Theoretical Computer Science 59 (1988) 25-84 25
North-Holland

CONCURRENCY AND' ATOMICITY

G. BOUDOL and 1. CASTELLANI
INRIA Sophia-Antipolis, 06560 Valbonne Cedex, France

Abstract. The overall intention of this work is to investigate the ability to regard a finite computa-
tion as a single event, in dealing with the semantics of concurrency. We propose a caiculus of
concurrent processes that embodies this ability in two respects: the first one is that of execution,
the second that of operation. As usual, we formalize the execution of a process as a labelled
transition relation. But our point is that at each step the performed action is a compound one,
namely a labelled poset, not just an atom. The action reflects the causal and concurrent structure
of the process, and we claim that the bisimulation relative to such transition systems brings out
a clear distinction between concurrency and sequential nondeterminism. Next we introduce a
second transition relation, formalizing the operation of a process on data. As in the usual semantics
of sequential programs, a process operates on data by means of its terminated sequences of
computations. Then we obtain atomic actions by abstracting the whole operation of a process as
a single event. We_show that this abstraction mechanism, together with the idea of compound
actions, allows us to deal with a variety of synchronization and communication disciplines.

1. Introduction

The purpose of this paper is twofold: to set up a semantics for ““true concurrency”
and to propose a semantics for atomic actions. In developing our proposals we shall
use ideas borrowed from various approaches to the semantics of concurrency.
Milner’s work on calculi of processes [44,46,47] provides our main source of
inspiration. Let us recall the main features of such calculi (cf. [5]): first there is a
syntax which describes abstract programs as ierms ci an algebra; second there are
behavioural rules according to which each term may pecrform some actions and
become another term in doing so. This brings in a notion of labelled transitions:

action

process ———> process'.
execution
Then a semantic equality is defined by means of the well-known notion of bisimula-
tion [51, 46, 8]. This semantic equality usually complies with algebraic laws, which
may form the basis for an axiomatization.

A common feature of process calculi is that they are based on operational semantics
of programming constructs. This is precisely what we are interested in. One of the
reasons is the following: although there is some progress towards a Church’s Thesis
for concurrency (cf. [70, 63, 5, 48]), we still lack a mathematical notion of process
which could play a réle similar to that of (recursive) function for sequential
languages. A Church’s Thesis would emerge from a collection of results establishing

0304-3975/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)



26 G. Boudol, I. Castellani

the equivalence of various models. As regards concurrency, the available results of

this kind are not based upon a universally accepted notion of process. Then a

possible preliminary step is to bring out some primitive constructs for “computing
srocesses”. and to compare them. This was an early purnose of CCS (cf. fd‘ﬂ\

PIU\IUBBVB 9 GBIV WV WU QRIV Liiviiie & 3220 VIO Jas YiReay pwsprvew

Later on, Milner took the standpoint [46,47], which we adopt, that any abstract
notion of process must be based firmly upon operational semantics.

Informally, we view a concurrent system as made out of autonomous agents which
may communicate during their execution. This is just to point out the difference
from sequential systems, which communicate at the end of their execution. In order
to formalize such a notion of interactive and possibly nonterminating process, one
must take into account concurrency, communication and execution. We shall return
to the first two concepts later. As regards execution, transition systems provide us
with a suitable starting point. As Plotkin shows in [53], a fairly general model of
the operational semantics of programming languages is that of transitions inferred
by means of structural rules. This also copes with languages for concurrent and
communicating processes, such as CCS or CSP (cf. [54]).

Bisimulations on transition systems provide a powerful concept (see [63, 5, §]),
but many authors argue ([12, 16, 59], to mention but a few) that this yields an
inadequate description of concurrency. Specifically what is questioned is Milner’s
expansion theorem [44, 30], expressing a simulation of concurrency by sequential
nondeterminism. Roughly speaking, (alb) =ab+ ba (we use here a CCS-like nota-
tion), thus the parallel composition operator can be eliminated (from finite terms),
whence it is not primitive. As a contribution to the theory of “true concurrency”,
our paper aims to solve

concurrency # sequentiality + nondeterminism. (1)

More precisely our thesis is that this can be solved while still dealing with bisimula-
tions on transition systems: we show that the criticism should not be moved against
the expansion theorem, but rather against the lack of structure in the actions of
transition systems.

Evolving from Petri’s ideas [52], there is another way to approach the semantics
of concurrency. Following this way one thinks of sequentiality as arising from causal
structure which prescribes an ordering on events. Dually, two events are concurrent
if they are not causally related. Thus an action is a partially ordered set of events,
labelled by atoms, rather than a mere sequence. This is by now a widely held point
of view, which we shail survey in a first sectior. of the paper. Let us just say that
our main source of inspiration from this area is Grabowski and Gischer’s theory of
pomsets [27, 24], which are partially ordered multisets of atoms. A step towards the
idea of actions as pomsets was already taken in the calculus MeuE [2, 5], where
an action is a multiset, that is, a parallel product of atoms. We can claim that in
MEUE concurrency is primitive since we have

(alb) = ab + (a|b) + ba # ab + ba.



Concurrency and atomicity 27

However MELE does not provide an adequate model for causality since we have
something like

(ab|c) = a(b|c) + (a]c)b.
These examples show that there is still a notion of global time in this calculus,
which forces some vndesirable causal dependencies. What we seek is an execution
model where causality, as well as concurrency, is properly taken into account.

Let us now introduce our first contribution: first of all, in order to solve (1) we
must start with a formalism in which one can talk about sequentiality, nondetermin-
ism and concurrency as distinct notions. This is why we adopt as our system model
Winskel’s (labelled) event structures, built upon the exclusive relations of causal
ordering, conflict and concurrency. Each of these relations gives rise to a way of
constructing event structures: one simply juxtaposes two such structures and then
sets the corresponding relation between their events. These operations are sequential
composition (;), sum (+), and parallel composition (||); they provide us with a syntax
for finite event structures. Obviously, the syntactic distinction between the three
operations is too crude: we would like to identify some terms on behavioural grounds.

We now describe the first main idea. An event structure determines a set of
computations, what Winskel calls configurations: a computation is a conflict-free
“prefix” of the event structure. We shall restrict our attention to finite computations.
Then, defining “what remains of the structure” after a computation we get a notion
of labelled transition: the action (= the computation) is a finite pomset and the
state reached (= what remains . . .) is another event structure. This provides us with
an execution model. The point is that we generalize what is usually over the (execu-
tion) arrow: computations are finite and determinate processes, not just single atoms.
Syntactically they are denoted by terms involving sequential and parallel composi-
tion, but not sum.

We then give a structural operational semantics, following Plotkin’s style [53, 54],
for our “abstract programs”, and show an exact correspondence between the
semantical and syntactical notions of transition. Since computations may contain
causality and concurrency, we shall have some rules introducing the corresponding
operators over the arrow, namely:

p—pt&q—q = pa—4q

where p't means that p’ is a terminated program, and
w v, (uljv) "o

p—p'&q—q = (pllg) — (P'l9).

Let us see just one example: we have
{a;bjlc)

(a;b;plle;9) —— (pll9)-
This shows that our calculus is asynchronous: there is no assumption of global time
since two concurrent processes may independently perform computations of
arbitrary lengths.



28 G. Boudol, I. Castellani

Next we define our semantic equality, in the same way as Milner defines his
strong congruence. aud give an sxiomatization for it. We claim that this notion of

strong congruence, aug give an axiomatization for claim that this notion of
equahty solves (1); so this ends our proposed execution model for “true concur-
rency”.

There is a remaining point in our informal view of a process—as a system made
out of communicating concurrent agents—that of communication. We may roughly
distinguish two kinds of communication: an indirect one, usually asynchronous,
where the agents communica.e by means of shared objects (variables, bufiers, and
so on); a direct one, usually syn-hronous, where the agents exchange messages. We
can regard a direct communication act as a computation of the form (u| v) since it
requires the participation of at least two concurrent partners. If the communication
is synchronous, one must ensure that in some sense (u||v) cannot be dissociated.
One way to achieve this is to specify it as an axiom, an interaction law as in Winskel’s
synchronization algebras [69]. For instance, for the calculi CCS, Meng/SCCS and
TCSP, we would have something like

CCs: (a]a)=1,
MEepg/SCCS: (alla M) =1,
TCSP: (ala)=a.

There is another way to ensure synchronization, which is to implement it in some
sense. This is the way we shall follow. More specifically, we shall “implement”
direct synchronous communication by means of indirect asynchronous one, using
a formal noticn of atomic action. This is the second main idea of the paper: we
want to set up an operational formalism where it is possible to abstract the whole
behaviour of a process as a single atomic action. In such a formalism, we shall be
able to say that some “high-level” primitive is implemented at a more concrete level.

In order to introduce the abstraction mechanism, let us return for a while to
communication: for indirect communication, the primitive act is the application of
an action to an object. For instance, this can consist in reading or updating a
variable, or in putting a value into a buffer, or getting a value from that buffer, and
so on. We shall denote by s+—" s’ the fact that an action u, when applied to the
object s, operates on it, changing it into s’ (the last part of the paper deals with the
notions of object and operation). Applying an action to an object may consist in
applying an arbitrarily complex process, and it is the whole operation of such a
process that will be abstracted as an atomic action. Therefore we have to define the

operation of processes, not only of actions, on objects. This is formalized as a new
transition relation:

process
object ———— object’.
operation

As a matter of fact, the inference rules for operation are fairly simple: they just say
that a process operates by means of its terminated sequences of computations. This



Concurrency and atomicity 29

operation may be nondeterministic, due to an arbitrary interleaving of the concurrent
comnonents of the nrocess

FValaprvaiwaisy Wi vaiv AV wwoss

Atomic actions are then introduced within a definition similar to thac of abstract
data type, namely o = (s witha,=p,, ..., a, =p;), where s is an object, the a,’s are
atom identifiers and the p;’s their respective codes, which are processes. The term
o is an (abstract) object, and the corresponding operation rule for it—that is, the
abstraction rule—is, roughly speaking, as follows:

ulp,/a;} u .
s———5' + (switha,=p,,...,a=p) = (s'witha,=p,,...,a.=p;)

where uf p;/ a;] is the process we get by substituting in u the atoms a; by their codes
pi- This rule clearly states that the operation of atoms on an abstract object is that
of their codes on the concrete representation of the object.

Let us sketch how this can be used to model CCS communication. Let sem be
a given primitive object whose initial state is free, and which (exclusively) accepts
the following operations:

P v
Jfree — busy and busy > free.

This is a kind of boolean semaphore, cf. [21]. We shall see that, as suggested in
[33], a CCS port can be defined as the following communication structure:

port = ((sem||sem’) with send = (P; V"), receive =(P";V))

(with an obvious meaning for sem’, P’ and V'). The mutual inclusion of send and
receive will result from an indivisible interleaving of their codes, as in the sequence
P;P', V',V for instance. We shall also see how to define the CCS restriction p\a in
our calculus.

To sum up, our contribution relies on two main ideas: the first one is that it is
worth putting some structure in what labels the arrows. The second is that it is
worth setting up two kinds of arrows. One can think of CCS and related models as
staying at the execution side, while functional languages stay at the operation side;
what we attempt is to make up a unifying operational framework.

Note. One must regard our semantics of atomic actions as a preliminary proposal,
formalizing the more concrete one of [7]. We do not prove any theoretical result
about them. In particular our operation model is not yet clearly related to the system
model of event structures.

Summary

In the first part we deal with our chosen system model, that of labelled event
structures. We begin with a brief account on partial ordering approaches to concur-
rency. Then we introduce labelled event structures, together with a first syntax where
the primitive constructs are sequential composition, parallel composition and sum.



30 G. Boudol, 1. Castellani

Next we enrich this syntax with recursive definitions and show how to interpret
tarme ac avant ctructures. The last section of the first part contains a characterization

RVILIID GO VVWILL VDV VBWIWIWUe X 3iW JUe UWWEiWiL Wi visw 3iave wwassisRaaD Ve waatea R wewasisivvavas

of the class of event structures which are denoted by finite terms, and gives a
complete axiomatization of the interpretation equality.

The second part of the paper is devoted to the execution model. We define our
notion of transition on event structures, and show that this corresponds exactly to
an operational semantics on terms. Then we discuss the associated strong bisimula-
tion, which is called here equipollence, and give a complete axiomatization for it
(for finite terms).

This third part presents the operation model, and our full calculus. We first
introduce the notion of operation of programs on data. Then we give a syntax for
data, which are called objects here. The syntax of terms is extended with constructs
allowing processes to operate on objects. The transition relation of execution is
extended to processes, and we introduce the transition relation on objects ihat
formalizes the operation of processes. The last sections are concerned with abstrac-
tion and atomic actions. In particular, we show how to formulate some classical
synchronization and communication primitives as atomic actions.

The reader will find in the three appendices a recapitulation of the technical
material: the first one recollects the syntax, the second one contains the axioms and
equational theories, and the third includes the rules of operational semantics.

PART I: THE SYSTEM MODEL
2. Syntax and interpretation

2.1. Algebras of posets: a survey

Ore of the first proposals in the area of partial order semantics of concurrency
may be found in the work of Mazurkiewicz [40]. His formalization describes
concurrency as an independence relation on actions, while causality is represented
as sequencing of actions in a behaviour. This gives the notion of trace which is the
equivalence class of a sequence up to commutation of independent actions (a more
common meaning of the word “trace” is just that of a sequence, such as used by
Hoare (32]). For instance, let A={a, b,c,d} be the set of actions and I=

{(a, b), (b, c), (¢, d)} the independence relation; then the trace determined by the
word abcd is the set

{abcd, bacd, acbd, abdc, badc}.

One can see that in the words of this set, b always precedes d, and a always precedes
c and d. Thus one can represent this trace by a labelled poset N



Concurrency and atomicity 31

N
\d

(in this figure the order increases downwards). The partial ordering associated with
a trace is the intersection of the linear orderings given by the words of the trace.
This representation of traces by labelled posets—up to isomorphis...—is given by
Mazurkiewicz in [40, 41]. One may even characterize the labelled posets that rep-
resent traces, up to isomorphism, as shown by Shields [62] and Viennot [65]—
another such characterization is given by Grabowski [27].

The set of traces on a set of actions A has an obvious algebraic structure: it
inherits the structure of a monoid from the set A* of sequences of actions, the
operation being concatenation up to commutation of independent actions.
Mazurkiewicz shows in [41] that such monoids satisfy some simplification properties,
and Viennot [65] shows how to define directly the product of labelled posets
representing traces. In tact, this kind of monoids, called commutation monoids, was
introduced by Cartier and Foata in [11] to study combinatorial properties of
rearrangements of sequences. Concurrency is implicit in the algebra of traces: there
is only one operation to compose traces, namely that of concatenation. Let us now
assume that we have two explicit constructs for programs: sequential and parallel
composition. Then we can write, using a CCS-like syntax, a “program” (ab|a),
where a and b are actions. But there is no trace to represent its semantics. What
we could do here is to interpret the parallel composition as the shuffle and thus get
the set of behaviours {aab, aba}. However, as noted by Pratt [ 58], there is no longer
uniqueness of labelled posets represented by this set; for example {aab, aba} is the
set of linearizations (or sequentializations) of both the labelled posets

a—Q

a a

and b/\a

The second one can be regarded as the interpretation of the term a(bla).

Labelled posets (up to isomorphism) seem to provide a sharp interpretation of
concurrent programs. Let us give the definition: an A-labelled poset is a structure
(E, <, A) where < is an ordering on the set E of events and A : E - A is the labelling.
Informally an event e € E is an occurrence of the action A(e), and e < e’ means that
e necessarily precedes e’. If two events e and e’ are incomparable, we say that they
are concurrent, and write e — e’. Structures of this kind have been introduced by
Winkowski in [66, 67]; he imposes however a somewhat unfortunate restriction on
his ‘“‘partial sequences”, namely that twc concurrent events do not carry the same
action. This rules out (ala) for instance.

As a matter of fact, labelled posets appear very often in the literature: they bear
the name of “partial word” for Grabcwski [27], of “‘pomset” (partially ordered

b



32 G. Boudol, I. Castellani

multiset) for Pratt and Gisher [24], of ““A-poset” for Shields [62], and so on. Degano
and Montanari propose in [17, 18] posets called ‘“concurrent histories™ in which
they distinguish two kinds of labels (process types and actions). Petri net theory
also uses a semantical object which is a special case of poset, thai of “occurrence
net”, from which Reisig [59] extracts the “abstract processes” to formalize the
computation of nets—the same notion was introduced by Grabowski [27]. In this
paper we shall adopt Pratt’s pomset terminology, cf. [58].

Assuming that pomsets are an appropriate model for concurrent programs, the
question is: can they be supplied with an algebraic structure? In other words, we
ask for a syntax to denote pomsets. An answer is given by Grabowski [27] who
shows ‘hat every (finite) pomset may be built from atoms by means of sequential
composition, renamings and a faniily of (multi-valued) operations called “sec-
tions”—these operations are similar to the parallel composition by intersection of
TCSP [9} and to Milner’s conjunction [46,48]. However, this result essentially
concerns posets, where the !abelling is injective. Thus one has to assume an infinite
set of actions A, which means that one cannot in general present the class of
A-labelled posets as a free algebra generated by A, at least not with Grabowski’s
operations. The problem of finding a set of operators which are both operationally
meaningful and sufficiently expressive does not yet have a satisfactory solution.

We shall content ourselves with the above mentioned constructs (parallel and
sequential corr. position). Now the question is: which class of pomsets can we describe
in this way? Hers wgain the answer comes from Grabowski—and independently
from Gischer [24]: this class is exactly that of finite N-free pomsets. We shall see
later ihe precise definition of the N-freeness property. Roughly, an N-free pomset
is onc «hat does not contain the previously encountered pomset N. There exist some
variations of this property: for example, one can consider pomsets or posets which
do nc strictly contain N, that is, do not contain an N-configuration for the covering
relation. Grillet {{28], see also [55]) has shown that such posets are characterized
by the property tiat each maximal chain intersects each maximal slice. An algebraic
characterization of this class of posets has been given by Habib and Jegou [29].
T'hey use a family of operations parameterized on a subset of maximal elements of
tke first argizment, and on a subset of the minimal elements of the second one
(1Yegano and Montanari introduce similar constructions on concurrent histories).
Ciearly, such operations, which depend on the names of events, do not provide a
reasonable abstract syntax. Incidentally, let us note that the class of N-free pomsets,
or more accurately of their line digraphs (cf. [36]) called series parallel digraphs,
has Seen known for a long time by authors studying models of switching circuits
[22, 60, 61]. These graphs also arise in problems of jobs scheduling (e.g.. topologicai
sort), cf. [35].

To conclude we could point out that, for most of the models we mentioned, a
process is a set of pomsets, which represent its possible computations; in other
words a process is a language. This means that one may introduce a sum operator
2+ g (nondeterministic choice) which is interpreted as set union. This entails the



Concurrency and atomicity 33

linearity, or distributivity of sequential and parallel composition with respect to
sum: p(q+r)=pg+pr and p|(g+r)=(plq)+(p|r). Now it is well-known that
models of this kind do not account for deadlock situations [44, 9]. For instance, if
we assume a process 1 (similar to the NIL of CCS) such that x+ 1= x, then we will
have ab = ab+a and (a|b) =(a|b)+a.

We shall not adopt such a linear interpretation of p+ g: here the sum will be a
true branching control structure. This construct is often used to model standard
programming concepts such as (if ... then...else...) or (case...) statements. For
this reason we depart from pomsets as a system model, and rather adopt a framework
in which the concepts of concurrency, sequentiality and nondeterminism take place
at the same level. This framework is that of Winskel’s event structures [68].

2.2. Labelled event structures and terms

For some technical reasons that will become clear later, our definition of event
structures is a slight variation of Winskel’s one. Moreover, in this first part we only
deal with event structures in themselves, not with the domain of configurations they
determine. Configurations will be introduced in the next part. At some points we
shall assume knowledge of the work of Nielsen, Plotkin, and Winskel [49] which
shows how to derive (labelied) event structures from some kind of (labelled )Petri
nets; thus we shall feel free to use standard concepts of riet theory (cf. [23]) when
dealing with such derived event structures.

As usual {0, 1}* denotes the set of words over the alpha bet {0, 1}; the concatenation
of two words u and v is uv, the empty word is €.

Definition 2.1. Let A be a nonempty set. An A-labelled event structure (A-LES for
short) is a structure (E, <, #, A) where
(i) E ={0, 1}* is the set of events,
(ii) =< is a partial order on E, the causality relation,
(iii) #<E x E—(=<vu =) is the symmetric conflict relation,
(iv) A:E - A is the labelling function.

In what follows we let a, b, c, ... range over the set A of atoms. Two events e, e’

in E are concurrent if they are neither comparable nor in conflict, that is, e — e’ where
del“

=EXE—-(su=uU#).
This is a symmetric irreflexive relation. Note that, by definition, the relations <u =,
#, and — set a partition upon EXE.
We shall always draw structures up to isomorphism, that is, omitting the name
of events; in the figures the order < increases downwards and only one of the
remaining relations (# or ) is explicitly shown. For instance, V

a~b

\

c



34 G. Boudol, 1. Castellani

is a structure with three events, e, € and e", respectively labelled a, b and ¢ such
that e is a cause of e”, e and e’ are concurrent and e’ and e" are in conflict. This
event structure is derived from the net shown in Fig. 1 which is the typical example
of asymmetric confusion (cf. [23]). Note that we do not require Winskel’s axioms
of conflict heredity, stating

e'#ese' = e"#e€'.

Fig. 1.
Therefore, we do not rule out structures such as, for instance,

a#b

\/

c

We use L(A)™ for the set of A-labelled event structures and £(A) for the set of
finite ones. These sets are naturally supplied with an algebraic structure: let V be
one of <, —, # and S,, S, be A-LES’s; then S, (V) S, is the structure we get by
juxtaposing S, and S, and setting the V relation between the events of S, and S,.
When V is <, this is called sequential composition of S, and S, and denoted S,;S,,
whereas if V is —, this is the parallel composition S||S, and in the case V =#, this
is the sum S,+S,. The formal definition is the following: assuming

Si=(E,<;,#i,A) forie{0,1}
one defines S, (V) S, to be (E, <, #, A), where
® E=E,UE,,ie., E={0u|lue E}u{lu|ucE};
® xsjy o i=jandx<;yor V=<,i=0and j=1;
® ix#ju & i=jand x#,y or V=# and i#j;
® A(ix)=A;(x).
These operations are naturally defined up to isomorphism. That is, denoting by
P = Q the relation “P and Q are isomorphic™, we have

P,Q=PiQ
P=Pand Q=Q = {P+Q=P'+Q,
PlQ=PQ.
Thus Z(A)*/= and L(A)/= inherit the algebraic structure.



Concurrency and atomicity 3

Now we have a syntax to denote finite A-LES’s; we shall deal with infinite ones
in a next section. This abstract syntax is the set T(A) of terms built according to
the following formation rules.

Finite terms

(i) 1is a term of T(A) and every atom a € A is a term of T(A);

(ii) if p and g are terms of T(A) then so are (p;q), (pllq) and (p+gq).

Let #(p) be the labelled event structure denoted by the term p, defined as follows:
F(1)=(0,0,0,0)  (the empty structure),
F(a)=({e},=,¢ A) with A(e)=aq,
F(p;q)=#(p):#(q),
Z(pla)=£(p)l£(a),
F(p+q)=F(p)+5(q).

The symbol 1 will be used also for the empty structure and its isomorphism class.
Let us see a few examples: the term (a+ b);(c|/d) denotes the structure

a b

X

This and the simpler term (a+b);c show why we cannot assume the axiom of
conflict heredity. The term (a| b)+ ¢ is interpreted as

a#c#b

c

(where a — b, and there is no nontrivial causal dependency) and it is an example
of “symmetric confusion” (see [23, 49]), derived from the net shown in Fig. 2.

Fig. 2.

It will be convenient to denote [S]_., or more simply [S], the isomorphism class
of an A-LES S. Then the interpretation of a term p € T(A) is:

$(p) = L(P)].

In a next section we shall give a characterization of the set of finite structures which



36 G. Boudol, I. Castellani

are interpretations of terms up to isomorphism, that is,

T(A) = S(T(A)) < L(A)/=.

Moreover, we shall give an axiomatization of the interpreiation equality:
def
P=sq9 © #(p)=%(q) & F(p)=F(q).

2.3. Infinite structures and recursive definitions

In this section we enrich the syntax of terms with recursive definitions in order
to be able to denote some infinite A-LES’s. The syntactical apparatus of recursive
definitions, and their semantical interpretation in ordered domains are nowadays
standard matters of the theory of programming language semantics, with which we
assume the reader to be familiar.

Winskel introduces in [70] an approximation ordering between LES’s which yields
a cpo structure. This ordering is simply the “substructure” or restriction ordering,
defined as follows:

Scs def {S=(E,$,#,A) and 3Fc E,
- S'=S[F=(F,<n(FxF),#n(FxF), A[F).

Since this relation is defined by means of set inclusion it enjoys some pleasant
properties. To state them let us recall some standard order-theoretic notions:
(1) In a poset (X, <) a subset C of X is locally bounded (or consistent) if every
finite subset of C has an upper bound (in X).
(ii) The poset (X, <) is consistently complete if every locally bounded subset C
has alub LJ C.
(iii) Let (X, <) be consistently complete. A point x € X is called finite if for every
directed subset Z such that x<| | Z there exists a ze Z such that x<z.
(iv) A consistently complete poset is algebraic if each of its points is the lub of
the finite points it dominates.
We assume the notion of continuous function over consistently complete posets to
be well-known. The following fact is not a surprise.

Propesition 2.2. The poset (£(A)%, <) is a consistently complete algebraic pose:
whose set of finite points is £(A). Moreover, the operations of sequential composition,
sum, and parallel composition are continuous over this poset.

The straightforward proof is omitted. The relevant consequence of this fact is
that we can solve systems of algebraic equations in the poset (£(A)®, <). More

accurately, this result allows us to interpret terms containing recursive definitions,
which could take the following syntactic form:

(defrec x,=p,,...,x,=p,in q).



Concurrency and atomicity 37

In order to extend the syntax with such a construct, we assume a denumerabie set
X of identifiers, disjoint from the set A of atoms. As usual the (defrec...in...)
construct binds the defined identifiers, and thus introduces notions of free and
bound occurrences of identifiers. We define for each finite subset Y of X the set
T°(Au Y) of terms whose free identifiers are those of Y—so that the set of closed
terms is T**°(A). We shall use a restricted syntax for recursive definitions, allowing
only definitions of the forr. (def x = p in x), what we denote px.p (for some authors
this is rec x.p or fix x.p, <f. [46]). The set of “finite” terms, built without recursive
definitions but with free identifiers in Y is T(A U Y). We shall restrict the formation
of sequential composition (p;q) to the case where p is closed and finite—this is to
avoid problems with termination. Then the formation rules for (recursive) terms are
as follows.

Terms
(i) 1 and every atom a € A are terms of T™°(A);

(ii) if p and q are terms of T(A) and T™°(Au Y) respectively, then (p;q) is a
term of T*°(AVL Y) ;

(iii) if p and q are terms of T*“(A U Y) and T°(A U Y’) respectively, then (p||q)
and { p+q) are terms of T*°(AU YU Y');

(iv) an identifier x € X is a term of T™°(Au {x});

(v) if x is an identifier and p is a term of T®°(AuU Y), then px.p is a term of
T(Au Y —{x}).

We obviously have T(A) = T™°(A). Since recursive definitions bind identifiers,
we shall regard as syntactically identical those terms which only differ in the names
of bound identifiers. For instance,

px.(b;(x|ly)) = px".(b;(x'||y)).

We shall use g[ p/x], to denote the term that we get by substituting p for the
identifier x in all its free occurrences in g; bound identifiers of g may have to be
renamed to avoid captures of free identifiers of p. For instance,

(mx.(b3(x[Iy))(a;x)/ y]= px".(b;(x"[|(a;x)).

In order to interpret closed terms into £(A)“—or more accurately into FL(A)”)=—
we need the notions of unfolding and immediate approximation of a term. A term
p is an unfolding of another term g if we get p from q by substituting for some
identifiers their (recursive) definition. Then the sets %(p) of unfoldings of terms p
of T®°(A) are the least ones satisfying the following clauses:
(i) pe U(p) for any term p;
(ii) if p'e U(p) and ¢’ U(q), then (p';q") e U(p; 1), (P'llg) e U(plq) and
(p'+q)eU(p+q);
(iii) if g€ U(p[ux.p/x]), then g€ U(pnx.p).



38 G. Boudol, I. Castellani

For instance, let
r=ux.(a;(b]|x)).
Then

0=

= (a;(b||r.)).
The unfolding process is confluent, that is,
p'€ U(p) and p"e U(p) = U(p") N U(p") #0.

This is a standard fact. Note that if r is a closed term, then all its unfoldings are
also closed. The immediate approximation w( p) of a closed term p is what we get
by simply forgetting the recursive definitions, that is, by substituting 1 for all the
subterms px.p: '
(i) w(D)=1;
(ii) w(a)=a for all ac A;
(iii) w(p;q)=(w(p);w(q)), w(plig)=(w(p)l(q)) and
w(p+q)=(w(p)+w(q));
(iv) w(pxp)=1
For instance, the set w(%(r)) assocnated with the previous r is the sequence w(r,)

w(r)=1,  @(rps)=(a;(bllw(r,))).

Note that w(p) is always a “finite” term, belonging to T(A). Another standard fact
is that unfolding increases the immediate approximation, that is,

VpeT™(A) p'eU(p) = #(w(p))cf(w(p)).

Continuing the above example we get for the following sequence $(w(r,)):

U(r)={r,|0<n} where{

o /
ag / \ b’ ano c
1c c bio a0 S / =
blo billo Q1110
bino

bmno

Here the names of the events are shown as indices of the labels to make evident
the ordering relation.
A consequence of the previous facts is that, for any closed term p, the set

{#(=(p))|p’e U(p)}

of (finite) approximants of p is pairwise consistent (and, in fa:t, directed), and thus
has a lub in £(A)™. We are then able to define the interpretation of terms of T°(A):

£2(p) = U{SFw(p))|p'c Up)



Concurrency and atomicity 39

As usual, this interpretation could be defined as the limit of an increasing sequence
if we let:
i) «()=T1;

(ii) x(a)=a for all ae A;

(iii) «(p; q)=(x(p);x(q)), k(pllq)=(x(p)lx(q)) and k(p+ q)=(x(p)+«(q));

(iv) «(ux.p)=plpx.p/x].
Then $°(p) =] {#(w(x"(p)))| n =0}. It should be clear that this definition extends
that of %, that is, $°(p) = #(p) for pe T(A). Just as for “finite” terms, we define

$(P)=[£2(p)] and T=(A)= S(T™(A))< LA)*/: 2.

Then the interpreiation equality is

P=sq & 5(p)=5(q) & F°(p)= F(q).

Pursuing the above example, one can see that $(px.(a;(b|x))) is
a
N\
N
b/ |

where there is no conflict.

3. Characterization

One may remark that in £(A)*/= the three operations previously defined are
associated and have 1 as neutral element; moreover, the sum and parallel composition
are commutative. This suggests the following definition.

Definition 3.1. A trioid is an algebra (T, ;, ||, +, 1) satisfying the axioms
(i) (T,;,1) is a monoid:
A0: (p;(g;n))=((p;q);r),
Uo: (p;1)=p=(1;p);

(ii) (T, ||, 1) is a commutative monoid:
A1: (pl(qllm) =((plg)lr),

U1: (pll1)=p=(1|p),
C1: (pll9)=(qlp);

(iii) (T, +, 1) is a commutative monoid:
A2: (p+(g+n)=((p+q)+r),
U2: (p+1)=p=(1+p),

C2: (p+q)=(q+p).



40 G. Boudol, 1. Castellani

Let O be the equatlonal theory whose axioms are A0 to A2, U0 to U2, C1 and
ad Tnt — a tha sannarmianca an TF °( A\ aenerated hv these eaunations, Then
\/‘-, ana ict - UG LIV VUL uvIIVY Ul b BVIVIGIVE Uy VOV VyudiiUiad. aiawva

we have an obvious soundness property:

P=eq =>P=s9
We now wish to check whether or not a converse completeness property holds for
“finite” terms, that is, terms of T(A). First we shall see that not all finite labelled

event structures are interpretations of terms. We have already mentioned the fact
that the structure N

(without conflict) is known to be typical of those that cannot be expressed by means
of sequential and parallel composition, cf. [24, 27]. To obtain completeness, we thus
want to find a class of A-LES’s which do not contain N. In order to define this
class and state our characterization result we need to introduce some notations. Let
R< E X E be a relation on a set E.

(i) R°=RuUR™ is the symmetric closure of R.

(ii)) R®*=R% U R is the reflexive and symmetric closure of R, which we shall

call the R-comparability relation.

(iii) ¥(R)=(E x E)— R* is the symmetric, irreflexive R-incomparability relaion.

(iv) ~r=(R")* is the equivalence generated by R whose classes are the con-

nected components with respect to the R-comparability relaticn.

For instance, the comparability relations determined by # and - are simply their
reflexive closures, whereas the <-comparability is <u = which we denote by ©,
and (<) =#u~. In order to avoid many useless repetitions we shall name each
of the relations <, #, — a connective of a given structure S.

The first property we shall require is N-freeness; an A-LES S is N-free if it satisfies

for U a connective of S.
if eg Ue, and e, $(U) e,
if e; Ue; and e, 3(U) e,
then ey Ue;=>e, Ue,.

N-freeness

This property, which is obviously preserved by isomorphism, may be drawn

| LN
|

€

T
U
|
es

This typically precludes a structure such as a#b#c#d (where a~ ¢, b~ d, and
a — d) which is derived (see [49]) from the Petri net shown in Fig. 3.



Concurrency and atomicity 41

Fig. 3.

N-freeness is also related to Petri’s notion of K-density, or more accurately
N-density [52], see [28, 55].

N-freeness is not enough by itself to characterize the class of A-LES’s denoted
by terms. Here we need another requirement which we may czll the triangle-freeness
property: a structure S satisfies this property (referred to as the V-freeness property)
if it does not contain a configuration

triangle e O e'#e"—e.

This precludes the typical situation of “asymmetric confusion™ (cf. [23, 49]), that
we have already seen above.

In fact the “behavioural” properties of N-freeness and V-freeness may be com-
bined in a single one—which is somehow more natural when looking for a property
preserved by the operations.

Lemma 3.2. An A-labelied event structure S satisfies the N-freeness and V-freeness
properties if and only if it satisfies the property

for U and V among <, #, — with U#V

ifeo Ue, and ey $(U) e,

ife; Ue; and e, ¥(U) e;,

then e, Ve; = {e, e} x{e,, e} V.

Proof. It is easy to see that if S satisfies the X-property, then it is V-free since a
triangle e O e'#e" — e does not satisfy the X-property (if we let e;=e, e;=¢’, or
e=¢e',e =e and e;=e"=¢;). -

Let us prove that the X-property also implies N-freeness. let us assume that S
satisfies X and contains a configuration

eo—f(U)—-e;

A

U

N

(U)—e;

€y

Regarding the relationship between e, and e,, the a priori possible cases are the
following:



42 G. Boudol, 1. Castellani

(1) if e, Ve,, with Ve{s, #, <}, either V=U and we are done, or V# U. Then
we apply the X-property to the following configuration:

e, U)—e,

U V\U
es—31(U )—ell

We get e; Ve, together with the hypothesis e, U e;. Since U and V are two distinct
connectives, at least one of them is symmetric; therefore, one has either e; Ue,,
which contradicts e; Ve,, or ¢, Ve;, which contradicts e, U es.

(2) The only remaining case is e, <e,; we cannot have U ==, otherwise we
would have e,< e, < e,, contradicting e, $(U) e,. Then U™ = U and we can apply
the X-property to the configuration

e,—3i(U)—ae,

~J

o-—-i( U)—zte,

We get ¢, < e, but this contradicts e, U e; since U is a connective distinct from <.
Therefore it must be the case that e, Ue,, and we have shown that the X-property
implies N-freeness.

In order to prove that zan N-free and V-free LES satisfies the X-property, we shalil
use the following claim.

Claim. If a structure S is N-free, then it satisfies

Jor-U a connective of S

ifeo U e, and ex £(U) e,

ife, U% e; and e, £(U) es,

thene, U° e; = {e,, €;} X {e,, es}< U or {e,, e;} x{e,, es}c U™\

Nl

Proof. Let us assume the hypothesis of N’ with U =< (the claim is trivial when
U =# or U= since these connectives are symmetric). It cannot be the case that

< e;3< e, since ¢, £(U) e,; similarly, e, < e, < ¢, is precluded. Since e, #(U) e;, we
cannot have e; < €, < ¢, nor e, < ¢, < e;. Therefore, the only possible cases are e, < ¢, .
and e, < e; and ¢, < ¢;; that is, the hypothesis of N, whence e,<e,, or ¢,=e¢,, and
e>=e; and ¢,> ¢; where, rotating the configuration, we conclude e,= e, by the
N-property. 0



Concurrency and atomicity 43

Proof of Lemma 3.2 (continued). Let us assume that S is V-free, satisfies N, and
contains the following configuration:

eo——31(U)—e,
T’ V\\U

e $(U) e

with U, Ve{=<,#,-} and U#V (note that e,# e, and e, # e;). Then we have
e, W7 e, for some connective W; it cannot be the case that W = U since e, 1(U) e,.
If e, = e;, then W= V; otherwise since S is V-free, we must have W” = V°. In any
case ¢, V7 e,, and similarly, e, V? e;. We then have the configuration

eo——¥(V)—e,

e,——3(V)—e;

Since the hypothesis is e, V2;, we conclude by the N'-property that {e,, ;} X
{ez,este V. O

We can finally defr: the .utended class of structures as follows.

Definition 3.3. The set Z(A)™ (respectively Z(A)) is the set of A-LES’s (respectively
finite A-LES’s) satisfying the X-property.

The set of structures Z(A)® (or, more accurately, Z(A)*/<) is a generalization
of Grabowski-Gischer’s class of N-free pomsets [27,24]. Clearly, the X-property is
hereditary; this means that if S'c S & S€ Z(A)”, then S'e Z(A)*. We can now
state the announced result, which generalizes Grabowski--Gischer’s one.

Theorem 3.4 (Characterization). The structure (Z(A)/=,;, ||, +, 1) is the free trioid
generated by A. In particular,

(i) SeZ(A) © IpeT(A) #(p)=S; therefore, T(A)=Z(A)/=;

(i) p=59 © P=64

The complete proot i< rather long, involving some straightforward parts, which
are omitted. One has to prove that Z(A)/= is a trioic isomorphic to T(A)/=e. We
have already seen that the algebra #(A)/== is a model of the theory @. Thus the
first thing to see is that the operations preserve the X-property; an immediate



44 G. Boudol, I. Castellani

consequence will be that %(A) is a trioid which contains the denotation #(p) of

every (“finite™) term p € T(A), and then J(A)c Z(A)/+.

Lemma 3.5. If o, 5:€ Z(A)”, then 55;S,, So+S; and S,||S, are in (A)™.
Proof. Let S, =(E, <, #,,A), let F,={iuluc E}fori=0, 1, and let {e,, ¢,, e,, e}

be events of S, (W) S, which satisfy the hypothssis of the X-property, that is:

a—-HU)—e,
N l

{ |
U\V U

:(u;x

er— €

with U, Ve {=, #, ~}and U # V. The proof that we then have the desired conclusion
{eo, &1} x{er, €5 V

proceeds by case inspection on the respective position of the events ¢,, e,, e, es.

(1) If they are all in the same F;, then we are done.

(2) It is impossible that an F; contzins exactly one of these events: for instance,
assume that e,€ Fyand {e,, e,, e;} = F;; by definition of S, (W) S,, we have Fyx F,c
W, therefore e, We,, whence W = U, and e, W e, but this contradicts the hypothesis
e, £(U) e,. All the other cases are similar.

(3) The same argument shows that it is impossible that one of F,, F, contains
{e,, e;} while the other contains {e,, e;}. On the other hand, if, for instance,
{es, &3} F, and {e,, e;}< F,, then we would have ¢, We, and e, We;, hence
U= W= Y, but this contradicts U # V. The only remaining case is {e,, ,} < F, and
{e,, e} = F, (or possibly the converse if V is # or ), whence W=V and {e,, e;} X
{ez,es}c V. O

Next cne has to show that each element of £(A)/= is the interpretation of a
term of T(A), uniquely up to =g. As usual, this completeness property rests upon
the existence of normal forms for terms. These can be described as follows: let
N(A)={1}u W(A) where W(A) is the least set of terms built according to the
following rules:

(i) every atom a€ A is in W(A) and has no head operator,

(ii) if pe W(A) does not have ; (respectively, ||, +) as head operator and if
g€ W(A), thea (p; q) (respectlvely (pllg), (p+q)) is in W(A) and has ;
(respectively ||, +) as head operator.

One gets normal forms by cancelling the unit and using associativity to shift

arguments to the right. Therefore, a typical normal form (if it is not 1 nor an atom)
may be drawn as



Concurrency and atomicity 45

op

N

y op

P2 h op
/N
Dn Pn+1t

where the head operator op is either ; or || or +, and p,,p,,..., Pa, Pas: do not
have op as head operator.

Proposition 3.6. Let I be the theory whose axioms are A0 to A2 and U0 to U2, and
Y be the theory consisting of A0 to A2, C1 and C2 (cf. Appendix B). Then
(i) for each term p € T{A) there exists a normal form te N'(A) such that p =,t;
(ii) for two normal forms t, ' € N(A), t =g 'St =, 1"

This is a standard resu't. The proof is omitted.

The crux of the characterization theorem’s proof is the following property: for
every finite nonempty nonatomic labelled event structure satisfying the X-property,
the set of events is connected for exactly one of the connectives <, —, # (in fact,
this is a purely graph-theoretical result); this relation gives the head cperator of the
term which denotes the structure. The existence of such a connective comes from
the V-freeness property, whereas uniqueness comes from N-freeness (or, more
accurately, from N’). It is clear that V

a~>b

\

c

is not connected for any of the connectives, and one cannot find a head operator
for a term which would denote it. On the other hand, the structure N

--- b
BN
(where the dotted lines stand either for # or for —) is connected for two connectives;
here again one cannot choose a head operator for a term which would denote it.

1~

o

Lemma 3.7. Let S=(E, <, #,\) be an A-LES in Z(A).
(i) there exists a connective U of S for which E is connected, that is, #(E/~y)=1;
(ii) moreover, if #(E)> 1, then E is not connected for the U-incomparability relation
$(U), and thus is not connected for any of the other connectives.



46 G. Boudol, I. Castellani

Proof. We first show that there is one such relation U, for each S Z(A). Suppose
not, and let C be a maximal (w.r.t. inclusion) subset of E connected for some
connective. From our assumption, C # E, so let e€ E — C. Then e is connected in
the same way (O, # or ) with all the elements of C, otherwise = would contain
a triangle. But then {e} U C is, for some connective, a connected subset of E which
strictly contaias C.

Now, to prove the second point, let us assume that E is connected for both U
and $(U) for U among < (since E=<-connected<> <-connected), # and . Let F
be a minimal (w.r.t. inclusion) subset of E which is both U- and #(U)-connected
and such that #(F)>1. Then #(F)>2 since one cannot build a two-element
structure whkich is connected for two exclusive relations. So let e;€ F; since
F—{e;} is not connected for both U and i(U), let us assume, for instance,
that F —{e;} is not connected for U, that is,

(F-{e;})/~v={F\,...,F,} withm>1.
Then
Ji(lsism)3ecF, e;i(U)e;
otherwise F could not be i(U)-connected. Similarly,
Vi(lsism)3deecF, e;Ue

So let G be an F; such that dec F, e; $#(U) e and H be U, ; F;. Let e€ G and
e'e G be such that e; $(U) e and e; Ue'. Since G is U-connected, there exists a
sequence of events of G which U-connects e and e'; an easy induction on the length
of such a sequence shows that one has

Jde;e G3e,€e G e3;Ueyand ¢, Ue, and e, $(U) e;.

If we choose an e, € H such that e; Ue,, we may figure the situation as shown in
Fig. 4. By definition of G and H, e, £(U) e, and e, $(U) e, but this contradicts the
N’-property, which is a consequence of the X-pro==r.,.

The proof is the same when F —{e;} is not $(U)-connected. O

Fig. 4

Proof of Theorem 3.4. We can now prove

VSeZ(A)Ite N (A) F()=S



Concurrency and atomicity 47

by induction of the size i-(E) of S

head onerator of the term 7 ¢

cN
BV VwiaUa VUi viiv Lwidsi - vv-- S -; s

(in fact, the induction hypothesis states that the
on

to the connective, if it is unigue. for which
SV LiAW WVILIAWWRLVWe AL A% AU Bl "u\r, AVL VVADIWiL

E is connected).
If #(F) <2, then this is trivial: ¢ is either 1 or an atom (given by the labellin

1l
function). Otherwise, by the previous lemma, there exists a connective U for which
E is connected and not i(U)-connacted. Let

{Cn, ceny Cm}= E/~:t(U)~

Then 1 <m< #(E), and for all i (1<i<wm) S[C;e Z(A) since the X-property is
hereditary. Then, from the previous lemma, each C; is connected for some connective
V distinct from U. By induction hypothesis, there are terms ¢,,..., ¢, of W(A)
such that

Vil<ism) $(t)=S[C.

From the definition of the C,’s it cannot be the case that e £(U) e’ for some e€ C;
and e'e C; (i#j). Suppose now that U is < (the other casss where U is # or —
are similar and even simpler). Let us see that if e<e’ for some ec C; and e'c C;,
then, for all e"e ;, e<e” whence C; x C; =<:assume that de"e C; e"<e; there
exists a sequence of events of C; which V-connects e’ and e”, where V is either #
or —. An easy induction on the length of such a sequence shows thai we have the
following consequence:

dey,e,€C; ey<e<e, and e, Ve,.

But ¢y<e, and ¢, Ve, is impossible. Therefore, we may assume that {C,,..., Cp}
is enumerated in such a way that C; x C;,, < <. Then

S2(Ci:(...;Cn)...)
=(F(1);( . 3 F (1) .. ) =F((115(. . 5 tm) .. )
To conclude the proof of the theorem, we must show
Lt'eN(A) = F()=F() St =41

The proof of this last point is omitted. [1

The characterization theorem gives also some indications on the nature of (infinite)
A-LES’s denoted by terms of T™°(A). It is easily seen that the poset (Z(A)”, <) is
a coherent algebraic poset whose set of finite points is (Z(A), ). Moreover, the
operations of sequeatial composition, sum, and parallel composition (which are
continuous) preserve these posets. Then it should be clear that the denotation #*( p)
of any term pe T™°(A) is in Z(A)™, that is,

T (A) s Z(A)*/=.
Recall that 7°(A) = $(T™°(A)).



48 G. Boudol, I. Castellani
PART II: THE EXECUTION MODEL

4. Operational semantics

4.1. Transitions on labelled event structures

The interpretation equality =, is too discriminating; from a behavioural point
of view, we would like to identify for instance the terms (a +b);c and a;c+b;c as
well as p+ p and p. Quite clearly, our system model for sequentiality, nondeterminism
and concurrency—that is A-LES’s—does not cope with the dynamic aspect of these
programming concepts; we now want to devise an execution model for these con-
structs, that is, a notion of computation. Winskel has introduced (see [69]) such a
notion for event structures, which he calls configurations. Configurations are “deter-
minate prefixes” of ES’s, that is, downwards closed and conflict-free subsets of
events; this formalizes the ideas that an event cannot occur during a computation
unless its causes have occurred, and that choices (i.e., conflicts) are resolved while
a program computes. The execution model we look for is based upon a notion of
computation which would be Winskel’s notion of finite configuration if we had
assumed the axiom of conflict heredity. Till now concurrency and conflict played
similar roles; the notion of computation will introduce an asymmetry, reflecting
part of the “dynamic” nature of the sum. Our computations bear some analogy
with processes of Petri nets [23,26] or, more accurately, with Reisig’s abstract
processes [59].

Definition 4.1. Given an A-labelled event structure S = (E, <, #, A\) a computation
of S is a structure S [ F where
(i) F is a finite subset of E,
(ii) S[F is conflict-free: ec F & e'c F=>—(e#e€'),
(ili) S[F is closed under nonconflicting causes:

ecF&c'<e&e'e¢F = Je"e Fe'#e"<e.

We only allow finite computations, thus we cannot deal with fairness; an idea
could be that fair computations are the—possibly infinite, but satisfying the axiom
of finite causes—maximal computations, w.r.t. the ordering <.

Let us see some examples of computations: making an identification between
terms and the structures they denote, (a;c) and (b;c) are computaiions of ((¢ + b);c¢).
This example shows why we cannot assume that a computation is downwards closed
(that is, ec F & e'<e=>e'e F) since otherwise no computation of (a+ b);c could
contain c. In the structure ((a+ b);c), a and b are causes of c, but ¢ cannot occur
uniess a choice has been made between a and b. The computations of the structure
denoted by ux.(al|x) are a, (ala),...,(a] - |la), and so on.

Since computations are deterministic, they are just A-iabelled posets. In this paper
we restrict our attention to A-LES’s of 2(A)™. The computations of such structures



Concurrency and atomicity 49

satisfy the X-property. Since the V-freeness property is vacuously true for conflict-free
structures, computations are in fact, by Lemma 3.2, N-free A-labelled posets. Let
us denote by 2(A) the set of these computations; we shall give the name of action
to an isomorphism class of computations, element of Z(A) = #(A)/=2. Then 2(A)
is exactly the set of what Pratt and Gischer [24] call finite N-free pomsets. From a
theorem of Grabowski and Gischer, 2(A) is the free “dioid” on A (Grabowski
calls it “double monoid”’), which is the same as a trioid but without sum. All that
means that actions are denoted by terms built without sum, up to the equational
theory A whose axioms are A0, Al, U0, Ul and C1. We denote by D(A) the set of
these deterministic terms, which we shall abusively call actions (cf. Appendices A
and B for the syntax and the equational theory). As a matter of fact, we extend
Milner’s idea [46, 48] that actions should be elements of a commutative monoid,
or more generally elements of a synchronization algebra, as proposed by Winskel
[69, 70].

From a computation P=S[F of S we build a structure called the residual of S
by P which is

(S/P) = S[(E-(Fu#(F)))

where
#(F)={e|3e’'c Fe'#e}.

The structure (S/ P) is “what remains of S after performing P while resolving the
conflicts”. This definition only makes sense for structures S which satisfy the
triangle-freeness property (or the axiom of conflict heredity); for instance, b is a
computation of the event structure V'

a#b

\

c

(where c~b) and its residual is c, but this is clearly absurd. Anyway, the definition
works well for the event structures we are interested in, that is, structures satisfying
the X-property. Clearly, S € Z(A)* implies (S/P)e Z(A)™.

We are now ready to introduce the main definition which brings a structure of
transition system on A-LES’s. Let us recall the terminology: a (labelled) transition
system 2 =(Q, C, 0) is a structure where

(i) Q is the set of states,
(ii) C is the set of computations, ,
(iii) < Q@x C x Q is the transition relation. As notation, p v p' or p->4p' will
denote (p, y,p') € 6.

Definition 4.2. The transition relation 7 between A-labelled event structures is
given by

Sjr S’ g P is a computation of S and S'=(S/P).

n



50 G. Boudgl, I. Castellani

Here one can see some analogy with the construction h, before h, gives h of
Degano and Montanari [17] if one rezds it as h =P p,. Similar definitions havealso
been introduced by Grabowski [27] aud Reisig [59] who define transitions
labelled by pomsets on the state space (markings) of a Petri net.

For instance, still using terms in place of structures, we have

(a:0) > b, (ab)>b,  (allb)—s1
n n n

(a;blla)

(a;(b;c+d)]la) ——> ¢

One always has S >, S, and we shall interpret the action 1 as identity. On the other
hand, as a residual of a computation, 1 means termination, and we shall read S —>f; 1
as ““S terminates in performing the computation P”. Note that an infinite structure
may very well terminate in performing a (finite) computation; for instance, we have

(the term px.(a;(x+b)) has an interpretation similar to that of ux.(a;(b]|x))—cf.
Section 2.3—with conflict in place of concurrency).

One may remark that from the definition, a computation of an A-LES S cannot
introduce causal dependencies whick would not be already present in S. Fer instance,
(a;b) is not a computation of (a||b). On the other hand, we have the following lemma.

Lemma 4.3. If P;Q is a computation of S, then P' = P;1 is a computation of S, Q' =
1;Q is a computation of (S/P’) and (S/(P;Q))=((S/P')/Q’).

Proof. If P;Q is a computation of S, then there exists a subset F of the set E of
evenis of S such that P;Q=(S[F). Moreover, F = F,J F, with P'=S[{0}F, and
Q'=S[{1}F,. We let F,={0}F, and F;={1}F,. It is clear that P’ is a computation
of S, and that Q' < (S/ P'). Let us show that (S/ P’)[F} is closed under nonconflicting
causes: if ec F, e'e E —(Fou #(F)u F}),and e'< e, then 3e"e Fyu F} e'#e"<e
since P;Q is a computation of S; but it cannot be the case that e” € F} since otherwise
we would have e'e #(Fy); hence e'e Fi. Then Q' is a computation of (S/P’), and
since #(Fou F}) = #(Fg)w #{F}) we have (3/(P;Q))=((S/P)/Q’). O

We could then say that in our behavioural semantics causality implies temporal
ordering for we have, by the previous lemma,

P;Q P’ OI
S§—— 8§ = 38"IP=PIQP=QS— S"—> &S
n n n

But the converse is false: although (a|/b) -2 b »2 1, we do not have (a|b) ->2°1.
Thus our semantics makes a strong distinction between sequence of transitions and



Concurrency and atomicity 51

“transitions of a sequence”—compare with the CCS “action” a.p. This distinction
does not hold in the model of Grabowski where a sequence of zomputations of a
marked net is still a computation of this net. Another peint is that our execution
model is free from any assumption of clobal time: even if we think about a transition
step as occurring in a time unit, this is not related to any hypothesis about the
duration of the atoms. For instance, (a;b|c) is a possible computation; in some
sense we could say, as in the programming language EstrrEL | 4], that “the sequential
composition ; takes no time”.

One may also note that the behavioural interpretation of parallel composition is
not interleaving, but generalizes it. Our semantics of parallel composition is also a
generalization of the MEUE “‘asynchronous™ operator [2, 5] introduced by Milner
in [45] (see also [48]). This asynchronous concurrency is related to the notion of
“firing step™ of Petri nets [68, 59], where one fires a multiset of concurrent transi-
tions—this is shown in [6].

4.2. Transitions on terms

Since we are interested in labelled event structures denoted by terms of T°°(A),
an obvious question is: is there any syntactic notion of transition which reflects the
semantic one? In fact the (positive) answer is rather simple. We shall see that the
intended operational semantics for terms is given by the transition relation p, defined
as the least subset of T®°(A) x D(A) x T™°(A) satisfying the following clauses or
rules:

EOQ: identity

P>,

El: atom

a
acAra—1,

E2.1: sequential composition 1

p—=p'+(p;q)—(p9),
E2.2: sequential composition 2

(u;v)

p—=p =6elq—q'+(p;q9) — 4,
E3: parallel composition

u ] v ’ (ullv) " !
p—p.9—q + (pllg) — (P'llq),

E4.1: sum 1

pop&u#elr (p+q)—p),



52 G. Boudol, I. Castellani
E4.2: sum 2

g—>q &v#el+ (p+g)— ¢,
E5: fixpoint

plpx.p/x]— p'+ pxp—p'.

(E stands for “‘execution”). Note that r =, 1 can be proved or disproved using only
the axioms U0 to U2. Then this is nearly syntactical equality—which does not mean
testing deadlock or termination of an algorithm! Moreover, the rules only use the
termination test =g 1 for finite closed terms, that is, r € T(A) since the formation
of (p;q) requires p € T(A). One may observe that no rule can introduce a sum or a
recussive definition in the actions, while sequential and paraliel composition are
introduced by E2.2 and E3; then p-transitions are labelled by terms denoting finite
labelled posets (a similar idea was used for CCS by Degano, De Nicola and
Montanari in [19]).

Since p is the least relation satisfying the given clauses, a transition p > p’ cannot
hold unless it has a proof of construction according to these rules. For instance,
we have

El:

a
a—1
P

E41:—— El:

(a+b)-:>n c—tﬂ]
2 P

E2.2: —
((a+b);c) —— 1
p

It should be clear from the rules that parallel composition is an asynchronous
operator, as in MEUE since we always have, if p>, p’and g >, q":

(pliq)
(ull) (1v)
(7'llg) (u]v) (pllg"
(Ullv) (ull)
(p'lg"

Now we state the adequacy result establishing the correspondence between
transitions on terms and transitions on event structures.



Concurrency and atomicity 53
Theorem 4.4. (Adequacy). For all re T*%(A)
M ris > IWIH)Z W () () W) & F7(s) = ($°()/ W),
[ N> = Ivgw)= W As(s)= S rs

The first point states the validity of the rules EO to ES for the semantical notion
of transition, the second one states their completeness.

Proof. Let us show the first point: the argument we use is an induction on the proof
of the transition r - s. The point is trivial if this transition is an instance of EO or
El. If the last rule of its proof is E2.1, then r=(p;q), s=(p';q). By induction
hypothesis, there exists a W such that #(w) = W and $%(p) ->,‘,V P’ where P’ is
such that #°(p’)= P'. Then it is clear that W= W;l is a computation of
F2(p);#7(q), and that

(F2(p):F7(q))/ W'=(F7(p)/ W) £7(q) = £7(p'):. 57(q)

(we leave it to the reader to check this).

Assume now that r -7 s is proved by means of E2.2. Then r=(p;q), s=¢,
w = (u;v), and there exist U = $(u), V= $(v),and Q' = $7(q') suchthat P> 1
and Q- Q' (with P=_$(p) and Q = $7(q)). Let us show that U; V is a computa-
tion of R = P;Q: the only point to verify is that U;V is closed under nonconflicting
causes. So let e and e’ be events of U;V and R respectively such that e'<e and e’
is not an event of U;V. Let us assume that e is an event of V'=1;V and that ¢’ is
an event of P;1 (the other possible cases being trivial); then, since P/ U =1, there
must exist an event e” of U’ = U;1 such that e’#e", and obviously e"=<e, so we are
done. Then, by Lemma 4.3,

(R/(U; V) =((R/ U/ V)={(P;Q)/U)/ V'=((P/U);Q)/V'=0/V=21Q.

We omit the proof of the validity of the rules E3, E4.1 and E4.2. One should note
that in the last two cases the semantical computation W is not equal to #(w)—but
isomorphic to it—, as in the case of £2.1, and that the residual of this computation
is not equal to #*(s)—but isomorphic to it—, as in the case of E2.2. When r > s
is proved by means of ES5, one directly uses the induction hypothesis since
FZ(plux.p]) = F<(nx.p) by definition. This ends the proof of the first point of the
theorem.

In order to establish the completeness part, one must observe that a computation
W of R = $(r) is a computation of #(w(x"(r))) for some n—because any computa-
tion is finite. We thus associate with a transition $(r) > S the pair (k, |r|) of
integers, where

0 if W=1,
k= {n+1 otherwise, where n is the least integer such
that W is a computation of $(wk"(r))



54 G. Boudol, 1. Castellani

and |r| is the size of r, defined by

ren lal 1.

) |U|—l,
(u) l|a|=1 for all a€ A

TN PPN ..I.s.ln pllaM =I1pl+lal and l( p+ )l =|pl+lal:
\lul N\PsYJ| — 1P} FUI/V TP ° 1T Y I V4 Bl ¥ o BRI & 4 H)
@iv) lnx.pl=|pl.

Then the proof proceeds by induction on the pairs (k. |r|) ordered lexicographically:
when k=0, the proof is trivial (one just uses E0). Otherwise (k> 0), one uses an
induction on the structure of the term r. When r = ux.p, since F°(p[x.p]) = £7(r),
one has $°(p[ux.p]) =, S, and the pair associated with this transition is (k—1,
|plx.p]l) (since W#1). One therefore applies directly the induction hypothesis.
We omit the straightforward proof of the other cases (note that when r=(p;q) and
W = U,V for some computations U and V of #7(p) and $%(q), then p->,p'

where $%(p') =1, then p' = 1 since p € T(A), so that we can use E2.2). [
We could have split rule E3 of parallel composition into the following three:
E3.l: p—p'+ (pla) = (Pll9),

u v (uflv)
E3.2: p—p,q9—4¢ +(plg)—— (P'l9),

E3.3: g—q'+ (plq)— (plig).

It is easily shown that the resulting transition system is semantically equivalent to
p. The rules E3.1 and E3.3 are the rules of interleaving, while E3.2 is the rule of
Milner’s synchronous product. Using these rules in place of E3 we can make a
classification:

(1) by taking all the rules except EO, E2.2 and E3.2, we get a CCS-like transition
system [44, 46]: since we have precluded the rules introducing the empty computa-
tion, sequential composition and parallel composition of computations, the actions
are simply atoms;

(2) if we use all the rules except E0 and E2.2, we get a MEUE-like transition
system [2, 5], where the actions are nonempty multisets of atoms—what one builds
from atoms using the associative and commutative parallel composition;

(3) if we use all the rules except EO, E2.2, E3.1 and E3.3, we get an SCCS-like
transition system [46], with synchronous parallel composition.

It should be clear that these transition relations correspond to semantical notions
of transition, that is, transitions on event structures. In the first case, a computation
is S[{e} where e is a minimal event of S; in the second one, a computation is S[F
where F is a nonempty finite set of concurrent minimal events, while in the last
one, F must be a maximal such set. We could also consider the transition we get
by precluding E3.2 (together with EO or not) but allowing sequential composition
in computations (that is, E2.2); although this corresponds to a notion of computation

of event structures (S[F with F totally ordered), this does not seem to fit in with
any known semantics.



Concurrency and atomicity 55

5. Semantics

5.1. Equipollence

Relative to any transition system one may define various kinds of semantics and
equivalences, among which the better known are (see [56] for a survey, and [8, 20]
for a comparison):

(1) trace semantics such as used by Hoare [32];

(2) failure semantics of [9] (other equivalent definitions are possible);

(3) testing equivalence of Hennessy and De Nicola [31];

(4) logical equivalences, induced for instance by trace logics (cf. [30, 8]);

(5) Park and Milner’s notion of bisimulation [51, 46].

For example, Taubner and Vogler [64] have studied the failure semantics of step
transition systems; De Nicola et al. [1] have adapted testing equivalence to our
notion of transition on LES’s.

Here we adopt the notion of bisimulation, with a slight variation however. A
bisimulation is a relation over states of a transition system 2 = (Q, C, @) such that
two related states have similar behaviours. But we also need a relation on actions:
some actions ought to be regarded as the same. For instance the reader may have
remarked that strictly speaking, (allb) > b is not a valid transition—neither for n
nor for p! We might have written it (a|b) - (1]|b). We have seen similar
technicalities in the adequacy theorem. Therefore, we would like to consider transi-
tions labelled by actions, that is, labelled by isomorphism classes of computations—
or equivalently by elements of D(A)/=,. We shall use the following terminology
(see [8,5]): let R= Q% Q be a relation over states and H< C x C be a relation
over computations. The pair (R, H) is

(i) invariant with respect to 0 if and only if it satisfies

PRgqand p-}p' => 3y yHy 3¢'p'Rq' and 9 q;

(ii) a bisimulation (w.r.t. 8) if it is an invariant pair of symmetric relations;
(iii) an equisimulation if it is an invariant pair of equivalence relations.
The invariance property is usually drawn

P
y.l! H"l -7'
) :
p’...R..- q'

The following fact is standard.

Lemma 5.1. Given a transition system X2 =(Q, C, 0) and G an equivalence relation



56 G. Boudol, I. Castellani

over C, let us define

p=Sq @ 3(R, H) bisimulation such thatpRq & H < G.

Then (<, G) is an equisimulation and it is the coarsest among the equisimulations
(R, H) such that H < G.

Proof. The only point to check is that the composition (R > R’, H « H') of invariant
pairs is itself invariant—just draw it. O

We shall call this relation <§ the equipollence with respect to 6 and G.

Let us return to the two systems we introduced in the previous section, (T™°(A),
D(A), p) and (#(A)~, P(A), ). As we said, we are in fact interested in transitions
labelled by actions. Therefore, the computations of these systems will be considered
up to the equivalence relations =, (or equivalently =;) and = respectively. The
equipollence =<4 is what we regard as defining the semantic equality of terms. Thus
we just use <, or < to denote it. For instance, the three terms (a||b), (a;b)+(b;a)
and (a;b)+(a]|b)+(b;a) are pairwise distinct with respect to < since the first
cannot perform the action (a;b) whereas the second cannot perform (a||b). Another
example is

(a;blle)X(allc);b+a;(bl|c).

Let us return for a while to the classification of transition systems we made in the
previous section. Using the subscripts CCS, SCCS and MEUE just to suggest the
analogy with the corresponding calculi, we shall denote:
(1) Xccs the equipollence relative to the least transition relation satisfying E1,
E2.1, E3.1, E3.3 and E4.1 to ES (with a trivial equality for computations);
(2) =<meue the equipollence relative to the least transition relation satisfying E1,
E2.1, E3.1, E3.2, E3.3 and E4.1 to ES (with =, as the equality for computa-
tions);
(3) Xseq the equipollence relative to the least transition relation satisfying E1,
E2.1, E2.2, E3.1, E3.3 and E4.1 to ES (idem);
(4) Xsccs the equipollence relative to the lcast transition relation satisfying E1,
E2.1, E3.2 and E4.1 to ES (idem).
Then we have, for all p, g in T™°(A),

P=q = pXmeue 9 = p=ccs 9,
P=q = p=segqq = P=ccs 4

The converse implications are false, and <yg)ye and ggq are incomparable:
(1) (alb) <ccs a;b+ b;a, but this is false in the other equipollences;
(2) (a]|b) Xmeue a;b+(a||b)+ b;a, but this is false for sk, Xsccs and X;
(3) a;b+b;a=geq a;b+(a||b)+ b;a, but this is false for Xyeye, Xsccs and .
The situation of <gccs is somewhat special: for instance,

(a+b)|lc<sccs (alle)+(bllc) and (a;b|c) <sces (allc);b,



Concurrency and atomicity 57

but these are false in the other equipollences. What is common to CCS, MeuE and
SCCS is that they all assume a global time according to which the sequencing ;
corresponds to a “clock interrupt™.

Since the equipollence X is a strong bisimulation in Milner’s sense (cf. [44, 46]),
it has some nice properties with respect to the algebraic structure in the following
proposition.

Proposition 5.2. The equipollence < is a congruence of the trioid T™°(A):
(P:9)=(p';q),
p=p' and g<q' = {(p+q)=(p'+q"),
(pllgy=(p’lq").

The (easy) proof is omitted. Now we want to relate the syntactic equipollence
X,, and the semantic one <7 that we denote simply by <,. To this end we
introduce a notion of morphism of transition systems.

Definition 5§.3. Let 2 =(Q, C, 0) and 2'=(Q’, C’, 8') be two transition systems. A
morphism from 2 to 2’ is a pair (¢, ¢) of mappings ¢ : Q- Q' and ¢: C -» C’ which
satisfies:

(i) soundness:

v W(y)
4= s = ¢(9) —— o(s);
(ii) completeness:

P(@) s = IyIrk(y) = WM & o) =s & q .

Various kinds of morphisms of transition systems may be found in the literature
(see [5] for some references). They are mainly introduced to formalize the notion
of “reduction” by means of which one can verify properties of systems. Here, as
in [5, 14]), we want morphisms to be strongly related to equisimulations. Every
equisimulation determines a quotient transition system, and the projection onto the
quotient is a morphism. For instance, since (=, =) is clearly an equisimulation of
the system (Z(A)", (A), n), we can defire a quotient transition relation 7% and we
have (still using terms in place of the structures)

[talle) —> 15
As a matter of fact we have already mr 2t a2 morphism of transition systems since the
adequacy theorem actually states thai the nair of mappings
F:T(A)»>Z(A)°/= and S:i}(A)->D(A)
is a morphism from (T(A), D(A), p) tc (2(2)°/=, D(A), 4).



58 G. Boudol, I. Castellani

We shall not develop at length the. theory of morphisms. We just mention that it
would allow us to prove for instance that {=g, =,) is an equisimulation of (T(A),
D(A), p), whence

P=64=>P>,4
In fact this last implication is true ior tercas of T'°°(A). Moreover, we could prove
that there is an exact correspondence betv-een the syntactic and sematic equipollen-
ces as follows.

Proposition 5.4
P=,q © $(p)X; $(q} & F(p)><,Hq).

The main interest we have in these facts is that they justify (a posteriori!) the use
we have made of an overloaded e:ecution arrow: we can now write p > " q, regardless
of the fact that p, u and g are terms, event structures or equivalence classes for
some equisimulation.

5.2. Axiomatization

In this section we plan tv set up a “proof theory” of =—for finite terms. It should

be clear that n-equipollence of elements «.f S*(A) is exactly =2, for

PeP(A) = (P31 G=P).
7

Thus any intended axiomatization essenticlly states properties of the sum. As a
matter of fact there is a standard way to soive the problem, by means of sumforms
as Hennessy and Milner have shown in [30] which we will briefly recall ncw. For
any set C of actions let K(C) be the set of terms built according to the following rules.

Sumfoerms. (i) 1is a term;
(ii) for every ye C if p is a term, then y ¢ p is a term;
(iii) if p and q are terms, then so is (p+q).

Let ¥ be the theory whose axioms are A2, U2, CZ (cf. Apperdix B), and
L (p+p)=p

and u the least transition relation on K(C) given by the rules
Y
E0: + yep—p,
E4.1: p=>p'+ (p+q)—p),

E4.2": q-l> q+ (p+1)-1> q'.



Concurrency and atomicity 59
Then the H.nnessy-Milner theorem roughly states the following.

Theorem 5.5. Any state of a finite acyclic transition system on C is denoted by a term
of K(C). For such terms

pxuq g P=vq

. (where <,, is the equipollence relative to equality of computations).

From this result, we just have to find a suitable translation from T(A) to K(C)
(that is, an expansion of finite terms into finite acyclic transition systems) in order
to solve our axiomatization problem. A first step is to extend our set of terms to
T'(A) which is built as T(A) but with the additional formation rule:

(iii) if yeD'(A) and peT'(A), then (y ¢ p)e T'(A),
where D’(A) is the set of terms built from A using ; and || (without 1). We also
extend the transition relation p to p’ with the supplementary rule E0’. Axiom A2
allows us to use an ambiguous notation Y, p; for a (finite) sum of terms. Then our
axiomatization is as follows: let @ be the (heterogeneous) theory whose axioms
are those of @ (cf. Appendix B) plus I and (omitting some parentheses)

Bi: ael=a foracA,

/
B2 (Zwe p.-);q =2 (v ° p)i9),

B3: (ye ﬂ);(§2 Bie q.-) =ye (Z_ B;e q,-) +2.(7:B)) * g5,

SO e .

B (SvepIEsa) =T (pIE80)+Z (lB)  (nla)
+§ Bj° (2‘: i 'Pi“‘li)-

Theorem 5.6 (Axiocmatization). Let =, be the congruence of algebra generated
by ®@. Then the pair (=4, =,) is invariant with respect to p'. Moreover, for each
peT(A) there exists an re K(D'(A)) such that p =4r. Therefore, for p, g€ T(A),

P=,q S P=0q

Proof (outline). The first statement, which implies soundness, namely p =4 q =
p><, g, can be shown by a straightforward case inspection. More precisely, one
shows that for each pair p, g of terms of T'(A) such that p = g or g = p is {(an instance
of) an axiom of @, and for each transition p - p’, there exist v =, u and ¢’ =4 p’
such that g - g; this is proved by induction on the proof of the transition p > . p'.



60 G. Boudol, . Castellani

Then one shows that the same fact holds for pairs p, g such that p =4 g, by induction

Ot AC ot AF — wanall that — _ ic tha lanct ralatian an T/(
01 1T0€ GCHNItioIl U1 = g —i1viall uiat @ IS Ul 1CaSt iviauVll Uil ¥ (/=

the (instance of the) axioms of @ and satisfying

) containing
’ vv..‘“..‘ll.a

((P:9) =o (P:9"),
p=op' and g=0q' = {(p+q) =0 (P't+q),
[(pll9) =« (P'll9")-

For the second point, we first extend the notion of size (cf. Subsection 4.2) to
terms of T'(A) by |y  p| =!y|+|p|. Then one can prove by induction on the size | p|
of pe T'(A) that such a texm is convertibie by means of the axioms B into a normal
Jform, which is here either 1 or a term Y, ; © p; where each p, is again a normal form.
A consequence is completeness: p><, q=>p =4 g. Let us show this point: we know
that there exist r and s € K(D'(A)) such that p =4 r and g=4s; then p<, r and
q =<, s. Therefore, if p <. g, we have r <. s, whence r =4 s by the Hennessy-Milner
theorem, and this implies p =4 q (note that @ contains the equality theory 4 for
the actions, which is needed to apply Hennessy-Milner’s theorem). [

One could have the idea that this result expresses a reduction of concurrency to
sequential nondeterminism; however, this is not quite right since actions are posets
irreducibly involving parallelism. So the expansion theorem is not so bad. From a
semantical point of view, the technique we used is still unsatisfactory since it gives
no indication of how one could describe the equipollence classes of A-LES’s.
Nevertheless, our present purpose is achieved: we can prove semantic equalities of
terms, such as the distributivity property

(a+b);c X a;c+b;c.
A proof is
(a+b);c=(ael+bel);c (B1)
=(ael);c+(bel);c  (B2)
=a;c+b;c (B1).
We can also prove
(all(b+c))+(allb)+((a+)|E) X (al(b+c)}--((a+c)||b)

and other absorption phenomena (r is absorbed by p if p+ r=p, cf. [13, 15]). This
example can be arbitrarily complicated (see [13, 15]), so that the existence of a
finite axiomatization without extending the syntax or introducing an absorption
preorder is doubtful. Note that it can be proved that our equipollence is weaker
than the notion of distributed bisimulation of [13,15]. Hennessy has found an
example (of absorption) which proves that it is strictly weaker, namely

(allb+c)+a;(b+c)+(al|b)+(allc) < a;(b+c)+(allb)+(allc)



Concurrency and atomicity 61

but these two equipollent terms are not d-bisimilar. This example shows that in our
semantics, an agent—like a in (a||b+ c)—cannot in any way “know” that he is
concurrent with a choice. This contrasts also with the generalized pomset bisimula-
tion of Van Glabbeek and Vaandrager [25]. Further work should be undertaken to
thoroughly compare various approaches to the theory of true concurrency, and
especially [13], [19], [25], and [50].

PART III. THE OPERATION MODEL
6. Processes and operation

6.1. Operation of programs on cbjects

The aim of this section is to introduce a notion of operation for processes: we
want to set up a formalism describing how processes use and change data. We begin
with a brief account of the theory of programming languages semantics. In this
theory (see [42] for instance), the abstract meaning of a sequential program is a
Junction, from some data to other data. In order to simplify our discussion, let us
assume that data belong to a single set S of objects (for instance s € S could be the
state of a memory where data are stored). Then the interpretation of a sequential
program p is a mapping [p]:S->S.

Ignoring most of the syntax of sequential programs, we may at least suppose that
one can form the composition p;q. More precisely, let us assume that we have a
monoid of (sequential) programs: there exists an “empty” program l—meaning
termination—, and the laws A0 and UO are satisfied. Then the interpretation of a
program p;q is the functional composition of the interpretations of its components,
and the interpretation of 1 is identity:

@) [1=ids,

(i) [p:q1=I[q1°[pP]-

Mathematically speaking, this is just to say that the interpretation [.] is an operation
of the monoid of programs on the set S of objects.

Let us say a few words about the operational definition of the semantics of
sequential programs. At a very low level this is described using some kind of abstract
machine—which could be something like Landin’s SECD machine, or the SMC
machine (cf. [42, 53]). Let us climb one step in level of abstraction, and say that
the operational semantics is given by an unlabelled transition relation on systems
(=programs+data, cf. [53])

( program, object) — ( program’, object').

Denoting by -»* the reflexive and transitive closure of this relation, one has the



62 G. Boudol, I. Castellani
following operational foundation for the semantics (cf. [42, 53]):

[P1(s)=5" & (p,5)— (1, 5.

Note that [p](s)=s' holds by virtue of a terminated sequence of elementary steps
(the configuration (1, s) is a terminal one).

We now aim at defining the operation of concurrent and nondeterministic pro-
grams, trying to generalize what we just said about sequential programs. The first
point is that these programs cannot be interpreted as functions. We cannot imagine
at this moment what could be an abstract mathematical model for the operation of
such programs, so let us stick to the concrete level, that of states and arrows. Another
standard notation for f(s)=s'is f:s+—>s' or s —’s". This suggests that objects are
states of a new kind of labelled transition system, where the labels are programs
(or, more accurately, interpretations of programs). Then s+~ /"1s' means that the
program p operates on the object s, changing it into s'. This obviously copes with
nondeterminism and partial mappings since we are not compelled to assume that
for each s and p there is exactly one such s’. Regarding the properties of operation
with respect to sequential composition, we just translate (i) and (ii) above; hence
we require:

. m
i) s—>5,

- ri (a1 [p:al

(ii) s—s"— s =D s—5'.

We must also postulaie a general property according to which s+l if p
performs a terminated sequence of computations which transforms s into s'. We
have previously formalized the relation “p performs a computation” by means of
the execution transition relation p =" q. Hence we look for a property which implies

u u, fu, 1 Ju, 1 [A]
p— - ——1&s—> 5 5 = s— ¢,

An appropriate property may be formulated as follows:

u fuiql | Pl
(iii) p—qgs—— s = s—5".

We may regard the three properties (i), (ii), (ii1) above as axiomatizing the notion
of operation of processes—assuming a sequential composition construct and a

notion of execution. As a matter of fact, one could define the transition relation -
by

u ful
pPop &s— 5" (ps)>(p,s)

since then we would have, as for sequential programs,

Pl , *
s 5" & (p,s)—» (1, 5").



Concurrency and atomicity 63

This shows that the transitions of a configuration (p, s) have two complementary
parts, resulting from the execution of a computation u, by the program p, and fror
the operation of this computation on the object s.

It is a standard point of view, advecated by Milner and Hoare, that there should
be no difference between processes and objects: both are states of transition systems.
Such discrete systems may be used for instance to model idealized circuits, or
memory registers or programs. Let us quote Hoare’s book on this subject ([32, p. 65]
introducing “interaction’’): “the environment of a process may be described as a
process (...). This permits investigation of the behaviour of a complete system
composed from the process together with its environment, acting and interacting
with each other as they evolve concurrently. The complete system should also be
regarded as a process (...). In fact, it is best to forget the distinction between
processes, environments, and systems™. In other words, it would be best to forget
the distinction between p, s and (p, s)—the latter being just Hoare’s concurrent
composition (p|s). However, we shall depart from this view here: from a syntactical
point of view, objects and processes will be terms of slightly different algebras.
Moreover, as the last section of the paper will show, it is worth maintaining a
semantic asymmetry between objects and programs. This asymmetry appears in the
semantics of “systems” (p, s), made out of a process p and an object s. As we have
seen, the semantics of such a system requires an execution (of the process) and an
operation (on the object): these will be formalized by the two transition relations
- and -.

Let us see an example of object, describing the boolean. We assume that the set
A of atoms contains primitive instructions such as assignments of true or false,
respectively a, and a,, and read actions ¢, and c,. Then the boolean, initially
undefined, is represented by the transition system shown in Fig. 5. We shall denote

this transition system by B.
/ '\

g

Fig. 5.

6.2. The algébm of processes

To build processes we will add two new constructs to those of T°°(A). Since
processes may operate on objects, we need a construct that combines a process p
and an object s to yield a process behaving like the “system” (p, s). More precisely
a process is taken to apply to a named object: our first new construct, called block,
is p(l:s) where p is a precess, s an object, and ! is a name. Intuitively, p{l:s) is the
process p supplied with a local object s named I, what could be (letl:sinp) in a



64 G. Boudol, I. Castellani

usual notation. It behaves like the system (p, s), but the object s only reacts to the
part of the computations of p which is applied to L In order to specify the part of
a computation applied to a named object, we use Hoare’s naming [32, 9], which
we denote (Lp) and call qualification. For instance, (p||q)(l:s) represents a system
of two concurrent processes p and g sharing a common object s, on which they
operate by means of computations of the form Lu.

To state the syntax of processes, we need, together with the set A of atoms and
the set X of identifiers, a denumerable set A of names; we assume these three sets
to be pairwise disjoint. We first define the set C,(A) of computations over A.

Computations. (i) 1is a term of C,(A);
(ii) every atom a€ A is a term of C,(A);
(iii) if u and v are terms of C,(A), then (u;v) and (u|jv) are terms of C,(A);
(iv) if le A is a name and u is a term of C,(A), then (Lu) is a term of C,(A).

Our calculus of processes is parametrized on a given system of objects. This is a
transition system 3 =(Q, C,(A), o), where the states s€ Q are objects, and the
transition relation o < Q X C,(A) x Q represents the operation of computations on
objects. For instance, B may be a part of such a system, which describes the boolean.
We shall see in the next section how to introduce structured objects. For each finite
subset Y of X we define the set P,(Au Y, X) of processes (with free identifiers in
Y). The syntax is as follows.

Processes. (i) 1is a term of P,(A, X);

(ii) every atom or identifier ye Au X is a term of P,(Au{y}, 2);

(iii) if pisaterm of P,(Au Y, Z) and g is aterm of P,(AU Y’, 2), then (p;q),
(pllq) and (p+q) are terms of P,(AU YU Y’, X);

(iv) if xe X is an identifier and p is a term of P,(AU Y, X), then px.p is a term
of P,(Au Y—-{x}, 2);

(v) if lIe A is a name and p is a term of P,(AU Y, X), then (Lp) is a term of
PA,(AVL Y, 2);

(vi) if Ie A is a name, p is a terma of P,(AU Y, X) and s is an object, that is,
s€ Q, then p(l:s) is a term of P,(AUL Y, X).

To state the rules of the operational semantics, we need some auxiliary definitions.

First, we must extend the equational theory of termination; the axioms of this theory
are U0, U1, U2 and:

U3: pxd=1,

Ud: (L) =1,

Us: Wi:s)=1.
For simplicity we shall denote by = the congruence of P,(A, ) whose axioms are
those of @, together with U3, U4, U5, and the axioms D1 and D2 that will be given
later (the theory of = is ® U @', cf. Appendix B).



Concurrency and atomicity 65

Next we need the notions of restriction and concealment of computations with
respect to names. Let /€ A be a name; the restriction and concealment cf the
computation u with regard to ! are respectively denoted by u/, and u\" These will
be used in the semantics of the block construct p(l:s). Roughly speaking, if p
performs a computation u and if u/, operates on s, then p(l:s) will perform the
computation u\". But this is not quite correct since u/, breaks up the causal
dependencies that the computation u involves. Let us explain this point: if u=
(I'.v);(Lw), then we will have u/,= w, but we cannot regard u as being applicable
to an object named ! (unless v=1). To be applicable to an object named I, a
computation u must be causally coherent with respect to I/, in notation u © L
Intuitively, u © [ holds if u/, is a prefix of u. The formal definitions are as follows:

u/,=1 ifueAu{l};
(u;0)/1=(u/;0/)) and (ufjv)/,=(u/\|lv/,);

, u ifl'=l,
(Fu)/i= {11 otherwise.

As one can see, #/, is the part of the computation u which is applied to I On the
other hand, u\' is u with this part cancelled:

u\'=u fueAu{l);
(u;o)\'=(u\";0\") and (uljo)\'=(u\"|o\");

v owt )1 irl'=1l
(Fu)\'= {(l’.u) otherwise.
Finally, © is the least relation satisfying the following clauses:
(i) if ue Au{t}, then u © [;
(ii) ('.u)©lforall ueC,(A) and l'e A;
(iii) if u © l and v/,=1, then (u;v) © [;
(iv) if u\'=1and v © I, then (u;v) © I;
(v) if u©!and v ©/, then (u]jv) © L
We now define the transition relation -, which is the least subset of P, (A, 2)
CA(A)xP,(A, X) satisfying the rules E (of execution). We shall give some intuitive
explanations about these rules later.

El: atom
acAkra > 1,

E2.i: sequential composition 1
PP (p:9) = (p'9),

E2.2.1: sequential composition 2

pr=lqg—=q'+(p;q) >4,



66 G. Boudol, I. Castellani

E2.2.2: sequential composition 3

(u;v0)

pop'=1, a—q + (p;q) — ¢,

E3.1: parallel composition 1

p—=p'+ (ple)—(Pl9),
E3.2: parallel composition 2

u ? ° ’ (ullv) 1P}
p—r,q9—q + (plg)—— (P'lq),

E3.3: parallel composition 3

q—q' —(pllg)— (pllq"),
E4.1: sum 1

p—>p'+(ptq)—p,
E4.2: sum 2

9—>q'+(p+q)— 4,
ES: fixpoint

pluxp/x]1=p' - pxp= p',
E6: qualification

u (Lu)
p—p'+ (lp)— (Lp'),
E7: block

PP &U©L(s,u/i,s)ea - pilis)—s p(l:s).

Let us make some comments about these execution rules: first of all, there is no
rule for 1; for instance, we cannot prove 1-'1, nor, more generally, p -' p. This
explains why we have split the rules for sequential and parallel composition. On
the other hand, rule E7 may introduce 1 as a computation, in a transition p -’ p’
(if u\' =1). This is an “internal move”, which is a meaningful step. Therefore, we
do not exclude the cases u=1 and v=1 in the rules E4.1 and E4.2 for the sum,
while they ought to be precluded if p -»' p were an axiom.

Let us comment on the rule E7 for g = p(l:s). We have said that such a process
could be written (let I:s in p). Then q behaves as the process p operating on a local
object whose name is /, and whose state is s. The block operator is asymmetric in
two respects: the execution of g requires an execution of p and an operation on



Concurrency and atomicity 67

s—this appears in the hypothesis of E7. Moreover, it behaves as a “left-merge with
synchronization™ since p(l, s) cannot perform anything unless the process p—the
active component of p(l: s)—performs some computation u. The part of this compu-
tation u which is applied to /, that is, u/,, operates on s—the object s is the passive
component of p(l:s). The computation u/, is consumed during the operation, and
is thus concealed form the resulting computation of g, which is then u\'. Concealment
expresses the local character of the name [ Then an “internal move™ arises when
the whole computation u of p is applied to the local object, that is, when u\'=1—or
if p itself perf>rms such a silent transition. We must emphasize the fact that the
block contriact is the only synchronization and communication mechanism of our
calculus. This communication is similar to application of functional languages since
it consists in “applying™ to some object an elementary computation of a process,
at each step of its execution.

Let us see an example, showing how to model a boolean conditional. We assume
that a,, a,, ¢, and ¢, are primitive instructicns, belonging to A, and that B is (part
of) the given system of objects. Let r = ((b.co);p+(b.c,);q). Then

(r||b.as)(b:bool) = (r||b)b:booly) by E1, E6, E3.3, and E7,

(r||b1)(b:booly) — (p||bI)b:booly) by E1, E6, E4.1, and ET7.

One can remark that the term (p||b.1)(b:bool,) has a behaviour similar to that of
p{b:booly) since (b.1) cannot perform anything. One can use the abbreviations:

(if b then p else q) for ((b.co);p+(b.c,);q),
(while b do p) for ux.((b.co);p;x+(b.cy)),

(when b do p) for ((b.cy);p)
or ux.((b.co);p+(b.c,);x).

To conclude this section, let us say a few words about equipollence of processes.
Once more, we wish to deal with “semantic”™ transitions, that is, transitions labelled
by equivalence classes of computations. It should be clear that computations of
., (A) denote finite posets labelled by qualified atoms. These qualified atoms are
the terms built using only the formation rules (ii) and (iv) of C,(A). Then (Lu)
denotes the same structure as u but with every label prefixed by L Therefore, the
axioms of computation equality are those of 4, plus U4 and
D1: (L(p;q))=((Lp);(Lq)),

D2: (L(pll9))=((Lp)li(Lq)). _
(these axioms belong to @’, see Appendix B). Then the equipollence X is defined

with respect to the equivalence of computations, namely =. Recall that X is the
coarsest equivalence satisfying

xq&p—"w' = Jv=udq'=xp' 979"



68 G. Boudol, 1. Castellani

For example, we have the distributivity of the conditional branching over sequential
composition:

(if b then p else q);r X (if b then p;r else g;r).

We must point out that among the axioms of = for computations, one has U0 and
Ul, that is,

(u;1) =u=(Tu), (ullt) =u=(||v).

Therefore, 1 shows some analogy with the T of CCS, and even more with the unit
action of MEJE/SCCS. But < is not an observational equivalence since, for instance,
p=>"p"->"p’ cannot be confused with p »>"* p’. The equipollence is still a con-
gruence with respect to the operators since it is defined as a strong bisimulation.

7. Objects, abstraction and communication

7.1. Objects and atomic actions

In this section we introduce a syntax for objects, including a construct for defining
atomic actions, and we formalize the operation of processes on objects. This will
give us the system of objects X =(Q, C,(A), o) that was used as a parameter for
the algebra of processes in the previous section.

The algebra of objects is itself parameterized on a system of primitive objects,
which could be the provided data and instructions of an abstract machine. Then
we assume the set A of atoms to be the union of two disjoint sets I and Z: I is a
nonempty set of primitive instructions, and Z is a denumerable set of atom identifiers.
Let us denote by I° the least subset of C,(A) containing I, and such that u,
ve I®=>(ul|v) € I°. We take the system of primitive objects to be a transition system
E=(0,1I° ¢). The transition relation £ OxI®x O gives us the operation of
primitive instructions over primitive objects. Intuitively, the constants o€ O are
interpreted as values, and thus we postulate that if (o, u, 0') € £, then u does not
have the form (Lv). On the other hand, u cannot be (v;w): this interruptibility
property means that the grain of atomicity cannot be finer for processes than for
primitive objects. Moreover, we shall say that a system Z satisfies a mutual exclusion
property for the primitive instructions if it satisfies £ O x I x O.

Objects share some constructors with processes, namely sum, parallel composi-
tion, and fixpoint. The atoms a € A and the unit 1 are not allowed as objects, and
one cannot use sequential composition nor block to build objects. On the other
hand, the abstraction construct {az,, ..., z.p,, ..., p}s is specific to objects. Corre-
sponding to qualification (Lp) for processes, we have for objects a declaration
construct (l::s), where ! is a name and s an object. Intuitively, (::s) is “an object
named ! whose state is s”.

The algebra of objects, based upon a system = of primitive objects, is denoted
U.(A, E). More precisely, we define for any finite set Y of identifiers (subset of



Concurrency and atomicity 69

X) the set of terms U,(A UL Y, E). The set U, (A, E) of closed terms is the set of
objects used to build processes. For simplicity, the algebra of processes will be
denoted P, (A, Z), instead of P,(A, (U,(A, E),C,(A), 0)). We give the whole
syntax to avoid misunderstanding.

Objects. (i) every identifier y € X is a term of U, (AU {y}, ). Every constant o€ O
is a term of U, (A, E);
(ii) if sisaterm of U,(AU Y, &) and r is a term of U,(AL Y’, E), then (s||r)
and (s+r) are terms of U,(ALu YL Y', E),;
(iii) if x€ X is an identifier and s is a term of U,(AU Y, &), then px.s is a term
of U,(Au Y —{x}, E);
(iv) if Ie A is a name and s is a term of U,(AU Y, ), then ([::5) is a term of
U (ALY, E),;
(v) if z,,..., zx € Z are distinct atom identifiers, p,, . . ., p, areterms of P, (A, £),
and sis aterm of U, (ALY, E), then {az,,..., z..py, ..., px}s is a term of
U,(ALY, Z).

Processes. (i) 1is a term of P, (A, &);

(ii) every atom or identifier ye Au X is a term of P,(Au{y}, E);

(ii) if pisaterm of P,(AU Y, E) and g is aterm of P,(AU Y", E), then (p;q),
(pllq) and (p+q) are terms of P,(Au YU Y', E);

(iv) if x e X is an identifier and p is a term of P,(A U Y, E), then px.p is a term
of P,(Au Y-{x}, B);

(v) if le A is a name and p is a term of P,(AU Y, E), then (Lp) is a term of
P,(AV Y, E);

(vi) if le A is aname, p is a term of P,(AU Y, £) and s is a term of U, (A, E),
then p(l:s) is a term of P,(AUL Y, E).

We shall use the more compact notation {aZz.p}s for {az,,..., ZupP, ..., Px}s. In
a concrete syntax, this term could be written:

(swithz,=p,,...,zc=p).

This is to point out the similarity between our abstraction construct and that of
abstract data types. The concept of abstract data type is well-known: roughly
speaking an ADT is a module, regarded as the manager of objects of some class,
offering a collection of procedures to alter the state of the object. Moreover, it is
intended that the details of implementing the objects and procedures are hidden
into the module—or equivalently that programs using the module only know its
specification. Accordingly, the informal meaning of {aZp}s is the following: s is
the internal state of this object, the z,,...,2, are the names of the available
procedures and the processes p, . . . , px are their respective codes. The term {az.p}s
is intended to only react to computations built with the z,, . . ., z,,and more precisely
to computations of D({z,,..., z}) (see Appendix A), built without qualification.



70 G. Boudol, I. Castellani

This will appear in the rules of operations, which we shall describe next. We must
note however that the execution of an atom ze Z is indivisible since we always
have, by virtue of E1, Vze Z > 1. Regarded as a process, an identifier z€ Z is an
atom call.

We will use [p] as a notational trick, suggested by Berry, to distinguish the
(closed) process p from its operation. We call such a [p] an operation.

Operations. (i) If p is a term of P,(A, E), then [p] is an operation, belonging to
0.4(A, E).

Then —> is the least subset of U,(A, E)x0,(A, E)xU,(A, E) satisfyin-g the
rules O (of operation) below. It must be understood that the operation relation o
used in rule E7 for processes of P, (A, £) is given by

def
o ==>n(U,(A E)xC,(A)xU, (A E)).
In other words, the hypothesis (s, u/;,s’)€ o of rule E7 should be replaced by

sl gt

There are three kinds of rules for the operation: first of all, the axioms are the
transitions of the given system of primitive objects, that is, (o, ¥, 0') € & Moreover,
the operation —> satisfies some specific properties, as we have seen in Section 6.1.
These are expressed by the rules O1 and O2 below, which, as we shall see, ensure
that processes operate on objects by means of their terminated sequences of computa-
tions. Finally, there are the structural rules O3 to O7, which are similar to those of
execution. In the rule for {aZ.p}s, the abstraction rule O7, we use the following

convention: Z=2z,,...,Z; and p=p,, ..., pi. As before u[ p/Z] denotes the substitu-
tion of the p;’s for the z;’s in w.

00: reaction

[ul
(0.4,0) € - 0—> 0,

O1: identity

irl
p=lF s+—>s5,
02: operation

u [u] L

' ” [l
pP—>p,S—>S ——5§

" s—> s,

03.1: paralle! composition 1

ful ul
S—> ' (sllr)n—:—* (s'lln),

03.2: parallel composition 2

fvl [vl
ro-i» r- (s"r) o-v—-) (s"r'),



Concurrzng; and ate .«iry s
04.1: sum 1

ful Mol .
S S &uBEt - (s+r)r—»y',

04.2: sum 2

,-.l'.’l. r&v#ir- (s+r)r-[—v]-b r,
OS5: fixpoint

wl [l
s[ux.s/x]—> s' - px.s —> s,

06: declaration

fui {l::u) ,
s+—> 5"+ (Ls) —— (Ls'),
O7: abstraction

fu
s 20, o, weD(z - {azpls - {azpls.

Note. There is some implicit typing in these rules: in O0 and in O3 to 06, u and
v are computations of C,(A).

A few remarks about these rules: a first one is that an object cannot make an
autonomous silent transition, for s —/?'s'& p=1=>s'=s. Then an object is a
“passive” agent. There is no rule similar to E3.2, and the operation of a parallel
process ( pllq) must be introduced by 00, O1, or O2. On the other hand, the rules
O3 state some : :heritance phenomena: if a part of such a compound object reacts
to some computation, then the whole object accepts the same operation. In the
abstraction rule, the hypothesis u € D({Z}) expresses the fact that a process has only
access to the abstract object {aZ p}s by means of its specified interface. Stated
equivalently, a process cannot directly manipulate the internal structure of an object.

The following result asserts that the O rules properly define — with regard to the
idea that a program operates by means of its terminated sequences of computations.

Proposition 7.1. Let p —» p' &% 3u=1p ->"p’. Then for all processes pcP,(A, E)
and for all objects s, s'e U ,(I, Z) the following properties are equivalent:

@i s RLAN s’

u u, ¢ f“] r",,l ’
(i) 3In3u,,...,u,p'=1 p— - - —p'&s—> - —> 5,

(iii) 3Jp'=1 (I.p)(l:s):-»(l.p')(lzs').

The (easy) proof is omitted.



17 G. Boudol, I. Castellani

One can regard the equivalence (i)<> (iii) as a generalization of the relationship
between the denotational and operational semantics for sequential programs: the
transitions s+~ ?1s’ define the “abstract” operation of p, while (Lp)(i:s) is a
“configuration” which may evolve step by step to a terminal one where p=1. On
the other hand, the equivalence (i)<>(ii) entails a recoverability property for our
atomic actions (cf. [38, 10]), which operate in an all-or-nothing manner. Let us
explain this point better: in order to prove {az j}s — 1 {az p}s’, one has to prove
s> 1ulP/2 g This holds if

—7=q9 %1 Un (v,1 [o,1
In>03v,,...,0,€C(A) u[p/Z]—> - ——p'=1&s+—> - —> 5"
But since u is a finite, determinate computation, each code p; occurring in the term
u[ p/ z] must contribute to the terminated execution of this term, and this contribution
is a terminated sequence of computations of p;.

Usually one assumes not only recoverability for atomic actions, but also
serializability (or noninterference, cf. [38,10]). This property states that atomic
actions operate as if they were mutually exclusive. We could have accounted for
such a property by assuming another ruie for abstraction, namely

s RLIN s' + {aZ.p}s =, {az.p}s'.

Then the abstraction construct {aZ.p}s would actually define a monitor, where the
procedures are mutually exclusive. The previous restricted rule enforces a strict
exclusion; then it does not allow, for instance, an interleaved operation of concurrent
transactions, where serializability is a criterion for data consistency. We shall not
adopt this restricted rule here, for we want to be able to deal with mutual inclusion
(rendez-vous), as well as mutual exclusion, by means of atomic actions. Moreover,
it it is eas. ¢ to understand serializability as an algerithmic problem rather than a
requisite for a compiler—or a formal semantics: one can write the code of atoms
for an abst-act object in such a way that they satisfy serializability, without changing
the semantics.

Another interesting consequence of the previous result is the following corollary.

Corollary 7.2. For all processes p, qe P ,(A, E) and for all objects s, s'cU,(I, E)
we have the following sequentialization propertis:

" Pl Tal | ipal plle1
Js" s "5 S s— s =D s— 5.

Moreover, we have the derived rule

Ip1 la1 Irliai
Opar: s——s', r—>r' = (s||r) — (s'||F).

(A proof would use characterization (ii) of operation in the previous proposition,

and the E rules for sequential and parallel composition to build the suitable sequence
of executions.)



Concurrency and atomicity 73

Let us give a simple example of abstract object, that of a boolean semaphore. For
the rest of the paper, the only given object is the boolean—that is, our algebras of
objects and processes are U, (A, B) and P, (A, B). The semaphore is the following
abstract object of U, (A, B):

sem = ((b::bool,) with P = (b.c;);(b.a,), V = (b.c,);(b.ao)).

According to our previous conventions, P is (when b do (b.a,)), whereas V is
(when —bdo (b.ay)). We clearly have

[P , ™
(sert) sem — sem’' — sem

(where sem’ is the same as sem but with b in state bool,) since

bool, M bool, M bool,.
Then we will have sem —/":¥1sem, but also sem —"1¥1sem (applying the pre-
vious corollary). This shows that in a construct p(l:sem), the execution of the process
p is not much constrained; what is precluded is, for instance, a computation V;P.
We could prove that the possible operations sem — [P s are exactly those generated
(using the rules O1 and O2) by the transitions

Pl , , Vi
sem —> sem’, sem’' —— sem.
In other words, the formula (sem) above is a specification of the abstract object
semaphore, and sem is a correct implementation.
As usual, the semaphore may be used to program critical regions, enclosing
mutually exclusive pieces of code, as in

(..(sP);p;(s.V) .. |...(s.P);q;(s.V)...)s:5em)

for instance. We can use the semaphore to show the necessity of the hypothesis
u © I in rule E7, by means of the following example of a causality cycle, due to
Gonthier: let p be a process performing the computation p -“ p’, where

u=((s.V);(s".P)||(s".V);(s.P)).
Then, without the hypothesis ¥ © ! in rule E7, we would have

p(s:sem)(s’:sem) > p'(s:sem)(s":sem)

since u/,=(V|/P) and (u\*)/,= (P| V). But this is intuitively unacceptable since
the term u(s:sem)(s":sem) must be deadlocked.

To conclude this section, let us return for a while to the equivalence of processes.
We may call < the intensional equivalence since it relies upon the way of computing.
On the other hand, the extensional equivalence = simply means “to operate in the
same manner’’:

def , e}, lal
p=q & Vs's—> s & s—>5s.



74 G. Boudol, I. Castellani

However, this terminology is perhaps not quite right since intensional equivalence
does not imply extensional equivalence. The problem is with termination and
divergence: for instance, the process {2 = ux.x does not have any execution, therefore
02 < 1; but it is not terminated: 21, and then 2 does not have any operation;
consequently, 2% 1. We do have ¥ <X v&>u=v (and u X v& u =) for computa-
tions u, v (the proof is left to the reader).

7.2. Synchronization and communication structures

The early interest in concurrent processes came from operating systems (cf. [21]).
There the main synchronization problem was to ensure mutually exclusive accesses
to shared resources. It is fairly easy to propose an abstract solution to this problem
in our formalism, by means of an idealized monitor: let us assume that we want to
enforce the mutual exclusion of procedures p,, ..., p;. operating on a shared object
o. To this end we define an abstract object ¢ encapsulating o together with a local
semaphcre and offering the given procedures as new atoms:

t=((Il::0|s::sem) with z, =(s.P);(Lp,);(s.V)

-
-

2= (.P);(Lpe)i(s. V).

It should be clear that if 0 — /71 0’, then we have t —%1¢' where
t'={az.g}(l::0']|s::sem)

(with q;=(s.P);(Lp:);(s.V)). Therefore, t accepts any computation of
D({z,,..., z}), and reacts exactly as if the p;’s were its primitive instructions.
This example suggests that a synchronization or communication structure should
be seen as an abstract object 0 ={aZ.g}s where s stores the local data, and where
the procedures or methods g; sharing these data enforce some synchronization or
communication discipline. Then a typical system of concurrent processes using such
a structure has the form (r,||. . .[|r,){l:0). Let us give another example of synchroniz-
ation structure; we said in Section 3 that the event structure a#b#c#d cannot be
the interpretation of a term of T(A). However, we can define an abstract object
whose operations are exactly the computations of this event structure, namely:

((s,::seml}lszz:sem || 53::sem) with a = (s,.P)
b=(s,.P|s,.P)
¢ =(s,.P||s;.P)
d= (s:;.P)).

One should note the formal analogy between this “implementation” and the Petri
net associated with the event structure a#b#c#d (cf. Section 3): each semaphore
is an input place.



Concurrency and atomicity 75

An intcresting synchronization problem is that of synchronous message passing
in distributed systems. More specifically, let us concentrate on CCS communication.
In CCS, an agent possesses some named ports through which it may communicate
(cf. [43, 44]). In our view, a port is an abstract object offering two atoms for sending
and receiving—we shall only deal with pure CCS, without value passing. We aim
at defining the port as a communication structure in such a way that the CCS

restriction operator p\l (or, more accurately, a generalization of this operator) can
be defined as:

p\l=p(l:port).

The definition of the port, using two boolean semaphores, is inspired by [33]. The
port is the following abstract object of U, (A, B):

port = ((s::sem||s’::sem) with send = (s.P);(s'. V)
receive = (s'.P);(s.V)).

In order to see in detail how abstraction works, we proceed to a complete analysis
of the transition

r=((lLsend);p||(Lreceive);q){l:port) > r'=(pllq){l:port) (2)

assuming the previous specification for the ssmaphore. In CCS the term r would
be written ((1!).p|(1?).g)\l. We shall use the abbreviations ! for (Lsend) and 1? for
(Lreceive). First of all we have

El: sende A El: receive e A
send Lﬂd» 1 receive —_ 1
E6: , E6: -
In—s1 17— 1
E2.1: ” E2.1: -
1p— p'=(L1);p 19— ¢'=(l1);q

E3.2:

e e
(15pli1%9) —— (p'lig")
Since (L1)=1 and I;p=p, we have p’'=p ard, similarly, ¢'= q. Clearly, we have
(D © 1, (1M|12)/ = (send || receive) and (I!]|I?)\' = 1. Then (2) will be proved, using
E7, from
e "
(15pi1%g) —— (P'll9) (3)
which we have just shown, and from

[send || receive ]

port ——— port. (4)



76 G. Boudol, 1. Castellani

Let us now prove this second fact. A first step is

L Pl

sem — sem’ sem —> sem’
06: 06:
{s.P] , , <Pl , ,
(s::sem) — (s::sem’) (s'::sem) — (s"::sem’)

Opar.

. . [s.Pls"P1 . 1 ol v
(s::sem|s"::sem —————— (s::sem’]|s"::58m")

An entirely similar proof would show that

(s:: 7 otee n fsVis-vi . oo
s::sem’j|s"::sem’) —————— (s::sem||s"::sem).

We leave it to the reader to prove that

" sP)s.P s.V]s.v
(s.P;s".V||s'.P;s. V) —— ((s.1);5". V||(s".1);5. V)— (1]|7).
Then, by 02;

[s.P;s' . V]s'.P;s. V1 ,
(s::sem]|s'::sem) + > (s::sem||s"::sem)

Finally, we obtain formula (4) above by applying the abstraction rule.

To prove (2) we have to show thai a sequentialization of (s.P;s'.V||s'.P;s.V)
operates on the internal structure of the object port—this sequentialization is
(s.P]|s".P);(s".V||s.V), but we could have chosen any stronger sequentialization. On
the other hand, it should be clear that one cannot prove that a send or a receive
alone operates on the port since their codes cannot terminate without the cooperation
of the other. We could say that the specification of the port is

[send |jreceive |
(port) port———— port
since this axiom generates exactly, by means of rules O1 and O2, the possible
operations on the abstract object port. We may regard the construct p(l:port) as
defining a restriction operator (the CCS 7 internal action being replaced by 1). This
shows that the hiding concept of models of concurrency such as CCS or TCSP is
related to the more conventional notion of scope.
Generalizing the mutual inclusion problem, we can define a synchronization

structure where some given procedures p,,..., p., operating on a shared object o,
are forced to act simultaneously:

((I::0]|(sy::5em]. . .|| si::5em)) with z, = (5,.P);(Lp,);(s52. V)
2,=(52.P);(Lp,);(s5.V)

2z = (8. P);(Lpi);(5,. V).

In this way, we are able to organize a rendezvous between a given number of
processes; we can also mix the mutual exclusion and mutual inclusion synchroniz-



Concurrency and atomicity 77

ation disciplines. Some other examples, as, for instance, the signal/wait primitives
related to a broadcast event, are given in [7].

8. Conclusion

Summing up our proposal for a calculus of processes, we could say that its three
main features are asynchrony, applicative communication and abstraction. The cal-
culus of processes P, (A, ) that we have proposed owes its asynchronous character
mostly to the introduction of structure in the computations. It is evident that our
interpretation of parallel composition is asynchronous: as in MEuE, we think of
concurrent processes as independent agents. The rdle of sequential composition is
more hidden, but certainly not less important. On the execution side, intrcducing
sequential composition in the computations implies that there is no global time:
two concurrent processes may independently perform computations of arbitrarily
different lengths—i.e., we allow computations of the form (u;;...; u,[lvy;...; v).
On the operation side, we enforce asynchrony—at least for objects of U, (I, &', built
without abstraction—since the operation of processes on such “concrete” objects
is sequentialized. Even the abstract objects of U,(A, £) do not strongly restrain
the asynchrony of execution; for instance, a process using the communication
structure port of CCS may perform a computation like

(send; .. .; send ||receivel . . . ||receive)

where each receive can wait for a ccrresponding send.

The meanings of synchronization in MEUE/SCCS (cf. [2, 63]) and in our calculus
are very different, partly because we do not have a uniform duration of computations
in P,(A,Z). More importantly, in MESE/SCCS one directly prescribes synchroniz-
ation at the execution level, and one is thus able to define derived control structures
from the primitive ones, as shown by De Simone in [63]. In our calculus, we have
a more classical understanding of the synchronization problems, as regulating the
concurrent accesses to shared resources. It is still unclear whether or not this is too
restrictive a standpoint. One may wonder whether the strong notion of synchroniz-
ation of MEUE/SCCS is really consistent with the intuitive idea of a distributed
sysiem. On the other hand, it may be that our model of objects has some weaknesses
with respect to the notion of reactive, or more accurately of interactive system. One
must remark that, due to the abstraction rule, the operation of atom calls is purely
local to an object; but one could imagine more “active” objects, for which the
operation of an atom may trigger the execution of atom calls intended for some
other agents. We leave all these hazy matters for further investigation.

A more definite question is that of the expressive power of abstraction. Abstraction
provides us with the possibility of defining various communication mechanisms in
the same language. We have suggested that ons should specify abstract objects, so
as to be able to prove that a defined object is a correct implementation of a given



78 G. Boudol, I. Castellani

specification. This remains to be formally stated. Some specifications cannot be
carried out: for instance, no object can accept an operation a;b without reacting
also to a. We could prove that it is impossible to define an object enforcing a
synchronization such as (a;b}jc)—without also allowing (a||b|c). Here again, it is
not clear whether this is a real deficiency.

Another study we plan to undertake concerns objects. The object constructors,
namely declaration, parallel composition, sum, fixpoint and abstraction are perfectly
meaningful as data type constructors. For instance, they allow us to deal with records
such as (::8,] . .. ||k::5:). But we do not have a syntax for primitive objects. Since
they are states of transition systems, we could have allowed primitive instructions
and sequential composition to build objects. But this is a rather ad hoc solution,
which would suggest a “historical” view of objects: the state of an object would
then represent its future, made of all the operations it will accept. However, we
would like to have a more classical notion of object, and a less arbitrary notion of
primitive instruction. A suitable framework could be that of event structures since
they provide models for both process calculi and data type constructions, cf. [68, 70].
However, as Winskel observed some time ago, there is a mismatch: a process is an
event structure, giving rise to a whole domain of computations, while a functional
program is an element of a domain—one can also remark that a process or an object
can be interpreted either as a whole transition system, or as a state of a transition
system (note: Berry, Huet and Lévy [3, 34, 37] have shown that functional programs
also determine an ordered set of computations, where the “‘events™ are occurrrences
of redexes, but this has not been much exploited in denotational semantics).
Searching for *‘a good syntax™ for objects and processes could bring us to a better
understanding of the relationship between the semantics of sequential programs
and that of concurrent and communicating systems.

Appendix A. Syntax

Finite terms. (i) 1is a term of T(A) and every atom a € A is a term of T(A);
(ii) if p and ¢ are terms of T(A), then so are (p;q), (pllq) and (p+q).

Terms. (i) 1 and every atom a € A are terms of T™°(A);
(ii) if p and q arc terms of T(A) and T"°(Au Y) respectively, then (p;q) is a
term of T*°(Au Y);
(iii) if p and q are terms of T*°(A U Y) and T"*°(A L Y’) respectively, then (p| q)
and (p+q) are terms of T*°(Au YU Y');
(iv) an identifier x€ X is a term of T™°(A U {x});

(v) if x is an identifier and p is a term of T™*°(A L Y), then px.p is a term of
T(Au Y -{x}.

Actions. (i) 1is a term of D(A) and every atom a € A is a term of D(A);
(ii) if p and q are terms of D(A), then so are (p;q) and (p|lq).



Concurrency and atomicity 79

Processes. (i) 1is a term of P, (A, E);

(ii) every atom or identifier ye Au X is a term of P,(Au{y}, E);

(iii) if pisaterm of P,(AL Y, &) and gisaterm of P,(Au Y, ), then (p;q),
(pllq) and (p+q) are terms of P,(AL YL Y, E);

(iv) if x€ X is an identifier and p is a term of P,(AuL Y, £, then pux.p is a term
of P,(AL Y -{x}, E);

(v) if le A is a name and p is a term of P,(Av Y, E), then (Lp) is a term of
PA(ALY, E);

(vi) if le A is a name, p is a term of P,(AUL Y, &) and s is a term of U, (A, E),
then p(l:s) is a term of P,(AL Y, E).

Objects. (i) Every identifier ye X is a term of U,(Au{y}, £) and every constant
o€ 0 is aterm of U, (A, &);
(ii) if sisaterm of U,(AL Y, &) and ris a term of U, (AU Y', E), then (s||r)
and (s+r) are terms of U,(AL YL Y', E);
(iii) if x€ X is an identifier and s is a term of U (AU Y, ), then px.s is a term
of U,(Au Y -{x}, E);
(iv) if le A is a name and s is a term of U,(AuU Y, E), then (I::s) is a term of
U,(AVY, E);
(v) ifz,,..., zx € Z are distinct atom identifiers, p,, .. ., px areterms of P, (A, Z),
and sisaterm of U,(AU Y, ), then {az,,..., 2z.py,..., P}s is a term of
U,(AV Y, E).

Computations. (i) 1is a term of C,(A);
(ii) every atom a€ A is a term of C,(A);

(iii) if » and v are terms of C,(A), then (u;v) and (u|v) are terms of C,(A);
(iv) if l€e A is a name and u is a term of C,(A), then (Lu) is a term of C,(A).

Appendix B. Axioms and theories

See Table 1.

Appendix C. Operational semantics
El: atom

aeAl—a—abﬂ,

E2.1: sequential composition 1

p-u*p' - (p;q)— (P';9),



80 G. Boudol, I. Castellani

Table 1

A0 (pi(q:r))=((p;q);r) Y

uo (p;)=p=(%;p)
Al (pl(gllrN =W plDlIn Y

U1 (rlM=p=Qlp)

Ci (rle)=(qllp) Y

AY  (n+(a+M=((p+a)+r) Y

U2 {(p+1)=p=(1+p)

C2 (p+q)=(1+p) Y

I (p+p)=p

B1 ael=aforacA

B2 (): % -p;);q=§((y.~ *pi)q)
B3 (ye 1);(}; Bj° qj)
=ye (2;. B q,-) +§ (v:B;) * g
B4 (7 ° (Z % 'p;));q= A (E it 'p;);q)
BS (2 % °p.-ll§ B 'q,-)

=2._: Y: ® (Pi "? Bi° ‘Ij)
+Z_ ((')'i"Bj) ° (P.'"qi))
ij

+§ B (§ % °p.~||qj)

U3 pxd=1
U4 (L) =1
uUs Wi:s)=1

D1 (p:9)) =((Lp);(Lq))
D2 (L(pllg)) =ULp)l|(Lq))

E2.2.1: sequential composition 2

p=tq9—q - (piq)— 4,
E2.2.2: sequential composition 3

u ’ v ’ (u;v) '
p—p=lqg—>q+(p;g)——4,



Concurrency and atomicity

E3.1: parallel composition 1

p—p'+ (plle)—(P'llg),
E3.2: parallel composition 2

(uflv)
p—rp,q9—4q + (plg) — (P'llg),

E3.3: parallel composition 3

q—q' + (pllg)— (pllg),
E4.1: sum 1

p—p'+ (p+q)—p',
E4.2: sum 2

9—q9'+(p+q)— ¢,
ES: fixpoint

plpx.p/x]—p' + px.p—p’,
E6: qualification

u ’ (Lu) ,
p—p'+ (Lp)— (Lp),

E7: block

fu/n

P p&u©L sl 5 pilis)—s pl:s);

0O0: reaction

ful
(o,u,0'Yeé - 0o — 0,

O1: identity

rl
P=1F s+—>s5,
02: operation

[ul P Irl
p—)p s—>§'—>§ i—-su-—-bs

03.1: parallel composition 1

1
s s - (sllr) > (s']17),

81



82 G. Boudol, I. Castellani
03.2: parallel composition 2

ol
r ..LU—]-» r' + (sljr) — (s]|r),

04.1: sum 1

ful ful
s—>s'&uElI+- (s+r)'—-’8,

04.2: sum 2

v} vl
r—r'&oEI- (s+r)—r',
05: fixpoint
l |, ful
s[lpx.s/x]—> '+ px.s—> s,
06: declaration

FLLLRES (I::5) — (I::5"),

O7: abstraction

ulB/3 [ul ==l!
fulp/z1N S', UED({E}) - {aiﬁ}s — {az.p}s .

References

[1} L. Aceto, R. De Nicola and A. Fantechi, Testing equivalence for event structures, Tech. Rept.
B4-6? Istituto di Elaborazione dell'Informa ione, CNR, Pisa (1986).

[2] D. Austry and G. Boudol, Algébre de processus et synchronisations, Theoret. Comput. Sci. 30 (1984)
91-131.

[3] G. Berry and J.-J. Lévy, Minimal and optimal computations of recursive programs, J. ACM 26
(1979) 148-175.

{4] G. Berry and L. Cosserat, The ESTEREL synchronous programming language and its mathematical
semantics, in: Proc. Seminar on Concurrency, Lecture Notes in Computer Science 197 (Springer,
Rerlin, 1984) 389-448.

[5] G. Boudol, Notes on algebraic calculi of processes, in: K. Apt, ed., Logics and Models of Concurrent
Systems, NATO ASI Series Fi13 (1985) 261-303.

[6] G. Boudol, G. Roucairol and R. De Simone, Petri nets and algebraic calculi of processes, in: Proc.
Adbvances in Petri Nets 1985, Lecture Notes in Computer Science 222 (Springer, Berlin, 1986) 41-58.

{71 G. Boudol, Cominunication is an abstraction, in: Proc. Actes du Second Colloque C* (1987) 45-63,
and INRIA Res. Rept. 636. )

[8] S. Brookes and W.C. Rounds, Behavioural equivalence relations induced by programming logics,
in: Proc. ICALP’83, Lecture Notes in Computer Science 154 (Springer, Berlin, 1983) 97-108.

[9] S. Brookes, C.A.R. Hoare and A. Roscoe, A theory of communicating sequential processes, J. ACM
31 (1984) 560-599.

{10] R.H. Campbell and P. Jalotte, Atomic actions in concurrent systems, in: Proc. 5th Internat. Conf.
on Distributed Computing Systems (1985) 184-191.

{11] P. Cartier and D. Foata, Problémes Combinaioires de Commutations et Réarrangements, Lecture
Notes in Mathematics 85 (Springer, Berlin, 1969).

[12] L Castellani, P. Francheschi and U. Montanari, Labelled event structures: a model for observable

concurrency, in: D. Bjgrner, ed., Formal Description of Programming Concepts II (North-Holland,
Amsterdam, 1983) 383-400.



Concurrency and atomicity 83

[13] L Castellani and M. Hennessy, Distributed bisimulations, Comput. Sci. Rept. 5-87, University of
Sussex (1987).

[14] 1. Castellani, Bisimulations and abstraction homomorphisms, J. Comput. System Sci. 34 (1987)
210-235.

{15] L Castellani, Bisimulations for concurrency, Ph.D. Thesis, University of Edinburgh (1987).

[16] Ph. Darondeau and L. Kott, On the observational semantics of fair parallelism, in: Proc. ICALP
'83, Lecture Notes in Computer Science 134 (Springer, Berlin, 1983) 147-159.

[17] P. Degano and U. Montanari, Distributed systems, partial orderings of events and event structures,
in: M. Broy, ed., Control Flow and Data Flow: Concepts of Distributed Programming, NATO ASI
Series F14 (1985) 7-106.

[18] P. Degano and U. Montanari, Specification languages for distributed systems, in: Proc. Ist TAP-
SOFT, Lecture Notes in Computer Science 185 (Springer, Berlin, 1985) 29-51.

[19] P. Degano, R. De Nicola and U. Montanari, Partial ordering derivations for CCS, in: Proc. FCT
85, Lecture Notes in Computer Science 199 (Spninger, Berlin, 1985) 520-533.

[20] R. De Nicola, Extensional equivalences for transition systems, Acta Inform. 24 (1987) 211-237.

[21] E.W. Dijkstra, Cooperating sequential processes, in: F. Genuys, ed., Programming Languages (1968)
43-112.

[22] R.J. Duffin, Topology of series-paralilel networks, J. Math. Anal. Appi. 106 (1965) 303-318.

(23] H.J. Genrich and E. Stankiewicz-Wiechno, A dictionary of some basic notions of net theory, in:
W. Brauer, ed., Net Theory and Applications, Lecture Notes in Computer Science 84 (Springer,
Berlin, 1980) 519-531.

[24] J.L. Gischer, Partial orders and the axiomatic theory of shuffle, Ph.D. Thesis, Stanford University
(1984).

[25] R. van Glabbeek and F. Vaandrager, Petri net models for algebraic theories of concurrency, in:
Proc. PARLE Conf., Eindhovea, Lecture Notes in Computer Science 289 (Springer, Berlin, 1987)
224-242.

[26] U. Goltz and W. Reisig, The non-sequential behaviour of Petri nets, Inform. and Control 57 (1983)
125-147.

[27] J. Grabowski, On partial languages, Fund. Inform. IV (1981) 427-498.

[28] P.A. Grillet, Maximal chains and antichains, Fund. Math. 65 (1969) 157-167.

[29] M. Habib and R. Jegou, N-Free posets as generalizations of series-parallel posets, Discrete Appl.

' Marh. 12 (1985) 279-291.

[30] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32
(1985) 137-161

[31] M. Hennessy and R. De Nicola, Testing equivalences for processes, Theoret. Comput. Sci. 34 (1984)
83-133.

[32] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International Series in Computer
Science (Prentice Hall, Englewood Cliffs, NJ, 1985).

{33] R.R. Hoogerwoord, An implementation of mutual inclusion, Inform. Process. Lett. 23 (1986) 77-80.

[34] G. Huet and J.-J. Lévy, Call-by-need computations in non-ambiguous linear term rewriting systems,
IRIA-LABORIA Rept. 359 (1979).

{35] E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence
constraints, Ann. Discrete Math. 2 (1978) 75-90.

[36] E.L.Lawler, R.E. Tarjan and J. Vaides, The recognition of series parallel digraphs, SIAM J. Comput.
11 (1982) 298-313.

[37] J.-J. Lévy, Optimal reductions in the lambda calculus, in: J.P. Seldin and J.R. Hindley, eds., To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalisim { Academic Press, New
York, 1980) 159-191.

[38] B. Liskov and R. Scheifler, Guardians and actions: linguistic support for robust, distributed
programs, ACM TOPLAS 5 (1983) 381-404.

[39] D.B. Lomet, Process structuring, synchronization, and recovery using atomic actions, SIGPLAN
Notices 12 (1977) 128-137.

[40] A. Mazurkiewicz, Concurrent program schema and their interpretations, in: Proc. Aarhus Workshop
on Verification of Parallel Programs, Daimi PB-78, Aarhus University (1977).

[41] A. Mazurkiewicz, Traces, histories, graphs: instances of a process monoid, in: Proc. MFCS'84,
Lecture Notes in Computer Science 176 (Springer, Berlin, 1984) 115-133.



84 G. Boudol, 1. Castellani

[42] R. Milner, Program semantics and mechanized proofs, Math. Centre Tracts 82 (1976) 3-44.

[43] R. Milner, Synthesis of communicating behaviour, in: Proc. MFCS'79, Lecture Notes in Computer
Science 64 (Springer, Berlin, 1979) 71-83.

[44] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1980).

[45] R. Milner, On relating synchrony and asynchrony, CSR-75-80, Computer Science Dept., Edinburgh
University (1980).

[46] R. Milner, Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25 (1983) 267-310.

[47] R. Milner, Lectures on a calculus for communicating systems, in: Proc. Seminar on Concurrency,
Lecture Notes in Computer Science 197 (Springer, Berlin, 1985) 197-220.

[48] R. Milner, Process constructors and interpretations, in: Proc. IFIP 86 (1986) 507-514.

[49] M. Nielsen, G. Plotkin and G. Winskel, Petri nets, event structures and domains, Theoret. Comput.
Sci. 13 (1981) 85-108.

[50] E.-R. Olderog, Operational Petri net semantics for CCSP in: Proc. Advances in Petri Nets ‘87,
Lecture Notes in Computer Science 266 (Springer, Berlin, 1987) 196-233.

[51] D. Park, Concurrency and automata on infinite sequences, in: Proc. 5th GI Conf., Lecture Notes
in Computer Science 104 (Springer, Berlin, 1981) 167-183.

[52] C.A. Petri, Non-sequential processes, GMD-ISF Rept. 77-05 (1977).

[53] G. Plotkin, A structural approach to operational semantics, Daimi FN-19, Aarhus University (1981).

[54] G. Plotkin, An operational semantics for CSP, in: D. Bjgrner, ed., Formal Description of Programming
Concepts 2 (North-Holland, Amsterdam, 1983) 199-225.

[55] H. Pliinnecke, K-density, N-density and finiteness properties, in: Proc. Advances in Petri Nets ‘84,
Lecture Notes in Computer Science 188 (Springer, Berlin, 1984) 392-412.

[56] A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: Proc.
ICALP 85, Lecture Notes in Computer Science 194 (Springer, Berlin, 1985) 15-32.

[57] V.R. Pratt, On the composition of processes, in: Proc. 9th POPL (1982) 213-223.

[58] V.R. Pratt, Modelling concurrency with partial orders, Internat. J. Parallel Progra- .ming 18 (1986)
33-71.

{59] W. Reisig, On the semaiitics of Petri nets, in: G. Chroust and E.J. Neuhold, eds., Formal Models
in Programming (North-Holland, Amsterdam, 1985) 347-372.

[60] J. Riordan and C.E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys.
21 (1942) 83-93.

[61] C.E. Shannon, A symbalic analysis of relay and switching circuits, Trans. Amer. Inst. Electr. Engrs.
§7 {1938) 713-723.

[62] M.W. Shields, Concurrent machines, Comput. J. 28 (1985) 449-465.

[63]1 R. de Simone, Higher level synchronising devices in MEUWE-SCCS, Theoret. Comput. Sci. 37 (1985)
245-268.

[64] D. Taubner and W. Vogler, The step failure semantics, in: Proc. STACS '87, Lecture Notes in
Computer Science 247 (Springer, Berlin, 1987) 348-359.

[65] G. Viennot, Heaps of pieces: basic definitions and combinatorial lemmas, in: Actes du Colloque de
Combinatorie Enumérative, Montreal (1985).

[66] J. Winkowski, Algebras of partial sequences, in: Proc. FCT '77, Lecture Notes in Computer Science
§6 (Sgringer, Berlin, 1977) 127-196.

[67] J. Winkowski, Behaviours of concurrent systems, The.ret. Comput. Sci. 12 (1980) 39-60.

[68] G. Winskel, Events in computation, Ph.D. Thesis, Edinburgh University (1980).

[69] G. Winskel, Event structure semantic: for CCS and related languages, 9th ICALP, Lecture Notes
in Computer Science 140 (Springer, Berlin, 1982) 561-576.

(70] G. Winskel, Event structures, in: Proc. Advances in Petri Nets '86, LectureNotes in Computer Science
255 (Springer, Berlsi, $587) 325-392.



