
Theoretical

LSEVIER Theoretical Computer Science 195 (1998) 291-324

Computer Science

On bisimulations for the asynchronous n-calculus’

Roberto M. Amadio”, Ilaria Castellanib,*, Davide Sangiorgib

a Universitt! de Provence, CMZ, rue Joliot-Curie, F-13453, Marseille. France
bINRIA, 2004 Route des Lucioles, BP 93, Sophia-Antipolis. F-06902, France

Abstract

The asynchronous n-calculus is a variant of the n-calculus where message emission is non-
blocking. Honda and Tokoro have studied a semantics for this calculus based on bisimulation.
Their bisimulation relies on a modified transition system where, at any moment, a process can
perform any input action.

In this paper we propose a new notion of bisimulation for the asynchronous n-calculus, de-
fined on top of the standard labelled transition system. We give several characterizations of this
equivalence including one in terms of Honda and Tokoro’s bisimulation, and one in terms of
barbed equivalence. We show that this bisimulation is preserved by name substitutions, hence
by input prefix. Finally, we give a complete axiomatization of the (strong) bisimulation for finite
terms. @ 1998-Elsevier Science B.V. All rights reserved.

Keywords: Asynchronous communication; n-calculus; Bisimulation

1. Introduction

Process interaction in a distributed system is usually modelled by message passing. In

this context, one often distinguishes between synchronous and asynchronous message
passing. In the former, the send and receive events can be regarded as happening at the

same time. In the latter, one can imagine that messages are sent and travel in the ether

till they reach their destination, while the sending process accomplishes other tasks.

In the design of distributed algorithms the distinction synchronous vs. asynchronous

communication is not considered a very important issue. For instance [19, p. 441, says:

Messages in distributed systems can be passed either synchronously or asyn-

chronously. (. . .) For many purposes synchronous message passing can be

regarded as a special case of asynchronous message passing (. . .)

Indeed one can simulate a synchronous communication with two asynchronous ones.

On the other hand, in the language design community the distinction is brought to

t An extended abstract of this paper appears in Proc. CONCUR’96.

* Corresponding author.

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved

PZZ so304-3975(97)00223-S

292 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

the limelight. Basically, asynchronous communication is easier to implement than the

synchronous one as it is closer to the communication primitives offered by available

distributed systems. In particular, asynchronous communication has become a popular

choice in the design of languages for the programming of distributed applications. An

early proposal is Agha’s actors model [l], while more recent contributions based on

the theory of the rc-calculus include Pitt [161 and the join calculus [6].

A second community where the distinction synchronous vs. asynchronous is gaining

momentum is that concerned with the semantics of programs. In this community one

is often interested in comparing calculi. Certain translations turn out to be fully ab-

stract in an asynchronous setting, where the observer has less power. Examples include

the encoding of input-guarded choice [151 into the asynchronous rc-calculus, and the

encoding of the asynchronous n-calculus into the join calculus [6].

A way to restrict a process calculus to asynchronous communications is to remove

output prefixing. In other terms, an asynchronous output a followed by a process P is

the same as the parallel composition Z) P. If the calculus has a non-deterministic sum,

then we also disallow output guards. We can justify this decision as follows: (i) An

output on a choice point forces synchronizations at the implementation level, this seems

to contradict the very essence of asynchronous communication (we are not aware of

any programming language which allows this). (ii) At the semantic level a calculus

with output guards is more discriminating, in particular certain desirable equations such

as (2) in Section 5 fail to hold.

The resulting calculus is still quite expressive when working in a framework where

channel names are transmissible values, e.g. the x-calculus [131. Indeed it is quite easy

to simulate the synchronous rc-calculus in the asynchronous one: the sending process

waits for an acknowledgment from the receiving process on a private channel. Basic

results on the expressiveness of the asynchronous rc-calculus can be found in the works

by Honda and Tokoro [8] and Boudol [4], where the asynchronous rc-calculus was first

proposed.

When communications are asynchronous, the sender of an output message does not

know when the message is actually consumed. In other words, an asynchronous ob-

server, as opposed to a synchronous one, cannot directly detect the input actions of the

observed process. Consequently, the asynchronous calculus requires the development

of an appropriate semantic framework, as observed by [S].

In this paper we develop a theory of bisimulation for the asynchronous x-calculus

both in the strong and in the weak case. Our starting point is an original notion

of asynchronous bisimulation over the standard labelled transition system. As a first

contribution, we provide several characterizations of this bisimulation, and in particular

we study under which conditions it coincides with barbed equivalence. We also show

that our asynchronous bisimulation coincides with that proposed by Honda and Tokoro,

which is based on a modified transition system for the rc-calculus, on the sublanguage

that they consider. As a second result, we observe that asynchronous bisimulation

is preserved by the input prefix of the rc-calculus (a similar property is proved in

[9]) and coincides with ground bisimulation (a bisimulation where only one fresh

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 293

name is considered in the input clause). Finally, we give a complete axiomatization of

asynchronous bisimulation in the strong case for finite terms.

Insensitivity to name instantiation (and hence the possibility of using ground forms

of bisimulation) appears to depend on having no output prefixing. It does not depend

on having asynchronous, rather than synchronous, bisimulation (see [3] for a study of

insensitivity to name instantiation for various forms of synchronous bisimulations).

Forms of asynchronous rc-calculus have also been studied in [7], but the bisimilarity

used is the standard (synchronous) one. Part of our theory, in particular axioms and

normal forms, is based on that in [7]. Our formulation of asynchronous bisimulation

has been recently used by Nestmann and Pierce [15] to prove the full abstraction

of the above-mentioned encoding of input-guarded choice. The paper is organized as

follows. In Section 2 we provide the basic definitions. In Section 3 we present various

characterizations and properties of strong asynchronous bisimulation. In Section 4 we

offer a detailed comparison of our work with that of Honda and Tokoro. In Section 5

we study an equational theory which characterizes strong asynchronous bisimulation

for finite terms. In Section 6 we adapt some of the results in Section 3 to the weak
case. Appendix contains longer proofs.

2. Asynchronous x-calculus

The asynchronous rc-calculus is defined as a subset of the rc-calculus where: (i)

There is no output prefixing, and (ii) outputs cannot be on a choice point (formally

sums are allowed only on input prefixes and r’s). Our language differs from the one

proposed in [8,4] for the presence of a form of choice. This will be important in the

axiomatisation (Section 5).

We assume a countable collection Ch of channel names, say a, b,. . . We distinguish

between general processes P, Q, . . . and guards G, H, . . . as specified in the following

grammars:

P::=Eb1PIPlvaPI!GIG G::=Ola(b).Plr.PIG + G (1)

In Fig. 1 we define a labelled transition system with early instantiation (rule (in)).

The actions a are specified as follows: a ::= r l~ib)~(b)lab. Conventionally we set

n(a) =&(a) U bn(a) where

fn(z) = 0

bn(z) = 0

fn(z(b)) = Ia)

bn(Z(b)) = {b}

fn(i%b) =fn(ab) = {a, b},

bn(Zb) = bn(ab) = 0.

The rules (sync), (sync,), (camp), and (sum) have a symmetric version which is

omitted. Indeed, parallel composition and sum should be understood as commutative

operators. We denote with = syntactic identity modulo a-renaming and with fn(P) the
names free in P.

294 R.M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

(tong)
PEP’P’~Q’ Q’EQ

P:Q
(7) --A--

Z.P-+P

(in) a(b)P Jz [c/b]P
(out) -

2ib%l

(o&r)
P%P’a#b

vb P %)P’
(v)

P$P’ a@n(a)

vaPJ+vaP’

CWC)
P%P’ Q%Q’

(v%>
P’2P’ Q2Q’ b@z(Q)

PjQ:P’(Q’ P(Q-I,vb(P’IQ’)

(COT)
P 5 P’ bn(tx) flfi(Q) = 0

J’IQ-‘IQ

(rep)
G-%P

!G:PI!G

Fig. 1. Labelled transition system with early instantiation.

The notion of weak transition is defined as usual:

PAP’ iff P(A)*P’

P&P’ iff PA. -5. 4P’ (for a#r)

where, e.g., the notation P: . 5 P’ stands for 3”’ (P 3 Prr and P” 5 P’). We write

+ and + as abbreviations for -% and 4, respectively. The relations + and S- are

often called reduction relations.

The first important technical point arises in the definition of commitment. In the

asynchronous case it seems natural to restrict the observation to the output commit-

ments. The intuition is that an observer has no direct way of knowing if the message

he has sent has been received. All the sender can do is to introduce an output particle

in the system, unless there is an explicitly programmed acknowledgment mechanism

there is no way for him to know when the particle is actually consumed.

Definition 1 (Commitment). The strong commitment of a process on a channel ex-

presses the fact that the process is ready to send a message on that channel. Formally,

P 1 Z if P can make an output action whose subject is a, that is if there exist P’, b

such that P 3 P’ or P ‘z)P’. The weak commitment is then defined as:

P$Zif3P’(P+-P’andP’JS)

From the definition of reduction and commitment the notion of barbed bisimulation

is derived in a canonical way. Note that in the following we keep implicit the uni-

versal and existential quantifications which are formally necessary in the definition of

bisimulation: (for any move of the tirst process, there is a corresponding move of the

second process such that the following is satisfied.)

R&l. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 295

Definition 2 (Barbed bisimulation). A symmetric relation S on rc-terms is a (strong)
barbed bisimulation if whenever PSQ the following holds:

(1) IfPlZthenQJZ
(2) If P+P’ then Q-t Q’ and P’SQ’.

Let z be the largest barbed bisimulation. The notion of weak barbed simulation is

obtained by replacing everywhere the commitment 1 with JJ, and the transition -+ with

+. We denote with & the largest weak barbed bisimulation.

A more refined notion of bisimulation can be obtained if we also allow observation
of output transitions.

Definition 3 (oz-bisimulation). A symmetric relation S on x-terms is a (strong) or-
bisimulation if PSQ, P 5 P’, CI is not an input action, and bn(cl) nfn(Q) = 0 im-
plies Q -% Q’ and P’SQ’. Let -OZ be the largest or-bisimulation. Again, the notion of

weak or-bisimulation is obtained by replacing strong transitions with weak transitions.
We denote with x,, the largest weak or-bisimulation.

Both barbed bisimulation and or-bisimulation are too rough to distinguish processes
such as a(b).Fb and a(b).;ib. Clearly these processes exhibit different behaviours when
they are put in parallel with a process Cb. It is then natural to refine barbed bisimulation
to an equivalence which is preserved by parallel composition. Following [14], we call
it barbed equivalence.

Definition 4 (Barbed equivalence). The relations of strong and weak barbed equiva-
lence are defined as follows:

PN~Q if VR(PJREQ\R)

Pz+,Q if VR(P(R&QlR)

Another approach consists in looking for a variant of the input clause. This leads to
the following notion of asynchronous bisimulation. We will see later (Definition 12)
that several other equivalent definitions are possible.

Definition 5 (Asynchronous bisimulation). A relation S is an asynchronous bisimula-

tion if it is an or-bisimulation and whenever PSQ and P 2 P’ the following holds:

l either Q 2 Q’ and P’SQ’
l or Q -& Q’ and P’S(Q’ (Zb).

Let -= be the largest asynchronous bisimulation. The definition of weak asynchronous
bisimulation is obtained by replacing the strong labelled transitions with the weak
labelled transitions everywhere. We denote with x, the largest weak asynchronous
bisimulation.

296 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

Since asynchronous bisimulation is the basic bisimulation considered in this paper,

we will call it simply bisimulation in what follows. The following properties are specific

to the asynchronous rr-calculus (Properties 1 and 2 also depend on the absence of

outputs on choice points):

Lemma 6. (1) If P3.P’ then P--,P’)?ib,

(2) rf P “2 P’ then P N= vb (P’ 1 Zb).

(3) IfP% . &P’ then P?+ . %Ppl.

(4) zj-PT ii(b) . 4P’ and b$!n(cr) then P-% . --t P’.

(5) IfP% . 2 P’ and c is fresh, then P 5 [bfc] P’.

(6) IfP’3 . 4 P’ and c is fresh, then P 5 vb ([b/c] P’).

3. Asynchronous bisimulation, strong case

In this section, we study some properties of strong asynchronous bisimulation

(Definition 5). In Section 6, we will discuss how these results can be lifted to the weak

case, and relate them to previous work. Since most proofs for the weak case can be

trivially adapted to the strong case we delay all proofs to that section. The contributions

of the present section can be summarized as follows: (1) We show that bisimulation

is preserved by name substitution; (2) We provide several equivalent definitions of

bisimulation; (3) We prove that bisimulation and barbed equivalence coincide.

The definition of bisimulation has been given in an early style, and thus contemplates

the substitution of the bound name of an input with all possible names. In the ground2
style [181, on the other hand, no name instantiation is needed in the input clause.

Definition 7 (Ground bisimulation). A relation S is a ground bisimulation if it is an

or-bisimulation and whenever PSQ, P % P’, and b @fi(P (Q) the following holds:

l either Q 4 Q’ and P’SQ’
l or Q & Q’ and P’S(Q’ (Zb).

We denote with wS the largest ground bisimulation. Weak ground bisimulation is

obtained by replacing transitions with weak transitions. We denote with Mu the largest

weak ground bisimulation.

Theorem 8. Strong ground bisimulation is preserved by name substitutions.

An important corollary is that bisimulation and ground bisimulation coincide.

Corollary 9. Strong bisimulation and strong ground bisimulation coincide: -a = No.

2 We use the adjective ground to emphasize the fact that in this bisimulation the formal parameter of an

input prefix is treated as a fresh constant. Note that the terminology ground equivalence was used in [13, p.
281, with quite a different meaning.

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 291

A second corollary is that bisimulation is preserved by input prefix (a property which

fails in the synchronous calculus). We can then easily conclude as follows.

Corollary 10. Strong bisimulation is a congruence.

Besides early and ground, other variants of bisimulation which have been stud-

ied in the literature are late and open. The difference among all these variants is in

the requirements on closure under name instantiations. Late bisimulation requires that

matching input transitions should be adequate for all instantiations of the bound name.

In open bisimulation [1’7] the only constraints on equalities among names are those im-

posed by name extrusion and are recorded as a distinction in the bisimulation clauses.

Moreover, in the synchronous 7c-calculus strong late and early bisimulations are not

congruences because they are not preserved by input prefixes, hence the induced con-

gruences, called late and early congruences, have been introduced. In the asynchronous

x-calculus, bisimulation is preserved by name instantiations, and therefore all the above

forms of bisimulation coincide. We omit the definitions of late and open (which are

best defined on a late transition system) and we simply state the result.

Corollary 11. Late and open variants of strong (asynchronous) bisimulation coincide
with the early strong (asynchronous) bisimulation.

We have thus demonstrated some interesting mathematical properties of our notion

of bisimulation. Our next task will be to give an intuitive justification of this no-

tion. First, we introduce three further definitions of bisimulation, which differ in the

formulation of the input clause, and we show them all equivalent to Definition 5.

Roughly, l-bisimulation requires preservation under parallel composition with an out-

put, while 2,3_bisimulations propose variants of the diagram chasing in the input clause

(cf. Definition 5).

Definition 12 (Variants of bisimulation). An i-bisimulation (i= 1,2,3) is an OX-

bisimulation S such that:

l (1-bisimulation) PSQ implies (P 1 Zb) S (Q (Zb), for all ab.

l (2-bisimulation) PSQ and P%P’ implies
- either Q 4 Q’ and P’SQ’
- or Q A Q’ and there is P” s.t. P’ 3 P” and P”SQ’.

l (3-bisimulation) PSQ and P 2 P’ implies

- either Q 3 Q’ and P’SQ’
_ or there are P”, P”’ s.t. P

/ Fib
-+ P”, P -kt P”’ and P”SP”‘.

We denote with Ni the largest i-bisimulation, for i = 1,2,3.

Theorem 13 (Characterization). All definitions of bisimulation are equivalent. That is:
NII = N, zz -2 = N3.

298 R.M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

Our last result connects bisimulation with barbed equivalence. This result will be

discussed in detail for the weak case in Section 6.

Theorem 14. Let P, Q be processes. Then P y, Q ifs P wn Q.

4. Comparison with Honda and Tokoro’s bisimulatioo

Our definition of asynchronous bisimulation (Definition 5) relies on a standard

labelled transition system. A different approach is taken by Honda and Tokoro [B]

and this is subsequently developed by Honda and Yoshida [lo]. They use ordinary

bisimulation on a modified labelled transition system where, essentially, every process

can do any input action at any time.

The language considered in [B, lo] is an asynchronous rc-calculus without sum. We

will show that on this restricted language Honda and Tokoro’s bisimulation coincides

with our asynchronous bisimulation. Let us first recall the rules of Honda and Tokoro’s

transition system (HT-transition system, for short). Note that since there is no sum in

their language, guarded sums G are reduced to guarded processes of the form z.P or

a(b).P, and replication is limited to such processes.

In the HT-transition system the transition relations, which we denote by :~r, are

defined up to a structural equivalence ZHT following [2, 121. This is the smallest

equivalence such that: 3

P E Q =S P ST Q (s is syntactic identity modulo a-conversion),

Pjo=HTP PIQ=HTQIP PI(QIR)~HT(PIQ)IR,

va vb P ZHT vb va P,

va(PjQ)smPIvaQ if aU%P),

!GG~GI !G,

PSHTQ =+ PIRE~QIR and VaPEHTVaQ.

Then the transitions $~r are inferred using the system of rules in Fig. 1 (without the

rules (sum) and (sync,)) and with the following changes:

(1) The congruence rule (tong) is replaced by the rule:

(c%?HT)

P ZHT P’ P’$HTQ’ Q’EH~Q

P~HTQ

(2) The input rule (in) is replaced by an input rule for the 0 process:

3 We take here a slightly simpler equivalence than that used in [S], keeping only the clauses that are

necessary to infer transitions.

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 299

(3) The communication rule (sync) is replaced by the rule:

(SYncHT)
ac) a(b).P &&/b]P

The (strong) bisimulation equivalence 4 based on this transition system, denoted em,

is defined as the largest HT-bisimulation.

Definition 15 (HT-bisimulation). A relation S is a HT-bisimulation if it is an or-

bisimulation and whenever PSQ and P @+:HT P’ then Q %:HT Q’ and P’SQ’.

Note the rather special role played by input transitions in the HT-transition system:

the transitions ~:HT are never consumed in communications; they are only used in the
bisimulation to create contexts [] 172~ for testing processes. In fact, every process can
perform any input and it is easy to show the following.

Lemma 16. P $HT P’ % P’ EHT P (ab.

This property will be the basis for an alternative definition of the HT-transition
system, where there is no recourse to a structural equivalence. This new transition
system, which we call direct HT-transition system, will be easier to compare with
ours. It includes two kinds of input transitions:

- Those generated by 0 processes, noted 60, which are only used in the bisimulation
to create contexts [] 1 irb.

- Those corresponding to input guards a(b)P, noted s 1, which are only used in
communications and never tested directly by the bisimulation.

We will use & to denote a generic transition in the direct HT-transition sys-
tem. The transition relations A are defined by the system of rules in Fig. 2, where
the symmetric rules for (ino),(sync’),(synck,) and (camp) are omitted and in rules

(tong), (v), (camp) and (rep) we use I% to denote either kind of input transition.
Note that the communication rules (sync’) and (sync&.) are based uniquely on the in-

put transitions $1 corresponding to input guards. The input transitions so satisfy a
slightly weaker property than that expressed by Lemma 16, namely:

Lemma 17. The input transitions &O satisfy the following:

l P&, P’+P’ sHT P(iib,

Moreover the transitions & preserve the structural equivalence +r.

4 In fact Honda and Tokoro define directly the weak bisimulation.

300 RM. Amadio et al. I Theoretical Computer Science I95 (1998) 291-324

The transition relations A are the smallest relations such that:

(cow)
PsP’P’&Q’ Q’EQ

P&Q

(in11
a(b).P ez 1 [c/b]P

(7) __I_-
z.PkJ+P

(out) __l_
zibt%O

(o%_x)
PEPI afb

(v)
PAP’ aSfn(cr)

vbP’g’P’ vaPZ+vaP’

(SY4
Pft:p’ Q&Q'

(sync:,)
P’%)P’ Qd,Q’ bq!fn(Q)

PIQAP’IQ PIQ&b(P’IQ’)

(camp)
P t% P’ bn(cr) nfi(Q) = 0

(rep)
GAP

PIQ-“IQ !GAPj !G

Fig. 2. Direct HT labelled transition system.

Lemma 18. The transitions A satisfy the property:

P SHT Q A Q’ + 3P’ (PAP’ ZHT Q’),

We establish now the correspondence between the two HT-transition systems.

Lemma 19. The two HT-transition systems are related as follows:
(1) If a is an output or z action, then

(i) P 5Hr P’ + 3P” (P & PI’ =r P’),

(ii) P A P’ + P ~+HT P’.

(2) Moreover, for output transitions P ?+ P’ or P ‘%P’ we have

(i) PZPP’+P~~~vii(ZibfbR), a,b$iiandP’+TviiR,
(ii) pW HP’+PEHTv~I(Z~~RR), a$iI, bEiiandP’s~~v(z?\b)R.

(3) Case of input transitions PSt;oP’:

(i) P ~HT P’ * 3P” (P Z:oP” EHT P’),

(ii) Pt%f:oP’*P 2HT P’.

(4) Case of input transitions PZ:1P’:

(i) Let a,b,cq!ii. Then vZ(a(c).QIR)filvu’([b/c]QJR),

(ii) Pet P’+P *r vu’(U(c).QlR), a, b, c $! u’, P’ E,W vu’([b/c] Q 1 R).

Proof. Lemma 18 is used in all cases to care for the fact that the transitions $HT

are defined up to the structural equivalence +T; then the proof for output transitions

is straightforward. Point (2) is an easy consequence of Lemma 17. The proof of (3i)

R M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 301

is immediate. Point (3ii) is shown by induction on the proof of P s 1P’. We give here
the proof of point (1) for r-transitions, which relies on (3).
l We show fkst that PA,,P’+ 3P” (PXP”~JTP’).
- Basis: there are two cases to consider, z.P AffT P and ?ic (a(b) .P &sHT

[c/b] P. The first case is immediate, since the defining rule is the same in the direct
transition system. For the communication case, using rules (out), (inl) and (sync’)
we can deduce EC (a(b).P & 0) [c/b]P GHT [c/b] P.

- Inductive step: the cases where the last rule used is one of (camp), (v), (rep) are
straightforward, since the rules are the same in the two transition systems. Suppose
now the last rule used is (cong)Hr. This means that P ASHT P’ is inferred from
P EHT Q 5~ Q’ EHT P’. By induction we have Q A Q’. Then by Lemma 18 there
exists PI’ such that P +h P” +T Q’ +T P’.

l We show now that PAP’+PAHT P’.
- Basis: there is only one case to consider, z. P A P, which is immediate.
- Inductive step: cases where the last rule used is one of (camp), (v), (rep), (sync’),

(sync&). We only examine the case of (sync’): suppose P 1 QA P’ 1 Q’ because

PSP’ and Qt?tQ’. By point (2i) we have P EHT vu’(ab (I?), a, b $ u’ and P’ EHT
viiR. Similarly, by point (4ii) Q CH~ viY(a(c).S (S’), a, b,c 6 i;,Q’ +T vv’([b/c]S 1

S’). Then, supposing u’ n v’= 0 and u’ nf$Q) = 0 = i? n fn(P), we have, by rule

@yncH,):

zm VZTR I vv’([b/c]S) S’) EHT P’) Q’

whence, by rule (con&r), PI Q &r P’) Q’. 0

The bisimulation equivalence based on the direct transitions & , denoted wHT, is
defined as may be expected.

Definition 20 (Direct HT-bisimulation). A relation S is a direct HT-bisimulation

if it is an or-bisimulation and whenever PSQ and P~:o P’ then Q $0 Q’ and
P’S&‘.

Using Lemma 19 one can show the following.

Proposition 21. Xff~ = -HT.

We prove now the coincidence of -HT with our asynchronous bisimulation wa. The
correspondence between the HT-transition system A and ours is quite direct (note

that there is no counterpart for the transitions fi:o in our system):

302 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

Lemma 22. The direct HT-transition system and the Its in Fig. 1 are related as
follows:

(1) PEPI ti P%Pl,

(2) P&P’ * P$Pl,
(3) PAP’ * PAP’.

We are now ready to show that NHT coincides with -I1 , The proof is rather straight-

forward if we take the characterization of wU as ~1. In fact the coincidence of NHT (in

its original formulation %r) with ~1 (precisely the corresponding of ~1 on the HT-
transition system) was already stated in [9] for the weak versions of the bisimulations.

Proposition 23. -m = -1.

Proof. (i) ~1 c NHT. We show that m1 is a direct HT-bisimulation. Suppose P ~1 Q.

We only have to check the input clause, so let P $_)P’. By Lemma 17P’+rPj?ib.

By rule (i%) we have Q $0 Q 1 Sb, Since P ~1 Q, by definition also P) ?ib ~1 Q 1 Zb,
and thus, since EHT C ~1, we conclude P’ ~1 P 1 Zb ~1 Q 1 Zb.

(ii) wHT c -‘l. Suppose P NHT Q. We want to show that P 1 Zb -HT Q) Zb. But

this is immediate because P@+:o P 1 Zb, and since P-HT Q, there exists Q’ such that
a6

Q++aQ’ and PlZb wHT Q’. By Lemma 17 we have Q’ EHT Q I Zb. Thus, since ar

c NHr, PIZbwHTQ’-HTQlzb. 0 -

We conclude this section with some remarks to support our alternative formulation of

asynchronous bisimulation. We have seen that in the HT-transition system any process

P can perform any input ab. Although rule (inHr) directly represents the notion of

asynchronous observer, which (quoted from [8]) “just sends asynchronous messages

to the process and - possibly continuing to send further messages - waits for output

messages from the process”, we think it not so appealing because: (i) it introduces

an infinite branching, and therefore makes it harder to prove process bisimilarities (for

instance, all bisimulation relations are infinite) (ii) it is not obviously compatible with

a calculus including choice or other dynamic operators (in particular 0 fails to be a

unit for the choice operator, at least with the usual rule for choice), and (iii) it reflects

the notion of observation rather than the computational content of processes.

5. Equational theory, strong case

We present now an equational theory which characterizes strong asynchronous bisim-

ulation on finite terms. In the rest of this section we shall concentrate on the restricted

language without replication. In this case, the following equation summarizes the dif-

ferences between the synchronous and the asynchronous bisimulations:

a(b).(ZblP)+z.P=z.P b$fn(P). (2)

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 29X-324

(A) (a-conuersion) P = Q + P= Q

(Sl) G+O=G (Pl) P(O=P

(S2) G + G’ = G’ + G (P2) PlQ=QlP

303

(S3) G+(G’+G”)=(G+G’)+G” (P3) Pl(QlR)=(PlQ)lI?

(S4) G+G=G

(Rl) va(C~=,cri.9)=C{cliVaP;-IiEI, u$~K$E~)} Vi a$bn(ai)

(R2) vd~IQ)=PlvaQ if&fW)
(R3) vavbP=vbvaP

(EXP) (Expansion Theorem) Let J n K = 0 =L n M, b @n(Q), d $fi(P), and

P= Cz.pj + Cak(b).Pk

(jEJ &K
) and Q= (~.Q~+~Md4.Qm)a

Then

PI Q=IFJWj I Q)+~~~~~(b).(~lQ)+~~~~.(PlQ~)+~~~~rn(d)~(PlQ~)~

(OABS) (Output Absorption) Let I, J, K be disjoint, h E I\Fire(vu’ I&,, &bi) and

b 4 {a,bh). Then

9) + C m(b). (ahbh
kEK

(IAEB) (Input Absorption) a(b).(?ib(P)+z.P=z.P

pk) + C ~.btlblrX .
LEK

llk=llb))
b UW)

Fig. 3. Axioms d.

The reader should pause to formally verify this equation according to Definition 5.

A particular instance of Eq. (2) is u(b).Zb + z= z which intuitively says that the

process that emits what it has just received can be “absorbed” in an internal action.

Our axiom system is reported in Fig. 3. We recall that = denotes syntactic identity

modulo a-renaming.

The proof of completeness relies on a non-standard notion of normal form. Let us

first observe that, due to the absence of output prefix in the syntax, the parallel operator

cannot be completely eliminated via an expansion theorem. Unrestricted outputs will

continue to be present as parallel components in normal forms, and their possible

communications with the rest of the process will remain potential (that is, they will

not give rise to an explicit z-action in the normal form). Our notion of normal form

304 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

originates from that introduced in [7] in a different semantic context. In that work the
equational theory captures strong synchronous, rather than asynchronous, bisimulation;
the axiom system is essentially the same as that in Fig. 3 but without Eq. (2).

We introduce some notation. Let ni,, %b; denote a product of outputs, defined
up to the laws (Pl-3) in Fig. 3 (monoid laws for I). We shall use Z to denote a
sequence of names cl,. . . ,c,. If Z= cl,. . . ,c,, we let vZP stand for vet . . . vc,,, P. If
Z= E (the empty sequence), we let by convention VEP E P. With a slight abuse of
notation, we will sometimes use c’ also to represent the set {cl,. . . ,cm} (this relies on
axioms (RI-3)). We define now the set Fire(vc’ l&1 qbi) of indices of firable outputs
Of Vc’ n,eI Gbi.

Definition 24. Let P E vZ&,~bi. Then Fire(P)= UnEoFiren(P), where Fire,(P)
is the set of indices of outputs that can be fired after exactly II steps, given by:

Fir&P) = {i 1 Ui $A Z},

Fire,+,(P) = {i (3k E Fire,,(P) bk = ai}\ gunfire,.
.

Example 25. Let P = vb vc Hi,, xbi with I = { 1,2,3,4} and Tiibl = t?b, zi?bz = Tic, zb3
=bc, and qb4 =?b. Then Firq(P) = { 1,2}, FireI = {3,4}, and Fire,(P) = 0 for
n 22. Hence Fire(P) =I. Note that by construction Fire,(P) n Fire,(P) = 0 if n # m.

Let =sp be the congruence induced by the laws (Sl)-(S4), (Pl)-(P3) in Fig. 3
(commutative monoid laws and idempotence for +, and commutative monoid laws

for)).

Definition 26. A normal form is a term defined up to (Sl)-(S3) and (Pl)-(P3) of
the form:

where the sets I, J, K as-e pairwise disjoint, each Pj, pk is a normal form, and supposing
z= Cl , . . . , cm, the following conditions are satisfied:
(1) (All restricted names are emitted) V&E{l,...,m} 3i~Z bi=ce.
(2) (All outputs are firable) Fire(vZ I&,, Tbi) = I.
(3) (Non-redundancy) VkVj fi #p (ab 14).

By convention &, qbi E 0 if I = 0 (and similarly for the sums xi,== 7.4 and

c kC’K ak(b).Pk). Thus 0 is a normal form, when c’= E and I = J = K = 0. A guarded
normal form is a normal form such that c’= E and I = 0.

We will show that each term P can be reduced to a normal form using axioms d
in Fig. 3. Most axioms are standard: (EXP) is an instance of the expansion theorem
applied to guards, (OABS) is a form of expansion in which the output particles which

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 305

are not firable are forced to synchronize or to be postponed. Let =d denote the con-

gruence induced by these axioms. The proof of normalisation uses nested induction on

the depth and on the structure of P.

Definition 27. The depth of a finite process P is denoted by d(P), and is defined

inductively by:

d(0) = 0; d(ab) = 1;

d(a(b).P)=d(z.P)= 1

W I Q> = W’) + d(Q);

d(va P) = d(P);

+ d(P);

d(G +F)=max{ d(G),d(F)}.

Remark 28. The depth d(P) is an upper bound on the length of the transition sequences

of P. It is easy to see that if P’ is a subterm of P then d(P’)<d(P).

Lemma 29 (Normalization). For any jinite process P there exists a normal form:

CT.Pj + C ak(b).Pk
jGJ kEK))

such that P =d [PI and d([Pl)<d(P). In particular, every guarded sum G can be
reduced to a guarded normal form- [Gl E cjeJ z. Pj + xkEK ak(b). Pk.

In the proof of our completeness result, we shall use also the following lemma.

Lemma 30 (Separation). Let P and Q be two normal forms:

Pzvii (GGbiiPz) and Q=va (~&G&lQ~)

where

Zf P wn Q then there exists an injective substitution o that renames the set ii into u’
and acts as the identity otherwise, such that:

n@biCoandh and Pz wa oQz
iEI hEH

Theorem 31. On finite terms, the equivalence No is the congruence generated by the
axioms 92.

306 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

Proof. Soundness: P =d Q =F- P wa Q. This is the easy part: it is proved by exhibiting

appropriate bisimulations for each axiom.

Completeness: PN~ Q =+ P =d Q. G iven the normalization lemma and the soundness

of the axioms, it is enough to prove the statement for normal forms. So assume P E
v3(niEI qbi) Pz) and Q f vG(n LEH Gdh 1 Qr), where as usual PS and Qr are the

guarded parts of P and Q:

By the separation lemma we know that there exists a substitution c such that ov’= i;,

aw=w if wei?, and

iEI &H

We will show, by induction on the sum of depths of P and Q, that PZ =SZ aQz. This

will imply the required result, namely

Note that, if P is a normal form and P -% P’ (where CI is any action), then P’ is a

normal form such that d(P’) <d(P). 5 We will show that

(*) PZ =s2 PZ + aQx =s2 aQ.z.

To this end it is enough to prove

(i) PZ =s2 PZ + z. aQe,

(ii) PZ =SZ P,z + add). Q,,,.

Then (*) will follow by iteration and by symmetry.

(0

(ii)

Suppose P.y 54. Since PZ wII aQr, there exists 4 EL such that aQr & aQ/ and

472 aQe. By induction Pj =s2 aQ[and thus also r. Pj =s2 z. aQ/. Then Pz =s2

PZ + z. aQc.

Let now PE * [bk/b]Pk. We show first that aQr is forced to match this move by

a transition of the form aQr -@-5 [bk/d]aQ,,, for some m such that ac,,,d, =akbk.
For suppose aQr responds with a transition aQz 5 aQ[for some Qc such that

[bk/b]pk wn iiibk) aQe. Since d(Pk)<d(P) and d&bk (aQt)<d(Q), we have by

induction that Pk =s2 zbk 1 aQ(. But then, since PI _a aQr, there must be j E J
such that P_T L Pj and Pj -a aQ/. By induction this implies Pj =s2 aQ/ and hence

Pk =s2 zbk 14, contradicting the hypothesis that PZ is a normal form.

Thus a transition PI: -f@%
Okbk

[bk/b]Pk is always matched by a transition aQr -

[bddlaQm such that ac,,,d, = akbk and [bk/b]Pk wa [bk/d]a&. By induction

5 On the other hand, P’ is not in general a subterm of P, so we could not use struchual induction on
normal forms.

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 307

[bk/b]Pk =SZ [bk/d]aQ, and therefore also ak(b).& =SZ at,(d). Q”,. Then PX =SZ PZ
+ ocm(d). Qm. 0

6. Asynchronous bisimulation, weak case

In an asynchronous world a process can make an input and then emit it again on the
same channel without changing the overall behaviour of the system. Some interesting
equations that hold in the weak semantics and that further motivate its study are the
following:

!(a(b).Eb) = 0,

a(b).(Eb (a(b).P) =a(b).P,

a(b).(ab(G)+G =G.

We present the weak versions of Theorems 8 and 13. Our first task is to show that
(weak) bisimulation is preserved by substitutions and coincides with ground bisimu-
lation. To this end we first establish some elementary properties whose proof is not
completely standard, in particular some work needs to be done to prove transitivity of
M, (cf. the Appendix). In the following, P, Q, R . . . denote processes.

Lemma 32. Bisimulution is preserved by parallel composition, restriction, replication
and guarded sum, and it is included in ground bisimulation:

(1) I~PE~Q then P]Rz:,Q]R, vuPx,vuQ, a.P+Rq,u..Q+R, and !Pq!Q.
(2) IfPz=Q then P=:,Q.

Let (T denote a name substitution which is almost everywhere the identity. Whenever
we apply a substitution to a process or an action we suppose that the bound names
have been renamed so that no conflict can arise, in particular cr acts as an identity on
bound names and if (T(C) # c then o(c) is not a bound name either.

Lemma 33. The transitions of P and aP can be related as follows:
(1) If P:P’ then oPzoP’.

(2) If oP 5 P” and a’ is either un output action, or an input action where the received
name is fresh, then for some P’, P 5 P’, oP’ =_ P”, and ox = CI’.

(3) If oP:P" then
(a) either PAP’ and aP’ E P”.

(b) or aa = ad, P 2 . % P’ and [b/c]aP’ -a P” (c fresh).

(c) or aa= ad, Pz2 . %P’ and vb([b/c]aP’)-aP” (c fresh).

We are now ready to prove the crucial lemma.

Lemma 34. If P FZ~ Q then aP M, aQ.

308 RM. Amadio et al. I Theoretical Computer Science I95 (1998) 291-324

Proof. We show that the following relation is a bisimulation up to wa and restriction:

S = {(cP, rrQ) 1 P ag Q, o substitution}. (3)

Suppose aP 2 P’. If a is a r or output action then the “up to” means that there are

L?, P”, Q”, Q’ such that oQ &- Q’ and

P’ -O ~2 P” P”SQ” V; Q” _a Q’. (4)

If a 3 ab is an input action then the “up to” means that there are d’, P”, Q”, Q’ such

that

l either OQ %- Q’ and condition 4 holds.

l or crQ&Q’ and

P’ wa Y; P” P”SQ” ~2 Q” -a (Q’ (zb). (5)

We consider the various cases.

l The case when a is a z or output action is simple.

l Suppose oP 5 P’ and we are not in the previous case. According to Lemma 33(3)

we have to consider two cases:

output: Suppose P 3 . % PI, where P’ _a [b/c]oPl, c is fresh and oa = od.
We have to consider two subcases:

input: Suppose Q% . 3 Q t and PI zg Ql. This means that Q & . 3 . & . 2 .

&- Qt. By Lemma 6(3) we have then Q 3 . 4 . % . 3 Qi, whence, by Lemma

33(l), oQ&. 2. “2. & oQt . Then, by Lemma 6(5) we conclude that OQ 4 .
~a WloQl .

z:LetQ%-&Qt andP t xg (Qt 1 dc). By Lemma 6(3) we have Q 4 . 3 Qt, and

then by Lemma 33(1) there exists S such that oQ &- S 5 aQi. By Lemma 6(1)

we know that S _a <oQt (aZb) E [b/c]o(Ql 1 d -C). Then oQ 4 . wa [b/c]a(Ql 1 d -C)
is the matching move.

bound output: Similar to above.

l The last case to consider is when oP 3 P’. Then we have P 5 PI where c is a fresh

name, aa’ = a and [b/c]oP, E P’. Again there are two cases:

input: If Q $ Qt and PI x:g Ql then oQ 3 [b/c]aQl.
r: Q 4 Qt and PI R+’ (Ql (2~). Then the matching move is oQ & crQt, since crQt 1 sib E

Wcl4Ql 124. 0

Theorem 35. Weak ground bisimulation and weak bisimulation coincide and they are
preserved by substitution.

Proof. From Lemma 32(2) and Lemma 34 applied with the identity substitution we

knowthatPz:,QiffPzaQ.F rom Lemma 34 we can conclude that both bisimulations

are preserved by substitution. 0

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 309

It follows that weak bisimulation is preserved by all operators but sum (as usual)
and that late and open uniform variants of the weak bisimulation coincide with the
early bisimulation studied here.

Corollary 36. If P M, Q then a(b).P M, a(b).Q.

We can generalize the characterization of asynchronous bisimulation in terms of
l-bisimulation to the weak case.

Definition 37. Let S be a weak or-bisimulation. We say that S is a weak 1-bisimulation
if PSQ implies (P 1 sib)S(Q 1 Eb). We denote with ~1 the largest weak 1-bisimulation.

Theorem 38 (Characterization). The 1-bisimulution coincides with (asynchronous)
bisimulation. That is: ca = q.

We now relate barbed equivalence and bisimulation. In the weak case our results
rely crucially on the matching operator which we introduce next (in the strong case
matching is not needed). We suppose that the grammar of the calculus specified in 1,
Section 2, is extended by the clause: P :: = . . . [a = b]P. The rule associated to I
matching in the labelled transition system is:

(match)
P>P’

[c = c]P5 P’

We will concentrate on the weak case first. In Remark 41 we indicate how to eliminate
matching in the strong case (hence providing a proof for Theorem 14).

Proposition 39. Let P, Q, R be processes. Then
(1) Zf o is an injective substitution on fn(P) Q) then P x, Q i# oP M, aQ.
(2) If P M, Q then P 1 Rx, Q (R, for any process R.
(3) lfPqQ then Pq,Q.

Proof. The proof of (1) is standard. The proof of (2) is shaped upon the one for
Lemma 32 (we cannot use directly this lemma because we have extended the calculus
with matching). The proof of (3) follows by

P==Q+VR(PIR=:,QIR)

=G’R(PIR&QlR)

+PPbQ 0

We recall that a Its (Pr,Act,++) is image jinite if for any process P and action
01 the set {P’) P A P’} is finite. We say that a process P is image finite\if the Its
generated by P is image finite. Image finite processes form an interesting class: w.r.t.
strong reduction all processes are image finite (up to renaming of bound names), and

310 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

w.r.t. weak reduction all finite control processes (cf. [5]) are image finite modulo the

equation vu P = P for a 6 fn(P).

Theorem 40. If P and Q are image jinite processes (with respect to weak reduction),
and P Mb Q then PM, Q.

Proof. Let % be the monotone operator over Y(Pr x Pr) associated with the def-

inition of asynchronous bisimulation. Suppose z$ = Pr x Pr, %i+l = F(M:), and
NO -
-a - n/r<o M! . It is well-known that on an image finite Its the operator % preserves

co-directed sets (the dual of directed sets). In particular, %(@’) = z:$. It follows

that on image finite processes x, = M,W . We show that P Mb Q implies P z:$ Q. From

the previous remark the theorem follows.

More precisely, we define a collection of tests R(n,L) depending on n Ecu and L
finite set of channel names, and show by induction on n that

X, L’(L >fn(P 1 Q), L’ c L and vL’ (P (R(n, L)) & vL’ (Q 1 R(n, L))))

implies P xi (2.

If the property above holds then we can conclude the proof by observing:

P=:bQ

+VR(P(R&QIR)

+ Vn E o(P 1 R(n, L) & Q 1 R(n, L)) with L =fi(P 1 Q), L’ = 8

+ Vn’ncu(Pza”Q)

+ P=:Q.

We define the tests R(n,L). To this end we introduce an internal choice operator $.

This is a derived operator defined as follows:

P, @ . . * ~P,rva(a.P~I...la.P,IiZ) a $fi(Pj) ... IP,).

When reducing an internal sum we implicitly garbage collect all dead branches. If

X={P1,..., P,} is a set of processes then @X is an abbreviation for PI @ . . . CD P,,.
We suppose that the collection of channel names Ch has been partitioned in two infmite

well-ordered sets Ch’ and Ch”. In the following we have L’s L C$n, Ch”. We also

assume the following sequences of distinct names in Ch’:

{b,,bL InEw}

{ctln~o and /3~{~,aa’,a,~a’,~Ja,a’~Ch”}}

{ cp I n E o and /I E {au’, a (a, a’ E Ch”}}

{dt[nEo and j?E{alaECh”}}

{en InEw)

R M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 311

The test R(n,L) is defined by induction on n as follows, where we pick a” to be the

first name in the well-ordered set Ch”\L. When emitting or receiving a name which

is not in L we work up to injective substitution to show that P z:“, Q.

R(0, L) = & 63 b’rJ

R(n,L)=b, $b’, $ (for n>O)

(< G3 R(n - 1, L))

Cl3{2Q’ CT3 (&I IR(n - 1,L)) 1 a&L}

@{E,f $ va” @a” 1 R(n - 1, L U (a”})) 1 a EL}

@{i?jy’ a3 a<a”).(<” @([a”=a’]i?f $R(n- l,L))))a,&L}

CB{C Cl3 a@“).

(c @ (@{[a” = a’]z’ 1 a' EL} @ Zn @ R(n - l,L U {a”}))) (MEL}.

The base case is trivial, as M: is the full relation. We suppose n > 0, vLr (P 1 R&L)) &

vL’ (Q 1 R(n,L)), and P 4 P’. We proceed by case analysis on the action c(to show

that Q can match the action E (in the asynchronous sense). We consider here the cases

of a free input and a free output. The cases for z, bound input and bound output are

similar, and they are presented in Appendix A.

tc z aa’ We suppose a’ EL. Then

vL’ (P 1 R(n,L)) 3 vL’ (P 1 (i$” $ (Ea’ (R(n - 1, L)))).

This has to be matched by

vL’ (Q I R(n,L)) 4 vL’ (Q, 1 (Tf”’ @ (T&i I R(n - 1,L)))).

We make a further reduction on the lhs:

vL’(P)(~‘%(Za’IR(n- l,L))))&vL’(P’)R(n- l,L)).

This is matched by

vL’ (Q, I(?” 43 (5.1’ 1 R(n - 1, L)))) 4 Q”.

Now we have two possibilities:

l Ql& Q’ and Q” = vL’ (Q’ 1 iid I R(n - 1, L)). Then Q 4 Ql& Q’ and P’ z:-l Q’ 1

Zd by inductive hypothesis.

l Ql$ Q’ and Q” E vL’ (Q’ I R(n - 1,L)). Then Q & Ql’$ Q’ and P’ z$-~ Q’ by in-

ductive hypothesis.

a E iia’ We may suppose a’ EL. Then

vL’ (P) R(n, L)) 4 vL’ (P I y’ @ a(a”)_(r’ @ ([a” = a’]af $ R(n - 1, L)))).

312 R.M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

This has to be matched by

VL’ (Q) R(n,L)) 4 VL’ (Ql 1 qy’ $ a(aJr).(qy @ ([a” = a’]zf @ R(n - 1, L)))).

We make a further move on the lhs:

VL’ (P) Z”’ @ a(d~).(zf $ ([a” = a’]if @ R(n - 1, L))))

~vL’(P’~([a’=aqi&qn- l,L))).

This has to be matched by (we have to lose the 7:’

x’, b,_ 1, Pn_ 1

commitment while keeping the

commitments):

vL’ (QI (i$=’ @ a(a”).(r’ @([d’=d]ig e+R(n - l,L))))

3 vL’ (Q2 1 ([a’ = a’$?; @ R(n - 1, L))).

We note Qi 3 Q2. We take a further step on the lhs:

vL’(P# ([u’=aqf @R(n - l,L)))$ vL’(P’IR(n - l,L)).

This has to be matched by

vL’(Q2 I ([~‘=a’]~; @R(n - l,L)))&vL’(Q (R(n - l,L)).

Now we observe Q & Qr 3 Q2 3 Q’ and we apply the inductive hypothesis to con-

clude P’ ~1-l Q’. 0

Remark 41. (1) In the strong case we can simulate matching with synchronization
--

by replacing [a” = u’]zI’ with vc (c.fn I a”~ I u’(c).(i$ 1 C)), where {fn 1 II E o} is yet

another sequence of names in Ch’. Suppose that in the process P on the lhs u” =a’,

while in the process Q on the rhs a’ # a”. Then P can perform two consecutive z

reductions, where we indicate with C[] a suitable context:

-- - _a’
P = C[vc (c.fn I a”~ I u’(c).(x’ I c))] + C[vc (c.fn I x’ I C)] ---f C[Jn I d, 1,

To follow the first reduction Q is forced to communicate on u’, leaving the message

zc idle (since a’ # a”), but then Q cannot follow the second reduction, since it should

in one step send out the private name c on ur’ and activate the commitment on fn.

Therefore, in the strong case Theorem 40 holds also for a calculus without matching.

(2) In the weak case matching plays an essential role, for instance the terms Zb and

Zc cannot be separated when put in parallel with the process !(b(d).Zd) 1 !(c(d).bd)
(which is an equator in Honda-Yoshida terminology [lo]).

(3) It should be noted that our definition of barbed equivalence follows [14]. Honda

and Yoshida present a similar result in [lo], however they rely on a stronger notion

of barbed equivalence where the preservation under parallel composition with outputs

is required at each step.

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 313

(4) The definition of the tests R(n,L) does not involve the guarded sum. This im-

plies that the characterization theorem still holds for an asynchronous calculus without

guarded sum.

(5) In the asynchronous calculus with matching the various notions of bisimulation

do not collapse. For instance consider P G a(c).&+a(c).O and Q = P+a(c).[c = cl]&.
The processes P and Q are early equivalent but late distinct. Moreover asynchronous

bisimulation and barbed equivalence fail to be congruences. If we refine asynchronous

bisimulation to an asynchronous congruence (by asking invariance under substitution)

and if we refine barbed equivalence to barbed congruence (by considering contexts

including the input prefix) then we can show that asynchronous congruence coincides

with barbed congruence.

7. Conclusions

Our contributions are summarized in Fig. 4. We leave open the problem of find-

ing an axiomatization of weak asynchronous bisimulation (with or without matching),

and the problem of determining the counterpart in the weak case of the characteriza-

tions of strong asynchronous bisimulation in terms of -2 and -3. Axiomatizations of

weak bisimulations of process calculi normally use some variant of Milner’s tau-laws

[l 11; these laws are defined using the full guarded summation, that is not available

in our asynchronous calculus. As for relations -2 and 9, we could not extend our

characterization results for the strong case to the weak case.

In another direction, it would be worth investigating the applications of Theorem 35

(bisimulation equals ground bisimulation) to automatic verification. For instance, one

may wonder if it is possible to speed up current verification techniques by compiling

into the asynchronous x-calculus and applying ground bisimulation. To this end, it

would be useful to find syntactic conditions under which asynchronous and synchronous

bisimulations coincide.

Strong case (without matching)
0 : > NOT > Na = NS = N1 = -2 = N3 = n/b.

. -a is a congruence.

l Axiom which distinguishes asynchronous from synchronous bisimulation:

a(b).@ JP)+ z.P=z.P if b 4 fn(P).

Weak case
ox l > MO* > M, = Ml.
l Without matching: xg = Z& is a congruence, and =:a C q,.

a With matching on image finite processes: M, = %b .

Fig. 4. Summary of results.

314 RM. Amadio et al. I Theoretical Computer Science I95 (1998) 291-324

Appendix A. Proofs

A.l. Proofs of Section 3

Preliminaries to the proof of Theorem 13.

Lemma A.1. The relations ma ,-I, ~2, -3 are equivalence relations.

Proof. The only nontrivial property to show is transitivity. The transitivity of ~1 is
immediate. That of ma is proved for the weak case, see Proposition A.7. We prove
here the transitivity of ~2. The transitivity of ~3 is shown in a similar way.

Transitivity of ~2. We show that the relation (7 o ~2) is a 2-bisimulation. Suppose
that P ~2 T ~2 Q. The two interesting cases are:

l P 4 P’ and T answers by T 5 T’ such that for some P” we have P’ 3 P” and
P” m2 T’. Then Q must have a transition Q&Q’ such that T’ ~2 Q’. Therefore
P”(N~ o ~2) Q’ as required.

l P2P’ and T3T’ with P’ ~2 T’. If T 3 T’ is matched by Q 3 Q’ we have
finished. So suppose we are in the case where QL Q’ and for some T” we have

T’ 3 T” and T” ~2 Q’. Then P’ must have a transition P’ 2 P” such that P” ~2 T”.
Therefore P”(N~ o ~2) Q’ and this concludes the proof. 0

Let ar be the structural equivalence defined in p. 9. Clearly -r is included in
all the equivalences _a , ~1, ~2, ~3. The following property holds (it should be noted
that this property depends on not having outputs on choice points).

Lemma A.2. If P 3 P’ then P snr P’ 1 irb.

Lemma A.3. The relations wa and ~2 are preserved by parallel composition with
outputs.

Proof. The proof for wa is given in Lemma A.6 for the weak case. We give here the
proof for ~2. We show that the relation:

R={(PlZb, QjEb)(PN2 Q}u -2

is a 2-bisimulation up to =m. We check that the bisimulation condition is satisfied by
the pairs (P 1 Zb, Q I Zb). W e only show the details for the case of input actions: here

P I iib 2 P’ I Zb is inferred from P 2 P’. Then Q can answer in two ways:

l Q 3 Q’ and P’ ~2 Q’. In this case we have Q (ab 2 Q’ (?ib and (P’ I Fib, Q’ 1 sib) E R.

l Q & Q’ and there exists P” such that P’ 3 P” and P” ~2 Q’. Then Q I Zb -% Q’ I sib

and P’ 1 Zb 2 P” I Zib, where (P” I ab, Q’ I ?ib) E R. 0

Proof of Theorem 13. We show the three equalities: 1. No= ~1, 2. ma= ~2, 3.
~2 = ~3. The proof of 1. is given in Appendix A.3 for the weak case: let us just

R M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 315

mention that the direction _a G -1 uses the fact that ma is preserved by paral-
lel composition with outputs, and the direction -1 C_ -a uses transitivity of -1.
The proof of 3. is straightforward. We give here the proof of 2, which relies on
Lemmas A.2 and A.3 and uses the transitivity of ~2.

Proof of 2. It is easy to show that wn is a 2-bisimulation. We now prove that -2

is an asynchronous bisimulation. Let P w2 Q. Suppose P%P’ and Q answers by

a transition Q A Q’ such that for some PI’ we have P’ % P” and Prr ~2 Q’. By
Lemma A.2 P’ +p PI’ 1 Fib and thus also P’ ~2 P” 1 Sib. By Lemma A.3, PI’ -2 Q’

implies P” (Zb ~2 Q’) ab. Whence, by transitivity of -2, also P’ -2 Q’ (Zb. q

A.2. Proofs of Section 5

Proof of Lemma 29. By lexicographic induction on the depth d(P) and on the structure
of P. For a given depth, we proceed by structural induction. Axioms Sl, S2, S3 and
Pl, P2, P3 will be used implicitly in the proof, in particular the relation z should
be intended as syntactic identity modulo a-renaming, and the axioms above. We shall
concentrate on some interesting cases, leaving out the proof of d([PI) G d(P).

l Case n = 0. If d(P) = 0, P is built with the operators 0, I and vu. If we define
[Pl =O, then we have P =JQ [Pl by axioms (Pl) and (Rl).

l Case n B 1. We proceed by induction on the structure of P. We consider the cases
of parallel composition and restriction.

(1) P E R I S. By induction there exist normal forms CR], [Sl such that R =d [RI,

S =d [Sl and d([RI) 6 d(R), d([Sl) < d(S). Suppose that

where

RX E C T. Rj + C Uk(b). Rk
i k

) , Sz= (~~.&+~c.(d).Sm)

are the guarded parts of [RI and [Sl. By induction on the depth, all the terms

(RjlSz), (&I&), UblSe) and (R~l&d h ave normal forms (induction can be
applied because d([RI) <d(R), d([Sl) <d(S)). For instance d(Rj I SZ) <(d(R) +

d(S)) = d(P) follows from d(Rj) < d([RI) <d(R) and d(Sz) <d([Sl) <d(S). Let
now

316 R.M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

We can assume that b @fn([Sl) and d $fn([RI), and also ZII v’= 0 and u’n

fi(IS]) = 0 = Cnfn([RI). We now define

+ ,,& dbl. I& I Sl + C 40 Pz I&l .
rnEM\M’))

This is indeed a normal form. In particular, since v’nfn(I&&bi)=@ =~‘II
fn(&Gdh), we have

=ZuH.

Using laws (R2), (EXP) and (IABS), we can easily deduce that

vu Q. By induction Q =d [Ql and d([Ql) <d(Q). Assume that (2) P-

TQ

We

C r.Qj + C Q(b).Qk .
jEJ REK))

consider separately the two cases where a qLfn(vu’ ni,, &bi) and a E
@(vu Hi,-, qbi). Note that we can assume a $! ii, and in this case a E
fn(vu’ n,z,-qbi) @ a E fn(niEI qbi).

- If a $ fn(&, qbi), we set

[Pl E vu’ ,,, z. [va Qjl + c @k(b). rva Qkl
ak#a

kEK\K’ 1)

where the normal forms [vu Qjl, [VU Qkl exist by induction on the depth, and

K’ = {k E K I3j E J [vu Qkl =sp (&b 1 [vu Qjl)}. This is by definition a normal

RM. Amadio et al.1 Theoretical Computer Science 195 (1998) 291-324

form. Suppose that both J # 0 and K # 0. Then

317

The cases where one or both of J,K are empty are simpler, since we do not need

to apply (LABS). We have thus shown that P=d [Pl using laws (Rl)-(R3) and

(IABS).

- If a ~fi(n,~, cbi), define F = E:ire(vau’ &, Z&), F= I\F, and let v’,G be the

projections of au’ on the names that bind, respectively do not bind, some zbj

such that i E F. Formally, if u’ = (zq 13 i E F(aj = ue V bi = UC)} and z? = ii\d,

we define

1 a22
u’=

22

if 3iEF (ai=aVbi=a),

otherwise.

if ,EI~EF (ai=aVbi=a),

otherwise.

Supposing b +Z i%, let now

318 RM. Amadio et al. I Theoretical Computer Science 19.5 (1998) 291-324

where all the required normal forms exist by induction on depth and

Then, if [Ql G vu’ Q’ and [PI 5 vV’P’ we have, by applying (OABS) until all
unfirable outputs have been pushed under the guards, and then using (R2), (Rl)
to push under the guards the restrictions in ~72

P =& VLd Q’ =R3 Vv’ii, Q’ =oAB,$R2,RtJ,&s Vv’ P’ = [PI. 0

Preliminaries to the Proof of Lemma 30. Let us look back at the definition of Fire,(P)

for P 5 vc’ l-Ii,, qbi. Note that the sets Fire,(P) partition Fire(P). Note also that,
since Z is finite, there exists a minimal r such that Firer+,(P) = 0. We then have
Fire(P) = U:=, Firen(P). We shall use C(b) to stand for either sib or Z(b), and P 5 P’

to denote a sequence of transitions P ((1 . . . 3 P’ such that ~(1,. . . , !%k =s. The
following fact can be easily proved by induction on n.

Remark A.4. Let P = vii &, qbi be a normal form such that Z # 8, and define In =
Fire,(P) and N,, = II,). If r = min {n 1 Fire,+l(P) = 8}, then P has a transition sequence

such that for any j = 1,. . . , r+ 1, 4 E viii &I,ro ,,,,, I,_, qbi where iii+’ = iii\bn(sj), and,

letting Go = i;, for any j = 1 , . . . , Y the sequence SZ = G{ (b{), . . . , ?i& (b&) is a sequential-

isation of the outputs in Firej(P) such that U?i, {qib;} and for any k= l,...,Z$:

if (b!Eiij and V’e<k bi#bk),

otherwise.
$(b;) =

?i{(bL)
ajbj

k k

Remark AS. If)I) = N, we can assume w.1.o.g. that Z = { 1,. . . , N}. Then we can build
a canonical transition sequence P 3 PO 3 PI + e . P, % P,+l E 0 where outputs within
the same sequence si are sequentialised according to the ordering of I.

Proof of Lemma 30. Based on Remark A.4. Let the canonical transition sequence
associated with P be

Rh4. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 319

Since P m0 Q, we can find a matching sequence for Q, possibly using a-conversion.

Let cr be a renaming on the names of v’ such that av’= ii and the process

has the following matching sequence, deduced without using a-conversion:

where for any k=l,..., iN, oq(d,) =q(bk). This shows that Pz _a oQz.
Let now Pn z Hi,, qbi and Qn G flhEH Gdh. To obtain Pn s o Qn it is enough

to show that the two multisets of actions in Pn and 0 Qn are the same. But this

is an immediate consequence of the above and of the fact that Fire(viiPn)=Z and

Fire(vu’aQn) =H (because P and Q are normal forms).

A.3. Proofs of Section 6

Preliminaries to the Proof of Theorem 38

Lemma A.6 The relation M, is preserved by parallel composition with outputs:

Pz:,Q+PJabqQIzb.

Proof. Let =_-p be the congruence induced by the commutativity and associativity laws

for 1 (laws (P2), (P3) of our axiom table). We show that the relation:

R={(Pjzb, Qj7Lb))(Px,Q}uz,

is an asynchronous bisimulation up to zp. We check that the bisimulation condition

is satisfied by the pairs (P (Gb, Q 1 sib). We consider the most interesting cases.

l Communication case: PlEb & P’ IO is inferred from P $ PI 2 P2 3 P’ and ?ib 3 0.
There are two possibilities for Q to answer:

. Q&Qr&Ql,%QG&Qh&Q’, with PiE;aQi and P’x~Q’. Hence Qjzbzb
Qi 1 sib L Qi (0 & Q’ IO, which is the required move since P’ (0 M, Q’) 0.

. Q&Q2 with Pzx, Q2 (5b. Hence Q (ab 3 Q’ I Eb is the matching move, since

P’IOmaQ’\ab.
l Case of input action where P communicates with Sib. We only show the details for

the case where the communication occurs later than the input (the case where the

communication occurs earlier is simpler). Suppose P 3 PI 3 P’ and P 1 ?ib 3 PI) ab
4 P’ (0. By the case where P moves alone we know that the input transition

P (Cb 3 PI (iZb is matched either by Q (2b 3 Ql) Gb for some Qr such that PI M, Ql
and (PI \5b, Ql (5b) E R, or by Q (ab & Ql) ab for some Qr such that PI M, Ql) Ed.

320 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

- In the first case, by the communication case we know that PI 1 Zb & P’ IO can be

matched either by Ql) sib $ Q’ IO such that P’ (0 x, Q’ IO, in which case P) sib 3

P’IOismatchedbyQI~bLbQ’)O;orbyQlI~bibQ’I~bsuchthatP’IOx,Q’Iirb,

in which case P I Zb 3 P’ IO is matched by Q I Zb g Q’ 1 Zib.
- In the second case, we have PI x, Ql (Fd. Then Ql I Fd can simulate the move

PI 3 P’ in two ways:

(1) Ql (Zd 3 Q’ for some Q’ such that P’ - _a Q’. Then there are again two possibil-
ities:
la. Qi (Cd 3 Q’ because Qi 3 Q” and Q’= Q” (Cd. In this case PI (ebb

P’IO is matched by Ql IZbibQ” 10, where P’za(Q” (0) Ii2d because

P’IOX~Q’. Thus PIirb%Pp’IO is matched by QIZbibQ”IO.

lb. The transition Qi I Ed 3 Q’ ‘consumes the output Fd. This can be because

Qi 3 Qz 3 Q” or because ‘Q %Q2 3 Q”. In both cases we have

Ql (Zb% Q”lO= Q’ and thus Q I Sib 3 Q’ is the matching move.
(2) Ql) Fd & Q’ for some Q’ such that P’ M, Q’) Zb. Again, there are two subcases:

2a. Qi (Fd &- Q’ because Qi s Q” and Q’ = Q” I Zd. Then Qi (Zb 4 Q” 1 Zb and
thus Q/abibQ” lob is the matching move, since P’x, Q’ 15bz0
(Q” (zb)) Zd.

2b. Ql) Zd 4 Q’ because Ql$ Q” and Q’ = Q” IO. Then Ql (Zb 3 Q” 1 Fib and

thus Q Iirb%Q” lob is the matching move, since P’=:,Q’ IZbza
Q” I Fib. q

Proposition A.7. The relation M, is an equivalence relation.

Proof. The only nontrivial property is transitivity. We show that the relation (M, o M,)
is an asynchronous bisimulation. Suppose that P x, TM, Q. The two interesting cases

?i$P’ and T answers by T 4 T’ with P’ M, T’ 1 Zb. Then Q must have a transition
Q $ Q’ such that T’ x, Q’. By Lemma A.6 we have then T’ (Zb M, Q’ (Zb and thus

I o z:a)Q’ I zib as required.

l ii:’ and T$TT’ with P ’ x, T’. Now if T 3 T’ is matched by Q 3 Q’ we are

done. So suppose we are in the case where Q 4 Q’ and T’ x, Q’ I Zb. Then we have
P’(M,OM,)Q’ I Zb as required. q

Let of, be the variant of x, obtained by replacing 4 with -% in the hypothesis
of the clauses of z:a (that is, replacing P&P’ with P3P’ in the weak version of
Definition 5). We show that it is an equivalent formulation for z’a . Let us first prove
some properties of =A. It will be used to show that x, coincides with ~1 and thus
with Honda and Tokoro’s bisimulation.

RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 321

Lemma A.8 (Simpler formulation of x,). M, = =A.

Proof. It is clear that M, C MA, since -% is a particular case of 4. We show now
ZAG=,. Let PEA Q and suppose P 4 P’. We consider the case where 0: is an input
action:

- Let P=Po-J+...Pi@+Pp,+l . ..AP.,=P’. Then Q=&&...Qi with PkMf2Qk for

each k = 0,. . . , i. NOW if Pi 2 Pi+1 is matched by Qi 3 Qi+t we proceed as above.
SO suppose we are in the case where Q’ & Qi+t and Pi+1 Z: Qi+l) ab. Then there
are two ways in which Qi+i (Zb can match the move Pi+, 6-P’:
l Qi+l moves alone: Q’+, 1 Zb 3 Q’ 1 Sib because Qi+l& Q’. In this case we have

Q =$ Q’ and P’ ~fi Q’ 1 Zb as required.
l Qi+t consumes the output Zb in a communication step. In this case the sequence

Pi+1 & ’ ..pjJ+-tq,~ . ..-S.P,=p’ is matched by Qi+, IEbA.*.Qj)

iTbAQj+l IO..*& Q’ (0 where Qj %Qj+i and Qi+l &Q’. Then we have

Q$-Q’ and P’%LQ’\Od ’ D Q , which is the required matching transition. 0

Lemma A.9 (Simpler formulation of MI). ~1 = M:.

Proof. The only difference between the two definitions is in the output and r clauses,
and the proof for this case goes exactly as for M, , 0

Proof of Theorem 38. We will use the characterizations of M, and ~1 as ~fi and M:
respectively. For the sake of simplicity, we keep the notations %“a and xl. We will
use implicitly the fact that P ~1 Q HP x1 (Q IO).

l Mu_ C M 1. It is immediate to see that M, is a 1 -bisimulation.
. =1--a. C- We show that z1 is an asynchronous bisimulation. Again, there is noth-

ing to prove for the output and r-clauses. As for the input clause, suppose that

P%P’.ThenP(ZbibPP’(O.SincePxl Q, by definition of ~1 also P) Zb ~1 Q (Zb.
Therefore there exists Q’ such that Q 1 Eb 3 Q’ and P’ IO MI Q’. Then also P’ MI Q’.
Now there are three possibilities for the transition Q I Zb 4 Q’:

- Q (Fib does not move: Q’ = Q) Zb and P’ x1 Q 1 ifb. In this case we just take Q 4 Q
and we are in the second case of the input clause of asynchronous bisimulation.

- Q consumes the output Zb: Q I ‘iib & Q’ because Q 3 Qi 4 Q2 3 Q” and Q’ =
Q” IO. Whence P’ ~1 Q” as required.

- Q moves alone: Q) ?ib& Q’ is inferred from Q & Ql A Q2 4 Q” and Q’ =
Q” (Zb. Then P’ ~1 Q” (Zb, and we are again in the second case of the input
clause of asynchronous bisimulation. 0

Complement to the Proof of Theorem 40. We consider the three cases which were
left out.
a=7 Then vL’(PIR(n,L))&vL’(P((-d,‘e3R(n- 1,L))).

322 R M. Amadio et al. /Theoretical Computer Science 195 (1998) 291-324

To match this reduction up to barbed bisimulation we have to have

vL’ (Q [R(G)) 3 vL’(Ql 1 (E; $R(n - 1,L))).

We make a further reduction on the lhs:

vL’(PI(Z,?@R(n - l,L)))&L’(P’~R(n - 1,L)).

Again this has to be matched by (note that we cannot run R(n,L) without losing

a commitment b, or E):

vL’ (Ql 1 (F: 6!1R(n - 1,L))) & vL’ (Q’ 1 R(n - 1,-L)).

We observe Q 4 Ql & Qt. We can conclude by applying the inductive hypothesis.

61 f aa” We suppose a” 6 L. Up to an injective substitution we may suppose

a” is the first name in Ch”\L. Then

vLt(P(R(n,L))=svL’(P(Enz$va’t(aa’t(R(n- 1,LU{a”}))).

This has to be matched by:

vL’(QIR(n,L))&vL’(Q1 IEn% va”(aa” 1 R(n - 1,L u {a”}))).

We make a further reduction on the lhs:

vL’ (P] E,” @ vat’ @a” [R(n - I,LU {a”}))) 4 vL’ U {a”} (P’) R(n - 1, L U {a”})).

This is matched by

vL’(Ql (F~‘@va”(iTa”~R(n - l,LU{a”})))~Q”.

We have two possibilities:

l Ql% Q’ and Q” z ILL’ U {a”} (Q’) Za” I R(n - 1, L U {a”})). Then Q 4 Ql& Q’ and
p’ Ma n-1 Q’ 1 iTa” by inductive hypothesis.

l Q1 a$ Q’ and Q” G vL’ U (a”} (Q’ I R(n - 1,L U {a”})). Then Q 5 Q1 $ Q’ and
p’ Ma n-1 Q’ by inductive hypothesis.

a = Z(a”) We may suppose a ” is the first element in Ch”\L (otherwise we rename and

use an injective substitution). Then: vL’ (P I R(n, L)) 4
VL’ (P I E,” $ a(a”).(~~$(${[a”=a’]~‘Ia’EL}$e,$R(n - l,Lu{a”})))).
This has to be matched by (we abbreviate R(n - 1,L U {a”}) with R(..)):

vL’ (Q I R(n,L)) a

vL’ (&I 12; CB a(~“).(~/ @ (@ {[a” = a’]$f 1 a’ EL} es e, $ R(..)))).

We take a fUrther step on the lhs:

VL’ (P 1 F,” f3 a(aN).(zy e3 (G3 {[a” = a’]Zf 1 a’ E L} G3 Zn @ R(..)))) 4

VL’ u {a”} (P’ I @ {[a” = a’];i;’ I Id EL} ET3 en 63 I?(..)).

R M. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324 323

This has to be matched by (we reason as in the free output case and note that the

name sent by Q cannot be in L):

vL'(Q1 12,” @a(~“).(~~ @(@ {[a” =a’]%’ (a’ EL} CB& @R(..))))&-

vL'U{a"}(Q2~(cB{[u"=d]~'I&L}@Zn~R(..))).

We note Qi “%’ Q2. We take a last step on the lhs:

VL’ u {u”} (P’) $ {[a” = a’]@ 1 a’ E L} $ en @ I?(..)) 4

VL u {a”} (P’ 1 I?(..)).

This has to be matched by

~L’U{~“}(Q~~(${[~“=~‘]~‘~~‘EL}$&CBR(..)))~

VL u {a”} (Q’ 1 R(n)).

Conclude by observing that Q 4 Qi a’$’ Q2 $ Q’ and P’ %“a_1 Q’ by inductive hy-

pothesis. 0

Acknowledgements

We would like to thank David N. Turner for interesting initial discussions and Marco

Pistore for helpful comments. We thank also the anonymous referees, whose comments

helped us in structuring our results, and in relating our work to contributions previously

appeared in the literature. The authors were partially supported by France Ttlecom,

CTI-CNET 95lB-182 Modelisation de Systemes Mobiles, and by the HCM Network

EXPRESS.

References

[l] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT-Press, Cambridge,

MA, 1986.

[2] G. Berry, G. Boudol, The chemical abstract machine, Theoret. Comput. Sci. 96 (1992) 217-248.

[3] M. Boreale, D. Sangiorgi, Some congruence properties for n-calculus bisimilarities, Research Report

2870, INRJA, Sophia-Antipolis, 1996.

[4] G. Boudol, Asynchrony and the n-calculus, Research Report 1702, INRIA, Sophia-Antipolis, 1992.

[S] M. Dam, Model checking mobile processes, in: Proc. CONCUR’93, Lecture Notes in Computer Science,

vol. 715, 1993, pp. 22-36. Full version in SICS report RR94:1, 1994.

[6] C. Fournet, G. Gonthier, The reflexive CHAM and the join-calculus, Proc. POPL, 1996.

[7] M. Hansen, J. Kleist, H. Hiittel, Bisimulations for asynchronous mobile processes, in: Proc. Tbilisi Symp.

on Language, Logic, and Computation, 1995. Research Paper HCRC/RP-72, Human Communication

Research Centre, University of Edinburgh.

[8] K. Honda, M. Tokoro, An object calculus for asynchronous communication, Proc. ECOOP 91, Geneve,

1991.

[9] K. Honda, M. Tokoro, On asynchronous communication semantics, in: Object-based Concurrent

Computing, Lecture Notes in Computer Science, vol. 612, Springer, Berlin, 1992.

324 RM. Amadio et al. I Theoretical Computer Science 195 (1998) 291-324

[IO] K. Honda, N. Yoshida, Gn reduction based process semantics, Theoret. Comput. Sci. 151 (1995)
437-486.

[l I] R. Milner, Communication and concurrency, Lecture Notes in Computer Science, vol. 92, Springer,

Berlin, 1980.

[12] R. Milner, Functions as processes, Math. Struct. Comput. Sci. 2(2) (1992) 119-141.

[13] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Process, Parts l-2, Inform. and Comput. 100

(1) (1992) l-77.

[141 R. Milner, D. Sangiorgi, Barbed bisimulation, in: Proc. ICALP 92, Lecture Notes in Computer Science,

vol. 623, Springer, Berlin, 1992.

[15] U. Nestmann, B. Pierce, Decoding choice encodings, in: CONCUR 96, Lecture Notes in Computer

Science, vol. 1119, Springer, Pisa, 1996.

[16] B. Pierce, D. Turner, Pitt: a programming language based on the x-calculus, Tech. Report, Indiana

University, 1997, to appear.

[17] D. Sangiorgi, A theory of bisimulation for the n-calculus, in: Best (Ed.) Proc. CONCUR93, 1993,

Lecture Notes in Computer Science, vol. 715, Springer, Berlin.

[18] D. Sangiorgi, Lazy functions and mobile processes, Research Report RR-2515, JNRJA, Sophia-Antipolis,

1995. Invited for Festschrifi Volume in Honor of Robin Mihter’s 60th birthday, Cambridge Press, to

appear.

[19] G. Tel, Introduction to Distributed Algorithms, Cambridge University Press, Cambridge, 1995.

