for the covering

[28], see also [SS]) has shown that such posets are characterized
e property tsat each maximal chain intersects each maximal slice. An algebraic

charaaterization df this class of posets has been given by Habib and Jegou [29].
ey use a family of operations parameterized on a subset of maximal elements of

nt, and on a subset of the minimal elements of the second one
ontanari introduce similar constructions on concurrent histories).

operations, which depend on the names of events, do not provide a
ct syntax. Incidentally, let us note that the class of N-free pomsets,

re accurately of their line digraphs (cf. [36]) called series parallel &graphs,
I=H known for a long time by authors studying models of switching circuits

12% 6% 611. These graphs also arise in problems of jobs scheduling (e.g.. topological
sort), cf. [35].

To conclude we could point out that, for most of the models we mentioned, a
process is a set of pomsets, which represent its possible computations; in other
words a process is a language. is means that one may introduce a sum operator

+ 4 (nondeterministic choice hich is interpreted as set union. is entails the

Concuwency and atomicity 33

linearity, or distributivity of sequential and parallel composition with respect to
sum: p(q+r)=pq+pr and pl(q+r)=(p(q)+(plr). Now it is well-known that
models of this kind do not account for deadlock situations [,9]. For instance, if
we assume a process 0 (similar to the NIL of CCS) such that x + 0 = X, then we will
have ub=ab+a and (alb)=(alb)+a.

We shall not adopt such a linear interpretation of p+ q: here the sum will be a
true branching control structure. This construct is often used to model standard
programming concepts such as (if.. . then.. . else.. .) or (ease . . .) statements. For
this reason we depart from pomsets as a system model, and rather adopt a framework
in which the concepts of concurrency, sequentiality and nondeterminism take place
at the same level. This framework is that of Winskel’s et&t structures [68].

2.2. Labelled event structures and terms

For some technical reasons that will become clear later, our definition of event
structures is a slight variation of Winskel’s one. Moreover, in this first part we only
deal with event structures in themselves, not with the domain of configurations they
determine. Configurations will be introduced in the next part. At some points we
shall assume knowledge of the work of Nielsen, Plotkin, and Winskel [49] which
shows how to derive (labelled) event structures from some kind of (labelled)Petri
nets; thus we shall feel free to use standard concepts of n& theory (cf. 1231) when
dealing with such derived event structures.

As usual (0, 1)” denotes the set of words over the alphabet (0, 11; the concatenation
of two words u and v is uv, the empty word is E.

Definition 2.1. Let A be a nonempty set. An A-labelled event structure (A-LES for
short) is a structure (E, G, #, A) where

(i) E G (0, 1)" is the set of events,
(ii) s is a partial order on E, the causality relation,

(iii) # G E x E -(s u 2) is the symmetric conflict relation,
(iv) A : E + A is the labelling function.

In what follows we let a, b, c, . . . range over the set A of atoms. Two events e, e’
in E are concurrent if they are neither comparable nor in conflict, that is, e - e’ where

def
- =ExE-(<uau#).

This is a symmetric irreflexive relation. Note that, by definition, the relations s u 2,
#, and - set a partition upon EXE.

We shall ,always draw structures up to isomorphism, that is, omitting the name
of events; in the figures the order < increases downwards and only one of the
remaining relations (# or -) is explicitly shown. For instance, 0

34 G. Boudo~ I. Castellani

is a structure with three events, e, 4 and e”, respectively labelled a, 6 and c such
that e is a cause of e”, e and e’ are concurrent and e’ and e” are in conflict. This
event structure is derived from the net shown in Fig. 1 which is t
of asymmetric confision (cf. 1231). Note that we do not requi
of conflict heredity, stating

e”# e S e’ * e”#e’.

Fig. 1.

Therefore, we do not rule out structures such as, for instance,

a#b

\/
C

We use Z’(A)” for the set of A-labelled event structures and 2(A) for the set of
finite ones. These sets are naturally supplied with an algebraic structure: let V be
one of G, -, # and &, S, be A-LES’s; then S,-, (V) S, is the structure we get by
juxtaposing So and S, and setting the V relation between the events of S, and S,.
When V is s, this is called sequential composition of S,-, and S, and denoted &;S, ,
whereas if V is -, this is the parallel composition SolI S1 and in the case V = #, this
is the sum S-,+ S, . The formal definition is the following: assuming

Si = (Ei, s-1, #i,Ai) for iE{O, 1)

one defines So (V) S, to be (45, G, #, A), where
E=E&E,, i.e., E={Ou)u~E,,}u{lu~u~E,};
ixsjy H i=j and Xsiy or V=G, i=O and j=l;
ix#ju e i=j and x#iy or V=# and i#j;

ese operations are naturally defined up to isomorphism. That is, denoting by
P t Q the relation “P and Q are isomorphic”, we have

P;Q e P’;Q’

PeP’and -QO’ + P+QeP’+Q’,

Plt Q c= P’IIQ’.

inherit the algebraic structure.

Concurrency and atomic@ 35

Now we have a syntax to denote finite A-LES’s; we shall deal with infinite ones
in a next section. This abstract syntax is the set A) of terms built according to

the following formation rules.

term of T(A) and every atom a E A is a te of T(A);
(ii) if p and q are terms of A) then so are (p;q), (pIIq> and (p+q).

Let g(p) be the labelled event structure denoted by the term p, defined as follows:

IO) = (0,0,0,0) (the empty structure),

,$(a) = ({a}, =, Q A) with A(e) = a,

$(Pit?) = 8(PkAd,

$(PllS) =APww9

cNP+4)=c9(P)+rs3)*

The symbol 0 will be used also for the empty structure and its isomorphism class.
Let us see a few examples: the term (a + b);(cl1 d) denotes the structure

a b

IXI c-d

This and the simpler term (a + 6);~ show why we cannot assume the axiom of
conflict heredity. The term (a II b) + c is interpreted as

a#c#b

(where a - b, and there is no nontrivial causal dependency) and it is an example
of “symmetric confusion” (see [23,49]), derived from the net shown in Fig. 2.

Fig. 2.

It will be convenient to denote uSI=, or more simply [Sl, the isomorphism class
of an A-LES S. Then the interpretation of a term p E

In a next section we shall give a characterization of the set of finite structures which

36 G. Boa&~ I. Castelkani

are interpretations of terms u13 to isomorphism, that is,

T(A) zf .9(1(A)) E S(A)/=.

Moreover, we shall give an axiomatization of the interpretation equality:

p =4q El Jvp)=m?) e AP) -2-w-

2.3. Infinite structures and recursive definitions

on we enrich the syntax of terms with recursive definitions in order
to be able to denote some infinite A-LESS. The syntactical apparatus of recursive
definitions, and their semantical interpretation in ordered domains are nowadays
standard matters of the theory of programming language semantics, with which we
assume the reader to be familiar.

Winskel introduces in [70] an approximation ordering between LES’s which yields
a cpo structure. This ordering is simply the “substructure” or restriction ordering,
defined as follows:

3F

Fx
E E,

F), #n U=x F), A [FL

Since this relation is defined by means of set inclusion it enjoys some pleasant
properties. To state them let us recall some standard order-theoretic notions:

(i) In a poset (X, <) a subset C of X is locally bounded (or consistent) if every
finite subset of C has an upper bound (in X).

(ii) The poset (X, G) is consistently complete if every locally bounded subset C
has a lub U C.

(iii) Let (X, s) be consistently complete. A point x E X is called $nite if for every
directed subset 2 such that x G u 2 there exists a z E 2 such that x s z.

(iv) A consistently complete poset is algebraic if each of its points is the lub of
the finite points it dominates.

We assume the notion of continuous function over consistently complete posets to
be well-known. The following fact is not a surprise.

Proposition 2.2. The poset (Z!?(A)” , E) is a consistently complete algebraic pose;
whose set offinite points is Z(A). Moreover, the operations of sequential composition,
sum, and parallel composition are continuous over this poset.

The straightforward proof is omitted. The relevant consequence of this fact is
that we can solve systems of algebraic equations in the poset (S(A)“, c)- More
accurately, this result allows us to interpret terms containing recursive definitions,
which could take the following syntactic form:

(def ret x1 =pl,. . . , x, =pn in q).

Concurrency and atomicity 37

In order to extend the syntax with such a construct, we assume a denumerabie set
X of identifiers, disjoint from the set A of atoms. As usual the (def rec.. . in . . .)
construct binds the defined identifiers, and thus introduces notions of free and
bound occurrences of identifiers. define for each finite subset Y of X the set

) of terms whose free identifiers are those of Y-so that the set of closed
terms is T-“(A). We shall use a restricted syntax for recursive definitions, allowing
only definitions of the forum (def A: = p in x), what we denote px.p (for some authors
this is ret x.p or fix x.p, caf. 1461). The set of “finite” terms, built without recursive
definitions but with free identifiers in Y is T(A u Y). We shall restrict the formation
of sequential composition (p;q) to the case where p is closed and finite-this is to
avoid problems with termination. Then the formation rules for (recursive) terms are
as follows.

Terms
(0

(1 ii

. . .
() 111

WI

0 V

.

0 and every atom a E A are terms of T’“(A);
if p and q are terms of T(A) and Trec(A u Y) respectively, then (p;q) is a
term of T’““(A u Y) ;
if p and q are terms of T”“(A u Y) and Tr*‘(A u Y’) respectively, then (p 11 q)
and (JJ + q) are terms of T”“(A u Y u Y’);
an identifier x E X is a term of u”(A u {x});
if x is an identifier and p is a term of T”“(A u Y), then q.p is a term of
T’=(A u Y - {x}).

We obviously have T(A) G T”“(A). Since recursive definitions bind identifiers,
we shall regard as syntactically identical those terms which only differ in the names
of bound identifiers. For instance,

we shall use q[p/x], to denote the term that we get by substituting p for the
identifier x in ail its free occurrences in q; bound identifiers of q may have to be

renamed to avoid captures of free identifiers of p. For instance,

(~x.(~;(~llY)))[(~;~)lYl= P~‘.@;(~‘kw))* .

In order to interpret closed terms into S(A)“--or more accurately into 9(A)“/+-
we need the notions of unfolding and immediate approximation of a term. A term
p is an unfolding of another term q if we get p from q by substituting for some
identifiers their (recursive) definition. ‘Ihen the sets q(p) of unfoldings of terms p
of T’*‘(A) are the least ones satisfying the following clauses:

(i) pE e(p) for any term p;
(ii) if pk S(p) and q’@%(q), then (p’;q’)E%(p; q), (p’/q”k Q(pllq) and

(P’+q’k Wp+qk
(iii) if q E %(p[kx.pf xl), then q E %(px.p).

38 G. Boudol, I. Castellani

For instance, let

r := px.(a;(b))x)).

Then

%(r)={r,IOsn} where
{

r() = r,

m+1= (%(bllr”)).

The unfolding process is confluent, that is,

p%%(p) and p’WB(p) * ~(p’)n*(p”?f8.

This is a standard fact. Note that if r is a closed term, then all its unfoldings are
also closed. The immediate approximation m(p) of a closed term g is what we get
by simply forgetting the recursive definitions, that is, by substituting 0 for all the .
subterms pxp:

(i) a(n) = 0;
(ii) a(0) = Q for all a E A;

(iii) 4~; 4) = b(p); w(d), -<pIIs> = (w(p)IIW) and
w(P+q)=b(P)+4#n;

(iv) +xp) = I. .

For instance, the set a(%(r)) associated with the grevious r is the sequence w(r”)

who) = 0,

Note that w(p) is always a “finite” term, belonging to T(A). Another standard fact
is that unfolding increases the immediate approximation, that is,

Vp E +““(A) p’ E s(p) * ,9(-(p)) G ,QT(P(P’)).

Continuing the above example we get for the following sequence #(a(rn)):

00
,/““\
‘O

0s I c_ ,/“\
10 QllO s

b I
b/a\a,,,,, 5. l l

10
1110

b 1110 I
b 111110

Here the names of the events are sho\qn as indices of the labela to make evident
the ordering relation.

A consequence of the previous facts is that, for any closed term p, the set

t9MP’))lP’~ WPH

of (finite) approximants of p is pairwise consistent (and, in fact, directed), and thus
has a lub in .2(A)? We are then able to define the interpretation of terms of

Concurrency and atomicity 39

As usual, this interpretation could be defined as the limit of an increasing sequence

if we let:
(i) K(O) = 0;

(ii) K(Q)=• for all UEA;

(iii) K(p; q)=(K(p)F(q)),K(p(~q) =(K(p)b(q)hdK(p+q)=(K(p)+K(q));
(iv) &x4’) = PbPl~l~

Then d”(p) = u {$(QJ(K n (p))) 1 n 2 0). It should be clear that this definition extends
that of 9, that is, 3”(p) =$(p) for p E A). Just as for “finite” terms, we define

S(P) zFuFYPyl and P(A) zF.%(““(A)) c_ d?(A)*/: 2.

Then the interpretation equality is

p =Jq lz s%(p)=e%(q) e 9”(P)“fY4)=

Pursuing the above example, one can see that S(~X.(O;(~~~X))) is

.

where there is no conflict.

3. Cbi\racterization

Oke may remark that in S(A)*/* the three operations previously defined are
associated and have ll as neutral element; moreover, the sum and parallel composition
are commutative. This suggests the following definition.

Definition 3.1. A trioid is an algebra (T, ;, 11, +, 1) satisfying the axioms

0 i

(ii)

. . .
() 111

(T, ;, 1) is a monoid:

AO: (p;(w)) = ((P;!?m
uo: (p;l) =p = (1;p);
(T, 11, 1) is a commutative monoid:

Al: (Pllcqllm = ((Plldllf99
u1: (PI10 “P = UIIP,,
Cl: (PI141 = (SllPh
(T, +, 1) is a commutative monoid:

p”i2: (p+(q+r))=((p+d+r),
u2: (p+l)=p-(1+p),

c2: (p+q)=(q+p)-

40 G. Boudo~ I. Castellani

Let @ be the equational theory whose axioms are A0 to A2, UO to U2, Cl and
C2, and let =8 be the congruence on +““(A) generated by these equations. Then
we have an obvious soundness property:

p=eq*p=sq-

We now wish to check whether or not a converse comp5steness property holds for
“Jnite” berms, that is, terms of T(A). First we shall see th.at not all finite labelled
event structures are interpretations of terms. We have already mentioned the fact
that the structure N

a b

(without conflict) is known to be typical of those that cannot be expressed by means
of sequential and parallel composition, cf. 124,271. To obtain completeness, we thus
want to find a class of A-LESS which do not contain N. In order to define this
class and state our characterization result we need to introduce some notations. Let
R c E x E be a relation on a set E.

0 i
(ii)

(iii)
(iv)

R”= R u R-’ is the symmetric closure of R
R” = R” u R” is the reflexive and symmetric closure of R, which we shall
call the R-comparability relation.
$(R) = (E x E) - R” is the symmetric, irreflexive R-incomparability rela:ion.
-R = (R”)* is the equivalence generated by R whose classes are the con-
nected components with respect to the R-comparability relation.

For instance, the comparability relations determined by # and - are simply their
reflexive closures, whereas the s-comparability is s u 2 which we denote by 0,
and S(0) = #u -. In order to avoid many useless repetitions we shall name each
of the relations s, #, - a connective of a given structure S.

The first property we shall require is N-freeness; an A-LES S is N-free if it satisfies

(for U a connective of S.

N-freeness
if e. Ue, and e. #(U) e2
if e2 Ue, and e, $(U) e3,

I then e. Ue3ae2 Ue,.

This property, which is obviously preserved by isomorphism, may be drawn

t\ l : f
u u .

[\I . .
e3

This typically precludes a structure such as a# b# c# d (where CL - c, b - d, and
a - d) which is derived (see [49]) from the Petri net shown in Fig. 3.

Concurtency and atomicity 41

Fig. 3.

N-freeness is also related to Petri’s notion of K-density, or more accurately
N-density 1521, see [28,55].

N-freeness is not enough by itself to characterize the class of A-LES’s denoted
by terms. Here we need another requirement which we may call the triangle--freeness
property: a structure S satisfies this property (referred to as the V-freeness property)
if it does not contain a configuration

triangle e 0 e’# e” - e.

This precludes the typical situation of “asymmetric confusion” (cf. [23,49]), that
we have already seen above.

In fact the “behavioural” properties of N-freeness and V-freeness may be com-
bined in a single one-which is somehow more natural when looking for a property
preserved by the operations.

Lemma 3.2. An A-labelled event structure S satisfies the N-freeness and V-freeness
properties if and only if it satis$ies the property

for U and V among s, #, - with U# V

X
if e0 U e, and e. $(U) e2
if e2 Ue, and el $(U) e3,

then e. Ve, + {eo, e,} x {e2, e3}s K

Proof. It is easy to see that if S satisfies the X-property, then it is V-free since a
triangle e 0 e’#e” - e does not satisfy the X-property (if we let e. = e, e, = e’, or
eo=e’, e,= e, and e2 = e” = e3).

Let us prove that the X-property also imp ies N-freemm+ let us assume that S
satisfies X and contains a configuration

e0- H W-et
I I\ I

U u

1 \I
-W)-e3

Regarding the relationship between e, and e2, the
following:

a priori possible cases are the

42 G. Boado& I. Castel&ni

(1) if ez Ve,, wit #, -}, either V= U and we are done, or V # U
we apply the-X-property to the following configuration:

We get e3 Veo, together with the hypothesis e. U e3. Since U and V are two distinct
connectives, at least one of them is symmetric; therefore, one has either e3 Ue,,
which contradicts e3 VeO, or e. Ve,, which contradicts e. Ue,.

(2) The only remaining case is e, G e2; we cannot have U = g, otherwise we
would have eO- < e, s e2, contradicting e. $(U) e2. Then U-’ = U and we can apply
the X-property to the configuration

We get e, G e,, but thi l s contradicts e. U e3 since U is a connective distinct from s.
Therefore it must be ths case that e2 U e,) and we have shown that the X-property
implies N-freeness.

In order to prove that zm N-free and V-free LES satisfies the X-property, we shall
use the following claim.

Claim. If a structure S is N-free, then it satisfies

for- U a comective of S
lye0 U” e, and e. $(U) e2
if e2 U” e3 and el $(U) e,,
then e. U” e3 * (eo, ez} x {e,, e3} c U or (eo, e2} x {e,, e3) c U?

Let us assume the hypothesis of ’ with U = G (the claim is trivial when
- since these connectives symmetric). It cannot be the case that

e0 =s e3 s e2 since e, $I U) e2; similarly, e2 < e, G e. is precluded. Since e, $(U) e3, we
cannot have e3 c eO s cx:‘l nor e, < e, =Z e3. ly possible cases are e. s e, .
and ez G e3 nad q+ 3,; that is, the h se,, or eoae,, and

we conclude e2 3 e,

Concurrency and atomicity 43

(continued). Let us assume that S is V-free, satisfies ‘, and
contains the following configuration:

-e 2

Tq:“’ ’ u

[\I
-W)-e,

with U, VE {Q, #, -} and U# V (note that eof e2 and e, # es). Then we have
e. W” e2 for some connective W; it cannot be the case that W = U since e. $(U) e2.
If e2 = e3, then W = V; otherwise sinze S is V-free, we must have W” = VS In any
case e. V@ e2, and similarly, e, V” e3. We then have the configuration

Since the hypothesis is eti Vz3, we conclude by the N’-property that { eo, e,} x
(e2, e3k V. 0

We can finally de%x ..a .* i _ ps p r&tended class of structures as follows.

Definition 3.3. The set %‘(A)” (respectively Z(A)) is the set of A-LES’s (respectively
finite A-LESS) satisfying the X-property.

The set of structures %(A)” (or, more accurately, %‘(A)“l’) is a generalization
of Grabowski-Gischer’s class of N-free pgmsets 127,241. Clearly, the
hereditary; this means that if S’c S & S E %?(A)“, then S’E %‘(A)“. We can now
state the announced result, which generalizes Grabowski-Gischer’s one.

(Characterization). The structure (%‘(A)@, ; , 11, +, I) is the free trioid
A. In particular,

(i) SE%(A) @) $(p)~ S; therefore, Y(
(ii) p =9 q @ p =8 q.

The complete proot ;c: rather I

are omitted. One has to
ave already seen t

g to see is th

44 G. Baud@ I. CasteUani

consequence will be that Z’(A) is a trioid which contains the denotation #(p) of
every (“finite”) term p E T(A), and then T(A) G Z(A)@.

ma 3.5. If So, S, E %(A)“, the St& 9 SO+ & and SC& are in

f. Let Si = (I!$, +, #i, hi), let 4 = {iac 1 u E I!$} for i = 0, 1, and let {eO, e, , e2, e3}
be events of So (W) SI which satisfy the hypothesis of the X-property, that is:

with U, VE {G, #, -} and U # V. The proof that we then have the desired conclusion

h, eJxb2, e3k v

proceeds by case inspection on the respective position of the events eo, e,, e2, e3.
(1) If they are all in the same 4, then we are done.
(2) It is impossible that an fi contains exactly one of these events: for instance,

assume that e0 E F0 and {e,) e2, e3) c_ F,; by definition of So (W) S1 , we have F0 x F’, C_
W, therefore e, We,, whence W = U, and e. We, but this contradicts the hypothesis
e. $(U) e,. All the other cases are similar.

(3) The same argument shows that it is impossible that one of F’, F’, contains
{e*, e3} while the other contains {e, , e,}. On the other hand, if, for instance,
(eO, e,) s F0 and {e, , e3} c_ Fl, then we would have e. We, and e. W e3, hence
u= w= 41, but this contradicts U # V. The only remaining case is {eO, e,} G F0 and
{e2, e3} G FI (or possibly the converse if V is # or w), whence W= V and (eO, e,} x
{e2, e3}G V. •I

Next one has to show that each element of %(A)/, is the interpretation of a
term of T(A), uniquely up to = 8. As usual, this completeness property rests upon
the existence of normal forms for terms. These can be described as follows: let
N(A) = (I} u w(A) where w(A) is the least set of terms built according to the
following rules:

(i) every atom Q E A is in W(A) and has no head operator,
(ii) if p E w(A) does not have ; (respectively, 11, +) as head operator and if

F), the2 (p; q) (res ectively (p 11 q), (p + 4)) is in ‘If(A) and has ;

s head operator.
One gets fo the unit and using associativity to s
arguments to the rig (if it is not 0 nor an atom)
may be drawn as

Concurrency and atomMy

where the head operator op is either ; or 11 or +, and pi9 p2,. . . , per P,,+~ do not
have op as head operatcr.

ProposItion 3.6. Let r be the theory whose axioms are A0 to A2 and UO to U2, and
Y be the theory consisting of A0 to A2, C1 and C2 (c$ Appendix B). Tken

(i) for each term p E T(A) there exists a normal form t E N(A) such that p =r t;
(ii) for two nomal forms t, t’E N(A), t =8 t’e t = y t’.

This is a standard result. The proof is omitted.
The crux of the characterization theorem’s proof is the following property: for

every finite nonempty nonatomic labelled event structure satisfying the X-property,
the set of events is connected for exactly one of the connectives S, -, # (in fact,
this is a purely graph-theoretical result); this relation gives the head operator of the
term which denotes the structure. The existence of such a connective comes from
the V-freeness property, whereas uniqueness comes from N-freeness (or, more
accurately, from N’). It is clear that V

a-b

\
c

is not connected for any of the connectives, and one cannot find a head operator
for a term which would denote it. On the other hand, the structure N

a . . . b

(where the dotted lines stand either for # or for -) is connected for two connectives;
here again one cannot choose a head operator for a term which would denote it.

Let S=(E, G, #, A) be an
ere exists a cohective U of S for ected, that is, # (
oreover, if#(E) > 1, then e U-incomparability relation

$(U), and thus is not connected for any of the other connectives.

46 G. Boudol, I. Castellani

f. We first show that there is one such relation U, for each S E %(A). Suppose
not, and let C be a maximal (w.r.t. inclusion) subset of E connected for some
connective. From our assumption, C # E, so let e E E - C. Then e is connecte

the same way (0, # or -) with all the elements of C, otherwise 9 would contain
a triangle. But then {e} u C is, for some connective, a connected subset of E which
strictly contains C.

Now, to prove the second point, let us assume that E is connected for bot
and $(U) for U among 0 (since E-0 -C connectedeo-connected), # and -. Let F

be a minimal (w.r.t. inclusion) subset of E which is both U- and $(U)-connected
and such that #(F) > 1. Then #(F) > 2 since one cannot build a two-element
structure which is connected for two exclusive relations. So let e3 E F; since
F - {e,} is not connected for both U and $(U), let us assume, for instance,
that F - (e3] is not connected for U, that is,

(F-{e3})/-” ={F,,. . . , Fm} with m> 1.

3i(lGicm)3eE~ e31(U)e;

otherwise F’ could not be $(U)-connected. Similarly,

Vi(lsi<m) 3ec Fi e,Ue.

So let G be an Fi such that 3e E Fi e3 $(U) e and H be Uizj 4. Let e E G and
ek G be such that e3 $(U) e and e3 Ue’. Since G is U-connected, there exists a
sequence of events of G which U-connects e and e’; an easy induction on the length
of such a sequence shows that one has

3e0EG3e+G e3 UeOand eoUe, and e,5(U)e3.

If we choose an e2 E H such that e3 Ue,, we may figure the situation as shown in
Fig. 4. By definition of G and H, e, $(U) e2 and e, $(U) e2, but this contradicts the
N’-property, which is a consequence of the X-pro*3yrlj.

The proof is the same when F -{e3} is not #(I&connected. 111

G

Fig. 4

. We can now prove

)3tdf(A) 2(t)sd

Concurrency and atomicity 47

by induction of the size #k(E) of S (in fact, the induction hypothesis states that the
head operator of the term t corresponds to the connective, if it is unique, for which
E is connected).

If #(E) < 2, then this is trivial: f is either 0 or an atom (given by the Iabeiling
function). Otherwise, by the previous lemma, there exists a connective U for which
E is connected and not $(U)-connected. Let

Then 1 < m s #(E), and for all i (1 s i s bs) S [Ci E
hereditary. Then, from the previous lemma, each Ci is connected for some connective
V distinct from U By induction hypothesis, there are terms t, , . . . 1 t,#, of W(A)
such that

From the definition of the Cl’s it cannot be the case that e $(U) e’ for some e E Ci
and ek Cj (i #j). Suppose now that U is s (the other cases where U is # or -
are similar and even simpler). Let us see that if e< e’ for some e E Ci and e’ E Cj,
then, for all e’k Cj, e C e” whence Ci x Cj G C: assume that 3e’k Cj e”< e; there
exists a sequence of events of Cj which V-connects e’ and e”, where V is either #
or -. An easy induction on the length of such a sequence shows that we have the
following consequence:

3q,elECj e,<e<e, and e. Ve,.

But e. < e, and e. Ve, is impossible. Therefore, we may assume that {Cl, . . . , C’,,,)
is enumerated in such a way that Ci x Ci+, E C. Then

SG=(C,;(...;C,)...)

To conclude the proof of the theorem, we must show

t, t’e N(A) =+ $(t)e$(t’) c-r, t =y t’.

The proof of this last point is omitted. Cl

The characterization theorem gives also some indications on the nature of (infinite)
A-LES’s denoted by terms of T”‘(A). It is easily seen that the poset (%(A)“, S) is
a coherent algebraic poset whose set of finite points is (S?(A), E).
operations of sequential composition, sum, and parallel composition (which are
continuous) preserve these posets. Then it should be clear that the denotation 3”(p)
of any term p E Trec(A) is in 3!?(A)“, that is,

Recall that p(

48 G. Boudol, I. Castellani

rational semantics

4.1. Transitions on labelled event structures

The interpretation equality =$ is too discriminating; from a behavioural point
of view, we would like to identify for instance the terms (a + b);c and a;c + b;c as
well as p + p and p. Quite clearly, our system model for sequentiality, nondeterminism
and concurrency-that is A-LES’s-does not cope with the dynamic aspect of these
programming concepts; we now want to devise an execution model for these con-
structs, that is, a notion of computation. Winskel has introduced (see [69]) such a
notion for event structures, which he calls configurations. Configurations are “deter-
minate prefixes” of ES’s, that is, downwards closed and conflict-free subsets of
events; this formalizes the ideas that an event cannot occur during a computation
unless its causes have occurred, and that choices (i.e., conflicts) are resolved while
a program computes. The execution model we look for is based upon a notion of
computation which would be Winskel’s notion of finite configuration if we had
assumed the axiom of conflict heredity. Till now concurrency and conflict played
similar roles; the notion of computation will introduce an asymmetry, reflecting
part of the “dynamic” nature of the sum. Our computations bear some analogy
with processes of Petri nets [23,26] or, more accurately, with Reisig’s abstract
processes [591.

efimrition 4.1. Given an A-labelled event structure S = (E, s, #, A) a computation
of S is a structure S [F where

(i) F is a finite subset of E,
(ii) S[F is conflict-free: e E F & e’E F*l(e#e’),

(iii) S [F is closed under nonconflicting causes:

eEF&e’~e&e’tiF + 3e’kFe’#e”<e.

We only allow finite computations, thus we cannot deal with fairness; an idea
be that fair computations are the-possibly infinite, but satisfying the axiom

of finite causes-maximal computations, w.r.t. the ordering E.
Let us see some examples of computations: making an identification between

terms and the structures they denote, (a;c) and (b;c) are computations of ((0 + b);c).
This example shows why we cannot assume that a computation is downwards closed
(that is, e E F & e’s e+e’E F) since otherwise no computation of (a + b);c could
contain c. In the structure ((a + b);c), a and b are causes of c, but c cannot occur
unless a choice has been made between a and b. The computations of the structure
denoted by px.(a 11x) are

posets. In this paper
*. The computations of such structures

Concurrency and atomicity 49

-property. Since the V-freeness property is vacuously true for conflict-free
structures, computations are in fact, by Lemma 3.2, N-free A-labelled posets. Let
us denote by 8(A) the set of these computations; we shall give the name of a&on
to an isomorphism class of computations, element of O(A) = 9(A)/=. Then B(A)
is exactly the set of what Pratt and Gischer [24] call finite N-free pomsets. From a
theorem of Grabowski and Gischer, 9(A) is the free “dio ’ on A (Grabowski
calls it “double monoid”), which is the same as a trioid bu ithout sum. All that
means that actions are denoted by terms built without sum, up to equational
theory A whose axioms are AO, Al, UO, Ul and Cl. We denote by) the set of
these deterministic terms, which we shall abusively call actions (cf. Appendices A
and B for the syntax and the equational theory). As a matter of fact, we extend
Milner’s idea [46,48] that actions should be elements of a commutative monoid,
or more generally elements of a synchronization algebra, as proposed by Winskel
[69,70].

From a computation P = S [F of S we build a structure called the residual of S
6y P which is

(SIP) zf S[(E -(F”#(F)))

where
#(F)={elge’~ Fe’fe}.

The structure (S/P) is “what remains of S after performing P while resolving the
conflicts”. This definition only makes sense for structures S which satisfy the
triangle-freeness property (or the axiom of conflict heredity); for instance, 6 is a
computation of the event struc*ure V’

a#b

\
C

(where c-b) and its residual is c, but this is clearly absurd. Anyway, the definition
works well for the event structures we are interested in, that is, structures satisfying
the X-property. Clearly, S E %‘(A)” implies (S/P) E %‘(A)“.

We are now ready to introduce the main definition which brings a structure of
transition system on A-LESS. Let us recall the terminology: a (labelled) transition
system C = (0, C, 0) is a structure where

(i) Q is the set of states,
(ii) c is the set of computations,
(iii) 0 E Q x C x Q is the transition relation. s notation, p -L p’ or p + Z p’ will

8
denote (p, y, p’) E 9.

The transition relation q between -labelled event structures is
given by

$4S g is a computation of S and S’ = (S/P).
r)

50 G. Bowlob, I. Castellani

Here one can see some analogy with the construction h, before h2 gives h of
Degano and Montanari [17] if one reads it as h -+ ‘1 h2. Similar definitions havealso

been introduced by Grabowski 1271 arid Reisig [S9] who define transitions
labelled by pomsets on the state space (markings) of a Petri net.

For instance, still using terms in place of structures, we have

(a;b) 5 b,
v

(Qllb>: b, (allb)= 0
rl r)

(a;(b;c+d)lla)= c.
r)

One always has S +t S, and we shall interpret the action 0 as identity. On the other
hand, as a residual of a computation, 0 means terminution, and we shall read S + % I
as “S terminates in performing the computation P”. Note that an infinite structure
may very well terminate in performing a (finite) computation; for instance, we have

(the term &a;(~ + b)) has an interpretation similar to that of &a;(bllx))-cf.
Section 2.3with confli:o in place of concurrency).

One may remark that from the definition a computation of an A-LES S cannot
introduce causal dependencies which would not be already present in S. For instance,
(a; b) is not a computation of (a II b). On the other hand, we have the following lemma.

Lemma 4.3. If P; Q is a computation of S, then P’ = P;Q is a computation of S, Q’ =
1;Q is a computation of (S/P’) and (S/(P;Q)) = ((S/P’)/Q’).

roof. If P;Q is a computation of S, then there exists a subset F of the set E of
events of S such that P;Q = (S [F). Moreover, F = FOG Fl with P’ = S r{O}F, and
Q’ = S [{ 1) F, . We let Fh = (0) F0 and F’, = { l}F, . It is clear that P’ is a computation
of S, and that Q’ s (S/P’). Let us show that (S/P’) [F: is closed under nonconflicting
causes: if eE F:, e’E E -(F&u #(Fh)u F:), and e’s e, then 3e”E F&u F: e’#e”s e
since P;Q is a computation of S; but it cannot be the case that e’ E FL since otherwise
we would have e’E #(FA); hence e’E F:. Then Q’ is a computation of (S/P’), and
since #(F&J F:)=#(Fb)v#(F;) we have (S/(P;Q))=((S/P’)/Q’). 0

We could then say that in our behavioural semantics causality implies temporal
ordering for we have, by the previous lemma,

s P;Q) S’ *

‘I

Q'gkQ +“+S’.

t the converse is false: although (a lib) + G b + g ‘11, we do not have (a 11 b) -9 tib 0.
us our semantics makes a strong distinction between sequence of transitions and

Concurrency and utomicity 51

“transitions of a sequence”-compare with the CCS “action” a.?* This distinction
does not hold in the model of Grabowski where a sequence of computations of a
marked net is still a computation of this net. Another point is that our execution
model is free from any assumption o lobal time: even if we think about a transition
step as occurring in a time unit, t is not related to any hypothesis about the
duration of the atoms. For instance, (a;bll c) is a possible mputation; in some
sense we could say, as in the programming language ESTCREL , that “the sequential
composition ; takes no time”.

One may also note that the behavioural interpretation of parallel composition is
not interleaving, but generalizes it. Our semantics of parallel composition is also a
generalization of the MEIJE “asynchronous” operator [2,5] introduced by Milner
in [45] (see also [48]). This asynchronous concurrency is related to the notion of
“firing step” of Petri nets [68,59], where one fires a multiset of concurrent transi-
tionsthis is shown in [6].

4.2. Transitions on terms

Since we are interested in labelled event structures denoted by terms of T’““(A),
an obvious question is: is there any syntactic notion of transition which reflects the
semantic one? In fact the (positive) answer is rather simple. We shall see that the
intended operational semantics for terms is given by the transition relation p, defined
as the least subset of Trec(A) x D(A) x T”“(A) satisfying the following clauses or
rules :
EO: identity

El: atom

E2.1: sequential composition 1

P: PI t- (P& (P’;!?),

E2.2: sequential composition 2

p:pr=*ll, q: q1 I- (p;q)O q’,

E3: parallel composition

p: P’, 4 A 4’ I- (PIId = (Pw?‘),

E4.1: sum 1

p:p%!ku #*O t- (pfq)Gp’,

52 6. Botdok I. Castellani

E4.2: sum 2

ES: int

(E stazlds for “execution”). Note t 1 can be proved or disproved using only
the axioms UO to U2. Then this is nearly syntactical equality-which does not mean
testing deadlock or termination of an algorithm! Moreover, the rules only use the
termination test 1” = 8 0 for finite closed terms, that is, r E T(A) since the formation
of (p;q) requires p E T(A). 0ne may observe that no rule can introduce a sum or a
recursive definition in the actions, while sequential and parallel composition are
introduced by E2.2 and E3; then p-transitions are labelled by terms denoting finite
labelled posets (a similar idea was used for CCS by Degano, De Nicola and
Montanari in [193).

Since p is the least relation satisfying the given clauses, a transition p + z p’ cannot
hold unless it has a proof of construction according to these rules. For instance,
we have

El: -
&n

E4.1:
P

El: -

(a+&1 Ai
E2.2:

P P

((a+b)&%
P

It should be clear from the rules that parallel composition is an asynchronous
operator, as in MEIJE since we always have, if p + f: p’ and q +i q’:

(P’ ‘l/d PIW)

e correspondence etween
ens on event structures.

Concurrency and atomic&y 53

ewe . (Adequacy). For all t E

(9 r&s * 3W#qw),
P W B”(r) -z (I*(r)/ WI &b”(s) * (b”(r)/ W), r)

(ii) $“(r>3 S * 3w$?(w)* W 3sJ?“(s)= S $5 s.
rl P

The first point states the tlolidity of the rules EO to ES for the semantical notion
of transition, the second one states their completeness.

Proof. Let us show the first point: the argument we use is an induction on the proof
of the transition r + p” s. The point is trivial if this transition is an instance of EO or
El. If the last rule of its proof is E2.1, then r = (p;q), s = (p’;q). By induction
hypothesis, there exists a W such that I(w) * W and 9”(p) + r P’ where P’ is
such that $“(p’) e P’. Then it is clear that W’= W;B is a computation of

F’(p);Y%I), and that

(gy p);#“(q))/ W’ = ($=(p)l W);FIq) -L f”(P’Mrn(4)

(we leave it to the reader to check this).
Assume now that r +p” s is proved by means of E2.2. Then r = (p;q), s = q’,

w = (u;u), and there exist 161 --L I(u), V * f(v), and Q’ -L $O”(q’) such that P + f: 0
and Q +t Q’ (with P =9”(p) and Q = B”(q)). Let us show that U; V is a computa-
tion of R = P;Q: the only point to verify is that U; V is closed under nonconflicting
causes. So let e and e’ be events of U; V and R respectively such that e’s e and e’
is not an event of U; V Let us assume that e is an event of V’ = 11; ‘I’ and that e’ is
an event of P;O (the other possible cases being trivial); then, since P/ U = I, there

must exist an event e” of U’ = U;ll such that e’#e”, and obviously e”s e, so we are
done. Then, by Lemma 4.3,

(R/(U; V)) = ((RI U’)/ V’) = ((P;Q)/ U’)l V’= ((PI U);Q)l V’ e 01 V= Q’m

We omit the proof of the validity of the rules E3, E4.1 and E4.2. One should note
that in the last two cases the semantical computation W is not equal to $(w)-but
isomorphic to it-, as in the case of E2.1, and that the residual of this computation
is not equal to g”(s)-but isomorphic to it-, as in the case of E2.2. When r +p” s
is proved by means of ES, one directly uses the induction hypothesis since
g”(p[px.p]) = #“(Fx.p) by definition. This ends the proof of the first point of the
theorem.

In order to establish the completeness part, one must observe that a computation
W of R = g”(r) is a computation of g(p(K n (r))) for some n-because any computa-
tion is finite. We thus associate with a transition 8;“(r) + y S the pair (S lrl> of
integers, where

0

k= n + 1 otherwise, where n is the least i
that is a computation of $(

54 G. Boudol, I. Castellani

and Irl is the size of r, defined by
(i) ll!l= 1;

(ii) Ial = 1 for all a E A;
(iii) I(p;~)~=IpI+M, I(PllSHPl+lSl and I(P+(I)l+I+IQI;
(iv) IWPI = IPl=

Then the proof proceeds by induction on the pairs (kF lrl), ordered lexicographically:
when k = 0, the proof is trivial (one just uses EO). Otherwise (k > 0), one uses an
induction on the structure of the term r. When r = ~JIX.~, since ,$“(p[yx.pl) = 3”(r),
one has $“(p[yx.~]) + y S, and the pair associated with this transition is (k - 1,

I PCWPIO (since W # 11). One therefore applies directly the induction hypothesis.
We omit the straightforward proof of the other cases (note that when r = (p;q) and
W * LJ; V for some computations U and V of d”(p) and d”(q), then p + f: p’
where $“(p’) = II; then p’ = e II since p E T(A), so that we can use E2.2). Cl

We could have split rule E3 of parallel composition into the following three:

E3.I: P5 P! i- (PII& (P’lld,

(ullu)
E3.2: p A p’, q G Q’ t- (Pllq> - (P’lld),

E3.3: q A 4’ t- (p/q) 5 (pII@).

It is easily shown that the resulting transition system is semantically equivalent to
p. The rules E3.1 and E3.3 are the rules of interleaving, while E3.2 is the rule of
Milner’s synchronous product. Using these rules in place of E3 we can make a
classification:

(1) by taking all the rules except EO, E2.2 and E3.2, we get a CCS-like transition
system [44,46]: since we have precluded the rules introducing the empty computa-
tion, sequential composition and parallel composition of computations, the actions
are simply atoms;

(2) if we use all the rules except EO and E2.2, we get a MEIJE-like transition
system [2,5], where the actions are nonempty multisets of atoms-what one builds
from atoms using the associative and commutative parallel composition;

(3) if we use all the rules except EO, E2.2, E3.1 and E3.3, we get an SCCS-like
transition system [46], with synchronous parallel composition.
It should be clear that these transition relations correspond to semantical notions
of transition, that is, transitions on event structures. In the first case, a computation
is S [{e} where e is a minimal event of S; in the second one, a computation is S [F
where F is a nonempty finite set of concurrent minimal events, while in the last
one, F must be a maximal such set. We could also consider the transition we get

3.2 (together with EO or not) but allowing sequential composition
though this correspon to a notion of computation
totally ordered), thi oes not seem to fit in with

any known semantics.

Concurrency and atomicity 55

5. Semantics

5. I. Equipollence

Relative to any transition system one may define various kinds of semantics and
equivalences, among which the better known are (see [56] for a survey, and 18,201
for a comparison):

(1) truce semantics such as used by Hoare [32];
(2) failure semantics of [9] (other equivalent definitions are possible);
(3) testing equivalence of Hennessy and De Nicola [31];
(4) logical equivalences, induced for instance by trace logics (cf. [30, 81);
(5) Park and Milner’s notion of bisimulation [Sl, 461.
For example, Taubner and Vogler [64] have studied the failure seiqantics of step

transition systems; De Nicola et al. [I] have adapted testing equivalence to our
notion of transition on LES’s.

Here we adopt the notion of bisimulation, with a slight variation however. A
bisimulation is a relation over states of a transition system C = (Q, C, 8) such that
two related states have similar behaviours. But we also need a relation on actions:
some actions ought to be regarded as the same. For instance the reader may have
remarked that strictly speaking, (Q !I b) da b is not a valid transition-neither for q
nor for p! We might have written it (a 11 b) +@ll’) (111 b). We have seen similar
technicalities in the adequacy theorem. Therefore, we would like to consider transi-
tions labelled by actions, that is, labelled by isomorphism classes of computations-
or equivalently by elements of D(A)/ =A. We shall use the following terminology
(see [S, 51): let R s Q x Q be a relation
over computations. The pair (R, H) is

(i) invariant with respect to 8 if and

over states and H c C x C be a relation

only if it satisfies

pRq andp+p’ a 3y’yHy’ 3q’p’ R q’ and q $ q’;

(ii) a bisimulation (w.r.t. 0) if it is an invariant pair of symmetric relations;
(iii) an equisimukztion if it is an invariant pair of equivalence relations.

The invariance property is usually drawn

P-R----_
I

. .
Y . . . H...

p’. . . R . . . q1

The following fact is standard.

. Given a transition system C = (Q, C, 0) and G an equivalence relation

56 G. Boado& I. Castelhi

over C, let us define
def

Pe9 = 3(R, H) bisimulation such that p R q & H E G.

nten (Xf, G) is an equisimulation and it is the coarsest among the
(R, H) such that HS G.

proof, The only point to check is that the composition (R Q R’, H 0 H’) of invariant
pairs is itself invariant-just draw it. Cl

We shall call this relation X: the equipollence with respect to 8 and G.
Let US return to the two systems we introduced in the previous section, (T”“(A),

D(A), p) and (Z’(A)“, 9(A), II). As we said, we are in fact interested in transitions
labelled by actions. Therefore, the computations of these systems will be considered
up to the equivalence relations =& (or equivalently =I) and = respectively. The
equipollence =;A is what we regard as defining the semantic equality of terms. Thus
we just use x,, or v to denote it. For instance, the three terms (all b), (a;b)+(b;a)
and (a; b) + (a 11 b) + (b;a) are painvise distinct with respect to V since the first
cannot perform the action (a; b) whereas the second cannot perform (a II b). Another
example is

(a;bllc)~(allc);b+a;(bllc).

Let us return for a while to the classification of transition systems we made in the
previous section. Using the subscripts CCS, SCCS and MEIJE just to suggest the
analogy with the corresponding calculi, we shall denote:

(1) Xccs the equipollence relative to the least transition relation satisfying El,
E2.1, E3.1, E3.3 and E4.1 to ES (with a trivial equality for computations);

(2) XMErJE the equipollence relative to the least transition relation satisfying El,
E2.1, E3.1, E3.2, E3.3 and E4.1 to ES (with =A as the equality for computa-
tions) ;

(3) XSEQ the equipollence relative to the least transition relation satisfying El,
E2.1, E2.2, E3.1, E3.3 and E4.1 to E5 (idem);

(4) Xsccs the equipollence relative to the te--* a ~3~ transition relation satisfying El,
E2.1, E3.2 and E4.1 to ES (idem).

Then we have, for all p, q in

P%I * P~MEIJE 9 * Pxccs 4,

P=q * PxSEQ !? * p=kCS ‘&

Converse implications are false, and xMEIJE and XsEQ are incomparable:
) <allb>- ACCS a;b + b;cl, but this is false in the other equipollences;

(2) (a II b) xMEiJE a;b + (a II b) + b;a, but this is false for xsEq, xsccs and X;
is is false for xMEIJE, XsCCs an

nd (a;bllc) Xsccs (allc);b,

Concurrency and atomicity 57

but these are false in the other equipollences. What is common to CCS,
SCCS is that they all assume a global time according to which the sequencing ;

corresponds to a “clock interrupt”.
Since the equipollence x is a strong bisimulation in ilner’s sense (cf.

it has some nice properties with respect to the algebraic structure in the
proposition.

Proposition 5.2. ahe equipollence X is a congruence of the trioid F”(A):

(p;q)Wp’;q’),
pip’ and qxq’ * (p + q)x(p’+ q’),

(PllS)r=(P’IId)*

The (easy) proof is omitted. Now we want to relate the syntactic equipollence

=pr and the semantic one XT that we denote simply by x,. To this end we
introduce a notion of morphism of transition systems.

Definition 5.3. Let C = (Q, C, 0) and C’= (Q’, C’, 0’) be two transition systems. A
morphism from C to C’ is a pair (p, $) of mappings (p : Q + Q’ and J/ : C + C’ which
satisfies:

(i) soundness:

(ii) completeness:

Various kinds of morphisms of transition systems may be found in the literature
(see [S] for some references). They are mainly introduced to formalize the notion
of “reduction” by means of which one can verify properties of systems. ere, as
in [S, 143, we want morphisms to be strongly related to equisimulations. Every
equisimulation determines a quotient transition system, and the projection onto the
quotient is a morphism. For instance, since (” - -, -) is clearly an equisimulation of
the system (iE’(A)a, 9(A), q), we can define a quotient transition relation ;i and we
have (still using terms in place of the structures)

f fact we have already K Ed: a ,morphism of transition systems sina t
eorem actually states that the gair of

9: ‘==(A) + %‘(A)“l‘ and .6 : iCt(A) + B(A)

is a morphism from (T(A), (A), p) t@ (a:((#.)=/+ B(A), ij).

58 G. I?our id!, I. C’usteliimi

We shall not develop at length tk theoAT of morphisms. just mentio

ould allow us to prove for instance that <= 8, =A) is an equisimulation o

(A), PI, whence

p =t39 * Pryad?*

ces as follows.

position 5.4

I=,9

In fact this last implication is tr e iPOr terras of T (A). Moreover, we could prove
that there is an exact correspondence betv:een the syntactic and sematic equipollen-

The main interest we have in these facts id ohat they justify (a posteriori!) the use
we have made of ara overloaded e::eeutiom arrow: we can now write p + ” q, regardless
of the fact that p, u and 4 xz terms, ev~rt structures or equivalence classes for
some equisimulation.

5.2. Axiomatiza tion

In this section we plan tti set up 2 “‘proof theory” of x-forjhite terms. It should
be clear that r)equipolleplcc of elements cf k?(A) is exactly ~-2~ for

P&‘(A) a <P-III@ Q=P).
r)

Thus any intended axiomatization essentislijl states properties of the sum. As a
matter of fact there is a standard way to solve the problem, by means of sumforms
as Hennessy and Milner have shown in [3Q] which we will briefly recall now. For
any set C of actions let (C) be the set of terms built according to the following rules..

s s. (i) 0 is a term;
(ii) for every y E C if p is a term, then y * p is a term;

(iii) if p and q are terms, then so is (p+ q j.

Let !P be the theory whose axioms are A2, U2, GT (cf. Appendix B), amd

I: (P+P)=P

and ,u the least transition relation on (C) given by the rules

2’: q-L qf I- (PI-& qf.

59 Concurrency and atomicity

en the nnessy- ilner theorem roughly states the following.

5.5. Any state of a finite acyclic transition system on 6 is deno
. For such terms

P =+I e P =luq

. (where XP is the equipollence relative to equality of computations).

From this result, we just have to find a suitable translation from
(that is, an expansion of finite terms into finite acyclic transition systems) in order
to solve our axiomatization problem. A first step is to extend our set of te
T(A) which is built as T(A) but with the additional ation rule:

(iii) if qsD’(A) and PET’(A), then (y .p)O’(A),
where D’(A) is the set of terms built from A using ; and 11 (without 8). We also
extend the transition relation p to p’ with the supplementary rule EO’. Axiom
allows us to use an ambiguous notation Ci pi for a (finite) sum of terms. Then our
axiomatization is as follows: let Cp be the (hetero eneous) theory whose axioms
are those of 0 (cf. Appendix B) plus I and (omitting some parentheses)

BI:

82:

B3:

B4:

BS:

4 4=a for aEA,

d
\Z Yi ‘Pi

)
;q =C ((Yi 6D Pi);q),

~~Oa~;(~~j~k)=l’(re,“U)tf~~;~jj

Pi));q=~‘(~~,OPi);q),

(Z~i”PiIl~B,.4$)=
i i

Theorem 5.6 (Axiomatization). Let =@ be the congruence
7hen the pair (=@, = is invariant with respect

A) there exists an r E ‘(A)) such that p =@ r.

P =,q -P=@q=

(outline). The first state

of) an axiom of @, and for each transition p + ;r p’, there exist v =A u and q’ = 0 p’

such that q + i# q’; this is proved by induction on the proof of the transition p + :s p’-

60 G. Boutlot, 1. Castellrrni

Then one shows that the same fact holds for pairs p, q such that p = 0 q, by induction
of the definition of = e -recall that =a is the least relation on (A) containing
the (instance of the) axioms of @ and satisfying

(p;q) “# (P';Q')9

p =@p’ and q =oq’ * (P+q) =a (P’+q’h

(Pllq) =a (P’llS’)-

For the second point, we first extend the notion of size (cf. Subsection 4.2) to
terms of T’(A) by 1~ 0 pi = !yl -I- IpI. Then one can prove by induction on the size 1 pi
of p E T’(A) that such a teir=l is convertible by means of the axioms B into a normal
form, which is here either II or a term Ci ‘ys 0 pi where each pi is again a normal form.
A consequence is completeness: pX,,* q *p =* q. Let us show this point: we know
that there exist r and s E K(D’(A)) such that p =a r and q=@ s; then p Xp’ r and

4+ s. Therefore, if p X,,* q, we have r X,,’ s, whence r = e s by the Hennessy-Milner
theorem, and this implies p =@ q (note that @ contains the equality theory A for
the actions, which is needed to apply Hennessy-Milner’s theorem). Cl

One could have the idea that this result expresses a reduction of concurrency to
sequential nondeterminism; however, this is not quite right since actions are posets
irreducibly involving parallelism. So the expansion theorem is not so bad. From a
semantical point of view, the technique we used is still unsatisfactory since it gives
no indication of how one could describe the equipollence classes of A-LES’s.
Nevertheless, our present purpose is achieved: we can prove semantic equalities of
terms, such as the distributivity property

(a + b);c x a;c+ b;c.

A proof is

(a+b);c=(a oll+b q;c uw

= a;c+ by UW.

We can also prove

(~ll(~+c))+(~ll~)+((~+c)ll@) x ((iIl(b+c)!-;-((Q+C)llb)

and other absorption phenomena (t is absorbed by p if p + rxp, cf. [13,151). This
example can be arbitrarily complicated (see [13, f5]), so that the existence of a
finite axiomatization without extending the syntax or introducing an absorption
preorder is doubtful. Note that it can be proved that our equipollence is weaker

e notion of distribute isimulation of [13,15]. ennessy has found an
roves that it is strictly w

(a(lb+c)+a;(b+c)+(a(lb)+(al(c) X a;(b+c)+(aIlb)+(nllc)

Concumncy and aiomicity 61

but these two equipollent terms are not d-bisimilar. This example shows t
semantics, an agent-like c1 in (u lib + c)-cannot in any way “know” that he is
concurrent with a choice. This contrasts also with the generalized pomset bisimula-
tion of Van Glabbeek and Vaandrager [25]. Further work should be undertaken to
thoroughly compare various approaches to the theory of true concurrency, and
especially [l3], [19], [25], and [SO].

PART III. THE OPE EL

6. Processes and operation

6.1. Operation of programs on objects

The aim of this section is to introduce a notion of operation for processes: we
want to set up a formalism describing how processes use and change data. We begin
with a brief account of the theory of programming languages semantics. In this
theory (see [42] for instance), the abstract meaning of a sequential program is a
function, from some data to other data. In order to simplify our discussion, let us
assume that data belong to a single set S of objects (for instance s E S could be the
state of a memory where data are stored). Then the interpretation of a sequential
program p is a mapping [pl : S + S.

Ignoring most of the syntax of sequential programs, we may at least suppose that
one can form the composition p;q. More precisely, let us assume that we have a
monoid of (sequential) programs: there exists an “empty” program l-meaning
termination-, and the laws A0 an3 UO are satisfied. Then the interpretation of a
program p;q is the functional composition of the interpretations of its components,
and the interpretation of 0 is identity:

(i) [I] = ids,

(ii) rp;41= k31 o [PI*
Mathematically speaking, this is just to say that the interpretation r.1 is an operation
of the monoid of programs on the set S of objects.

Let us say a few words about the operational definition of the semantics of
sequential programs. At a very low level this is described using some kind of abstract
machine-which could be something like Landin’s SECD machine, or the S
machine (cf. [42,53]). Let us climb one step in level of abstraction, and say that
the operational semantics is given by an unlabelled transition relation on systems
(=programs + data, cf. [531)

(program, object) --)) (program’, objectl).

Denoting by --us the reflexive and transitive closure of this relation, one has the

62 G. Boudol, I. Castellani

following operational foundation for the semantics

*
[p](s) = sf c-r, (p, 4 - (KS’).

Note that [p l(s) = S’ holds by virtue of a terminated sequence of elementary steps
(the configuration (I, s’) is a terminal one).

we now aim at defining the peration of concurrent and nondeterministic pro-
grams, trying to generalize what we just said about sequential programs. The first

at these programs cannot be interpreted as functions. We cannot imagine
at this moment what could be an abstract mathematical model for the operation of
such programs, so let us stick to the concrete level, that of states and arrows. Another
standard notation for f(s) = s’ is f: s -s’ or s M/S’. This suggests that objects are
states of a new kind of labelled transition system, where the labels are programs
(or, more accurately, interpretations of Then s I+ cpl s’ means that the
program p operates on the object s, cha to s’. This obviously copes with
nondeterminism and partial mappings since we are not compelled to assume that
for each s and p there is exactly one sue s’. Regarding the properties of operation
with respect to sequential composition, e just translate (i) and (ii) above; hence
we require:

(cf. [42,53]): ,

(i)
VI

s)------, s,

(ii)
rf4 r91

s M fc----, s’ * s
rP;9 1

- s’.

We must also postulate a general property according to which s I+ rpl s’ if p

performs a terminated sequence of computations which transforms s into s’. We
have previously formalized the relation “p performs a computation” by means of
the execution transition relation p +” q. Hence we look for a property which implies

% p.-*. . .,u”-o&s Cull hi rpi
c---,-•=-s’* s-s’.

An appropriate property my e formulated as follows:

(iii) cd
p .f+ q, s 2% st * s - s’.

We may regard the three properties (i), (ii), (iir) above as axiomatizing the notion
of operation of processes -assuming a sequential composition construct and a
notion of execution. As a matter of fact, one could define the transition relation -_))
bY

p~p’d% e (p,s)-w(p’,s’)

en we would have, as for seque

s = St e (p, s) -29 (U, d).

Concurrency and atomicity 63

This shows that the transitions of a configuration (p, s) have two complementary
parts, resulting from the execution of a computation u, by the program p, and fro
the operation of this computation on the object s.

It is a standard point of view, advocated by Milner and Hoare, that there should
be no difference between processes and objects: both are states of transition systems.
Such discrete systems may be used for instance to model idealized circuits, or
memory registers or programs. Let us quote Hoare’s book on this subject ([32, p.
introducing “interaction”): “the environment of a process may be described as a
process (. . .). This permits investigation of the behaviour of a complete system
composed from the process together with its environment, acting and interacting
with each other as they evolve concurrently. The complete system should also be
regarded as a process (. . .). In fact, it is best to forget the distinction between
processes, environments, and systems”. In other words, it would be best to forget
the distinction between p, s and (p, s)-the latter being just Hoare’s concurrent
composition (p 11 s). However, we shall depart from this view here: from a syntactical
point of view, objects and processes will be terms of slightly different algebras.
Moreover, as the last section of the paper will show, it is worth maintaining a
semantic asymmetry between objects and programs. This asymmetry appears in the
semantics of “systems” (p, s), made out of a process p and an object s. As we have
seen, the semantics of such a system requires an execution (of the process) and an
operation (on the object): these will be formalized by the two transition relations
+ and H.

Let us see an example of object, describing the boolean. We assume that the set
A of atoms contains primitive instructions such as assignments of true or false,
respectively a0 and aI g and read actions co and cl. Then the boolean, initially
undefined, is represented by the transition system shown in Fig. 5. We shall denote
this transition system by B.

6.2. e algebra of processes

To build processes we will

Fig. 5.

add two new constructs to those of

processes may operate on objects, we need a construct that combines a process p
and an object s to yield a process behaving like the “‘system” (p, s).

a process is taken to apply to a named object: our first new construct, called
is p(ks) where p is a process, s an object,

recess p s a local object s na

64 G. Boudo& I. Castelluni

usual notation. It behaves like the system (p, s), but the object s only reacts to the
part of the computations of p which is applied to 1. In order to specify the part of
a computation applied to a named object, we use Hoare’s naming [32,9], which
we denote (2.~) and call quulification, For instance, (p 11 q)(1:s) represents a system
of two concurrent processes p and q sharing a common object S, on which they
operate by means of computations of the form du.

To state the syntax of processes, we need, together with the set A of atoms and
the set X of identifiers, enumerable set of names; we assume these three sets
to be pairwise disjoint. first define the t CA(A) of computations over A.

Computations. (i) 0 is a term of C,(A);
(ii) every atom a E A is a term of
(iii) if u and o are terms of Cn (A), then (U;U) and (u 11 o) are terms of CA (A);
(iv) if I E A is a name and u is a term of C,,(A), then (Lu) is a term of C,,(A).

Our calculus of processes is parametrized on a given system of objects. This is a
transition system C = (Q, C,,(A), o), where the states s E Q are objects, and the
transition relation u c_ Q x Cn (A) x Q represents the operation of computations on
objects. For instance, 5 rnaj be a part of such a system, which describes the boolean.
We shall see in the next section how to introduce structured objects. For each finite
subset Y of X we define the set Pn (A u Y, Z) of processes (with free identifiers in
Y). The syntax is as follows.

(i) I is a term of Pn(A, 2);
every atom or identifier y E Au X is d term of

(iii) ifpisatermofP,(AuY,~)andqisate~ofPn(AuY’,~),then(p;q),
nd (p+q) are terms of P,(Au Yu Y’,C);
is an identifier and p is a term of Pn (A u Y, Z), then)~,xp is a term

s a name and p is a term of P,,(A u Y, Z), then (1.~) is a term of

(vi) if I E A is a name, p is a terrr, (A u Y, Z) and s is an object, that is,
s E Q, then ~(1:s) is a term of

To state the rules of the operational semantics, we need some auxiliary definitions.
First, we must extend t uational theory of termination; the axioms of this theory

ose axioms are

Concurrency and atomicity 65

Next we need the notions of restriction and concealment of computations with
respect to names. Let Ie A be a name; the restriction and concealment cf the
computation u with regard to I are respectively denoted by u/~ and u\! These will
be used in the semantics of the block construct p(l:s). Roughly speaking, if p
performs a computation u and if u/l operates on S, then ~(1:s) will perform the
computation u\! But this is not quite correct since u/~ breaks up the causal
dependencies that the computation u involves. Let us explain this point: if u =
(l’.o);(l.w), then we will have uI,= w, but we cannot regard u as being applicable
to an object named I (unless v = 0). To be applicable to an object named 2, a
computation u must be causally coherent with respect to 1, in notation u @ 1.
Intuitively, u @ I holds if u/, is a prefix of u. The formal definitions are as follows:

u/,=0 if uEAu{Q};

(1 I/ ‘.u I= {
u ifl’=l,
0 otherwise.

As one can see, u/, is the part of the computation u which is applied to 1. On the
other hand, u\’ is u with this part

u\‘=u if ucAu{ll};

(u;v)\’ = (u\‘;v\‘) and

cancelled:

(ullv)\‘= (u\‘IIv\‘);

(I’-‘)\’ = { (“1’ u)
if I’= I

. otherwise.

Finally, @ is the least relation satisfying the following clauses:
(i) if uEAu{I}, then u@r;

(ii) (I’.u) @ I for all u E CA(A) and I’E A;
(iii) if u @ 1 and vi,= 0, then (u;v) @ I;
(iv) if u\‘= ll and v @ 1, then (u;v) @ 1;
(v) if @Iand v@&then(u1lv)@Z.

We now define the transition relation +, which is the least subset of
C,,(A) x P,, (A, 2) satisfying the rules E (of execution). We shall give some intuitive
explanations about these rules later.
El: G,+=.%

aEAba&,

E2.l: sequential composition 1

P: Pt t- (p;& (P’P3),

E2.2.1: sequential composition 2

66 G. Boudo~ I. Castellani

E2.2.2: sequential composition 3

p:pt’o, q&q+- (p;q)o‘qf,

E3.1: parallel composition 1

P> Pf t- (Plk?)~ (P’lld,

E3.2: parallel composition 2

PA P), 4 5 4’ I- (PIId = (P’ll4’),

E3.3: parallel composition 3

4 -f: 9’ +cPIId 5 (PIIQ’),

E4.f: sum 1

P:Pl t- (p+qG+,

E4.2: sum 2

&4wP+4GQt,

ES: fipoint

Pw=PlXl -r: P’ t- w-p Js P’,

E6: qualification

p : p’ I- (1-p) = (l-p’),

E7: block

p : pt & u @ 1, (s, U/I, s’) E 0 I- p(l:s)u\I- p’(l:s’).

Let us make some comments about these execution rules: first of all, there is no
rule for 0; for instance, we cannot prove 0 +’ 0, nor, more generally, p +’ p. This
explains why we have split the rules for sequential and parallel composition. On
the other hand, rule E7 may introduce I as a computation, in a transition p +’ p’

(if u\’ = 0). This is an “internal move”, which is a meaningful step. Therefore, we
do not exclude the cases u = 0 and v = 0 in the rules E4.1 and E4.2 for the sum,
while they ought to be precluded if p +’ p were an axiom.

Let us comment on the rule E7 for q = p(1:s). We have said that such a process
could be written (let I:s in p). en q behaves as the process p operating on a local

e bloc erator is asymmetric in
two respects: the execution of q requires an execution of p and an operation on

Concurrency and atomicity 67

s-this appears in the hypothesis of E7. Moreover, it behaves as a “left-merge with
synchronization” since ~(1, S) cannot perform anything unless the process p-the
active component of p(I: s)-performs some computation u. The part of this compu-
tation u which is applied to & that is, u/l, operates on s-the object s is the passive
component of p(l:s). The computation u/l is consumed during the operation, and
is thus concealed form the resulting computation of q, which is then u\! Concealment
expresses the local character of the name 1. Then an “internal move” arises when
the whole computation u of p is applied to the local object, that is, when u\’ = &or
if p itself perfarms such a silent transition. We must emphasize the fact that the
block contract is the only synchronization and communication mechanism of our
calculus. This communication is similar to application of functional languages since
it consists in “applying” to some object an elementary computation of a process,
at each step of its execution.

Let us see an example, showing how to model a boolean conditional. We assume
that a0 , aI, co and cl are primitive instructions, belonging to A, and that
of) the given system of objects. Let r = ((6.co);p + (b.c,);q). Then

(r~~b.a,)(b:bool)~ (rl16.0)(6:boolo) by El, E6, E3.3, and E7,

(rllb.ll)(b:bool,) A (p~~6.11)(6:boolo) by El, E6, E4.1, and ET.

One can remark that the term (pll b.O)(b: bool,) has a behaviour similar to that of
p{6:boolo) since (6.1) cannot perform anything. One can use the abbreviations:

(if 6 then p else q) for

(while 6 do p) for

(when 6 do p) for

or

To conclude this section, let us say a few words about equipollence of processes.
Once more, we wish to deal with “semantic” transitions, that is, transitions labelled
by equivalence classes of computations. It should be clear that computations of

,, (A) denote finite posets labelled by qualified atoms. These alified atoms are
the terms built using only the formation rules (ii) and (iv) o ,,(A). Then (la)

denotes the same structure as u but with every label prefixed by 1. Therefore, the
axioms of computation equality are those of A, plus U4 and

DI: (l*(Pm = w.P);u*q)),
D2: MPlld) = u~.P)llu4)).

(these axioms belong to O’, see Appendix). Then the equipollence =C is define

with respect to the equivalence of corn stations, namely =.

coarsest equivalence satisfying

68 G. Boudol, I. Castellani

For example, we have the distributivity of the conditional branching over sequential
composition:

(if b then p else q);r X (if b then p;r else q;r).

We must point out that among the axioms of =
Ul, that is,

(u;l) = 24 = (O;u), (r#, = u = (1llV).

tations, one has UO and

Therefore, 0 shows some analogy with the T of CCS, and even more with the unit
action Of MEIJE/SCcs. But x is not an observational equivalence since, for instance,
p + U-p” +’ p’ cannot be confused with p * w p’. The equipollence is still a con-
gruence with respect to the operators since it is defined as a strong bisimulation.

bjects, abstraction and communication

7.1. Objects and atomic actions

In this section we introduce a syntax for objects, including a construct for defining
atomic actions, and we formalize the operation of processes on objects. This will
give us the system of objects C = (Q, C,(A), m) that was used as a parameter for
the algebra of processes in the previous section.

The algebra of objects is itself parameterized on a system of primitive objects,
which could be the provided data and instructions of an abstract machine. Then
we assume the set A of atoms to be the union of two disjoint sets I and 2: I is a
nonempty set of primititle instructions, and Z is a denumerable set of atom identifiers.
Let us denote by I’ the least subset of C,(A) containing 1, and such that u,
tr E I%(u II u) E I? We take the system of primitive objects to be a transition system
E = (0, lo, 5). The transition relation 5 c_ 0 x I@ x 0 gives us the operation of
primitive instructions over primitive objects. Intuitively, the constants o E 0 are
interpreted as values, and thus we postulate that if (0, u, 0’) E 5, then u does not
have the form (2.~). On the other hand, u cannot be (0;~): this interruptibility

eans that the grain of atomicity cannot be finer for processes than for
primitive objects. Moreover, we shall say that a system E satisfies a mutual exclusion
property for the primitive instructions if it satisfies 6 G 0 x I x 0.

Objects share some constructors with processes, namely sum, parallel composi-
tion, and fixpoint. The atoms a E A and the unit 0 are not allowed as objects, and
one cannot use sequential composition nor block to build objects. On the other
hand, the abstraction construct (CYZ, , . . . , zk.p, , . . . , pk}s is specific to objects. Corre-
sponding to qualification (Lp) for processes, we have for objects a declaration
construct (I:: s), where I is a name and s an object. Intuitively, (I:: s) is “an object
named I whose state is s”.

alge of objects, based upon a system E of primitive objects, is denoted
E). ore precisely, we define for any finite set of identifiers (subset of

Concurrency and atomicity 69

X) the set of terms JAW Y, E). The set , 5) of closed terms is the set of
d to build processe bra processes will be
(A, E), instead of 0)). e give the whole

syntax to avoid misunderstanding.

Objects. (i) every identifier y E X is a term of JA u (y}, E). Every constant o E 0
is aterm of &(A,=);

() ii

. . .
() 111

() iv

(v)

if s is a term of E’) and r is a term of n(Au Y’, S), then (sllr)
and (s + r) are terms of (Au Yu Y’, E);
if x E X is an identifier and s is a term of u Y, E), then ylx.s is a term
of &(Au,Y-{x}, E);
ifkAisanameandsisatermof n(Au Y, S), then (I::s) is a term of
U,,(Au Y, E);
if2 19=*-S zk E Z are distinct atom identifiers, pl, . . . , pk are terms of
and s is a ,+# (AU Y, E), then (MI,. . . , &PI,. . . , pk}s is a term of
U/,(Au Y, E).

Processes. (i) 11 is a. term of

(1 ii
. . .

() 111

(iv)

w

(vi)

every atom or identifier y E A u X is a term of P,, (A u (y}, E);
ifpisatermofP,(AuY,E)andqisatermof ,,(Au Y’, E), then (p;q),

(pllq) and (p+q) are terms of Pn(Au
if x E X is an identifier and p is a term o ,, (A u Y, E), then px.p is a term
of Pn(Au Y-(x}, 9);
ifkAisanameandpisatermof ,,(Au Y, Z), then (lop) is a term of
P/,(Au Y, S);
iflEAisaname,pisatermofP,(AuY,Sjandsisatermof
then p(l:s) is a term of P,(Au Y, E).

We shall use the more compact notation {aZp}s for {a~,, . . . , &PI,. . . , pk}s. In
a concrete syntax, this term could be written:

This is to point out the similarity between our abstraction construct and that of
abstract data types. The concept of abstract data type is well-known: roughly
speaking an ADT is a module, regarded as the manager of objects of some class,
offering a collection of procedures to alter the state of the object. Moreover, it is
intended that the details of implementing the objects and procedures are hidden
into the module-or equivalently that programs using the module only know its
specification. Accordingly, the informal meaning of {crZ.p}s is the following: s is
the internal state of this object, the zl, . . . , zk are the names of the available
procedures and the processes p, , . . . , pk are their respective codes. The te
is intended to only re 21’)zk.andmor

to computations of), built without qualificatio

70 G. Boudol, I. Castellani

This will appear in the rules of operations, which we s
note however that the execution of an atom ZE 2 is
have, by virtue of El, Vz E Z +* . Regarded = a process, an i
atom call.

We will use [pl as a notational trick, su ested by Berry, to distinguish the
(closed) process p from its operation. We call such a [p 1 an oprution.

(i) If p is a term of PJA, =), then [p 1 is an operation, belonging to
A, S).

Then - is the least subset of ,(A, S) x &(A, S) x U,,(A, E) satisfying the
rules 0 (of operation) below. It must be understood that the operation relation u
used in rule E7 for processes of P&+4, =) is given by

od~fwn(U,(A,X)xC,(A)xU,(A,c”)). .

In other words, the hypothesis (s, u/, , s’) E o of rule E7 should be replaced by
s ,Cu/J St_

ere are three kinds of rules for the operation: first of all, the axioms are the
transitions of the given system of primitive objects, that is, (0, u, 0’) E 6 Moreover,
the operation - satisfies some specific properties, as we have seen in Section 6.1.
These are expressed by the rules 01 and 02 below, which, as we shall see, ensure
that processes operate on objects by means of their terminated sequences of co

ons. Finally, there are the structural rules 03 to 07, which are similar to t
execution. In the rule for {aZp}s, the abstraction rule 07, we use the following

ntion: z’=z, ,..., zkandp’=p, ,..., pk. As before u[p/Z] denotes the substitu-
tion of the pi’s for the Zi’s in U.

00: reixfion

0 1: identity

ru1 CP’l rP1
p -k p’, s - s”)-----f) s’ t- s c---, s’,

05: j&point

CUl
s[pxs/Jc] .‘“_1, s’ I- pms - s’,

06: declaration

s EL s’ I- (ks) , [t::u’ b (Ls’),

07: abstraction

rwfil
s - s’, u E O({Z}) I- (uzj5)s 3 {a

Note. There is some implicit typing in these rules: in 00
v are computations of C,, (A).

71

and in 63 to 06, u and

A few remarks about these rules: a first one is that an object cannot make an
autonomous silent transition, for s wcP1 s’ & p = llas’ = s. Then an object is a
“passive” agent. There is no rule similar to E3.2, and the operation of a parallel
process (piiq) must be introduced by 00, 01, or 02. On the other hand, the rules
03 state some 2 iheritance phenomena: if a part of such a compound object reacts
to some computation, then the whole object accepts the same operation. In the
abstraction rule, the hypothesis u E ((2)) expresses the fact that a process has only
access to the abstract object {uz.ir)s by means of its specified interface. Stated
equivalently, a process cannot directly manipul e internal structure of an object.

The following result asserts that the 0 rules p erly define - with regard to the
idea that a program operates by means of its te ted sequences of computations.

. Letp-np’tSdef3uWp-+“p’. en for all processes p 62 Z7 9-)
and for all objects s, S’ E A (I, 23) the ~~l~ow~~~

0 i
rd

s - s’,

(ii)
W,l Fu,l

Ml9 *..-a--* “83 pt p--+*~*+-+s’ ¶

(iii)

The (easy) proof is omitted.

72 G. Bmldg I. castellani

One can regard the equivalence (i)e (iii) as a ge
ional and operational se

s’ define the “abstract” ope
“wnfiguration” which may evolve step by step to a te
the other hand, the equivalence (i)e (ii) entails a
atomic actions (cf. [38, IS]), which operate in
explain this point better: in order to prove {ar
s ++ TuEfr/fll s’. This holds if

SI>O3&,..., 0, f C,,(A) u&/r] .L’p+ . . . ,&, Fp~ &$z!l&...$&_

But since u is a finite, determinate computation, each code pi occurring in the term
u[p’/ Z] must contribute to the terminated execution of this term, and this contribution
is a terminated sequence of computations of pi.

Usually one assumes not only recoverability for atomic actions, but also
serializability (or noninterference, cf. [38, IO]). This property states that atomic
actions operate as if they were mutually exclusive. We could have accounted for
such a property by assuming another rule for abstraction, namely

Then the abstraction construct {aZ.@}s woul actually define a monitor, where the
procedures are mutually exclusive. The previous restricted rule enforces a strict
exclusion; then it does not allow, for instance, an interleaved operation of concurrent
transactions, where serializability is a criterion for data consistency. We shall not
adopt this restricted rule here, for we want to be able to deal with mutual inclusion
(rendez-volts), as well as mutual exclusion, by means of atomic actions. Moreover,
it it is eas, c to understand serializability as an algorithmic problem rather than a
requisite for a compiler-or a formal semantics: one can write the code of atoms
for an abstract object in such a way that they satisfy serializability, without changing
the semantics.

Another interesting consequence of the previous result is the following corollary.

For all processes p, q E ,, (A, I?) and for all objects s, s’ E
Mowing sequen tializa tion proper&s :

IPl i-91
s - s” - S’ # S

fPi91 rdt9i
- d * s - d.

ave the derived rule

Qpar: s 2% s’, P 2% r’ * (~11 r) 1-b (s’ll r’).

xample of abstract object, that of a Boolean sem
only given object is the b ear+that is, our

) and) . e semaphore is the followin

sem = ((b::boolO) with P = (b.co);(6.al), V= (b.cl);(hao)).

to our previous conventions, is (
(when lb do (ha,,)). We clearly have

(sem)
rp1

sem - sem’ LZt+ sem

(where sem’ is the same as sem but with 6 in state boo&) since

r(b.co);(b.qi /(b.c,Mb.a,)l
bool,, - bool, - boo&, .

Then we will have sem c) rp;vl sem, but also sem m (applying rhe p
vious corollary). This shows that in a construct p(kern), the execution of the process
p is not much constrained; what is precluded is, for instance, a computation V;P.
We could prove that the possible operations sem c+ lpl s are exactly those generated

(using the rules 01 and 02) by the transitions

rw
sem - sem’,

rvl
sem’ - sem.

In other words, the formula (sem) above is a specification of the abstract object
semaphore, and sem is a correct implementation.

As usual, the semaphore may be used to program critical regions, enclosing
mutually exclusive pieces of code, as in

(. . . (s.P);p;(s.V) . . .II.. . (s.P);q;(s.V) . . .)(s:sem)

for instance. We can use the semaphore to show the necessity of the hypothesis
u @ P in rule E7, by means of the following example of a causality cycle, due to
Gonthier: let p be a process performing the computation p +” p’, where

u = ((s. V);(s’.P)ll(s’.V);(s.P)).

Then, without the hypothesis u @ 2 in rule E7, we would have

p(s:sem)(s’:sem) -L p’(s:sem)(s’:sem)

since u/, = (VllP) and (u\“)/,= (PII V). ut this is intuitively unacceptable since

the term u(s:sem)(s’:sem) must be deadlocked.
To conclude this section, let us return for a while to the equivalence of prowesses.

We may call X the intensional equivalence since it relies u
On the other hand, the extensional equivalence = si
same manner”:

74 G. Baudot I. Castellani

However, this terminology is perhaps not quite right since intensional equivalence
does not imply extensional equivalence. The pro lem is with termination and
divergence: for instance, the process J2 = px=x does not have any execution, therefore
0 x 0; but it is not te&rminated: J2 + 0, and then a does not have any oper&m;

consequently, J2 + 0. We do have tc X ve u = v (and u X VC~ u = v) for computa-
tions v (the proof is left to the reader).

7.2. Synchronization and communication structures

The early interest in concurrent processes came from operating systems (cf. [Zl]).
There the main synchronization problem was to ensure mutually exclusive accesses
to shared resources. It is fairly easy to propose an abstract solution to this problem
in our formalism, by means of an idealized monitor: let us assume that we want to
enforce the mutual exclusion of procedures pl, . . . , pk operating on a shared object

we define an abstract object t encapsulating o together with a local
semaphore and offering the given procedures as new atoms:

t = ((I::olls::sem) with z1 = (s.P);(Lpl);(s.V)
.

zk = bp);(~pk);@-v))-

It should be clear that if o -rpi1 o’, then we have t dzil t’ where

t’= {aZ~}(l::o’(~s::sem)

(with qi = (se P);(Lpi);(s. V)). Therefore, t accepts any computation of

(1 z13 &}), and reacts exactly as if the pi’s were its primitive inStrWtiOnS.

This example suggests that a synchronization or communication structure should
be seen as an abstract object o = (cuZ.4)~ where s stores the local data, and where
the procedures or methods qi sharing these data enforce some synchronization or
communication discipline. Then a typical system of concurrent processes using such
a structure has the form (r, 11. . . II rn)(I: 0). Let us give another example of synchroniz-
ation structure; we said in Section 3 that the event structure a# b# c#d cannot be
the interpretation of a term of T(A). However, we can define an abstract object
whose operations are exactly the computations of this event structure, namely:

((s,::sem/s2::semlls3::sem) with a = (s,.P)

6 = (s,.PI)s*.P)

c = (s,.Plls,.P)
d = (s3.P)).

note the formal analogy between this “implementation” and the Petri
with the event structure a#b# c # d (cf. Section 3): each semaphore

Concurrency and atornicity

An interesting synchronization problem is that of synchronous message passi
in distributed systems. ore specifically, let us concentrate on CCS communicati
In CCS, an agent possesses some named ports through which it may commu
(cf. [43,44]). In our view, a port is an abstract object offerin two atoms for s
and receiving-we &hall only deal with pure CCS, without value passin
at defining the port as a communication structure in such a way tha
restriction operator p\l (or, more accurately, a generalization of this operator) can
be defined as:

p\l= p(l:port).

The definition of the port, using two boolean
port is the following abstract object of U,, (A,

bores, is inspired by 1331. The

port = ((s::s8mIIs’::s8m) with send = (s.P);(s’. V)

receioe = (s’. P);(s. V)).

In order to see in detail how abstraction works, we proceed to a complete analysis
of the transition

r = ((Lsend);p/(l. receive);q)(kport) -L r’ = (p II q)(l:port) (2)

assuming the previous specification for the semaphore. In CCS the term r would
be written ((l!).pl(l?).q)\l. We shall use the abbreviations I! for (Lsend) and I? for
(Lreceive). First of all we have

El:
send E A

El:
receive E A

send receive

send - 0 receive - II

E6: E6:
I! I?

I!---,0 Z?All

E2.1: E2.1:

l!;p A p#= (I.O);p f?;q 2 q’= (Z.B);q

E3.2:
(l!;p((Z?;q) --=L (

Since (LO) = 0 and B;p = p, we have p’ = p and, similarly, q’ = q. Clearly, we have
(I!(lr?) @ I, (r!llI?)/, = (send 11 receive) and (I ! 11 l?)\’ = 0. Then (2) will be
E7, from

(l!;plll?;q) = (p’llq’)

which we have just shown, and fro

[send 11 receive 1
port - port.

76 G. Boudo~ I. Custelhi

I_et us now prove this second fact. A first step is

rj?
sem - sem’

06: 06:
f&P1

Opar:
(s::sem) - (s::sem@) (s’::sem) .rs’.p! (s’::sem’)

fS.PllO’“Pl

(s::semlls’::sem - (s::sem’~~s’::sem’)

An entirely similar proof would show that

[5.Vlls’.Vl
(s::sem’ijs’::sem’) - (s::semlls’::sem).

We leave it to the reader to prove that

(s.P;s’.V~~s’.P;s. “us) = ((s.O);s’. V/(s”.);s. V)= (Illll).

Then, by 02;

(s::semlls’::sem) 1
[s.P;s’.V~(s’.P;s.V~

b (s::semlls’::sem)

Finally, we obtain formula (4) above by a g the abstraction rule.
To prove (2) we have to show that a ntialization of (s.P;s’.VIIs’.P;s.V)

operates on the intern D structure of the object pork-this sequentialization is
(s.P/s’.P);(s’. Vlls. V), but we could have chosen any stronger sequentialization. On
the other hand, it should be clear that one cannot prove that a send or a receive
alone operates on the port since their codes cannot terminate without the cooperation
of the other. We could say that the specijication of the port is

since this axiom generates exactly, by means of rules 01 and 02, the possible
operations on the abstract object port. We may regard the construct p(l:port) as
defining a restriction operator (the CCS T internal action being replaced by 0). This
shows that the hiding concept of models of concurrency such as CCS or TCSP is
related to the more conventional notion of scope.

Generalizing the mutual inclusion problem, we can define a synchronization
structure where some given procedures pl,. . . , pk, operating on a shared object o,
are forced to act simultaneously:

((Z::oll(s,::seml(. . .(/+::sem)) with z1 = (s,.P);(Z.p,);(sz.V)

22 = (@%~~~p2);(sJ* V)

.

.

zk = (sk-p);(l-pk);(s, l v))*

In this way, we are able to organize a rendezvous etween a given number of
recesses; we can also e mutual exclusion and ritual inclusion sync

Concwency and atomicity 77

ation disciplines. Some other examples, as, for instance, the signa!/wait primitives
related to a broadcast event, are given in [73.

8. Couclusion

Summing up our proposal for a calculus of processes, we could say that its three
main features are asynchrony, applicative communication and abstraction.
culus of processes PA (A, E) that we have proposed owes its asynchronous
mostly to the introduction of structure in the computations. It is evident that our
interpretation of parallel composition is asynchronous: as in MEIJE, we think of
concurrent processes as independent agents. The rele of sequential composition is
more hidden, but certainly not less important. On the execution side, introducing
sequential composition in the computations implies that there is no global time:
two concurrent processes may independently perform computations of arbitrarily
different lengths-i.e., we allow computations of the form (u,; . . . ;

On the operation side, we enforce asynchrony-at least for objects o
without abstraction-since the operation of processes on such “c
is sequentialized. Even the abstract objects of U,, (A, 5’) do not strongly restrain
the asynchrony of execution; for instance, a process using the communication
structure port of CCS may perform a computation like

(send;. . .; send 11 receive I[. . . II receive)

where each receive can wait for a ccrresponding send.
The meanings of synchronizxztion in MEIJE/SCCS (cf. [2, $31) and in our calculus

are very different, partly because we do not have a uniform duration of computations
in P,, (A,=). More importantly, in MEIJE/SCCS one directly prescribes synchroniz-
ation at the execution level, and one is thus able to define derived control structures
from the primitive ones, as shown by De Simone in [63]. In our calculus, we have
a more classical understanding of the synchronization problems, as regulating the
concurrent accesses to shared resources. It is still unclear whether or not this is too
restrictive a standpoint. One may wonder whether the strong notion of synchroniz-
ation of MEIJE/SCCS is really consistent with the intuitive idea of a distributed
sysrem. On the other hand, it may be that our model of objects has some weaknesses
with respect to the notion of reactive, or more accurately of interactive syste
must remark that, due to the abstraction rule, the operation of atom calls is
local to an object; but one could agine more “active” objects, for

atom may trigger cution of atom calls iirtende
e leave all these hazy matters for further investigation.

A more definite question is that of the expressive po f abstraction. Abstraction
rovides us with the possibility of defining various co unication mechanisms in

e same language. We have suggeste at one should specify abstract objects, so
as to be able to prove that a

78 G. &do& I. Castellimi

specification. This remains to be formally stated. Some specifications cannot be
carried out: for instance, no object can accept an operation o;
also to a. We could prove that it is impossible to define an
synchronization such as (a; b 11 c)-without also allowing (a 11 bll
not clear whether this is a real deficiency.

Another study we plan to undertake concerns objects. The object constructors,
namely declaration, parallel composition, sum, fixpoint and abstraction are perfectly
meaningful as data type constructors. For instance, they allow us to deal with records
such as (I,::~~11 . . . 11 lk: :sk). But we do not have a syntax for primitive objects. Since
they are states of transition syste e could have allowed primitive instructions
and sequential composition to build objects. But this is a rather ad hoc solution,
which would suggest a *‘historical” view of objects: the state of an object would
then represent its future, made of all the operations it will accept. However, we
would like to have a more classical notion of object, and a less arbitrary notion of
primitive instruction. A suitable framework could be that of event structures since
they provide models for both process calculi and data type constructions, cf. [68,70].
However, as Win&e! observed some time ago, there is a mismatch: a process is an
event structure, giving rise to a whole domain of computations, while a functional
progmm is an element of a domain-one can also remark that a process or an object
can be interpreted either as a whole transition system, or as a state of a transition
system (note: Berry, Huet and L&y [3,34,37] have shown that functional programs
also determine an ordered set of computations, where the “events” are occurrrences
of redexes, but this has not been much exploited in denotational semantics).
Searching for “a good syntax” for objects and processes could bring us to a better
understanding of the relationship between the semantics of sequential programs
and that of concurrent and communicating systems.

A ix A.

iaite te (i) I is a term of T(A) and every atom a E A is a term of T(A);
(ii) if p and q are terms of T(A), then so are (p;q), (~11s) and (p+q).

(iii)

(iv)
(v)

(i) I and every atom a E A are terms of T”“(A);
rec(Au Y) respectively, then (p;q) is a

‘) respectively, then (p 11 q)

an identifier x e:
), then px.p is a term of

Concwtency and atomicity 79

. (i) 0 is a term of

() ii
. . .

() 111

() iv

0 V

() vi

every atom or identifier y E A u X is a term of
if p is a term of (A v Y’, E), then (p;q),
(pilq) and (p+
if x E X is an identifier and p is

,,(Au Y-(x}, S?);
A is a name and p is a term of v Y, S), then (kp) is a term of

ifkAisaname,pisa Y, J?) and s is a term of
then p(1:s) is a term of

Objects. (i) Every identifier y E X is a term of ,,(A u {y}, i?) and every constant
0 E 0 is a term of &(A, S);

(1 ii

. . .
(1 111

(iv)

(1 V

ifsisatermofU,(AwY,S)andrisatermof JAW Y’, FZ’), then (sllr)
and (s + r) are terms of lJn (A u Y u Y’, E);
if XI E X is an identifier and s is a term of &(A u Y, 5), then px.s is a term
of U,,(Au Y-(x}, E);
if J E A is a name and s is a term of U,, (A u Y, Is”), then (2::s) is a term of
U,(Au Y, 3);
if2], . . . , zk E Z are distinct atom identifiers, pI , . . . , pk are terms of
andsisatermofUn(AuY,E”),then{az,,...,z~pI,...,Pk}sisatermof
U,,(Au Y, S).

tations. (3) D is a term of Cn (A);
(ii) every atom a E A is a term of C,, (A);

(iii) if u and v are terms of C,,(A), then (u;u) and (z@) are terms of Cn (A);
(iv) if 1 E A is a name and u is a term of C,(A), then (1.~) is a term of

Appendix B. Axioms and theories

See Table 1.

tional se

El: atom

aEAi- a-h,

E2.1: sequentid composition 1

p: P’ I- (Pzl) G+ (P’W),

80

Table 1

G. Baudot I. Castellani

A0 (p;kd) = (kd;d Y

uo (P3 = P = c%P)
r

Al (Piic!Iii~~~ = a PiiaNi~~ Y A

Ul (Pii~~=P=oiiP)

Cl biid = (qiir~ Y

-- r
u2 lp+B)=p=(B+p)

!P
c2 (p+ql=(1+p) Y

I (p+p)=p

Bl a~D=afota~A

B2 ;q=C((Yi o Pil;rll
i

B3 (Ye mjvlj
() j

= Y” C@jg4j +Z(Y;@j)04j
() j i

B5
(

P
L Yi o Pilis@j *4j
i)

IrYi”(Pi6~jo~j)
i j

+z ((Yiii@j) o (Piiiqj))

+i@j ‘(F Yi ‘P.iiqj)

u3 pdl=O

u4 (LB) = I

US B(l:s) = I

Dl (u Pm = Wp);(~q))

D2 (Q Piid) = Wp)liu.q))

6’

E2.2.1: sequential composition 2

E3.1:

E3.2:

E3.3:

E4.1:

E4.2:

Concurrency and atomicity

parallel composition 1

parallel composition 2

parallel composition 3

q? t-- (PIId 2 (PIId),

sum 1

P:P’+!P+qAP’,

sum 2

qGq+ (P+d%t,

ES: &point

P[W-PM L P’ t- W-P -f: Pl,

E6: qualification

p : pl t- (1.p) = (I.p’),

E7: block

p -f: pl& u @ 1, s = s’ k p(l:s) *” - p’(l:s’);

00: reaction

(0, u, 0’) E [I- 0 = o’,

01: identity

02: operation

rul rp.1
p : p’, s - SN c--+ St I- s

lP1

St,

3.1: parallel composition 1

81

s fi St t- (sllr) k-Z+ (sjr),

82 G. Boudok I. Castellani

03.2: parallel composition 2

r ryl_ rl t- (silr) 2% (s)lr’),

04.1: sum 1

slul_s’&uf8 t- (s+r).ss’,

04.2: sum 2

r.rr’&ufP~(s+r)~rr’,

05: fixpoint
Cul s[pms/x] = ss I- pxs - d,

06: declaration

s z+ sf i- (1::s) 22 (l::s’),

07: abstmction
rJ4P/31

s - s’, u E D({r}) t- {az.p}s = {az.p}s’.

eferences

L. Aceto, R. De Nicola and A. Fantechi, Testing equivalence for event structures, Tech. Rept.
84-6’ Istituto di Elaborazione dell’lnforma ione, CNR, Pisa (1986).
D. Adstry and G. Boudol, Algebre de processus et synchronisations, ‘Ilreoret. Comput. Sci. 30 (1984)
91-131.
G. Berry and J.-J. L&y, Minimal and optimal computations of recursive programs, J. ACM 26
(1979) 148- 175.
G. Berry and L. Cosserat, The ESTEREL synchronous programming language and its mathematical
semantics, in: Rw. Seminar on Concurrency, Lecture Notes in Computer Science 197 (Springer,
Rerlin, 1984) 389-448.
G. Boudol, Notes on algebraic calculi of processes, in: K. Apt, ed., Logics and Models of Concurrent
Systems, NATO AS1 Series F13 (1985) 261-303.
G. Boudol, G. Roucairol and R. De Simone, Petri nets and algebraic calculi of processes, in: Rot.
Advances in Petri Nets 2985, Lecture Notes in Computer Science 222 (Springer, Berlin, 1986) 41-58.
G. Boudol, Communication is an abstraction, in: Ror. Acres du Second Collogue C3 (1987) 45-63,
and INRIA Res. Rept. 636.
S. Brookes and W.C. Rounds, Behavioural equivalence relations induced by programming logics,
in: Roe. ICALP’83, Lecture Notes in Computer Science 154 (Springer, Berlin, 1983) 97-108.
S. Brookes, C.A.R. Hoare and A. Roscoe, A theory of communicating sequential processes, J. ACM
31 (1984) 560-599.
R.H. Campbell and P. Jalotte, Atomic actions in concurrent systems, in: Proc. 5th Internat. Cant
on Distributed Computing Systems (1985) I $4- 19 I.
P. Cattier and D. Foata, t%oblt?mes Combinaroires de Commutations et Riarrangements, Lecture
Notes in Mathematics (Springer, Berlin, 1969).
1. Castellani, P. Fra ontanari, Labelled event structures: a model for observable
concurrency, in: D. al Description of ~ogramming Concepts II (North-Holland,
Amsterdam, 1983) 3

Concurrency and atomicity 83

1131 I. CasteIIani and M. Hennessy, Distributed bisimulations, Comput. Sci. Rept. s-87, University of
Sussex (1987).

[14] I. Castellani, Bisimulations and abstraction homomorphisms, J, Comput. System &ii.
210-235.

[15] I. CasteIIani, Bisimulations for concurrency, Ph.D. Thesis, University of Edinburgh (1987).
1161 Ph. Darondeau and L. Kott, On the observational semantics of fair padtelism, in: h. ICALp

‘83, Lecture Notes in Computer Science 1 (Springer, Berlin, 1983) 147-159.
[17] P. Degano and U. Montanari, Distributed systems, partial orderings of events and event structures,

in: M. Broy, ed., Control Flow and Data Flow: Concepts of Distributed Programming, NATO ASI
Series F14 (1985) 7-106.

[IS] P. Degano and U. Montana& Specification Ian es for distributed systems, in: h. 1st TAP-
SO=, Lecture Notes in Computer Science Berlin, 1985) 29-51.

[19] P. Degano, R. De Nicola and U. Montana ring derivations for CCS, in: prclc. FCT
85, Lecture Notes in Computer Science 199 (Sprmger, Berlin, 1985) 520-533.

[20] R. De Nicola, Extensional equivalences for transition systems, Actu Inform. 24 (1987) 211-237.
[21] E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys, ed., Ptogrumming Languuges (1968)

43-l 12.
[22] R.J. Duffin, Topology of series-parallel networks, A Math. Anal. Appi. 10 (1965) 303-318.
1231 HJ. Genrich and E. Stankiewicz-Wiechno, A dictionary of some basic notions of net theory, in:

W. Brauer, ed., Net 7heorgt and Applications, Lecture Notes in Computer Science 84 (Springer,
Berlin, 1980) 519-531.

[24] J.L. Gischer, Partial orders and the axiomatic theory of shuffle, Ph.D. Thesis, Stanford University
(1984).

[25] R. van Glabbeek and F. Vaandrager, Petri net models for algebraic theories of concurrency, in:
Ptoc PARLE Con& Eindhov23, Lecture Notes in Computer Science 259 (Springer, Berlin, 1987)
224-242.

[26] U. Goltz and W. Reisig, The non-sequential behaviour of Petri nets, Inform. and Control 57 (1983)
125-147.

1271 J. Grabowski, On partial languages, Fund. Inform. IV (1981) 427-498.
1281 P.A. Grillet, Maximal chains and antichains, Fund. Math. 65 (1969) 157-167.
5291 M. Habib and R. Jegou, N-Free posets as generalizations of series-parallel posets, Discrete Appl.

Math. 12 (1985) 279-291.
1301 M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32

(1985) 137-161
1311 M. Hennessy and R. De Nicola, Testing equivalences for processes, Iheoret. Comput. Sci. 34 (1984)

83-133.
1321 C.A.R. Hoare, Communicating Sequential Recesses, Prentice-Hall International Series in Computer

Science (Prentice Hall, Englewood Cliffs, NJ, 1985).
[33] R.R. Hoogerwoord, An implementation of mutual inclusion, Inform. Process. Lett. 23 (1986) 77-80.
[34] G. Huet and J.-J. L&y, Call-by-need computations in non-ambiguous linear term rewriting systems,

IRIA-LABORIA Rept. 359 (1979).
1351 E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence

constraints, Ann. Discrete Math. 2 (1978) 75-90.
[36] E.L. Lawler, R.E. Tarjan and J. Vaides, The recognition of series parallel digraphs, SIAM 1. Cornput.

11 (1982) 298-313.
[37] J.-J. L&y, Optimal reductions in the lambda calculus, in: J.P. Seldin and J.R. Hindley, eds., To

HA Curry: Essays on Combinatory Logic, Lambda Calculus and Formukm (Academic Preqs, New
York, 1980) 159-191.

[38] B. Liskov and’ R. Scheifler, Guardians and actions: linguistic support for robust, distributed
programs, ACM TOPLAS 5 (1983) 381-404.

[39] D.B. Lomet, Process structuring, synchronization, and recovery using atomic actions, SIGPLA
Notices 12 (1977) 128-137.

[40] A. Mazurkiewicx, Concurrent program schema and their interpretations, in: Proc. A&us WorkhoP
on VeriJication of Parallel Rograms, Daimi PB-78, Aarhus University (1977).

[41] A. Mazurkiewicx, Traces, histories, s of a process monoid, in: ,ccs’84,

Lecture Notes in Computer Science rlin, 1984) 115-133.

R Milner, Program semantics and mechanized proofs, M&. Care Tmcfs 82 (1976) 3-44.

R Milner, Synthesis of communicating behaviour, in: i)roc MmS.79, Lecture Notes in Computer
Science 68 (Springer, Berlin, 1979) 71-83.
R Milner, A CaZc&s of &mmun&xz?ing Sys&ms, Lecture Notes in Computer Science 91! (Springer,
Berlin, 1980).
R Milner, On relating synchrony and asynchrony, CSR-75-80, Computer Science Dept., Edinburgh
University (1980).
R Milner, Calculi for synchrony and asynchrony, ‘I&wre~ Contput. sick. 2!! (1983) 267-310.
R. Milner, Lectures on a calcuhts for communicating systems, in: kx. &m&uu on Concurrency,

Lecture Notes in Computer Science 197 (Sptinger, Berlin, 1985) 197-220.
R. Milner, Process constructors and interpretations, in: 13w: lFfP 86 (1986) 507-514.
M. Nielsen, G. Plotkin and G. Winskel, Petri nets, event structures and domains, 7l1eo*t. Comport.
sci. 13 (1981) 85-108.
E.-R Olderog, Operational Petri net semantics for CCSP in: Procr. Aduunces in AW Nets ‘87,
Lecture Notes in Computer Science 266 (Springer, Berlin, 1987) 196-233.
D. Park, Concurrency and automata on infinite sequences, in: Ptw: 5Jh GI Con& L.ecture Notes
in Computer Science 184 (Springer, Berlin, 1981) 167-183.
C.A. Petri, Non-sequential processes, GMD-ISF Rept. 77-05 (1977).
G. Plotkin, A structural approach to operational semantics, Daimi FN-19, Aarhus University (1981).
G. Plotkin, An operational semantics for CSP, in: D. Bj$mer, ed., Formal lkscription of hgmmming

Conceprs 2 (North-Holland, Amsterdam, 1983) 199-225.
H. Phinnecke, K-density, ZV-density and finiteness properties, in: Aw= Advunces in ktri Nets ‘84,
Lecture Notes in Computer Science 188 (Springer, Berlin, 1984) 392-412.
A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: pto(=
SCALP ‘8S, Lecture Notes in Computer Science 194 (Springer, Berlin, 1985) 15-32.
V.R. Pratt, On the composition of processes, in: Arw: 9th HIPL (1982) 213-223.
V.R. Pratt, Modelling concurrency with partial orders, Internut. 1. Ramllel l+wgm- .ming 15 (1986)
33-71.
W. Reisig, On the semantics of Petri nets, in: G. Chroust and EJ. Neuhold, eds., Fort& Modek
in hgmmming (North-Holland, Amsterdam, 1985) 347-372.
J. Riordan and C.E. Shannon, The number of two-terminal series-parallel networks, .I. Muth. l%ys.
21 (1942) 83-93.
C.E. Shannon, A symbolic analysis of relay and switching circuits, Trans. Amer. Inst. Electr. Engrs.
57 (1938) 713-723.
M.W. Shields, Concurrent machines, Comput. 1.28 (1985) 449-465.
R. de Simone, Higher level synchronising devices in MEIJE-SCCS, 7Beow. Comput. Sci 37 (1985)
245-268.
D. Taubner and W. Vogler, The step failure semantics, in: ti STACS ‘87, Lecture Notes in
Computer Science 247 (Springer, Berlin, 1987) 348-359.
G. Viennot, Heaps of pieces: basic definitions and combinatorial lemmas, in: Acres du Colloque de
Combinatorie Enumkutiw, Montreal (1985).
J. Winkowski, Algebras of partial sequences, in: Proc: FCT ‘77, Lecture Notes in Computer Science
56 (S@nger, Berlin, 1977) 197-196.
J. Winkowski, Behaviours of concurrent systems, ‘l&diet. Comput. Sci. I2 (1980) 39-60.
G. Winskel, Events in computation, Ph.D. Thesis, Edinburgh University (1980).
G. Winskel, Event structure semantic: for CCS and related languages, 9th SCALP, Lecture Notes
in Computer Science 148 (Springer, Berlin, 1982) 561-576.
G. Winskel, Event structures, in: h Advances in Petri Nets ‘86, LectureNotes in Computer Science
;tss (Springer. Berl ri,c+>87) 315-&L

