Testing Theories for Asynchronous Languages *

Ilaria Castellani' and Matthew Hennessy?

L INRIA, BP 93, 06902 Sophia-Antipolis Cedex, France
2 COGS, University of Sussex, Brighton BN1 9QH, UK

Abstract. We study testing preorders for an asynchronous version of
CCS called TACCS, where message emission is non blocking. We first
give a labelled transition system semantics for this language, which in-
cludes both external and internal choice operators. By applying the stan-
dard definitions of may and must testing to this semantics we obtain two
behavioural preorders based on asynchronous observations, J;may and
G huse: We present alternative behavioural characterisations of these pre-
orders, which are subsequently used to obtain equational theories for the
finite fragment of the language.

1 Introduction

The asynchronous w-calculus [5, 9] is a very simple but powerful formalism for de-
scribing distributed and mobile processes, based on the asynchronous exchange
of names. Its descriptive power as a programming calculus has been demon-
strated theoretically in papers such as [5,9, 10, 13] and practically in [14], where
a minor variant takes the role of the target implementation language for the
sophisticated distributed and higher-order programming language Pict.
However a calculus should not only be computationally expressive. The most
successful process calculi, such as CCS [12], on which the asynchronous -
calculus is based, CSP [8] and ACP [2], also come equipped with a powerful
equational theory with which one may reason about the behaviour of processes.
For the asynchronous m-calculus, much work still remains to be done in devel-
oping suitable equational theories; to our knowledge the only proposed axioma-
tisations concern a variation of strong bisimulation equivalence called strong
asynchronous bisimulation|[1] and an asynchronous version of may testing [4].
A major attraction of the asynchronous mw-calculus is its simplicity. In spite
of its expressive power, it consists of very few process combinators: blocking
input and non blocking output on a named channel, parallelism, recursion, and
the powerful scoping mechanism for channels from the standard 7-calculus. But
operators which may be of limited attraction from a computational point of view
can play a significant role in an equational theory. The choice operator + of CCS
is a typical example. In this paper we demonstrate that such operators can also
help in providing interesting behavioural theories for asynchronous languages.

* Research partially funded by the EU Working Group CONFER II and the EU HCM
Network EXPRESS. The second author was also supported by the EPSRC project
GR/K60701.

We examine a simplification of the asynchronous 7-calculus, an asynchronous
variant of CCS equipped with internal and external choice operators, which we
call TACCS ; essentially an asynchronous version of the language studied in [7].
In Section 2 we define an operational semantics for TACCS . In the following
section we apply the standard definitions of testing to this operational semantics
to obtain two preorders on asynchronous processes [6, 7], the may testing pre-
order Emay and the must testing preorder I .. The main result of this section
is an alternative characterisation of these contextual preorders, defined in terms
of properties of the operational semantics of processes. These characterisations
are similar in style to those for the corresponding preorders on the synchronous
version of the language, studied in [7], but at least for the must case, are consider-
ably more subtle. In Section 4 we present our main result, namely an equational
characterisation of the preorder . for the finitary part of TACCS; the ex-
tension to recursion can be handled using standard techniques. In the full paper
we also give an axiomatisation of 5 ay? along the lines of that proposed in [4] for
a variant of our language. Here we outline the equational characterisation of the
must preorder: this requires the standard theory of internal and external choice
[7], the axioms for asynchrony used in [1], a law accounting for the interplay
between output and choice, and three new conditional equations.

The paper ends with a brief conclusion and comparison with related work.
In this extended abstract all proofs are omitted. They may be found in the full
version of the paper.

2 The language and operational semantics

Given the set Names ranged over by a, b, ¢, we use Act = {a,a | a € Names } to
denote the set of visible actions, and Act, = Act U {r} for the set of all actions,
ranged over by «, 3,7. The syntax of the language TACCS is given by

tz=0 | at | at|a]|t|t]tdt]| t+t
x € Var | recz.t

We have the empty process 0, two choice operators, external choice + and in-
ternal choice @, parallelism || and recursive definitions rec z.t from [7]. We also
have input prefixing a.t and the new construct of asynchronous output prefizing
a.t, where the emission on channel a is non blocking for the process t. The atom
@ is introduced to facilitate the semantics of asynchronous output.

We have not included the hiding and renaming constructs from CCS; they
can be handled in a straighforward manner in our theory and would simply
add uninteresting detail to the various definitions. Note however that unlike
the version of asynchronous C'CS considered in [15] or the presentation of the
asynchronous 7-calculus in [1] we do not require a separate syntactic class of
guarded terms; the external choice operator may be applied to arbitrary terms.

As usual the recursion operator binds variables and we shall use p,q,r to
denote closed terms of TACCS, which we often refer to as processes. The usual

abbreviations from CCS will also be employed, for example omitting trailing
occurrences of 0; so e.g. we abbreviate a.0 to a.

The operational semantics of processes in TACCS is given in Figure 1 (where
some obvious symmetric rules are omitted) in terms of three transition relations:

p - ¢, meaning that p can receive a signal on channel a to become ¢

p - q, meaning that p can asynchronously transmit a signal on channel a to
become ¢

p — ¢, meaning that p can reduce to ¢ after an internal step, possibly a
communication

This semantics differs from the standard operational semantics for synchronous
CCS, given in [7], only for the asynchronous behaviour of outputs. More precisely:

— An asynchronous output prefix a.p can only perform an internal action,
whose effect is to spawn off an atom @ which will then run in parallel with p

~ T —
a.p—allp
— Only a spawned off atom @ can emit a signal on channel a
a-50

— Atoms @ behave asynchronously with respect to external choice +: in partic-
ular they are not consumed when the choice is resolved. We have for instance

a+b-Sa||0-20]0

We feel that the first two properties correspond to a natural behavioural inter-
pretation of the intuitive idea of non blocking output. The third ensures the
asynchrony of output, even in the presence of external choice. Intuitively, asyn-
chronous actions should not affect the behaviour of the rest of the system, e.g.
by preventing other actions as would be the case with the usual rule for +.

3 Testing asynchronous processes

In this section we apply the standard testing scenario to TACCS to obtain asyn-
chronous versions of the may and must testing preorders. After discussing the
difference between synchronous and asynchronous testing we give alternative
behavioural characterisations of the preorders.

We first recall the standard definition of testing from [7]. Let w be a new
action representing “success”. Then a test or observer e is simply a process which
may contain occurrences of w. The definitions of the may and must testing pre-
orders are just the standard ones.

p->p

a.p—p
Output# Atom ——
a.p—allp a—0
p—=p
plla—p"llq
I A
Com p p:T ’q ,q
plla—pllq
pdg—p pdg—¢q
.y Ty
Ext p ap , p _ p,
p+qg—p p+qg—p +gq
Rec

recx.t — t[recx. t/x)

Fig. 1. Operational Semantics

p+qg—alyp

For any process p and test e let

— pmay e if there exists a maximal computation

€||p=60||poi>---€k||pkL%--

such that e,, = for some n > 0.

— pmust e if for every such maximal computation, e, — for some n > 0.

Then the testing preorders and the induced equivalences are defined as usual:

— pgmay q if pmaye implies ¢ may e for every test e

— Poyyus @ if pmuste implies g muste for every test e

- pgq lf pgmayq and pgmustq

— P~mayq if pK,,,, 0 and ¢, P
= P st ¢ if PG, 0 and g5, . P
—p~qif pSgand ¢Gp

Note that the definitions of the preorders are formally the same as in the syn-
chronous case [7], but because they are applied to an asynchronous semantics we

expect these relations to be weaker. It has been argued in previous work on asyn-
chronous calculi [10, 1], that an asynchronous observer should not be capable of
observing the inputs of a process, since this would amount to detecting when
its own outputs are consumed; indeed this restriction on what can be observed
seems to be the essence of asynchrony. In our testing scenario this restriction
is automatically enforced; the observer loses control over the inputs of the pro-
cess being tested because its own output actions are non blocking, and thus in
particular they cannot block a success action w.

Let us look at some examples. In these examples p will always denote the
left-hand process and ¢ the right-hand one.

Ezample 1.

To see that p 5, ,,.; @ note that in any test that p must pass, an output on a
can never block a success action w. Typically the test e = @. w cannot serve as
a failing test for ¢ as in the synchronous case. So if p must e this is because all
the internal sequences of e itself lead to success, hence also ¢ muste. In a similar

way one argues that p J;may q.

Ezample 2. 0 J;may a

The distinguishing test in the must case is (a.w || @).

As this example shows, the tests (a.w||@) allow inputs to be observed to some
extent. In the synchronous case the test normally used to observe the input a is
e = (Wdw) + @. However with our “asynchronous” rule for + the test e could
silently move to @, and thus fail for every process. Note that the asynchronous
test (a.w||@) is weaker than the corresponding test e in the synchronous case:
it cannot distinguish the inability to perform an action a from the possibility of
performing an a immediately followed by an @. This is illustrated by the next
example.

Ezample 3.

We leave the reader to verify the various inequalities. Let us just remark, as
regards 0 I, aa , that the test (a.w|[@) cannot be used here as a dis-
criminating test as in Example 2, since a.a must (a.w ||a). Note that with the
standard rule for + we would have 0 must (w ® w) + @ and therefore it would not
be true that 0 a.a . On the other hand this seems to be a basic law for
asynchrony.

must

The testing preorders J;may and 5, . .. are contertual, in the sense that they
are defined using a quantification over the behaviour of processes in all contexts
of a certain form. We now give alternative characterisations for them, which
are independent of these contexts. To motivate these characterisations it will be
convenient to refer to similar results in the synchronous case. So we let ?

may

and 7 . denote the synchronous may and must testing preorders; that is the

preorders based on the standard operational semantics of CCS, as defined in [7].

3.1 Characterising may testing
Let us start with some terminology. We define weak transitions as usual:

ppY e P
p=p & p=-— =y

Note the difference between p = p’ and p == p' (the latter involving at least
one 7 step). The weak transitions are extended to sequences of observable actions
in the standard way:

p=p & p=...==y S=aQy - Qn, AT

Thus p == p’ means that p can carry out the observable sequence of actions s
to arrive at p'. In a synchronous world this is exactly the same as saying that
p can react to the sequence of messages 5 (or to the obvious sequential process
constructed from §) to arrive at p’. Let = denote the structural congruence over
terms generated by the monoidal laws for ||. Formally we have, using the notation
p—=p tomean Ip". p = p' =9
p==p' if and only if p||5 ==’

However in an asynchronous world these two statements no longer coincide. First
of all, the notion of “sequence of messages” is not as clear, since output messages
are non blocking for the rest of the sequence. The asynchronous operational se-
mantics allows for a larger number of computations from p||§ (where 5 represents
here the process obtained by replacing output actions with asynchronous prefix
in the corresponding sequence). For example if 5 is the sequence bb then we can
have p || 5 = p, which means that in the asynchronous world we should allow

p to move to itself via the sequence s. To formalise this idea we introduce new
transition relations =%, and =%,.

Definition 1. Let the strong asynchronous transition relation %+, be the least
relation over processes such that

- %5Cc Y, _
— for any b € Names, p =, p || b

The weak transition relations ==, and ==, are then defined as above.

Note that the -2+, determine a kind of input-enabled transition system, similar
to that introduced in [10] by Honda and Tokoro for the asynchronous 7-calculus.

Lemma 1. p=%,p' and ¢ == ¢ imply p le==p'| ¢

For any process p, let £(p) denote the language of observable sequences of p:
Lp)={s|P.p=p"}

We define similarly the language of observable asynchronous sequences of p:

L) ={s]| . p=.p"}

We call £%(p) the asynchronous language of p. It is well-known that in the
synchronous case may testing is characterised by language inclusion; that is, for
synchronous processes

pL? ¢ if and only if L(p) C L(q)

~may
As it turns out, this result can be naturally adapted to the asynchronous case:

Theorem 1. (Characterisation of may testing). In TACCS :

PEpay @ if and only if £(p) C L(q)

3.2 Characterising must testing

Unlike that of 5, , the characterisation of I . is rather involved. In order
to motivate it, it will be helpful to recall the corresponding characterisation for
the synchronous case. To do so we need the following notation:

Input and Output sets I(p)={a |p-}, Op)={a|p->}

Ready sets R(p) = I(p) UO(p)

Acceptance sets A(p,s) ={R(') | p=p /> }

Convergence predicate Let |} be the least predicate over processes which satisfies
— p |} € if there is no infinite reduction of the form p —— ---
—plasifpleandp=>qimplies q | s.

Definition 2. Let p <° q if for every s € Act™, p |} s implies

—qls
— for every A € A(q,s) there exists some A" € A(p,s) such that A’ C A.

The classical result for synchronous processes [7] is
Pl .« ¢ if and only if p <* ¢

We wish to adapt this result to the asynchronous case. Consider first the con-
vergence predicate. An asynchronous version can be defined in the obvious way:

— pl}® ¢ if there is no infinite reduction of the form p — -
— pl®asif p®e and p =25, ¢ implies ¢ |}° s.

Acceptance sets will also require considerable modification. An immediate re-
mark is that they should not include input actions. This is illustrated by a
simple example, already encountered in Section 3.

Ezample 4. Let p=a and ¢ = 0. We have seen that p_ . ¢. On the other
hand A(g,e) = {0} and A(p,e) = {{a}}, so the condition on acceptance sets of
Definition 2 is not satisfied.

This example suggests that the A(p,s) should be restricted to output actions,
i.e. replaced by output acceptance sets O(p,s) = {Op') | p = p' /= }, in
keeping with the intuition that only outputs should be directly observable.

A consequence of the synchronous characterisation is that p G° . ¢ implies
L(q) C L(p), since s € L(p) & A(p,s) # 0. This is not true in the asynchronous
case; p o, @ does not imply L(q) C L(p), as shown by the next example.

Example 5. Let p =0 and ¢ = a.a. We have p_ . q (as seen earlier in this
section) and a € L(q), but a € L(p).

This indicates that p should be allowed to match the execution sequences of ¢
in a more liberal way than in the synchronous case: if ¢ executes a sequence s
then p should be allowed to execute s “asynchronously”. This is where the new
transition relation =%, comes into play for must testing. Intuitively we expect
PEpust © = £(0) € L(p).

These two remarks lead to our first attempt at a definition. We will use two
kinds of acceptance sets: ((p,s) = {O®') | p = p' A=} and O%p,s) =
{OW) | p=ap' /~}.

Definition 3. Let p <' q if for every s € Act”, p || s implies

—q{"s
— for every O € O(q, s) there exists some O' € O%(p, s) such that O' C O.

It may be shown that p S, . ¢ implies p <’ ¢. On the other hand <’ is still
too generous and it is not true that p <’ ¢ implies p 5

must q.
Example 6. Let p = a.b and ¢ = 0. Then

— p <’ ¢, because O(gq,e) = {0} and O*(p,e) = {0}.
~ P, ..« @ because p must e while ¢ mlst e, where e is the test @ || b.w.

This example suggests that to compute the acceptance set of p after s we should
not only consider its s-derivatives but also look further at their input-derivatives
(derivatives via a sequence of inputs). Intuitively this is because an observer with
output capabilities interacting with a process may or may not discharge some
of these outputs by communication with the process. In the above example the
observer provokes the derivation p = p’ — p’" where p’ = p and p” = b and
this should be reflected in some manner in the acceptance set of p after €.

We thus want to generalise the sets O%(p, s) by looking at the input-derivatives
of p after s. For a reason that will soon become clear we need to consider mul-
tisets of inputs rather than sets. In the following W denotes multiset union. We
use the notation {| [} for multisets, writing for instance { a,a [}.

Definition 4. For any finite multiset of input actions I let 241 be the binary
predicate defined by

— (/A and I(p) NI =0) implies pas1p
— (p=p, and p'2¢1p") implies psrwyay P’

Intuitively p<¢rp’ means that by performing a subset of the input actions in I,
p can arrive at the stable state p’ which cannot perform any of the remaining
actions in I. Note that if p is stable then p2yg p.

Based on this predicate, we can define the generalised acceptance sets:

O (ps) ={00") | p==a 0,0’ 221p"}
Let IM (p, s), the set of input multisets of p after s, be given by
IM(p,s) = {{ay,...,an|} | a; € Names, p=%, =5 --- =5 p,}
We can now finally define our alternative preorder:

Definition 5. Let p < q if for every s € Act”™, p||* s implies

—ql’s
— for every A € A(q,s) and every I € IM(p,s) such that INA = () there exists
some O € OF(p,s) such that O\T C A.

Two comments about this definition will be helpful.

— The requirement I N A = () can be justified as follows. The multiset I repre-
sents the inputs that p could be doing (after s) in reaction to some test, that
is the complement of the outputs that the test is offering. Since the process
q has reached a stable state with ready set A, where it is confronted with the
same test, the test should be unable to make ¢ react. Thus in particular the
complement I of its outputs I should be disjoint from the inputs in A. Note
that without this requirement we would have e.g. a.b & a.b!

— The condition O\I C A can also be explained intuitively. In an asynchronous
setting, an observer providing some outputs I to the environment, will have
subsequently no way of telling, when observing these outputs, whether they
come from himself or from the observed process p. So all he can require is
that when p reaches a stable state p”, with outputs, say, O, the remaining
outputs of p”, O\I, be included in the actions A of the corresponding state
of g. In fact the condition O\I C A could be reformulated as O C A w1,
which is reminiscent of the definition of asynchronous bisimulation in [1].

Theorem 2. (Characterisation of must testing) In TACCS :

P ust @ if and only if p < q

4 Equational Characterisation

In this section we restrict attention to finite terms, without recursion. Standard
techniques may be used to extend equational theories to recursive terms.

In what follows u, v € Act will denote visible actions. We will use the notation
.t to represent a.t when p is the input action a and a.¢ when p is the output
action a. With this convention the basic testing axioms for (concerning the

Asynchrony:

X=X+a. (@l X)
aX=a|X

Fig. 2. Extra laws for asynchronous testing

choice operators and their interplay with prefixing and parallelism) are exactly
the same as in [7] and are not reported here.

In addition we need two axioms for asynchrony, given in Figure 2. The first
is a law holding also for weak asynchronous bisimulation, taken from [1]. The
second is the natural law for asynchronous output prefixing. Indeed it shows
that in the presence of the atoms @ this form of prefix is redundant in our lan-
guage. However its presence facilitates the comparison between the operational
semantics of synchronous and asynchronous outputs.

We shall not present the characterisation of Emay
adaptation of that given in [4] for a variant of our language. Let us just recall
some interesting laws holding for asynchronous may testing. Let a € Names, p €
Act. Then J;may satisfies:

here, since it is a simple

a.- . X <p.a X
a.@|| X) < X

In fact, for J;may the first law in Figure 2 can be derived from these two laws.
We give now the equational characterisation for must testing. To obtain the
theory for 5, . . we add to the standard laws and those of Figure 2 the usual
axiom for must testing:
XY < X

However this is not sufficient to yield a complete theory for I .. For instance
we have the inequality a+b.a 5 . @, which the reader may want to check using
the alternative characterisation of Theorem 2. This inequality is not derivable
from the axioms considered so far. More generally we have the law

P+b.p s P

In our theory this will be an instance of the conditional rule R1 in Figure 3.
Two more conditional rules are required, R2 and R3, which we briefly moti-
vate. As regards R2, note that the may testing law «a.(a|| X) < X is not valid

X+Y <X

Rl ——M
X+4+aY <X

X+Y <X
X+a@|v)<x

X+Y <X

R3 -
(X+a.2)aY <X

Fig. 3. Extra laws for must testing

for must testing. For instance p = a.(@||b) K, b = ¢ since A(g,b) # 0
while O (p,b) = 0 for any I. For must testing we have the more restricted law

X + a(@|X) <X

which is one half of the asynchrony law in Figure 2. However, this is not enough
since it does not allow one to derive for instance: @ + c.(¢||b.a) < @. Whence
the need for the more general conditional rule R2.

Similarly, the use of R3 can be exemplified by the simple inequality

@+ b ®0<a

which again appears not to be derivable from the other laws.
Finally, we have a law expressing the asynchronous behaviour of outputs with
respect to external choice

X+aV = (X+a.Y) & a.V

This shows that a process of the form X + a.Y can spontaneously resolve its
choice by releasing its output to the environment.

Let Fpuust p < ¢ mean that p < ¢ is provable in the theory obtained by adding
the equations in Figure 3 to the standard laws and those of Figure 2.

Theorem 3. For finite asynchronous processes pls,. . q iff Fpust P < q.

5 Conclusions

We have given an asynchonous operational semantics to a version of CCS with
internal and external choice operators, called TACCS. Based on this asynchonous
semantics we developed semantic theories of may and must testing. In particular
we gave alternative behavioural characterisations of the resulting preorders, and
equational characterisations for the finite fragment of the language.

Some interesting questions remain. For example, is it possible to eliminate
the use of conditional equations in the characterisation of .7 Or would
there be a simpler algebraic characterisation for the sublanguage in which the
external choice operator is only applied to input prefixes, essentially the language
studied in [3, 1]7 But perhaps the most important question is the extent to which
our approach can be generalised to yield an equational characterisation of must
testing over the w-calculus.

The may testing preorder has been equationally characterised for an asyn-
chronous version of CCS and for the asynchronous z-calculus in [4]. But both
these languages have syntactic restrictions that we do not impose; specifically
external choice may only be applied to input prefixes. Strong bisimulation has
also been characterised for the asynchronous m-calculus in [1], again with the
same restriction on external choice. As regards weak asynchronous bisimulation,
the recent work [11] shows how restrictions on the behaviour of asynchronous
m-processes can bring up interesting new algebraic laws.

References

1. R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
m-calculus. Theoretical Computer Science, 195:291-324, 1998.
2. J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Computer Science. Cambridge University Press, 1990.
3. M. Boreale, R. DeNicola, and R. Pugliese. Asynchronous observations of processes.
In Proc. FOSSACS’98, LNCS 1378, 1998.

4. M. Boreale, R. DeNicola, and R. Pugliese. Laws for asynchrony, 1998. Draft.

5. G. Boudol. Asynchrony and the w-calculus. Research Report 1702, INRIA, Sophia-
Antipolis, 1992.

6. R. DeNicola and M. Hennessy. Testing equivalences for provesses. Theoretical
Computer Science, 43:83-133, 1984.

7. M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Mas-

sachusetts, 1988.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

9. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
Proc. ECOOP’91, LNCS 512, 1991.

10. K. Honda and M. Tokoro. On asynchronous communication semantics. In
Proc. Object-Based Concurrent Computing, LNCS 612, 1992.

11. M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In
Proc. ICALP’98, LNCS 1443, 1998.

12. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

13. U. Nestmann and B. Pierce. Decoding choice encodings. In Proc. CONCUR’96,
LNCS 1119, 1996.

14. Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. Technical Report CSCI 476, Computer Science Department,
Indiana University, 1997. To appear in Proof, Language and Interaction: Essays in
Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,
MIT Press.

15. P. Selinger. First-order axioms for asynchrony. In Proc. CONCUR’97, LNCS 1243,
1997.

®

