
Noname manuscript No.
(will be inserted by the editor)

Reversible Sessions with Flexible Choices

Ilaria Castellani ·
Mariangiola Dezani-Ciancaglini? ·
Paola Giannini ??

February 24, 2019

Abstract We propose a calculus for concurrent reversible multiparty sessions,
equipped with a flexible choice operator allowing for different sets of participants
in each branch. This operator is inspired by the notion of connecting action recently
introduced by Hu and Yoshida to describe protocols with optional participants.
We argue that this choice operator allows for a natural description of typical
communication protocols. Our calculus also supports a compact representation
of the history of processes and types, which facilitates the definition of rollback.
Moreover, it implements a fine-tuned strategy for backward computation. We
present a session type system for the calculus and show that it enforces the
expected properties of session fidelity, forward progress and backward progress.

Keywords Communication-centric Systems, Reversible Computation, Process
Calculi, Multiparty Session Types.

? Partially supported by EU H2020-644235 Rephrase project, EU H2020-644298 HyVar
project, IC1402 ARVI and Ateneo/CSP project RunVar.

?? This original research has the financial support of the Università del Piemonte Orientale.

The authors acknowledge a partial support of COST Action IC1405 on Reversible Computation
- extending horizons of computing.

Ilaria Castellani
INRIA, Université Côte d’Azur,
2004 Route des Lucioles, 06902 Sophia Antipolis, France
ilaria.castellani@inria.fr

Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica, Università di Torino,
corso Svizzera 185, 10131 Torino, Italy
dezani@di.unito.it

Paola Giannini
DiSIT, Università del Piemonte Orientale,
Via Teresa Michel 11, 15121 Alessandria, Italy
paola.giannini@uniupo.it

2 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

1 Introduction

Session types are a simple but expressive type formalism that specifies the structure
of interactions. Traditionally, session types have been used to ensure safety proper-
ties of interactions, such as absence of communication errors, deadlock freedom
and race freedom.

Reversibility is a means to improve system flexibility and reliability. Reversing a
computation may be defined as the act of undoing some suffix of the computation,
in order to return to a previously visited state. In a nondeterministic computation,
this possibility may be used to return to a previous branching point, in case the
chosen branch has led to an unsuccessful state.

In the setting of structured communications, reversibility has been first studied
for contracts [2,3] and transactions [11,12,21]. More recently, it has started to be
investigated also for session calculi, both binary [34,24] and multiparty [14,35,28,
26] (see Sect.6 for more discussion on related work).

When reversing a structured interaction, one has to preserve the consistency
of the global state: if one partner triggers a rollback, then all its communicating
partners should roll back accordingly. Session types turn out to be very useful here,
since they specify both the functionality of communications (sender, receiver and
type of message), and the order in which they should occur.

We present a calculus for concurrent reversible multiparty sessions, whose
distinctive feature is a flexible choice operator, allowing for different sets of par-
ticipants in its branches. The only participant which is required to occur in all
branches is the one which solves the choice, henceforth called the choice leader.

Our choice operator is inspired by the notion of connecting action recently
introduced by Hu and Yoshida to describe protocols with optional participants
[20]. The intuition behind connecting actions is that in some parts of the protocol,
delimited by a choice construct, some participants are required to take part in
the interaction while some others may be optional. Connecting actions are used
to invite optional participants to join the interaction along some branches of the
choice. For instance, in a PC meeting, it could happen that in case of divergent
views about a paper, the PC chair launches a discussion among the concerned
PC members, but also invites some additional PC members to join the discussion.
These additional members are optional in the sense that they are not required to
discuss on that particular paper, but they may be invited to do so in some cases.

Here we shall make a more permissive use of connecting actions than in [20].
The differences between our connecting actions and those in [20] are discussed

in Sect.6.
Compared to the standard choice operator of multiparty session calculi, our

flexible choice allows for a more natural description of typical communication
protocols, such as the one mentioned above. Another example is the vacation
protocol discussed below, where Alice has to decide between two destinations, and
depending on her decision she will wish to contact either an airline or a railway
company but not both. This will be modelled by a choice between two connecting
actions, one with the airline and one with the railway company.

Another notable feature of our calculus is that it gives a compact representation
of the history of processes and types, which facilitates the definition of rollback. It
also implements a fine-tuned strategy for backward computation, which is geared
towards achieving compliance. In essence, a backward move can only return to

Reversible Sessions with Flexible Choices 3

a past choice point, and it can only be triggered by the leader of that choice;
moreover, the past choice state is restored without the already explored branch,
thus forcing the choice leader to engage into a different branch.

The main contributions of our paper may be summarised as follows:

– the introduction of a flexible choice operator based on connecting actions in a
reversible multiparty session framework;

– a fine-tuned strategy for rollback to checkpointed choices, whereby rollback can
only be triggered by choice leaders in predefined states of the computation,
leading back to the choice state stripped off the unsuccessful path.

This work builds on our previous papers [14] and [8]. As regards the treatment of
reversibility in multiparty sessions, the general principles and the use of checkpoints
for return points are taken from [14], while the formalisation of histories and the
specific rollback mechanism are borrowed from [8]. The formalisation of histories is
pushed a little further here than in [8], including notions of causality and conflict
for communication occurrences. On the other hand, the use of connecting actions is
new with respect to [14] and [8], and so is the study of their interplay with reversible
computations. This interplay is not entirely trivial, as it requires revisiting the
definition of projection of a global type onto its participants. A relevant new notion
to this purpose is that of affecting choice for a participant: intuitively, a choice
specified by a global type affects a participant if the whole choice is needed to
determine the projection on that participant. By definition, a choice affects all its
required participants while it does not affect optional participants which appear
in only one branch. If we ignore connecting actions, the expressive power of our
calculus is comprised between that of [14] and that of [8]. Indeed, [8] allows for
both parallel and sequential composition within processes and types, yielding a
powerful but somewhat complex calculus. Here we decided to stick to a more
standard syntax, in order to be able to focus on the main topic of the paper,
namely backward computation in the presence of connecting actions.

Vacation protocol example To illustrate our approach, we present a simple protocol
involving five parties, Alice, Bob, Carol, the airline company Alitalia and the
railway company Trenitalia. This protocol, henceforth called the vacation protocol,
will serve as our running example throughout the paper.

For Easter holidays, Alice receives two independent invitations from Bob and
Carol. Bob proposes to Alice to visit him in Paris, while Carol offers to host her in
her seaside house in Amalfi. Since Alice lives in Rome, depending on her decision
she will need to book a flight to go to Paris or a train to reach Amalfi. To do so,
Alice will either contact Alitalia or Trenitalia to buy a ticket, and then inform both
Bob and Carol of her decision. In case of a plane or train strike, Alice is allowed to
change her mind. Letting a, b, c, f, t denote respectively Alice, Bob, Carol, Alitalia
and Trenitalia, a global type describing this communication protocol is:

b
iP−−→ a; c

iA−−→ a; (a
tk↔−→ f; a

yes−−→ b; a
no−−→ cC� a

tk↔−→ t; a
no−−→ b; a

yes−−→ c)

where C� is a choice with checkpoint label C, meaning that the choice leader
(i.e. the participant who makes the choice, Alice in this case) can rollback to
take a different branch of the choice. The communications between Alice and
Alitalia/Trenitalia are connecting communications (represented by messages of the

4 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

form
λ↔). This means that there is no assurance for Alitalia and Trenitalia that

they will receive a message from Alice. With standard global types, Alitalia and
Trenitalia should receive a message from Alice in both branches of the choice, and
this is clearly not realistic. A different way out would be to use three global types
instead of one, respectively with sets of participants {Alice, Bob, Carol}, {Alice,
Alitalia} and {Alice, Trenitalia}. The drawback of the latter solution is that, in the
presence of more than one global type, a simple session type system is not sufficient
to ensure progress, and one needs to recourse to more refined type systems [29].

Thanks to connecting actions, the vacation protocol may be described by a
single global type, without the constraints of standard global types.

Outline The rest of the paper is organised as follows. In Sect.2 we define the
syntax and operational semantics - both forward and backward - of our calculus. In
Sect.3 we introduce our syntax for global types and session types and we establish
well-formedness conditions for global types. In Sect.4 we present our type system
and prove some preliminary properties. In Sect.5 we prove the soundness of our
type system, namely that it ensures the expected semantic properties of session
fidelity and forward and backward progress. We conclude in Sect.6 with some
discussion on related and future work. The Appendix proves the correctness of a
possible implementation of backward reduction.

2 Calculus

We assume the following base sets: simple messages, ranged over by λ, λ′, . . . and

forming the set Msg; connecting messages, ranged over by
λ↔, λ

′
↔, . . . and forming

the set CMsg; checkpoint labels, ranged over by C,C′ and forming the set ChLa; and
session participants, ranged over by p, q, r and forming the set Part. We use Λ to
range over both simple messages and connecting messages.

We use ∆ to range over sets of checkpoint labels, and γ to stand for either the
empty set or a singleton consisting of an overlined checkpoint label (curly brackets
will be omitted around singletons):

∆ ::= ∅ || ∆,C γ ::= ∅ || C

Sets ∆ and γ are associated with choices in processes. More precisely, a set ∆ is
associated with an external choice and said to be passive, while a set γ is associated
with an internal choice and said to be active. Intuitively, an overlined label C is
the handle for a backward move: a participant who crossed an internal choice
(henceforth called the choice leader) with checkpoint label C, and then proceeded in
the computation, may decide to return to that choice whenever she has the ability
to send a message. Within a network, this backward move of the choice leader will
have to be matched by backward moves of all the participants who did some action
after crossing the matching external choice, whose checkpoint set contains label
C. The asymmetry between ∆ and γ is justified by the fact that there is only one
choice leader who can send messages to various participants.

Let π ∈ {p?Λ, p!Λ | p ∈ Part, Λ ∈ Msg ∪ CMsg} denote an atomic action, namely
a simple input/output action or an input/output action establishing a connection.
As in [20], connecting inputs may be dangling forever, whereas simple inputs will
eventually take place. This gives a natural freedom in the definition of communica-
tion protocols as illustrated in the examples of the introduction. An atomic action

Reversible Sessions with Flexible Choices 5

can bear a hat, in which case it represents an already executed action. We use π̃ to
stand for either π or π̂. External choices and internal choices are denoted by

∑
and

⊕
, respectively.

Definition 1 (Processes) Processes are defined by:

P ::= ∆
∑
i∈I p̃i?Λi;Pi || γ

⊕
i∈I p̃i!Λi;Pi || µX.P || X || end

where in both kinds of choice the pairs (pi, Λi) are assumed to be all distinct.
Moreover, for external choices we also assume that the Λi’s are either all simple or
all connecting messages. This condition allows us to distinguish between simple
and connecting external choices according to the kind of their inputs. This is
essential for requiring that at least one of the inputs in a simple external choice will
eventually be matched by a message. Instead all inputs in a connecting external
choice can wait forever. Processes without hats are called user processes and the
others are runtime processes.

We will omit empty sets of checkpoint labels, choice symbols in one-branch
choices, and trailing end processes.

External and internal choices are assumed to be associative, commutative, and
non-empty (except when combined with binary choices). A prefixed process may
be either an input process or an output process. We require recursion to be guarded.
Processes are treated equi-recursively, i.e. they are identified with their generated
tree [33]. In other words, we consider processes up to the standard structural
equivalence of processes.

The typing rules of Sect.4 will ensure that in a choice, at most one of the first
atomic actions bears a hat. This condition expresses the fact that executing a
choice amounts to executing one of its branches.

In a full-fledged calculus, messages would carry values, namely they would be
of the form Λ(v). Here, for simplicity we consider only pure messages.

Networks are parallel compositions of pairs p[[P]], where participant p has
behaviour P .

Definition 2 (Networks) Networks are defined by: N ::= p[[P]] || N ‖ N

The operator ‖ is associative and commutative, with neutral element p[[end]] for
each p. These laws, together with the structural equivalence of processes, give the
structural equivalence of networks.

Example 1 (Networks) A network for the vacation example of Sect.1 is as follows:

N = a[[P a]] ‖ b[[P b]] ‖ c[[P c]] ‖ f[[P f]] ‖ t[[P t]]
where
P a = b?iP; c?iA; (P a

1 C⊕ P a
2) with P a

1 = f!
tk↔ ; b!yes; c!no and P a

2 = t!
tk↔ ; b!no; c!yes

P b = a!iP; (a?yes C+ a?no) P c = a!iA; (a?no C+ a?yes) P f = P t = Ca?
tk↔

The operational semantics is given by two LTSs, one for processes and one for
networks. In the LTS for processes, forward transitions have the form P

π−→ P ′ and

backward transitions have the form P
CxP ′ or P

CxP ′. We define P ↓out if P
p!Λ−−→ P ′

6 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

∆
∑
i∈I πi;Pi

πj−−→ ∆(
∑
i∈I\{j} πi;Pi + π̂j ;Pj) j ∈ I [ExtCh]

γ

⊕
i∈I πi;Pi

πj−−→ γ(
⊕
i∈I\{j} πi;Pi ⊕ π̂j ;Pj) j ∈ I [IntCh]

P ↓out I 6= ∅
[BackA]

C
(
⊕
i∈I πi;Pi ⊕ π̂;P)

Cx

C

⊕
i∈I πi;Pi

C ∈ ∆
[BackP]

∆

∑
i∈I

π̃i;Pi
Cx*∆

∑
i∈I

π̃i;Pi+

P
π−→ P ′

[CtFAt]
E[P]

π−→ E[P ′]

P
CxP ′ E ok for C

[CtBA]

E[P]
CxE[P ′]

P
CxP ′ E ok for C

[CtBP]
E[P]

CxE[P ′]

P
q!Λ−−→ P ′ Q

p?Λ−−→ Q′

[Com]
p[[P]] ‖ q[[Q]] ‖ N pΛq−−→ p[[P ′]] ‖ q[[Q′]] ‖ N

P
CxP ′ Ph

CxP ′h h ∈ H Pk
C
6 xk ∈ K

[Back]
p[[P]] ‖ Πh∈Hph[[Ph]] ‖ Πk∈Kpk[[Pk]]

Cxp[[P ′]] ‖ Πh∈Hph[[P ′h]] ‖ Πk∈Kpk[[Pk]]

Fig. 1: LTS for processes and networks.

for some p, Λ, P ′. In the LTS for networks, forward and backward transitions have

respectively the form N
pΛq−−−→ N

′ and N
Cx

N
′.

The LTSs for processes and networks are given in Fig.1. Rules [ExtCh] and
[IntCh] allow an action to be extracted from one of the summands, as usual, but
instead of discarding the other summands they record the fact that the choice
has been crossed by marking the executed action with a hat. With this technique,
inspired by [6] and already used for reversible computations in [26,8], all the
dynamic operators are turned into static operators and nothing is lost of the

original user process. Notice that when I = {j} these rules become πj ;Pj
πj−−→ π̂j ;Pj .

Rule [BackA] is the main backward rule: it applies to a past internal choice in
which one branch has been partially executed, and it allows the process to roll
back to the original choice where the executed branch is removed1. For this to be
possible, the choice must have at least one alternative branch Pi and an overlined
label C, which will label the back transition. This is essential to ensure (by means
of typing) that the choice leader will be the only participant habilitated to trigger
a rollback to this choice. The condition P ↓out means that in order to trigger a
rollback, the process P must be “in lead”, namely able to do an output. In this
way, rolling back acts as an alternative to one of its possible outputs.

1 We could also leave the executed branch, just erasing its hats. This change would preserve
all the properties of the calculus. We prefer the current formulation, since it avoids the possibility
of going back and fourth several times along the same branch (which could yield a livelock).

Reversible Sessions with Flexible Choices 7

Rule [BackP] is needed to allow the remaining participants to roll back. The
mapping * + erases hats from processes, yielding user processes, i.e.

*∆
∑
i∈I π̃i;Pi+ = ∆(

∑
i∈I πi; * Pi+) *γ

⊕
i∈I π̃i;Pi+ = γ (

⊕
i∈I πi; * Pi+)

and * + acts homomorphically otherwise. Note that the rollback rules can only be
applied to processes that are not user processes: in particular, one branch can be
erased only if at least one of its actions has been executed.

Evaluation contexts are as expected.

Definition 3 (Evaluation contexts) Evaluation contexts E are defined by:

E ::= ∆(
∑
h∈H ph?Λh;Ph + p̂?Λ; E) || γ(

⊕
h∈H ph!Λh;Ph ⊕ p̂!Λ; E) || []

An evaluation context E is ok for C (C) if C 6∈ ∆ (C 6= γ) whenever E has a
sub-context of the shape ∆(

∑
h∈H Ph + π̂; E ′) (γ(

⊕
h∈H Ph ⊕ π̂; E ′)). We use

this condition in rules [CtBA] and [CtBP] to assure that all participants involved
in a recursion go back to the same checkpoint, namely to the outermost one, as in
[28]. This is needed to assure subject reduction, see Example 6.

Rule [Com] is standard and deals with both simple and connecting messages.

We write P
C
6 xif Rule [CtBP] (with label C) cannot be applied to P . This means

that C can only occur in user processes within P . In other words, P does not
contain an executed ∆+ with C ∈ ∆. In a well-typed network, Rule [Back] will
make participant p roll back to an internal choice and moreover, all participants
that can roll back to corresponding external choices will do so in the same step.
This will be the basis for our soundness result in Sect.5. Notice that the only
requirements of rule [Back] concern process P , since it is easy to verify that either

Q
CxQ′ or Q

C
6 xfor any other process Q. Note that a direct implementation of rule

[Back] would be unrealistic. We discuss a possible asynchronous implementation
of this rule at the end of the section.

When the labels of transitions are not relevant, we write them simply as −→
and x. In this case, we use −→∗ to denote the reflexive and transitive closure of

−→ and

x∗−→ to denote the reflexive and transitive closure of −→ ∪ x.

Example 2 (Reduction of networks) We describe the evolution of the network N of
Example 1. At each step we only show the participants that are modified by the
reduction.
N

b iP a−−−→ a[[b̂?iP; c?iA; (P a
1 C⊕ P a

2)]] ‖ b[[â!iP; (a?yes C+ a?no)]] ‖ · · ·
c iA a−−−→ a[[b̂?iP; ĉ?iA; (P a

1 C⊕ P a
2)]] ‖ c[[â!iA; (a?no C+ a?yes)]] ‖ · · ·

a
tk↔ f−−−→ a[[b̂?iP; ĉ?iA; (f̂!

tk↔; b!yes; c!no C ⊕ P a
2)]] ‖ f[[C

̂
a?

tk↔]] ‖ · · ·
a yes b−−−−→ a[[b̂?iP; ĉ?iA; (f̂!

tk↔; b̂!yes; c!no C ⊕ P a
2)]] ‖ b[[â!iP; (â?yes C + a?no)]] ‖ · · ·

Cx

−−→ a[[b̂?iP; ĉ?iA;CP
a
2]] ‖ b[[â!iP; (a?yes C+ a?no)]] ‖ f[[Ca?

tk↔]] ‖ · · ·

The last rollback is triggered by a [BackA] move of Alice synchronised with
[BackP] moves of Bob and Alitalia.

In the rest of this section we discuss a possible implementation of rule [Back],
which decomposes the simultaneous rollback of a set of participants into a sequence
of backward moves, one for each participant in the set. The first move of the
sequence is always that of the choice leader.

8 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

P1
p?Λ−−→ P ′1 P2

q!Λ−−→ P ′2
[ComS]

q[[P1]] ‖ p[[P2]] ‖ N G 〈−,P, ∅〉 pΛq
==⇒ q[[P ′1]] ‖ p[[P ′2]] ‖ N G 〈−,P, ∅〉

P
CxP ′

[BackS]
p[[P]] ‖ N G 〈−,P ∪ {p}, ∅〉

sCxp[[P ′]] ‖ N G 〈C, {p},P〉

P
CxP ′

[BackY]
p[[P]] ‖ N G 〈C,P,P′ ∪ {p}〉

yCxp[[P ′]] ‖ N G 〈C,P ∪ {p},P′〉

P
C
6 x

[BackN]
p[[P]] ‖ N G 〈C,P,P′ ∪ {p}〉

nCxp[[P]] ‖ N G 〈C,P ∪ {p},P′〉

N G 〈C,P, ∅〉
eCx

N G 〈−,P, ∅〉 [BackE]

Fig. 2: LTS for systems.

We introduce states to define systems, which are pairs of networks and states.
States are defined by σ := 〈c,P1,P2〉, where c denotes either a checkpoint label

C or ‘−’, and P1,P2 form a partition on the set of network participants. In a state
of the form 〈−,P1,P2〉, the set P2 is always ∅. A state is ready if it is of the shape
〈−,P, ∅〉. A communication can only take place in a ready state, yielding a ready
state again. Similarly, the starting move of a rollback can only take place in a ready
state, but it gives rise to a state of the form 〈C,P1,P2〉. In a state 〈C,P1,P2〉,
a rollback is underway: the participants in P1 have already contributed to the
rollback, while the participants in P2 still need to respond to the rollback “call”
from the choice leader.

Systems have the form N G 〈c,P1,P2〉, where P1 ∪ P2 is the participant set of
N. A system N G σ is ready if the state σ is ready. Fig.2 gives the LTS for systems.

We use the labelled double arrows
α
=⇒ and the labelled curly arrows

sCx,
yCx, nCx, eCx

for communication and backward moves of systems, respectively. In this way the
labelled arrows for networks and systems are disjoint.

The reverse rule [Back] of Fig.1 splits into four rules for systems:

– rule [BackS] allows the choice leader p to start a rollback: the new state contains
the checkpoint label and all participants but p are required to roll back, if
possible;

– rule [BackY] allows participant p to roll back to the checkpoint label memorised
in the state: the new state records the rollback of p;

– rule [BackN] modifies the state recording that participant p cannot roll back
with the current checkpoint label;

– rule [BackE] ends the rollback by erasing from the state the current checkpoint
label when all participants have become aware of the rollback.

The participants different from the choice leader are split into those that may
roll back and those that may not. The first ones reduce by rule [BackY] and the
second ones reduce by rule [BackN].

In Appendix A we prove the equivalence between the LTS of Fig.1 and the one
of Fig.2.

Reversible Sessions with Flexible Choices 9

Example 3 (Reduction of systems) We show now how the rules of Fig.2 may be used
to simulate the execution of the network N in Example 2. First observe that, since
the initial state is σ = 〈−, {a, b, c, f, t}, ∅〉, the first four communications of the
system can be derived by rule [ComS], leaving the state σ unchanged and yielding
the same network as in Example 2 (fourth line), namely N′ = N1 ‖ N2 where:

N1 = a[[b̂?iP; ĉ?iA; (f̂!
tk↔; b̂!yes; c!no C ⊕ P a

2)]] ‖ b[[â!iP; (â?yes C + a?no)]]

N2 = c[[â!iA; (a?no C+ a?yes)]] ‖ f[[C
̂
a?

tk↔]] ‖ t[[Ca?
tk↔]]

Then, an application of rule [BackS] starts the rollback and a possible evolution of
the system N

′ G σ is the following:

N
′ G 〈−, {a, b, c, f, t}, ∅〉

sCxa[[b̂?iP; ĉ?iA;CP
a
2]] ‖ · · · G 〈C, {a}, {b, c, f, t}〉 [BackS]

yCxb[[â!iP; (a?yes C+ a?no)]] ‖ · · · G 〈C, {a, b}, {c, f, t}〉 [BackY]
nCxc[[â!iA; (a?no C+ a?yes)]] ‖ · · · G 〈C, {a, b, c}, {f, t}〉 [BackN]
yCxf[[Ca?

tk↔]] ‖ · · · G 〈C, {a, b, c, f}, {t}〉 [BackY]
nCxt[[Ca?

tk↔]] ‖ · · · G 〈C, {a, b, c, f, t}, ∅〉 [BackN]
eCx· · · G 〈−, {a, b, c, f, t}, ∅〉 [BackE]

The application of rule [BackE] closes the rollback and brings the system back to
the ready state σ. Note that the [BackN] and [BackY] moves can be performed
in any order as long as they follow the [BackS] move by Alice. The network N is
typable in the system of Sect.4 by the global type given in the Introduction. By
the Subject Reduction Theorem (Theorem 1) also the network N′ is typable. This
example shows that the four back rules of Fig.2 are all used for reducing typable
networks.

3 Global Types and Session Types

According to [18,19], a multiparty session is a series of communications among
participants[20], which follows a predefined protocol specified by a global type.
Global types are built from choices among communications with the same sender,
possibly using recursion. The choices are required to be non-ambiguous, i.e. to have
either different receivers or different messages. As in processes, choices in global
types have checkpoint labels which mark them as return points for rollbacks, and
the executed part is highlighted with hats. For consistency, when a communication
has a hat, then also all the communications that cause it (see Definition 7) must
have a hat. This condition is expressed by Definition 8.

The inputs/outputs of each participant are determined by her session type,
which is obtained by projecting the global type of the whole conversation. To define
session types we start with the syntax of session pre-types (Definition 9) and then
we single out session types (Definition 11) using the projection of global types
(Fig.5). The crucial point in the definition of projection is to determine when a
participant which is not the choice leader of a choice may be realised by an external
choice of processes. To this aim we define a meet operation on session pre-types
(Definition 10).

We use γ to denote either the empty set or a singleton made of a checkpoint
label:

10 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

part(γ �i∈I α̃i;Gi) =
⋃
i∈I(part(αi) ∪ part(Gi))

part(µt.K) = part(K)
part(t) = part(End) = ∅

Fig. 3: Participants of global types.

γ ::= ∅ || C

Sets γ will be associated with choices in global types.

Let αp ∈ {p Λ−→ q | q ∈ Part, Λ ∈ Msg ∪ CMsg} denote an atomic communication

with sender p. The communication p
λ−→ q is simple, while the communication p

λ↔−→ q

is connecting. An atomic communication can bear a hat, in notation α̂p, in which case
it represents a past or executed communication. The symbol α̃p stands for either αp or
α̂p. We write α̃ instead of α̃p when the sender is not relevant. Given a communication
α = p

Λ−→ q, we define the sender and receiver of α to be sender(α) = p and
recv(α) = q. Moreover, we denote by part(α) = {recv(α), sender(α)} the participants
of the communication α.

A global type K specifies an interaction that is still to start. A general global type
G specifies a partially executed interaction, whose parts that have been discarded
in choices or remain to be executed are specified by subterms K. By |I| we denote
the cardinality of the set I.

Definition 4 (Global types) Global types G are defined by:
K ::= γ α;K || γ�j∈J α

p
j ;Kj || µt.K || t || End

G ::= K || γ α̃;G || γ(�i∈I α
p
i ;Ki � α̂p ; G)

where |J | > 1, |I| > 0 and all atomic communications in a choice are different. I.e.
αp
h 6= αp

k for all h 6= k ∈ J in a choice γ�j∈J α
p
j ;Kj , and αp

h 6= αp
k for all h 6= k ∈ I

and αp
h 6= αp for all h ∈ I in a partially executed choice γ(�i∈I α

p
i ;Ki � α̂p ; G).

The type γ α̃;G represents a prefixing communication. The choice operator � is n-
ary (n ≥ 2) and commutative, and “;” has higher precedence than �. The notation

γ(�i∈I α
p
i ;Ki � α̂p ; G) stands for a choice where the branch initiating with α̂p has

started to be executed, while the other branches have been discarded.

By abuse of notation, we will write γ �j∈J α̃p
j ;Gj for either γ�j∈J α

p
j ;Gj or

γ(�j∈J\{k} α
p
j ;Gj � α̂p

k ; Gk). In the examples we will write α̃p
1;G1 γ � α̃p

2;G2

and γ(α̃p
1;G1 � . . . � α̃p

n;Gn). (Note however that only one of the α̃p
i may have a

hat.)

We use γ�i∈I α̃
p
i ;Gi to stand for γ α̃p;G when I is a singleton and for γ�i∈I α̃

p
i ;Gi

otherwise. Moreover, γ(�h∈H αp
h;Gh � α̂p ; G) stands for γ α̂p;G when H = ∅. We

write γ(�j∈J\{k} α̃
p
j ;Gj � α̃p

k;Gk) when we want to emphasise the branch α̃p
k;Gk.

When the checkpoint set γ associated with a choice is empty, we omit it. We
call rooted interaction a subterm α̃;G. So α̃;G can denote either a rooted interaction
or a prefixing communication (the context will disambiguate if needed). A type

γ �j∈J α̃j ;Gj is a choice among more than one rooted interaction with the same
sender, at most one of which bears a hat. Recursion must be guarded and it is
treated equi-recursively.

We use part(G) to denote the set of participants of G, as defined in Fig.3.

Reversible Sessions with Flexible Choices 11

We represent global types as trees, with γ� or γ ; on internal nodes, atomic
communications on the branches, and End on the leaves. For simplicity we assume
that each index set I, J,H is of the form {1, . . . , n}, where n is its cardinality. The
j-th branch of a γ� node is labelled by α̃j , and the unique branch of a γ ; node,
called 0-th branch to distinguish it from proper choice branches, is labelled by the
corresponding communication. In case the global type has some recursive subtype,
the tree is an infinite (regular) tree.

Example 4 (Trees) Fig.4 shows the tree representing the global type

G =
̂
p
λ0−−→ q;µt.(q

λ1↔−→ r; r
λ2−−→ p; tC�q

λ3−−→ p; p
λ4−−→ q)

where αi denotes the communication with message Λi = λi or Λi =
λi↔ for i =

0, . . . , 4.

;

α̂0 ��

C�
α1

{{

α3

""
;

α2 ��

;

α4��

C�
α1

||

α3

##

End

;

α2 ��

;

α4��

C�

zz $$

End

· · · · · ·

Fig. 4: Tree representation of G = α̂0;µt.(α1;α2; tC�α3;α4).

We introduce now a notation to distinguish different occurrences of the same
communication α̃ within a type G.

Communication occurrences in G, denoted by ξ, ξ′, have the form σα̃, where α̃ is
a possibly hatted communication and σ is a finite string over Nat, which represents
the path leading to that particular occurrence of α in the tree of G. Formally, the
path σ records the branch chosen at each γ� or γ ; node in G. In particular, the
last element of σ specifies the branch labelled by the communication α̃. (Note that
in σα̃ the path σ is not empty since it contains at least the index of the branch
labelled by α̃.) We use v (@) to denote the prefix ordering (strict prefix ordering)
between strings of naturals.

For instance, the two shown occurrences of α2 in the tree of Fig.4 are identified
by 010α2 and 01010α2.

Definition 5 (Occurrences) The set of communication occurrences of G, written
Occ(G), is defined by:

– Occ(End) = ∅ Occ(µt.K) = Occ(K{µt.K/t})
– Occ(γ α̃;G) = {0α̃} ∪ {0ξ | ξ ∈ Occ(G)}

12 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

– Occ(γ �j∈J α̃j ;Gj) = {jα̃j | j ∈ J} ∪ {jξ | j ∈ J and ξ ∈ Occ(Gj)}

In the following, communication occurrences will be simply referred to as occurrences.
Given an occurrence ξ = σα̃ of G, we define the path of ξ in G to be path(ξ) = σ,
the communication of ξ to be comm(ξ) = α̃ and the participants of ξ to be
part(ξ) = part(α).

An occurrence ξ is executed in G if comm(ξ) bears a hat. We define ExOcc(G),
the set of executed occurrences of G, as follows:

ExOcc(G) = {ξ | ξ ∈ Occ(G) and comm(ξ) = α̂ for some α}

The relation of conflict on occurrences is handy. Intuitively, two occurrences
are in conflict if they mutually exclude each other in any computation.

Definition 6 (Conflict) The conflict relation in G, denoted by #G, is the symmetric
irreflexive relation on Occ(G) defined by: ξ #G ξ

′ if there exist σ0, σ1, σ2 such that
path(ξ) = σ0iσ1 and path(ξ′) = σ0jσ2 with i 6= j.

Two conflicting occurrences have paths that diverge at some choice node of the tree.
Since the syntax of global types does not allow hats on more than one branch of a
choice, this implies that two conflicting occurrences can never be both executed.

We now formalise the notion of causality on occurrences by defining the set
of causes of a given occurrence. Intuitively, the set of causes of ξ in G is the set
of occurrences in G on which ξ depends, namely those that need to be executed
before ξ in any computation allowed by G.

Definition 7 (Causes) Given an occurrence ξ ∈ Occ(G), the set of causes of ξ in

G, written Causes(G, ξ), is the smallest set that contains an occurrence ξ′ if:

– either path(ξ′) @ path(ξ) and part(ξ′) ∩ part(ξ) 6= ∅;
– or ξ′ ∈ Causes(G, ξ′′) and ξ′′ ∈ Causes(G, ξ) for some ξ′′.

Our notions of conflict and causality are similar to those defined in [37] for
Prime Event Structures (although simpler, since we only deal with trees here).

We require global types to respect causality of occurrences, as formalised in
the following definition.

Definition 8 (Causally correct global type) A global type G is causally correct

if, whenever an occurrence ξ is executed in G, then every occurrence in Causes(G, ξ)
is executed in G, namely if ξ ∈ ExOcc(G) implies Causes(G, ξ) ⊆ ExOcc(G).

The conflict relation is hereditary, namely if ξ#G ξ
′ and ξ′ ∈ Causes(G, ξ′′), then

ξ#G ξ
′′. To show this property (which is an axiom in Prime Event Structures), it

is enough to observe that if path(ξ) = σ0iσ1 and path(ξ′) = σ0jσ2, then σ0jσ2 @
path(ξ′′) implies path(ξ′′) = σ0jσ2σ3 for some σ3.

Session types are projections of global types onto participants. They represent
the contributions of individual participants to the session. The projection of a choice
yields a union for the choice leader and intersections for the receivers. Checkpoint
labels of global types are preserved by the projection onto session types, and the
checkpoint label of the choice leader is distinguished by overlining it.

Reversible Sessions with Flexible Choices 13

We now define session pre-types, which are a superset of session types. Session
types will be session pre-types which are projections of global types. Session pre-
types are obtained from processes by replacing external and internal choices with
intersections and unions, X with t and end with End, with similar conventions.

Definition 9 (Session pre-types) Session pre-types are defined by:

T ::= ∆
∧
i∈I p̃i?Λi;Ti || γ

∨
i∈I p̃i!Λi;Ti || µt.T || t || End

As for processes, we assume that intersections and unions are not ambiguous, i.e.
that the pairs (pi, Λi) (i ∈ I) are all distinct and the Λi’s in intersections are either
all simple or all connecting messages.

We want projection to ensure that in a global choice, the choice leader makes
the decision and all the other participants act accordingly. We do so by requiring
that, for any participant except the choice leader, the set of projections of the
choice branches on that participant, say {Ti | i ∈ I}, be consistent, i.e., the meet of

the types in the set,
d
i∈I Ti, be defined.

The meet
d
i∈I Ti is a partial operator, which checks that the Ti’s are compatible

behaviours and then combines them into a single session type. Intuitively,
d
i∈I Ti

is defined if the concerned participant receives a message that “notifies” her about
the chosen Ti. If one of the Ti’s is an intersection of simple inputs, then so must
be all the other Ti’s. Instead, intersections of connecting inputs can be combined
with End.

To build the meet of intersection types, we define an auxiliary operator e, which

takes an intersection
∧
i∈I p̃i?Λi;Ti and an input type (after removing checkpoint

labels in both of them) and combines them, if possible:

(
∧
i∈I p̃i?Λi;Ti) e p̃?Λ;T =

∧
i∈I p̃i?Λi;Ti ∧ p̃?Λ;T

if the resulting intersection is not ambiguous

(
∧
i∈I p̃i?Λi;Ti) e p̃?Λ;T =

∧
i∈I p̃i?Λi;Ti

if p = pj and Λ = Λj and T = Tj for some j ∈ I

(
∧
i∈I

˜
pi?

λi↔;Ti) e End =
∧
i∈I

˜
pi?

λi↔;Ti

To define e on two intersection types, we just iterate the above definition on
the members of one of the intersections. In a similar way, we can extend e to a set
of types. Using e we are able to build meets.

Definition 10 (Meet) The meet of a set of session pre-types is defined by:

d
i∈I Ti =

{
∆ ei∈I T

′
i if Ti = ∆i

T′i for all i ∈ I and ∆ =
⋃
i∈I ∆i

End if Ti = End for all i ∈ I

If possible we combine the Ti with e as explained above. The set of checkpoint
labels of the resulting intersection is the union of the corresponding sets for the
Ti’s. If some Ti is End, it means that the participant terminates in the branch Ti.
Then it must terminate or be connecting in all the other branches.
We do not need to define the meet when the arguments are recursive types, since
we consider recursion equi-recursively. The meet is not defined in all other cases,
i.e. between intersections and unions, between unions etc.

To define projection we need one last auxiliary operator, the labelling of a session
pre-type T by a set γ of at most one checkpoint label (notation γbTc), defined by:

14 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

(
˜
p
Λ−→ q;G)�p = q̃!Λ;G�p (

˜
p
Λ−→ q;G)�q = p̃?Λ;G�q (

˜
p
Λ−→ q;G)� r = G� r , if r 6= p, q

(γ α̃p;G)� r =

{
γ (α̃p;G)� r if r = p

γ(α̃p;G)� r otherwise

(γ �i∈I α̃
p
i ;Gi)� r =

{
γ

∨
i∈I (α̃p

i ;Gi)� r if r = p

γb
d
i∈I(α̃p

i ;Gi)� r c otherwise

(µt.K)�p =

{
µt.K�p if p ∈ part(K)

End otherwise
t�p = t End�p = End

Fig. 5: Projection of global types onto participants.

γb∆
∧
i∈I π̃i;Tic = γ∪∆

∧
i∈I π̃i;Ti γbEndc = End

Labelling adds γ to the first (possibly empty) set ∆ found in T. Intuitively, the
checkpoint labels that are spread along successive choices in the global type may
get grouped together on a single local choice represented by an intersection when
projected on participants. Labelling of union and recursive types is not defined
since this operator is only used with types resulting from the application of the
meet.

The projection of global types uses the projections of rooted interactions, see
the first line of Fig.5, where the projection operator “� ” has higher precedence
than “ ; ”. The projection of a choice is a union for the sending participant, and it
is otherwise computed as the meet of the projections on the branches. By abuse
of notation, in Fig.5 γ means C if γ = C and ∅ if γ = ∅. The meet operation can
be undefined, and therefore also the projection of global types can be undefined.
The definition of projection does not ensure that all the branches of a choice

γ �i∈I α̃
p
i ;Gi have the same participants. They can differ for participants whose

first communication is a connecting input. Notice that projection respects hats and
checkpoint labels (transforming C to C for the leader of a C-labelled choice).

Example 5 (Projection) Let us see our notion of projection at work on a few exam-
ples.

1. If G is the global type shown in Example 4 we get

G�p = q̂!λ0;µt.(r?λ2; tC∧ q?λ3; q!λ4) G� r = µt.Cq?
λ1↔ ; p!λ2; t

G�q = p̂?λ0;µt.(r!
λ1↔ ; tC∨ p!λ3; p?λ4)

2. An example showing how projections can decorate intersections by more check-

point labels is G = p
λ1−−→ q; (p

λ2↔−→ rC1
� p

λ3↔−→ s)�p
λ4−−→ q; (q

λ5↔−→ rC2
� q

λ6↔−→ s)

where G� r = p?
λ2↔{C1,C2}∧ q?

λ5↔.

3. Let G = µt.(p
λ1−−→ q; t�p

λ2−−→ q) and G′ = p
λ1−−→ q;G�p

λ2−−→ q. Then G � q =
µt.(p?λ1; t ∧ p?λ2) and G′ �q = p?λ1;G�q ∧ p?λ2.

In the following we will consider only causally correct and projectable global types.

The Subject Reduction Theorem (Theorem 1) shows that these conditions are
preserved by reducing networks that can be typed using the rules introduced in
the next section.

Reversible Sessions with Flexible Choices 15

We end this section by defining session types.

Definition 11 (Session types) A session pre-type T is a session type if T = G�p
for some global type G and some participant p.

4 Type System

In this section we define our type system and prove some initial results about it.
The shape of typing judgements is Γ ` P : T, where the environment Γ associates
process variables with session types: Γ ::= ∅ || Γ,X : T. Process typing exploits
the correspondence between external choices and intersections, internal choices
and unions. The typing rules for both processes and networks are given in Fig.6.
Typing respects hats: in rules [t-ExtCh], and [t-IntCh], the hats in processes and
types are exactly on the same actions.
Fig.7 gives the subtyping rules, where the double line indicates that the rules are
interpreted coinductively [33] (Chapter 21). Subtyping takes into account the rules
for intersection and union and preserves hats. Rule [Sub-In-Skip] reflects the fact
that connecting inputs can be added without causing problems. Rule [t-Net] is the
only rule for typing networks: it requires that the types of all processes be subtypes
of the projections of a unique global type. The condition part(G) ⊆ {p1, . . . , pn}
ensures the presence of all session participants and allows the typing of sessions
containing p[[end]] for any p, a property needed to guarantee invariance of types
under structural equivalence of networks. Clearly, typing imposes constraints on
the way hats and checkpoint labels are placed within processes.

Example 6 (ok condition on evaluation contexts) The following example shows the
need of the ok condition in reduction rules to assure subject reduction. Let P =
µX.(q!λ1; r!λ2;X C⊕ q!λ3; r!λ4;X) and Q = µY.(p?λ1;Y C+ p?λ3;Y) and R =
µZ.(p?λ2;Z C+ p?λ4;Z). The network p[[P]] ‖ q[[Q]] ‖ r[[R]] reduces by forward
reductions to p[[P ′]] ‖ q[[Q′]] ‖ r[[R′]] where

P ′ = q̂!λ1; r̂!λ2; (q!λ1; r!λ2;P C⊕ q̂!λ3; r!λ4;P) C⊕ q!λ3; r!λ4;P and

Q′ = p̂?λ1; (p?λ1;Q C+ p̂?λ3;Q)C+ p?λ3;Q and R′ = p̂?λ2;R C+ p?λ4;R. By rule

[Back], p[[P ′]] ‖ q[[Q′]] ‖ r[[R′]] Cxp[[P ′′]] ‖ q[[Q]] ‖ r[[R]] where P ′′ = q!λ3; r!λ4;P .
Without the condition E ok for C on rule [CtBA], we could have also the backward
move:

p[[P ′]] ‖ q[[Q′]] ‖ r[[R′]] Cxp[[P ′′′]] ‖ q[[Q′′]] ‖ r[[R]], where

Γ ` Pi : Ti (i ∈ I)
[t-ExtCh]

Γ ` ∆
∑
i∈I π̃i;Pi : ∆

∧
i∈I π̃i;Ti

Γ ` Pi : Ti (i ∈ I)
[t-IntCh]

Γ ` γ
⊕
i∈I π̃i;Pi : γ

∨
i∈I π̃i;Ti

Γ ` end : End [t-end]
Γ,X : t ` P : T

[t-Rec]
Γ ` µX.P : µt.T

Γ,X : t ` X : t [t-Var]

` Pi : Ti Ti 6 G�pi (1 ≤ i ≤ n) part(G) ⊆ {p1, . . . , pn}
[t-Net]

` p1[[P1]] ‖ · · · ‖ pn[[Pn]] : G

Fig. 6: Typing rules for processes and networks.

16 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

[Sub-In]

∀i ∈ I : Ti 6 T′i

∆
∧
i∈I∪I′ π̃i;Ti 6 ∆

∧
i∈I π̃i;T

′
i

===============================

[Sub-Out]

∀i ∈ I : Ti 6 T′i

γ

∨
i∈I π̃i;Ti 6 γ

∨
i∈I π̃i;T

′
i

==========================

[Sub-In-Skip]

∀i ∈ I : πi is a connecting input

∆
∧
i∈I π̃i;Ti 6 End

[Sub- End]

End 6 End

Fig. 7: Subtyping rules.

P ′′′ = (q̂!λ1; r̂!λ2; q!λ1; r!λ2;P) C ⊕ q!λ3; r!λ4;P and Q′′ = p̂?λ1;Q C+ p?λ3;Q.
Then Subject Reduction would fail, since the network p[[P]] ‖ q[[Q]] ‖ r[[R]] is

typable with the global type µt.p
λ1−−→ q; p

λ2−−→ r; tC� p
λ3−−→ q; p

λ4−−→ r; t, while
p[[P ′′′]] ‖ q[[Q′′]] ‖ r[[R]] is not typable. In fact the output r!λ2 has a hat in the
session type of P ′′′, while the corresponding input p?λ2 does not have a hat in
the session type of R. This example shows also why it would not be possible to
roll back to the innernost checkpoints in recursive processes, since they could be
different for different participants.

In the remainder of this section we prove some properties of our type system
which will be used to show the soundness results in the next section. The reader not
interested in proofs can go directly to Sect.5. We start with the classical lemmas of
inversion and canonical forms.

Lemma 1 (Inversion Lemma)

1. If Γ ` ∆
∑
i∈I π̃i;Pi : T, then T = ∆

∧
i∈I π̃i;Ti and Γ ` Pi : Ti for i ∈ I.

2. If Γ ` γ
⊕
i∈I π̃i;Pi : T, then T = γ

∨
i∈I π̃i;Ti and Γ ` Pi : Ti for i ∈ I.

3. If Γ ` µX.P : T, then T = µt.T′ and Γ,X : t ` P : T′.
4. If Γ ` X : T, then T = t and Γ = Γ ′, X : t.
5. If Γ ` end : T, then T = End.

6. If ` p1[[P1]] ‖ · · · ‖ pn[[Pn]] : G, then ` Pi : Ti and Ti 6 G �pi for 1 ≤ i ≤ n and

part(G) ⊆ {p1, . . . , pn}.

Lemma 2 (Canonical Form Lemma)

1. If Γ ` P : ∆
∧
i∈I π̃i;Ti, then P = ∆

∑
i∈I π̃i;Pi and Γ ` Pi : Ti for i ∈ I.

2. If Γ ` P : γ
∨
i∈I π̃i;Ti, then P = γ

⊕
i∈I π̃i;Pi and Γ ` Pi : Ti for i ∈ I.

3. If Γ ` P : µt.T, then P = µX.Q and Γ,X : t ` Q : T.

4. If Γ ` P : t, then P = X and Γ = Γ ′, X : t.
5. If Γ ` P : End, then P = end.

6. If ` N : G and part(G) = {p1, . . . , pn}, then N ≡ p1[[P1]] ‖ · · · ‖ pn[[Pn]] and

` Pi : Ti and Ti 6 G�pi for 1 ≤ i ≤ n .

The mapping * + defined at page 7 for processes may be extended in the obvious
way to session types. As expected, this mapping preserves typing.

Lemma 3 If ` P : T, then ` *P + : *T+.

Another classical lemma we need for proving Subject Reduction is the following,
which retrieves the shape of processes and networks from their labelled transitions.

Reversible Sessions with Flexible Choices 17

Lemma 4 1. If P
p?Λ−−−→ P ′, then P = E[∆

∑
i∈I πi;Pi], where πj = p?Λ for some

j ∈ I, and P ′ = E[∆(
∑
i∈I\{j} πi;Pi + π̂j ;Pj)].

2. If P
p!Λ−−→ P ′, then P = E[γ

⊕
i∈I πi;Pi], where πj = p!Λ for some j ∈ I, and

P ′ = E[γ(
⊕
i∈I\{j} πi;Pi ⊕ π̂j ;Pj)].

3. If P
CxP ′, then P = E[

C
(
⊕
i∈I πi;Qi ⊕ π̂;Q)] and Q ↓out and I 6= ∅ and

E ok for C and P ′ = E[
C

⊕
i∈I πi;Qi].

4. If P
CxP ′, then P = E[∆

∑
i∈I Pi] and C ∈ ∆ and E ok for C and P ′ =

E[*∆
∑
i∈I Pi+].

5. If P
C
6 x, then P does not contain an executed external choice with checkpoint label

∆ and C ∈ ∆.

6. If N
pΛq−−−→ N

′, then N = p[[P]] ‖ q[[Q]] ‖ N0 and P
q!Λ−−→ P ′ and Q

p?Λ−−−→ Q′ and

N
′ = p[[P ′]] ‖ q[[Q′]] ‖ N0.

7. If N
Cx

N
′, then N = p[[P]] ‖ Πh∈Hph[[Ph]] ‖ Πk∈Kpk[[Pk]] and P

CxP ′ and

Ph
CxP ′h for all h ∈ H and Pk

C
6 xfor all k ∈ K and

N
′ = p[[P ′]] ‖ Πh∈Hph[[P ′h]] ‖ Πk∈Kpk[[Pk]]

We now introduce some notions that are specific to the present type system,
and prove some results about them. More precisely:

– we define session contexts (Definition 12) and we show that they correspond to
evaluation contexts (Lemma 5);

– by extending the definition of meet to session contexts (Definition 14), we
show how session contexts may be retrieved as projections of global contexts
(Definition 13);

– we show that the maximal hatted path in the tree of a global type splits
the global type into a global context and the global type filling the hole
(Definition 15);

– the main result is Lemma 6: it devises the shape of global types starting from
one of its projections. It uses the notion of “global type affecting a participant”
(Definition 16).

We start by defining session contexts, which mirror process evaluation contexts
(Definition 3):

Definition 12 (Session contexts) Session contexts are defined by:

T ::= ∆(
∧
h∈H ph?Λh;Th ∧ p̂?Λ; T) || γ(

∨
h∈H ph!Λh;Th ∨ p̂!Λ; T) || []

We generalise typing, subtyping, and the definitions of ok for C (C) to session
contexts. We omit these definitions, which are trivial due to the correspondence
between process evaluation contexts and session contexts.

The following lemma gives easy relations between contexts and typing/subtyping.

Lemma 5 1. If T [T] 6 T′ and T′ 6= End, then T′ = T ′[T′′] and T 6 T ′ and T 6 T′′.
Moreover if T is ok for C (C), then T ′ is ok for C (C).

2. If T 6 T [T′], then T = T ′[T′′] and T ′ 6 T and T′′ 6 T′. Moreover if T is ok for

C (C), then T ′ is ok for C (C).

18 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

3. If Γ ` E[P] : T, then T = T [T′] and Γ ` E : T and Γ ` P : T′. Moreover if E is ok

for C (C), then T is ok for C (C).

4. If Γ ` E : T and Γ ` P : T and T [T] is a type, then Γ ` E[P] : T [T].
5. If Γ ` P : T [T], then P = E[Q] and Γ ` E : T and Γ ` Q : T. Moreover if T is ok

for C (C), then E is ok for C (C).

Proof By induction on contexts.

We define now global contexts, which identify subtypes of global types which
do not occur in discarded branches.

Definition 13 (Global contexts) Global contexts are defined by:
G ::= γ α̃;G || γ(�i∈I αi;Ki � α̃;G) || []

We extend to session contexts the labelling defined at page 13 by γb[]c = [].
This allows us to define projections of global contexts into session contexts using
[]� p = [] and generalising the definition of the meet operator as follows:

Definition 14 (Meet with contexts) The meet of session contexts and session

types is defined by:

∆(
∧
h∈H Th ∧ π̂; T)

d
∆′T =

∆ ∪∆′((
∧
h∈H Th e T) ∧ π̂; T) if the resulting

intersection is a
session context;

∆(
∧
h∈H Th ∧ π̂; T)

d
End = ∆(

∧
h∈H Th ∧ π̂; T) if Th for h ∈ H and

π̂ are all connecting inputs.

Projections of global contexts define session contexts only for a subset of partic-

ipants. A simple example is G = p
λ−→ q; [], whose projections on all r 6= p, q is

G � r = []. However, G � p = q!λ; [] and G � q = p?λ; [] are not session contexts
because the actions before the hole are not hatted. A more interesting example is
the ternary choice:

G′ = p
λ1↔−→ q�p

λ2↔−→ r�
̂
p

λ3↔−→ q; []

In fact G′ � p = q!
λ1↔ ∨ r! λ2↔ ∨ q̂!

λ3↔; [] and G′ � q = p?
λ1↔ ∧

̂
p?

λ3↔; [] are session

contexts, while G′ � r = p?
λ2↔ ∧ [] is not. Notice that without connecting communi-

cations such kind of example would be longer, since the participants q and r would
have to occur in all branches of the choice.

The paths that are not on discarded branches in the tree representation of a
global type G may be used to split G between a global context and the subtype
filling the hole. This is formalised in the following definition.

Definition 15 (Contexts and subtypes determined by paths) Let σ be a path
in a global type G.

1. The context determined by σ, Ctx(G, σ), is defined by:
– Ctx(G, ε) = []
– Ctx(γ α̃;G′, 0σ) = γ α̃; Ctx(G′, σ)
– Ctx(γ(�j∈J\{k} αj ;Kj � α̃k;Gk), kσ) = γ(�j∈J\{k} αj ;Kj � α̃k; Ctx(Gk, σ))
– Ctx(µt.K, σ) = Ctx(K{µt.K/t}, σ)

2. The subtype determined by σ, SubT (G, σ), is defined by:

Reversible Sessions with Flexible Choices 19

– SubT (G, ε) = G

– SubT (γ α̃;G′, 0σ) = SubT (G′, σ)
– SubT (γ(�j∈J\{k} αj ;Kj � α̃k;Gk), kσ) = SubT (Gk, σ)
– SubT (µt.K, σ) = SubT (K{µt.K/t}, σ)

Note that Ctx(G, σ) and SubT (G, σ) are defined if and only if the occurrences on σ

are not in conflict with executed occurrences, in other words if all ξ ∈ ExOcc(G)
are such that path(ξ) v σ or σ @ path(ξ).

It is easy to verify that G = Ctx(G, σ)[SubT (G, σ)] whenever Ctx(G, σ) is defined.

The properties of our calculus mainly depend on the possibility of deriving
information on the shape of a global type from its projections on participants.
A useful notion is that of global type “affecting” a participant, which essentially
means that the whole type is needed in order to obtain the projection on that
participant. A global type G affects p if:

– either there is one branch of G whose first communication has participant p

– or there are two branches of G whose projections on p are both different from
End.

Definition 16 (Affecting global types) A global type γ �i∈I α̃i;Gi affects partici-

pant p if one of the following holds:

– p ∈ part(αi) for some i ∈ I;
– |{i ∈ I | α̃i;Gi �p 6= End}| > 1.

For instance, if G is the global type of Example 4, then G affects participants p

and q but it does not affect participant r, as shown by their projections given in
Example 5(1).

In the projection of a global type G on p, the intersections have sets of checkpoint
labels. We know that at most one of these checkpoint labels is the label of the
subtype of G which affects p. But which one? The projection does not give us
enough information to decide. We overcome this problem by means of an equality
relation on session types which disregards the sets of checkpoint labels decorating
intersections.

We say that two session types T and T′ are equal up to intersection labelling,
dubbed T

.
= T′, if they are equal (T = T′) or they are the same intersection with

different sets of checkpoint labels (T = ∆T′′, T′ =
∆′T

′′ for some T′′).

We have now enough machinery to prove that if the projection of G on p is
split into a session context and a session type T which is either a union or an
intersection of simple inputs, then this is mirrored by a splitting of G into a global
context and a subtype which affects p. Moreover, if the session context is a hole,
then all the choices along the path leading to the hole in G must be unary choices.
Distinguishing the two shapes of T we can also show that:

– if T is a union type, then the subtype of G is a choice with leader p;
– if T is an intersection of simple inputs, then each “long enough” path in G leads

to a communication that projects onto one of these inputs.

20 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

Lemma 6 1. If G � p = T [γ
∨
i∈I Ti], then there is a unique path σ in G such that

SubT (G, σ) = γ �i∈I α̃
p
i ;Gi affects p and

Ctx(G, σ)�p = T and SubT (G, σ)�p = γ

∨
i∈I Ti.

2. If G � p = T [∆
∧
i∈I q̃i?λi;Ti], then there is a unique path σ in G such that

SubT (G, σ) affects p and

Ctx(G, σ)�p = T and SubT (G, σ)�p
.
= ∆

∧
i∈I q̃i?λi;Ti.

Moreover for each path σ′ in SubT (G, σ) there are j ∈ I and σj such that

σσj
˜

qj
λj−−→ p ∈ Occ(G) and either σj v σ′ or σ′ @ σj .

In both cases if T is the hole, then σ is a possibly empty string of 0’s.

Proof (1) By induction on session type contexts. If T = [], then G�p = γ

∨
i∈I Ti

and by definition of projection G = γ �i∈I α̃
p
i ;Gi, so G affects p. In this case σ = ε

is the required path, since SubT (G, ε) = G affects p and Ctx(G, ε) �p = [] �p = []
and SubT (G, ε)�p = G�p = γ

∨
i∈I Ti.

Moreover, σ is unique because for any path σ′ 6= ε the first communication along
σ′ would be an output from p, which would imply Ctx(G, σ′) � p 6= [] whenever
Ctx(G, σ′)�p is defined.

If T = ∆(
∧
i∈I Ti ∧ q̂?Λ; T ′), then

̂
q
Λ−→ p occurs in G by definition of projection.

This means that there exists ξ ∈ Occ(G) such that ξ = σ′
̂
q
Λ−→ p and there does not

exist ξ′ ∈ Occ(G) such that path(ξ′) @ σ′ and p ∈ part(ξ′). The definition of meet
implies that there is no j ∈ I such that Tj starts by q?Λ. Let G′ = SubT (G, σ′).
By construction G′ � p = T ′[γ

∨
i∈I Ti]. By induction hypothesis on T ′ there is

a unique path σ′′ such that SubT (G′, σ′′) affects p and Ctx(G′, σ′′) � p = T ′ and
SubT (G′, σ′′)�p = γ

∨
i∈I Ti. We can then choose σ = σ′σ′′. The proof of the other

inductive case is similar.

(2) By induction on session type contexts. Let T = ∆
∧
i∈I q̃i?λi;Ti. If T = [] the

proof proceeds by an inner induction on the path ap(p,G) defined by:

ap(p,G) =

{
0 ap(p,G′) if G = α̃;G′ and p 6∈ part(α)

ε otherwise

Intuitively, ap(p,G) represents the access path to the first choice affecting p in G.
Let σ = ap(p,G). If σ = ε, then G = γ �h∈H α̃h;Gh must satisfy either |H| > 1 or
p ∈ part(αj) for the unique j ∈ H. In the latter case, G trivially affects p. If |H| > 1,
then by definition of projection and the fact that all inputs are simple, there are
two branches whose projections on p are different from End. Therefore G affects p.
In both cases we have Ctx(G, ε)�p = []�p = [] and SubT (G, ε)�p = G�p = T.
We show that σ is unique. Let σ′ = jσ′′ for some j ∈ H and suppose that
Ctx(G, σ′)�p is defined. If p ∈ part(αj), then clearly Ctx(G, σ′)�p 6= []. If |H| > 1,
then Ctx(G, σ′)�p contains the projection on p of all the paths of G starting with a
branch different from the jth one. Since p appears as receiver along all these paths
as shown below, this again implies Ctx(G, σ′)�p 6= [].
If σ = 0σ′ where σ′ = ap(p,G′) and G = α̃;G′, then by inductive hypothesis on σ′

we have that SubT (G′, σ′) affects p and Ctx(G′, σ′)�p = [] and SubT (G′, σ′)�p = T.
Therefore, SubT (G, 0σ′) affects p and Ctx(G, 0σ′)�p = [] and SubT (G, 0σ′)�p = T.
By induction hypothesis σ′ is unique and so is σ.
The proof for T 6= [] is as in (1).

Reversible Sessions with Flexible Choices 21

In the remaining we prove that for each path σ′ in SubT (G, σ) there are σ′′ and j ∈ I

such that σσ′′
˜

qj
λj−−→ p ∈ Occ(G) and either σ′′ v σ′ or σ′ @ σ′′. The path σ′ crosses

different choices. By the assumption that all inputs are simple and by the definition
of e, the projections of the branches of these choices on p must be intersections

of types starting with inputs with different senders or messages, namely q̃j?λj

(j ∈ I ′ ⊆ I). Moreover, the corresponding communications
˜

qj
λj−−→ p (j ∈ I ′) must

be the first communications involving p in paths of SubT (G, σ). Therefore, given
σ′ in SubT (G, σ) there are σ′′ and α such that ξ = σσ′′α̃ ∈ Occ(G) and ξ is the
first occurrence with p ∈ part(ξ) and either σ′′ v σ′ or σ′ @ σ′′. The definition of

projection implies α̃ =
˜

qj
λj−−→ p for some j ∈ I ′.

5 Soundness

This section is devoted to the formulation and the proof of the properties of
our calculus, i.e. subject reduction, session fidelity and progress. These proofs
are not trivial due to the presence of both reverse computations and connecting
communications.

Lemma 7 deals with subtypes of global contexts. It uses the notions of “alive”
and “enabled” for communication occurrences. An occurrence of a communication
is alive if it can be executed in the future, and it is enabled if it can be immediately
executed. We also define the notions of “alive” and “enabled” for checkpoint labels
as they are needed for session fidelity. A checkpoint label is alive if it can be the
target of a rollback in the future, and it is enabled if the next action of the choice
leader is an output, possibly triggering a backward reduction of the network.

Definition 17 (Alive and enabled)

1. An occurrence ξ is alive in G if ξ ∈ Occ(G)\ExOcc(G) and there is no ξ′ ∈
ExOcc(G) such that ξ′#G ξ.

2. An occurrence ξ is enabled in G if it is alive in G and Causes(G, ξ) ⊆ ExOcc(G).
3. A path σ is ok for the checkpoint label C in G if C does not occur along the path

σ in the tree of G.
4. A checkpoint label C is alive in G if for some path σ ok for C (in G)

SubT (G, σ) = C(�j∈J\{k} α
p
j ;Kj�α̂

p
k;Gk)

and |J | > 1 and there are σ′ and αp such that σkσ′αp ∈ Occ(G) is alive in G.
5. A checkpoint label C is enabled in G if it is alive in G and σkσ′αp is enabled in

G, where σ, k, σ′ and αp are as in (4).

For instance in the global type of Example 4 the occurrence 01α1 is enabled and
the occurrence 0101α1 is alive but not enabled. The checkpoint label C is enabled

for the path ε in the global type p
λ1−−→ qC�

̂
p
λ2−−→ q; p

λ3↔−→ r, since the occurrence

20p
λ3↔−→ r is enabled in G. The checkpoint label C is alive but not enabled for the

path ε in the global type p
λ1−−→ qC�

̂
p
λ2−−→ q; q

λ3−−→ p; p
λ4↔−→ r, since the occurrence

200p
λ4↔−→ r is alive, but not enabled in G.

22 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

Lemma 7 1. If σjα is enabled in G and p ∈ part(α), then Ctx(G, σ)�p is a session

context.

2. If SubT (G, σ) = γ �i∈I αi;Gi, then σiαi is alive in G for all i ∈ I.

3. If SubT (G, σ) = γ(�i∈I\{j} α
p
i ;Ki�α

p
j ;Gj) and recv(αp

j) = q and both Ctx(G, σ)�p

and Ctx(G, σ)�q are session contexts, then σjαp
j is enabled in G.

Proof (1) If σjα is enabled in G, then Causes(G, σjα) ⊆ ExOcc(G) and ξ ∈ ExOcc(G)
implies path(ξ) v σ. Hence Ctx(G, σ) is defined. If p ∈ part(α), define Causesp(G, σjα) =
Causes(G, σjα) ∩ {ξ ∈ Occ(G) | p ∈ part(ξ)}. Since the projection of Ctx(G, σ) on
p retains only Causesp(G, σjα) and forgets everything else on the path σ, and
moreover it preserves and reflects hats, Ctx(G, σ)�p is a session context.

(2) From SubT (G, σ) = γ �i∈I αi;Gi it follows that σiαi ∈ Occ(G)\ExOcc(G).
Moreover, since SubT (G, σ) is defined, the path σ must follow the executed branches
of G, if any, thus ξ ∈ Causes(G, σiαi) implies path(ξ) v σ. Hence σiαi is alive in G.

(3) By (2) σjαp
j is alive in G. We prove that Causes(G, σjαp

j) ⊆ ExOcc(G) by in-

duction on the definition of Causes. If ξ ∈ Causes(G, σjαp
j) because part(ξ)∩{p, q} 6=

∅, then it must be ξ ∈ ExOcc(G), otherwise the projection of the communication
of ξ would appear unhatted in Ctx(G, σ)�p or in Ctx(G, σ)�q . Suppose now that
ξ ∈ Causes(G, σjαp

j) because ξ ∈ Causes(G, ξ′) and ξ′ ∈ Causes(G, σjαp
j). By induc-

tion hypothesis ξ′ ∈ ExOcc(G), hence by causal correctness of G also ξ ∈ ExOcc(G).

Theorem 1 (Subject Reduction) If ` N : G and N

x∗−→ N
′, then ` N′ : G′ for

some G′.

Proof By case analysis on the reduction rules for networks. Since the case of struc-
tural equivalence is trivial, there are only two rules to consider, Rule [Com] and
Rule [Back]. Let the applied rule be [Com], then

P
q!Λ−−→ P ′ Q

p?Λ−−−→ Q′

p[[P]] ‖ q[[Q]] ‖ N pΛq−−−→ p[[P ′]] ‖ q[[Q′]] ‖ N

By Lemma 4(2) P = E[γ
⊕
i∈I πi;Pi], where πj = p!Λ for some j ∈ I, and

P ′ = E[γ(
⊕
i∈I\{j} πi;Pi ⊕ π̂j ;Pj)]. By Lemma 4(1) Q = E ′[∆

∑
h∈H π′h;Qh],

where π′k = p?Λ for some k ∈ H, and Q′ = E ′[∆(
∑
h∈H\{k} π

′
h;Qh + π̂′k;Qk)].

By Lemma 1(6) ` P : T and ` Q : S and T 6 G � p and S 6 G � q . By
Lemma 5(3) T = T [T′] and ` E : T and ` γ

⊕
i∈I πi;Pi : T′ and S = T ′[S′]

and ` E ′ : T ′ and ` ∆
∑
h∈H π′h;Qh : S′. By Lemma 1(2) and (1) T′ = γ

∨
i∈I πi;Ti

and S′ = ∆
∧
h∈H π′h;Sh.

By Lemma 5(1) G�p = T0[T′′] and T 6 T0 and γ
∨
i∈I πi;Ti 6 T′′ and G�q = T ′0 [S′′]

and T ′ 6 T ′0 and ∆
∧
h∈H π′h;Sh 6 S′′. By definition of 6 we get T′′ = γ

∨
i∈I πi;T

′
i

with Ti 6 T′i for i ∈ I and S′′ = ∆
∧
h∈H′ π

′
h;S′h with H ⊇ H ′ and Sh 6 S′h for

h ∈ H ′.
From G�p = T0[γ

∨
i∈I πi;T

′
i] it follows by Lemma 6(1) that there is a unique path

σ of G such that SubT (G, σ) = γ �i∈I αp
i ;Gi affects p and Ctx(G, σ) � p = T0

and SubT (G, σ) � p = γ
∨
i∈I πi;T

′
i. Since πj = q!Λ, we have αp

j = p
Λ−→ q.

Consider now the projection SubT (G, σ) � q = (γ �i∈I αp
i ;Gi) � q . It must be

SubT (G, σ) �q = γb
d
i∈I(α

p
i ;Gi)�q c .= ∆(

∧
h∈H′\{k} π

′
h;S′h ∧ π

′
k;S′k) = S′′, where

γ ∈ ∆ and π′k = p?Λ.
By definition we have G = Ctx(G, σ)[SubT (G, σ)]. Then we can choose G′ =

Reversible Sessions with Flexible Choices 23

Ctx(G, σ)[γ(�i∈I\{j} α
p
i ;Ki � α̂p

j ;Kj)]. Indeed G′ � p = T0[T0] and G′ � q = T ′0 [S0],

where T0 = γ(
∨
i∈I\{j} πi;Ti ∨ π̂j ;Tj) and S0 = ∆(

∧
h∈H′\{k} πh;Sh ∧ π̂′k;S′k),

while G′ � r = G � r for r 6= p, q. By Lemma 5(4) ` P ′ : T [T0] and ` Q′ : T ′[S0].
Since T [T0] 6 G′ � p and T ′[S0] 6 G′ � q we can derive ` p[[P ′]] ‖ q[[Q′]] ‖ N : G′.
By Lemma 7(3) σjαp

j is enabled in G, being both Ctx(G, σ) � p and Ctx(G, σ) � q

session contexts. This implies the causal correctness of G′. The projectability of G′

is immediate.

Let now the applied reduction rule be [Back], then:

P
CxP ′ Ph

CxP ′h h ∈ H Pk
C
6 xk ∈ K

p[[P]] ‖ Πh∈Hph[[Ph]] ‖ Πk∈Kpk[[Pk]]
Cxp[[P ′]] ‖ Πh∈Hph[[P ′h]] ‖ Πk∈Kpk[[Pk]]

By Lemma 4(3) P = E[
C
(
⊕
i∈I πi;Qi ⊕ π̂;Q)] and Q ↓out and I 6= ∅ and E ok for C

and P ′ = E[
C

⊕
i∈I πi;Qi]. By Lemma 4(4) Ph = Eh[Sh], and P ′h = Eh[*Sh+], where

Sh = ∆h

∑
`∈Lh R` and C ∈ ∆h and Eh ok for C with h ∈ H. By Lemma 4(5), in a

Pk with k ∈ K there cannot be executed external choices whose checkpoint labels
contain C.
By Lemma 1(6) ` P : T for some T 6 G�p , and ` Pj : Tj for some Tj 6 G�pj for
each j ∈ H ∪K. By Lemma 1(1), in a Tk with k ∈ K there cannot be executed
intersections whose checkpoint labels contain C.
By Lemma 5(3) T = T [T′], where ` E : T and T ok for C and

`
C
(
⊕
i∈I πi;Qi ⊕ π̂;Q) : T′

and Th = Th[Sh], where ` Eh : Th and Th ok for C and ` Sh : Sh for each h ∈ H. By
Lemma 1(2) T′ =

C
(
∨
i∈I πi;Ti ∨ π̂;TQ) and by Lemma 1(1) Sh is an intersection

with ∆h as set of checkpoint labels (h ∈ H).
By Lemma 5(1) G�p = T ′[T′′] and T 6 T ′ and T ′ ok for C and

C
(
∨
i∈I πi;Ti ∨ π̂;TQ) 6 T′′

and G � ph = T ′h[S′h] and Th 6 T ′h and T ′h ok for C and Sh 6 S′h for h ∈ H. By
definition of 6 we get T′′ =

C
(
∨
i∈I πi;T

′
i ∨ π̂;T′Q) with Ti 6 T′i for i ∈ I and

TQ 6 T′Q and S′h is an intersection with ∆h as set of checkpoint labels (h ∈ H).

By Lemma 6(1), from G �p = T ′[
C
(
∨
i∈I πi;T

′
i ∨ π̂;T′Q)] it follows that there is a

unique path σ of G such that SubT (G, σ) = C(�i∈I α
p
i ;Ki� α̂

p;GQ) affects p and
Ctx(G, σ) �p = T ′ and SubT (G, σ) �p =

C
(
∨
i∈I πi;T

′
i ∨ π̂;T′Q). The conditions T ′

ok for C and Th ok for C (h ∈ H) and Tk without executed intersections whose
checkpoint labels contain C (k ∈ K) assure that the path σ is ok for C, i.e. that
Ctx(G, σ) does not contain occurrences of C. Therefore the occurrence of C in
SubT (G, σ) is the outermost one and it is projected on the checkpoint labels of
T′′ and Sh for h ∈ H. Then we can choose G′ = Ctx(G, σ)[C(�i∈I α

p
i ;Ki)]. In fact

G′ �p = T ′[
C

∨
i∈I πi;T

′
i] and G′ �ph = T ′h[*S′h+] for h ∈ H and G′ �pk = G �pk for

k ∈ K. We can derive ` P ′ : T [
C

∨
i∈I πi;Ti] by Lemma 5(4) and ` P ′h : Th[*Sh+] for

h ∈ H by Lemma 3. Since T [
C

∨
i∈I πi;Ti] 6 G′ �p and Th[*Sh+] 6 G′ �ph for h ∈ H

we may conclude that ` p[[P ′]] ‖ Πh∈Hph[[P ′h]] ‖ Πk∈Kpk[[Pk]] : G′. The causal
correctness of G implies the causal correctness of G′ since G′ is obtained from G by
erasing one branch in a choice. The projectability of G′ is immediate.

A standard property enforced by session types is session fidelity: all communi-
cations occur as specified by global types. In our case this applies also to backward
reductions. The proof relies on the proof of subject reduction.

24 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

Theorem 2 (Session Fidelity) Let ` N : G.

1. If σp
Λ−→ q is enabled in G, then N

pΛq−−−→ N
′.

2. If N
pΛq−−−→ N

′, then σp
Λ−→ q is enabled in G for some σ.

3. If C is enabled in G, then N
Cx

N
′.

4. If N
Cx

N
′, then C is enabled in G.

Proof (1) Let σ = σ′j. Since σ′jp
Λ−→ q is enabled in G, from Lemma 7(1) for some

session contexts T and T ′ we have T = Ctx(G, σ′) � p and T ′ = Ctx(G, σ′) � q .
Therefore the projections of G on p and q may be written as
G�p = T [γ(

∨
i∈I\{j} πi;Ti∨q!Λ;Tj)] and G�q = T ′[∆(

∧
h∈H\{k} π

′
h;Sh∧p?Λ;Sk)].

By Lemma 2(6) N = p[[P]] ‖ q[[Q]] ‖ N′′ and ` P : T and ` Q : S and T 6 G�p and
S 6 G�q . By Lemma 5(2) and the definition of 6 we have :

– T = T1[γ
∨
i∈I πi;T

′
i] where πj = q!Λ with j ∈ I and T′i 6 Ti (i ∈ I) and T 6 T1

– S = T2[∆
∧
h∈H′ π

′
h;S′h] where πk = p?Λ with k ∈ H and H ′ ⊇ H and S′h 6 Sh

(h ∈ H) and T ′ 6 T2.

By Lemma 5(5) we get P = E[P ′] and ` E : T1 and ` P ′ : γ
∨
i∈I πi;T

′
i and Q = E ′[Q′]

and ` E ′ : T2 and ` Q′ : ∆
∧
h∈H′ π

′
h;S′h. By Lemma 2(2) P ′ = γ

⊕
i∈I πi;Pi and by

Lemma 2(1) Q′ = ∆
∑
h∈H′ π

′
h;Qh. Therefore

P
q!Λ−−→ E[P ′′] where P ′′ = γ(

⊕
i∈I\{j} πi;Pi ⊕ q̂!Λ;Pj)

and

Q
p?Λ−−−→ E ′[Q′′] where Q′′ = ∆(

∑
h∈H′\{k} π

′
h;Qh + p̂?Λ;Qk),

which imply N
pΛq−−−→ p[[E[P ′′]]] ‖ q[[E ′[Q′′]]] ‖ N′′.

(2) By Lemma 4(6) N = p[[P]] ‖ q[[Q]] ‖ N0 and P
q!Λ−−→ P ′ and Q

p?Λ−−−→ Q′.
Therefore rule [Com] has been applied and from the proof of Theorem 1 we know

that σp
Λ−→ q is enabled in G for some σ.

(3) From Definition 17(5) we know that there exists a path σ ok for C such

that SubT (G, σ) = C(�j∈J\{k} α
p
j ;Kj�α̂

p
k;Gk). Since G = Ctx(G, σ)[SubT (G, σ)] is

causally correct all the communications involving p in Ctx(G, σ) are executed
communications. This implies that T = Ctx(G, σ)�p is a session context and thus
the projection of G on p may be written as G�p = T [γ(

∨
j∈J\{k} πj ;Tj ∨ π̂k;T)].

Therefore T is ok for C and (αp
j ;Kj) �p = πj ;Tj for j ∈ J\{k} and (α̂p

k;Gk) �p =

π̂k;T. By Lemma 2(6) N = p[[P]] ‖ N′′ and ` P : T′ and T′ 6 G�p . By Lemma 5(2)
T′ = T ′[γ(

∨
j∈J\{k} Si ∨ π̂k;S)] and T ′ 6 T and πj ;Sj 6 πj ;Tj for j ∈ J\{k} and

π̂k;S 6 π̂k;T.
By Lemma 5(5) P = E[P ′] and ` E : T ′ and ` P ′ : γ(

∨
j∈J\{k} πj ;Sj ∨ π̂k;S). By

Lemma 2(2) P ′ = E[γ(
⊕
j∈J\{k} πj ;Qj ⊕ π̂k;Q)] and ` π̂k;Q : π̂k;S. Let σ′ and h

be such that σkσ′hαp ∈ Occ(G) is enabled in G. Then SubT (G, σkσ′) = γ′�i∈I α
p
i ;Ki

with h ∈ I and αp
h = αp and for some T ′′ we have that T = T ′′[

γ′(
∨
i∈I T

′
i)]. By

Lemma 5(2) S = T ′′′[
γ′(

∨
i∈I S

′
i)] for some T ′′′. By Lemma 2(2) Q = E ′[

γ′
⊕
i∈I Q

′
i],

which implies Q ↓out. Then P
CxP ′ and N

Cx

N
′, since all processes in N may

contain or may not contain executed internal choices labelled C.

Reversible Sessions with Flexible Choices 25

(4) By Lemma 4(7) N = p[[P]] ‖ Πh∈Hph[[Ph]] ‖ Πk∈Kpk[[Pk]] and P
CxP ′ and

Ph
CxP ′h for all h ∈ H and Pk

C
6 xfor all k ∈ K and

N
′ = p[[P ′]] ‖ Πh∈Hph[[P ′h]] ‖ Πk∈Kpk[[Pk]]

Therefore rule [Back] has been applied and from the proof of Theorem 1 we know
that:

– P = E[
C
(
⊕
i∈I πi;Qi ⊕ π̂;Q)] and Q ↓out and I 6= ∅ and E ok for C

– SubT (G, σ) = C(�i∈I α
p
i ;Ki� α̂

p;GQ) and σ is ok for C
– ` P : T and T 6 G�p and ` Q : TQ and TQ 6 GQ �p
– G�p = T ′[

C
(
∨
i∈I πi;T

′
i ∨ π̂;T′Q)] and TQ 6 T′Q.

Let α̂p;GQ be the `-th branch in SubT (G, σ). By definition Q ↓out implies Q =
E ′[

γ′
⊕
j∈I′ Q

′
j].

From ` Q : TQ and Lemma 5(3) TQ = TQ[SQ] and `
γ′
⊕
j∈I′ Q

′
j : SQ. By

Lemma 1(2) SQ =
γ′
∨
j∈I′ Sj , which together with TQ 6 T′Q imply T′Q =

T ′Q[
γ′
∨
j∈I′ S

′
j] by Lemma 5(1). Let T ′′ = T ′[

C
(
∨
i∈I πi;T

′
i ∨ π̂; T ′Q)], then G �p =

T ′′[
γ′
∨
j∈I′ S

′
j]. By Lemma 6(1) there is σ′ such that SubT (G, σ`σ′) =

γ′�j∈I′ β
p
j ;K′j

affects p and Ctx(G, σ`σ′) � p = T ′′ and SubT (G, σ`σ′) � p =
γ′
∨
j∈I′ S

′
j . From

Lemma 7(2) σ`σ′jβpj is alive in G for all j ∈ I ′ and then C is alive in G. We finally

conclude that C is enabled in G, since Ctx(G, σ`σ′)�p is a session context, and this
implies that σ`σ′jβpj is enabled in G for all j ∈ I ′.

The remainder of this section is devoted to the proof of forward and backward
progress.

For forward progress we first show that a communication which is alive in a
global type has at least one enabled cause, and will eventually become enabled.

Lemma 8 1. If ξ ∈ Occ(G) is alive in G, then either ξ is enabled in G or there is

some occurrence in Causes(G, ξ) which is enabled in G.

2. If ` N : G and ξ ∈ Occ(G) is alive in G, then N −→∗ N′ with ` N′ : G′ and ξ is

enabled in G′.

Proof (1) By induction on the cardinality of the set of non executed occurrences in
Causes(G, ξ), namely on n = |Causes(G, ξ)\ExOcc(G)|. If n = 0, then ξ is enabled
in G by definition. Let n > 0. Note that every ξ′ ∈ Causes(G, ξ)\ExOcc(G) must
be alive, because otherwise there would exist an executed ξ′′ such that ξ′′#Gξ

′,
which by conflict heredity would imply ξ′′#Gξ, contradicting the assumption that
ξ is alive. So, let us choose a non executed ξ′ ∈ Causes(G, ξ). If ξ′ is enabled we
are done, otherwise, since ξ′ is alive and Causes(G, ξ′) ⊂ Causes(G, ξ), by inductive
hypothesis there is ξ′′ in Causes(G, ξ′) which is enabled in G.

(2) Again, we proceed by induction on n = |Causes(G, ξ)\ExOcc(G)|. If n = 0, then ξ
is enabled in G and the result is immediate by Theorem 2(1) . Let now n > 0. By (1)

there exists ξ′ in Causes(G, ξ) which is enabled in G. If ξ′ = σp
Λ−→ q, by Theorem 2(1)

we have N
pΛq−−−→ N

′′ and then by Theorem 1 we have ` N′′ : G′′. Let ξ′′ = σ
̂
p
Λ−→ q.

Since Causes(G′′, ξ) = Causes(G, ξ) \ {ξ′} ∪ {ξ′′} and ExOcc(G′′) = ExOcc(G) ∪ ξ′′,
we have Causes(G′′, ξ)\ExOcc(G′′) ⊂ Causes(G, ξ)\ExOcc(G). Then by induction
N
′′ −→∗ N′ (whence N −→∗ N′) with ` N′ : G′ and ξ is enabled in G′.

26 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

Connecting communications cause the failure of the standard progress property,
since a participant offering an external choice between connecting communications
can wait forever. Instead, processes offering outputs or simple inputs can always
communicate.

Theorem 3 (Forward Progress)

1. If ` p[[E[γ
⊕
i∈I πi;Pi]]] ‖ N : G, then for every j ∈ I there exists an Nj such that

p[[E[γ
⊕
i∈I πi;Pi]]] ‖ N −→∗ p[[E[γ(

⊕
i∈I\{j} πi;Pi ⊕ π̂j ;Pj)]]] ‖ Nj .

2. If ` p[[E[∆
∑
i∈I πi;Pi]]] ‖ N : G and all πi are simple inputs, then there is N′ such

that p[[E[∆
∑
i∈I πi;Pi]]] ‖ N −→∗ p[[E[∆(

∑
i∈I\{j} πi;Pi + π̂j ;Pj)]]] ‖ N′ for

some j ∈ I.

Proof (1) Let P = E[γ
⊕
i∈I πi;Pi], by Lemma 1(6) ` P : T and T 6 G � p . By

Lemma 5(3) T = T [T′] and ` E : T and ` γ
⊕
i∈I πi;Pi : T′. By Lemma 1(2)

T′ = γ
∨
i∈I πi;Ti. By Lemma 5(1) G�p = T ′[T′′] and T 6 T ′ and γ

∨
i∈I πi;Ti 6 T′′.

By definition of 6 we get T′′ = γ

∨
i∈I πi;T

′
i with Ti 6 T′i for i ∈ I. Therefore

G�p = T ′[γ
∨
i∈I πi;T

′
i].

From Lemma 6(1), for some σ we have that SubT (G, σ) = γ �i∈I αp
i ;Ki and

Ctx(G, σ)�p = T ′ and SubT (G, σ)�p = γ
∨
i∈I πi;T

′
i. This implies, by Lemma 7(2),

that σjαp
j is alive in G. Therefore from Lemma 8(2) we get that

p[[E[γ
⊕
i∈I πi;Pi]]] ‖ N −→∗ p[[E[γ

⊕
i∈I πi;Pi]]] ‖ N′j

with ` p[[E[γ
⊕
i∈I πi;Pi]]] ‖ N′j : G′ and σjαp

j enabled in G′. From Theorem 2(1) we

conclude p[[E[γ
⊕
i∈I πi;Pi]]] ‖ N′j

αp
j−−→ p[[E[γ(

⊕
i∈I\{j} πi;Pi ⊕ π̂j ;Pj)]]] ‖ Nj .

(2) Let P = E[∆
∑
i∈I πi;Pi], by Lemma 1(6) ` P : T and T 6 G � p . By

Lemma 5(3) T = T [T′] and ` E : T and ` ∆
∑
i∈I πi;Pi : T′. By Lemma 1(1) T′ =

∆
∧
i∈I πi;Ti. By Lemma 5(1) G�p = T ′[T′′] and T 6 T ′ and ∆

∧
i∈I πi;Ti 6 T′′.

By definition of 6 we get and T′′ = ∆
∧
i∈I′ πi;T

′
i with I ⊇ I ′ and Ti 6 T′i for i ∈ I ′.

Therefore G�p = T ′[∆
∧
i∈I′ πi;T

′
i]. From Lemma 6(2) we have that there is σ such

that SubT (G, σ) affects p and Ctx(G, σ)�p = T ′ and SubT (G, σ)�p
.
= ∆

∧
i∈I′ πi;T

′
i.

For each i ∈ I ′, the action πi must have the form πi = qi?λi and be obtained

projecting a communication αi = qi
λi−→ p. We consider two cases: either SubT (G, σ)

is an executed choice, or it is either a non executed choice or a sequence starting
with a non executed communication.

– If SubT (G, σ) = γ(�h∈H\{k} βh;Kh � β̂k;Gk), then let σk be the longest path
in SubT (G, σ) such that k v σk and σσk = path(ξ) for some ξ ∈ ExOcc(G). By
Lemma 6(2) there are σ′ and j ∈ I ′ such that σσ′αj ∈ Occ(G) and either σ′ v σk
or σk @ σ′. Since ξ′ ∈ ExOcc(G) implies path(ξ′) v σσk, then ξ′ is not in conflict
with σσ′αj . Therefore σσ′αj is alive in G.

– If SubT (G, σ) = γ �h∈H βh;Gh, then σhβh is alive in G for all h ∈ H by
Lemma 7(2). Then by Lemma 6(2) for any h ∈ H we can find σh such that
σσhαj is alive in G for some j ∈ I ′.

In both cases there is σp such that σpαj is alive in G for some j ∈ I ′. Lemma 8(2)
implies

p[[E[∆
∑
i∈I πi;Pi]]] ‖ N −→∗ p[[E[∆

∑
i∈I πi;Pi]]] ‖ N′j

and ` p[[E[∆
∑
i∈I πi;Pi]]] ‖ N′j : G′ with σpαj enabled in G′. From Theorem 2(1)

we conclude p[[E[∆
∑
i∈I πi;Pi]]] ‖ N′j

αj−−→ p[[E[∆(
∑
i∈I\{j} πi;Pi ⊕ π̂j ;Pj)]]] ‖ N′j .

Reversible Sessions with Flexible Choices 27

Notice that the standard formulation of progress [13], which requires that each
simple input and each output that is persistently offered be eventually consumed,
is an easy consequence of this theorem.

Theorem 4 (Backward Progress) If ` N : G and C is alive in G, then there is N′

such that N −→∗ N′ and N′
Cx

N
′′.

Proof By definition G = Ctx(G, σ)[C(�j∈J\{k} α
p
j ;Kj�α̂

p
k;Gk)] and |J | > 1 and σ is

ok for C (in G) and there are σ′ and αp such that σkσ′αp ∈ Occ(G) is alive in G.
Lemma 8(2) implies that N −→∗ N′ and ` N : G′ with σkσ′αp enabled in G′. This

implies that C is enabled in G. We conclude N′
Cx

N
′′ by Theorem 2(3).

To sum up, our calculus enjoys:

– subject reduction for both forward and backward computations;
– session fidelity for enabled communications and for rollbacks to enabled check-

point labels;
– forward progress, assuring the absence of dangling actions but for connecting

inputs;
– backward progress for alive checkpoint labels.

We end this section with a remark on causal consistency and the loop lemma [10].
Causal consistency states that a cause cannot be reversed without first reversing
its effects. Clearly, our calculus enjoys causal consistency since a rollback to
a checkpointed choice removes all communications that were done after that
checkpoint. The loop lemma prescribes that each transition has an inverse. The
loop lemma does not hold for our calculus, since a reverse computation can only
go back to a checkpointed choice whose leader currently offers an output.

6 Related Work and Conclusion

Since the seminal work by Danos and Krivine on reversible CCS [10], reversible
computation has been widely studied in process calculi. In [31], Phillips and
Ulidowski proposed a method for reversing process operators defined in a general
SOS format, and noted that thread identifiers and histories were needed to record
the past of computations. In [30] the authors use a cursor to mark past actions,
thus avoiding the use of extra memory information as in [10].

In [23], Lanese et al. extended the approach of Danos and Krivine by defining a
reversible variant of the higher-order π-calculus, using tags to identify threads, and
explicit memory processes. This calculus was enriched with a fine-grained rollback
primitive in [22]. In [9], Cristescu et al. proposed a causal semantic model for the
reversible π-calculus.

Reversibility for structured communications was first studied in [11,12,21],
where transactions with rollback and coordinated checkpoints were modelled in an
extended CCS. More recently, reversibility has been incorporated into contracts

[1,4] and session calculi [17,18]. In [2,3], the authors investigated the notions of
compliance and sub-behaviour for contracts with checkpoints. While rollbacks are
forgetful in [2], in [3] they are used as a strategy to achieve compliance: in this case,

28 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

after a rollback a process cannot engage again in the previously explored branch,
presumably unsuccessful. We used a similar idea for defining our rollback here.

Our backward mechanism is most closely related to the recent proposals [34,35,
25,24,26]. Tiezzi and Yoshida [34] use tags and memories to allow full reversibility
of binary sessions with delegation. In [35], two forms of reversibility are considered:
either a session is completely reversed in a single backward step, or any intermediate
state is restored. Mezzina and Pérez [25,24] use monitors as memories for reversing
binary sessions. A key novelty of this work is the use of session types with present
and past. In [26], this approach is generalised to multiparty sessions, asynchronous
higher-order communications, and decoupled rollbacks.

In [28], Neykova and Yoshida provide an algorithm to analyse and extract
causal dependencies from a given multiparty global type, and use it to ensure that
communicating processes are safely recovered from consistent states in the presence
of a failure. In [27], Mezzina and Tuosto propose a semantic control of reversibility:
a computation along a branch is reversed according to the guards on the current
configuration. A feature of [27] is that inputs are potentially irreversible actions,
unless they appear within a loop.

Our work builds on our previous papers [14,8]. In [14] we introduced a multiparty
session calculus in which choices could be labelled with checkpoints. Participants
could revert to one of these checkpointed choices in order to make a different
choice. Global types were used to control reversibility, and shown to enforce the
properties of fidelity and progress (both forward and backward). In [8] we enriched
the syntax for types and processes with parallel and sequential composition, and
used a more compact representation for past communications and a more refined
strategy for backward moves. The current work borrows ideas and techniques from
both papers while sticking to a simpler syntax than [8], and improves on both of
them by allowing connecting communications.

As regards dynamic participants, in [15,13] global types prescribe the behaviours
of fixed roles, and each role includes an arbitrary number of participants, which can
dynamically join and leave roles. Instead, in the Conversation Calculus [36,7] the
protocols describe communications between participants which can dynamically
join and leave conversations. The model based on conversation contexts and labelled
message-passing primitives is quite different from multiparty session types and this
makes it difficult to adapt their approach to our setting.

The paper [20] has been our inspiration for connecting messages, but our
calculus is more permissive than the original one. In fact, in [20] a connecting
message can be exchanged only between two participants that did not communicate
before, unless they have been disconnected by an ad hoc primitive. This means for

example that p
λ1↔−→ q; q

λ2↔−→ p is not allowed. Another difference of [20] with respect
to our calculus is that in a choice, the first message received by a participant must

be a connecting message, which forbids for instance p
λ1−−→ q� p

λ2−−→ r. A further
restriction is that all the inputs in an external choice must have the same sender.
A final major difference is that communication in [20] is asynchronous.

The properties of our calculus are standard for reversible session calculi, but their
proofs require some ingenuity due to the presence of connecting communications and
to the specificity of our rollback mechanism. As argued already in Sect.3, connecting
communications may be used to avoid the use of multiple global types. They could
also be useful for incorporating delegation into global types. For example, a seller

Reversible Sessions with Flexible Choices 29

could delegate a bank to receive a credit card number only when the client wants
to buy an item, otherwise the bank is not involved in the transaction (so delegation
would appear in one branch of a choice but not in the others). This is a topic
we plan to investigate. As regards the conditions for reversing a computation, a
current limitation of our work is that the starting points of rollbacks are statically
determined. By contrast, these points are determined dynamically in [27], offering a
more realistic solution. We plan to introduce similar runtime conditions for rollback
in our calculus.

Finally, we would like to study the interpretation of global types into a model
of Event Structures, for which reversible variants have already been proposed [32,
16]. We plan to explore a reversible variant of Flow Event Structures [5], a model
that has already been used to interpret CCS processes with past in [6].

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

1. Franco Barbanera and Ugo de’ Liguoro. Sub-behaviour relations for session-based
client/server systems. Mathematical Structures in Computer Science, 25(6):1339–1381,
2015.

2. Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Reversible
client/server interactions. Formal Aspects of Computing, 28(4):697–722, 2016.

3. Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, and Ugo de’ Liguoro.
Retractable contracts. In PLACES, volume 203 of EPTCS, pages 61–72, 2016.

4. Giovanni Bernardi and Matthew Hennessy. Modelling session types using contracts.
Mathematical Structures in Computer Science, 26(3):510–560, 2016.

5. Gérard Boudol and Ilaria Castellani. Permutation of transitions: an event structure
semantics for CCS and SCCS. In REX School, volume 354 of LNCS, pages 411–427.
Springer, 1988.

6. Gérard Boudol and Ilaria Castellani. Flow models of distributed computations: three
equivalent semantics for CCS. Information and Computation, 114(2):247–314, 1994.

7. Lúıs Caires and Hugo Torres Vieira. Analysis of service oriented software systems with the
conversation calculus. In FACS, volume 6921 of LNCS, pages 6–33. Springer, 2010.

8. Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Concurrent reversible
sessions. In CONCUR, volume 85 of LIPIcs, pages 30:1–30:17. Schloss Dagstuhl, 2017.

9. Ioana Cristescu, Jean Krivine, and Daniele Varacca. Rigid families for the reversible
π-calculus. In RC, volume 9720 of LNCS, pages 3–19. Springer, 2016.

10. Vincent Danos and Jean Krivine. Reversible communicating systems. In CONCUR, volume
3170 of LNCS, pages 292–307. Springer, 2004.

11. Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy. Communicating transactions -
(extended abstract). In CONCUR, volume 6269 of LNCS, pages 569–583. Springer, 2010.

12. Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy. Liveness of communicating
transactions - (extended abstract). In APLAS, volume 6461 of LNCS, pages 392–407.
Springer, 2010.

13. Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL,
pages 435–446. ACM Press, 2011.

14. Mariangiola Dezani-Ciancaglini and Paola Giannini. Reversible multiparty sessions with
checkpoints. In EXPRESS/SOS, volume 222 of EPTCS, pages 60–74, 2016.

15. Elena Giachino, Matthew Sackman, Sophia Drossopoulou, and Susan Eisenbach. Softly
safely spoken: Role playing for session types. In PLACES, 2009.

16. Eva Graversen, Iain Phillips, and Nobuko Yoshida. Towards a categorical representation of
reversible event structures. In PLACES, volume 246 of EPTCS, pages 49–60, 2017.

17. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
disciplines for structured communication-based programming. In ESOP, volume 1381 of
LNCS, pages 22–138. Springer, 1998.

30 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini

18. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, pages 273–284. ACM Press, 2008.

19. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. Journal of the ACM, 63(1):9, 2016.

20. Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session
types. In Fundamental Approaches to Software Engineering, volume 10202 of LNCS, pages
116–133. Springer, 2017.

21. Vasileios Koutavas, Carlo Spaccasassi, and Matthew Hennessy. Bisimulations for commu-
nicating transactions - (extended abstract). In FOSSACS, volume 8412 of LNCS, pages
320–334. Springer, 2014.

22. Ivan Lanese, Claudio Antares Mezzina, Alan Schmitt, and Jean-Bernard Stefani. Controlling
reversibility in higher-order pi. In CONCUR, volume 6901 of LNCS, pages 297–311. Springer,
2011.

23. Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Reversing higher-order
pi. In CONCUR, volume 6269 of LNCS, pages 478–493. Springer, 2010.

24. Claudio Antares Mezzina and Jorge A. Pérez. Reversible semantics in session-based
concurrency. In ICTCS, volume 1720 of CEUR, pages 221–226. CEUR-WS.org, 2016.

25. Claudio Antares Mezzina and Jorge A. Pérez. Reversible sessions using monitors. In
PLACES, volume 211 of EPTCS, pages 56–64, 2016.

26. Claudio Antares Mezzina and Jorge A. Pérez. Causally consistent reversible choreographies:
a monitors-as-memories approach. In PPDP, pages 127–138. ACM Press, 2017.

27. Claudio Antares Mezzina and Emilio Tuosto. Choreographies for automatic recovery.
CoRR, abs/1705.09525, 2017.

28. Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced
recovery. In CC, pages 98–108. ACM Press, 2017.

29. Luca Padovani. Type Reconstruction for the Linear π-Calculus with Composite Regular
Types. Logical Methods in Computer Science, 11(4):1–23, 2015.

30. Iain Phillips and Irek Ulidowski. Operational semantics of reversibility in process algebra.
In APC, volume 162 of ENTCS, pages 281–286, 2006.

31. Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi. Journal of Logic and
Algebraic Methods in Programming, 73(1-2):70–96, 2007.

32. Iain Phillips and Irek Ulidowski. Reversibility and asymmetric conflict in event structures.
Journal of Logic and Algebraic Methods in Programming, 84(6):781–805, 2015.

33. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
34. Francesco Tiezzi and Nobuko Yoshida. Reversible session-based pi-calculus. Journal of

Logical and Algebraic Methods in Programming, 84(5):684–707, 2015.
35. Francesco Tiezzi and Nobuko Yoshida. Reversing single sessions. In RC, volume 9720 of

LNCS, pages 52–69. Springer, 2016.
36. Hugo Torres Vieira, Lúıs Caires, and João Costa Seco. The conversation calculus: A model

of service-oriented computation. In ESOP, volume 4960 of LNCS, pages 269–283. Springer,
2008.

37. Glynn Winskel. Events in Computation. PhD thesis, Department of Computer Science,
University of Edinburgh, 1980.

A Reductions of Networks and Systems

It is easy to define a bijection between networks and initial systems:
S(N) = N G 〈−,P, ∅〉 N (N G 〈−,P, ∅〉) = N

where P is the set of participants in N.

We establish now an operational correspondence between networks and their associated
systems. More precisely we prove the following:

– Communication preservation and reflection: every network communication is simulated by
a communication in the associated system and vice-versa;

– Rollback preservation: every network rollback is simulated by a sequence of backward moves
in the associated system, initiating with a starting backward move and terminating with
an ending backward move;

– Rollback reflection: every starting backward move in a system can be extended to a complete
sequence of backward moves such that the resulting system is the image of a rollback in
the source network.

Reversible Sessions with Flexible Choices 31

In the following theorem we denote by
C xxthe transitive closure of

yCxand
nCx.

Theorem 5 1. If N
pΛq−−→ N

′, then S(N)
pΛq
==⇒ S(N′).

2. If S(N)
pΛq
==⇒ S(N′), then N

pΛq−−→ N
′.

3. If N
Cx

N
′, then S(N)

sCxC xxeCxS(N′).

4. If N G 〈−,P, ∅〉
sCx

N
′ G 〈C,P1,P2〉, then N

′ G 〈C,P1,P2〉
C xxeCx

N
′′ G 〈−,P, ∅〉 and

N
Cx

N
′′.

Proof (1) and (2). The result is immediate since Rule [Com] of Fig.1 and Rule [ComS] of Fig.2
have the same antecedents.

(3). If N
Cx

N
′, then the applied rule is

P
CxP ′ Pi

CxP ′i 1 ≤ i ≤ m Pi
C
6 xm+ 1 ≤ i ≤ n

[Back]
N

Cx

N
′

where
N = p[[P]] ‖ Π1≤i≤npi[[Pi]] and N

′ = p[[P ′]] ‖ Π1≤i≤mpi[[P ′i]] ‖ Πm+1≤i≤npi[[Pi]]
Then S(N) = N G σ and S(N′) = N

′ G σ with σ = 〈−, {p} ∪ {pi | 1 ≤ i ≤ n}, ∅〉. We get

N G σ
sCxp[[P ′]] ‖ Π1≤i≤npi[[Pi]] G 〈C, {p}, {pi | 1 ≤ i ≤ n}〉
yCxp[[P ′]] ‖ p1[[P ′1]] ‖ Π2≤i≤npi[[Pi]] G 〈C, {p, p1}, {pi | 2 ≤ i ≤ n}〉
yCx· · ·
yCx

N
′ G 〈C, {p} ∪ {pi | 1 ≤ i ≤ m}, {pi | m+ 1 ≤ i ≤ n}〉

nCx

N
′ G 〈C, {p} ∪ {pi | 1 ≤ i ≤ m+ 1}, {pi | m+ 2 ≤ i ≤ n}〉

nCx· · ·
nCx

N
′ G 〈C, {p} ∪ {pi | 1 ≤ i ≤ n}, ∅〉

eCx

N
′ G σ

(4). If N G 〈−,P, ∅〉
sCx

N
′ G 〈C,P1,P2〉, then Rule [BackS] has been applied, so

P
CxP ′ N = p[[P]] ‖ N1 N

′ = p[[P ′]] ‖ N1 P1 = {p} P2 = P \ {p}

Since P2 can be split in two subsets of participants, according to whether the associated
processes satisfy the premise of Rule [BackY] or of Rule [BackN] in Fig.2, we may assume
without loss of generality that

N1 = Π1≤i≤mpi[[Pi]] ‖ Πm+1≤i≤npi[[Pi]]

where for all i, 1 ≤ i ≤ n, Pi
CxP ′i if i ≤ m and Pi

C
6 xotherwise. With a sequence of reductions

as in the proof of point (3), we then obtain for some network N′′:

N
′ G 〈C, {p},P \ {p}〉 C xxeCx

N
′′ G 〈−,P, ∅〉.

Since P and all the Pi for 1 ≤ i ≤ n satisfy the premises of Rule [Back] in Fig.1, we may apply

this rule to N to conclude N
Cx

N
′′, as required.

	Introduction
	Calculus
	Global Types and Session Types
	Type System
	Soundness
	Related Work and Conclusion
	Reductions of Networks and Systems

