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Abstract 

We show that observational equivalence can be characterized by saturating homomorphisms 
(with respect to Hennessy-Milner logic), thus bringing together results developed independently 
by Castellani and by Arnold and Dicky on characterizations of transition system equivalences. We 
take this opportunity to compare Castellani’s abstraction homomorphisms and Arnold-Dicky’s 
saturating homomorphisms. It turns out that they are very similar notions: their difference in 
formulation is partly due to the fact that abstraction homomorphisms were defined on a restricted 
class of transition systems. 

1. Introduction 

A characterization of Milner’s weak bisimulation equivalence - also called observa- 

tional equivalence in that it abstracts away from internal actions - by means of partic- 

ular transition system homomorphisms called abstraction homomorphisms was given 

in [7]. A similar approach was taken in [2,3] to characterize logical equivalences on 

transition systems: here the relevant notion is that of saturating homomorphism with 

respect to a given logic. In both cases transition systems are shown to be equivalent 

if and only if they have a common image under sujective homomorphisms. 

Related notions of morphisms on automata and transition systems had been consid- 

ered previously in the literature, e.g. by Gourlay et al. [ll], Park [16], Sifakis [17], 

Boudol [4], but had not been explicitly connected with bisimulation or logical equiva- 

lences (although the idea was somehow present in [la] and [4]). More recently, mor- 

phisms of a similar kind have been used in [9], under the name transition preserving 

homomorphisms. We should mention also the similitude with the zig-zag morphisms of 
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[ 181, which was pointed out in [14]. This last work, together with [6], constitute to our 

knowledge the most recent developments on characterizing bisimulation equivalences 

via morphisms, for models more general than transition systems. 

The notion of abstraction homomorphism was first put forward in [8] for a class 

of labelled event structures. In [7] abstraction homomorphisms were given a simple 

reformulation for a class of transition systems modelling CCS processes, and formally 

related to the notion of observational equivalence. In [5] the results of [7] are recast in 

categorical terms and applied to general automata. The approach of [7] has also been 

resumed in [ 151, where it is extended to computation trees labelled by partial orders. 

The Arnold - Dicky approach [2,3], on the other side, has been applied to a number 

of logically defined equivalences, such as strong bisimulation equivalence, the gen- 

eralized transition system bisimulation of [ 131 (characterized by the “Future Perfect” 

logic), and branching bisimulation (characterized by the “until” Hennessy-Milner logic 

of [lo]). However, the case of weak bisimulation equivalence was not treated so far. 

This note aims at bringing together the results of [7] and [2,3], by showing that ob- 

servational equivalence can also be characterized by saturating homomorphisms (with 

respect to Hennessy-Milner logic). We take this opportunity to compare abstraction 

homomorphisms and saturating homomorphisms. It turns out that they are very similar 

notions: their difference in formulation is partly due to the fact that abstraction homo- 

morphisms were defined in [7] on a restricted class of acyclic transition systems, lying 

between Milner’s synchronisation trees and general transition systems. 

2. Background 

In this section, we give some basic definitions and recall the necessary results from 

[12] and [2]. 

2.1. Transition systems 

Given a set A (whose elements represent the actions a process may perform), 

a labelled transition system d over A is defmed by a set S of states, and a set 

T C S x A x S of transitions. In the sequel a labelled transition system will be just 

named transition system. 

As usual, a transition (st, a,sz) will be denoted as si 5 ~2, so that for any a in A, 

-% is a binary relation on S. A path of d is a sequence of successive transitions, and 

will be denoted as SO 4 . . . 2 s,. A transition system J&’ is finite if both S and T are 

finite. It is image-finite if for any action a and state s the set s(s) =&f (~‘1s 5 s’} 

is finite. 

Given two transition systems d = (A,$ T) and d’ = (A,S’, T’), a transition system 

homomorphism h : d - d’ is a mapping of S into S’ such that h(T) C T’, where 

h(T) = {h(qi) 5 h(qz) 1 qi 5 q2 E T}. Th e h omomorphism h is said to be surjectiue 

if h(S) = S’. 
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2.2. Observable actions 

Let us assume that A contains a special unobservable action denoted by r; then 

A0 = A - {t} is the set of observable actions. 

Given a transition system ZZZ over A, we define the new relations % for a E A by 

l 4 is equal to (L)*, the reflexive and transitive closure of :, 

l for a in Ao, % = 4 .-r:.&. 

Inotherwords,sis’iffs=s’orthereisapaths=~~~...~s~=s’,andfor 

a # z, s 3 s’ iff there is a path s = SO A . . .s; 5 si+l . . A s, = s’, with 0 <i and 

iSl<n. 

In what follows, we shall always assume, unless otherwise stated, that transition 

systems are image-finite w.r.t. weak transitions, that is such that a(.~) is finite for any 

action a and state s. 

2.3. Hennessy- Milner logic 

The formulas of the Hennessy-Milner logic [12] are built up from 

l the constants 1 et 0 (true and false), and the usual logical operators V, A, 1, 
l a unary operator (a), for each letter a of the alphabet A. 

For any formula F, the set of states of a given transition system d that satisfy F 

is the set Fd defined by structural induction on F: 

. 1.d = s, O& = 0, 

l (FIVF~)~=(F~)~~UF~)~,(FIAF~)~=(F~)~~(F~)~,(~F)~==--.~, 

. ((a)Fb = (a)_&‘~), 

where (a)& is the mapping from P(S) into itself defined by 

(a).d(X) = {s 1 3s’ E X:s i s’} = (i)-‘(X). 

2.4. Observational equivalence 

Let d and JZZ’ be two transition systems on the alphabet A = A0 U {z}. A weak 

bisimulation between d and d’ is a relation R C S x S’ such that 

l Qs E S, 3s’ E S’: sRs’ and ‘ds’ E S’, 3s E S : sRs’, 

l if SIRS{ then Va E A0 U {z}: 
- if st % s2 then there is si such that s2Rsi and si % si, 
- if s{ 3 s; then there is s2 such that SZRS~ and si 3 ~2. 

We say that two transition systems & and J& are observationally equivalent if there 

is a weak bisimulation between them. 

2.5. Hennessy- Milner theorem 

In the above framework, the Hennessy-Milner theorem [ 121 ’ can be stated as 

follows. 

’ We recall that transition systems are assumed to be image-finite w.r.t. weak transitions. 
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Theorem 1. If d and d’ are observationally equivalent, there is a largest weak 
bisimulation between them. This relation R is characterized by SRS’ iffor all formulas 

F, s E Fd H s’ E F&I. 

2.6. Algebraic and logical equivalences of transition systems 

Here we recall some notions introduced by Arnold and Dicky [2,3] to deal with 

various equivalences of transition systems. 

A logic 9 is defined by a set s2 of nonlogical operators, such that each operator 

o E 52 has a fixed arity n 2 0, and is given an interpretation in every transition system 

d as a mapping cod : (@(S))n -3 P(S). Obviously, the interpretations of the logical 

operators V, A, 1 are delined by 

XV&gY=XUY, XA&Y=XnY, 1,x=s-x. 

It follows that every closed formula F is interpreted in & as a subset Fd of S. 

We shall say that a transition system homomorphism h : d -+ d’ is saturating with 

respect to 9 if every operator o E Q, of arity n, satisfies the property: V(Xi,. . . ,X,,) E 

@(S’Y, 

aAh-‘Wd,..., h-‘(X,)) = h-‘(od,(X ,,..., X,)). 

Obviously, h-‘(XuX’) = h-*(X) u h-‘(X’) and h-‘(X nX’) = h-‘(X) n h-*(X’). 
Moreover, if h is surjective, h-‘(9 - X) = S - h-‘(X). It follows that if h is a 

surjective homomorphism saturating with respect to 9, then for every closed formula 

F, h-‘(F&t) = F&. 

Given a transition system ~4, say that two states si and s2 of S are indistinguishable 
with respect to .5? (notation: si NY ~2) when they satisfy the same formulas of 9: 

for all formulas F, SI E Fd @ s2 E Fd. Let h be the canonical mapping of S onto 

the quotient set S IN9. Let ~4 INY denote the transition system whose set of states is 

SI NlO, and whose transitions are the h(sl ) 5 h(sZ), if si 5 s2 is a transition of d. 

By construction h is a surjective transition system homomorphism of &’ onto d INY. 

We shall say that the logic 9’ is fully adequate if for every transition system d, 

the canonical homomorphism of d onto d IN9 is saturating with respect to 9. 

Say that transition systems di and 5d2 are equivalent with respect to 9 when for 

every formula F of 9, some state of ,rBi satisfies f 8 some state of ~4’2 satisfies F, 

i.e., Fd, # 0 iff FdZ # 8. 
We have the following result (see [l-3]), which looks like Hennessy-Mimer 

theorem (for finite transition systems). 

Proposition 1. If 9 is fully adequate, then two finite transition systems ~41 and 
JS’~ are equivalent with respect to Y 13 there exist a transition system LS’ and two 
surjective homomorphisms hl : &‘I + d and h2 : a?2 + d, saturating with respect to 
3’. Moreover, there exists a least ~2 having this property (with respect to the ordering 
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&’ Q ~4 iff there is a surjective homomorphism h : d + d’) and the corresponding 

h; are such that h,(q) = hZ(s2) ifSfor all formulas F of 9, SI E Fd, M s2 E Fd,. 

3. Observational homomorphisms of transition systems 

We are now going to show that the Hennessy-Milner theorem (for finite systems) 

is a special case of Proposition 1, by showing that observational equivalence can be 

characterized by saturating homomorphisms (see Proposition 3). Then, to get the equiv- 

alent of Theorem 1 from Proposition 1, it suffices to prove that Hennessy-Milner logic 

is fully adequate. This proof is indeed quite similar to the proof of Theorem 2.2 in 

[la 
First we give a characterization of the homomorphisms that saturate all the opera- 

tors (a). Note that any homomorphism h satisfies one-half of the saturation property, 

namely: 

Va E A,VX’ C S’, (a)&h-‘(X’)) C h-‘((a)dj(X’)). 

In fact, s1 E (a)_&h-‘(X’)) iff 3~2 E h-‘(X’) such that SI 3 ~2. Since h is a homo- 

morphism, this implies that h(sl) 3 h(s2), whence s1 E hk’( (a).&X’)). 

Lemma 1. A homomorphism h : d -+ d’ saturates all the operators (a) ig 

(*) Va E A,Vsi E S’,Vq E &h(q) i si implies 3s~ : h(s2) = si and s1 4 ~2. 

Proof. Since (a) d, (a)&) and h-’ are additive, the condition 

Va E A,VX’ C S’, h-‘((a)dt(X’) c(a)d(h-‘(X’)) 

is equivalent to 

Va E A,Vsi E S’,h-‘((a)_&i))C(a)d(h-I&)), 

that is, 

Va E A,Vs& E S’,Vs, E &h(q) 4 si implies 3~2 : h(s2) = s; and sl % s2 0 

The property (*) in the statement of Lemma 1 is the same as condition (ii) of 

transition-preserving homomorphisms in [9]. It is also the zig-zag condition of [18], 

and will be referred to under this name in the following. 

A simple induction argument on the length of the path h(q) 8 s$ gives the simpler 

characterization. 

Lemma 2. A homomorphism h : d 4 d’ saturates all the operators (a) ifl 

‘da E A,Vsi E S’,Vsl E S, h(sl ) 5 si implies 3s~ : h(s2) = si and s1 3 ~2. 
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Obviously, a homomorphism h : d -+ d’ defines a relation included in S x S’, also 

denoted by h. We prove 

Proposition 2. Let h : d --f d’ be a homomorphism. The relation h is a weak bisim- 

ulation ifs h is surjective and saturates all the operators (a). 

Proof. In case of a relation h induced by a homomorphism, the definition of a weak 

bisimulation becomes: 

(i) Vs’ E S’, 3s E S: h(s) = s’, 

if h(sl) =si then 

(iia) if si 4 sz then there is si such that h(s2) = si and si 3 si, 

(iib) if si 4 si then there is sz such that h(s2) = si and s1 4 sz. 

The point (i) is the definition of a stnjective mapping, the point (iia) is always true for 

a homomorphism, and the point (iib) is the zig-zag property occurring in Lemma 1. 

Therefore, the result is a consequence of Lemma 1. 0 

The next result shows that observational equivalence can be algebraically charac- 

terized by means of homomorphisms saturating all the operators (a). That is why we 

suggest to call them observational homomorphisms. 

Proposition 3. &‘I and ~42 are observationally equivalent ifs there exist 33 and two 

surjective homomorphisms hl : ai’* + 23 and h2 : & -93, saturating all the operators 

(a). Moreover, if R is a weak bisimulation between A?‘, and ~42, one can choose B, 

hl, h2 in such a way that R 2 hl . h,‘. 

Proof. The “if” part of this result is a consequence of Proposition 2. Let us prove the 

“only if” part. 

Let R C SI xS2 be a weak bisimulation between ~41 and 3&. We may assume that the 

set of states of di and ~42 are disjoint. Thus, let us consider the transition system d 

whose set of states is Si US2 and whose set of transitions is Ti UT2. We define on Si US2 

the equivalence relation p = (RUR-‘)* and then define $3 as the quotient of d by p. 

Let h: d -+ 33 be the canonical surjective homomorphism from JXZ’ onto its quotient. 

We show that h is saturating. Let s % s’ be a transition of a, and let si E Si (for 

i = 1 or i = 2) be such that h(si) = s. By definition of $3, for some j E { 1,2} there 

is a transition sj $ $ in &j such that h(sj) = s and h(sj) = s’. By definition of h, 

sjos;. Using the definition of p and the fact that R and R-’ are weak bisimulations, 

from Sj -% sl we get si 3 si with s$&, i.e., h(si) = h(sj) = s’. We have then the 

result by Lemma 2. 

Let hi (i = 1,2) be the restriction of h to Si. Obviously, R c hl . hyl : if si Rs2 

then sips2 and thus hl(sl) = h(sl) = h(sl) = hZ(s2). Since h is saturating, hi is also 

saturating, because s 4 s’ in & and s E Si implies s 3 s’ in &i. 

It remains to prove that the hi’s are smjective. Let S be the set of states of $8. By 

definition of 9~3, s E S iff 3si E Si:s = hl(sl) or 3s~ E ,632: s = h&Z). Let us assume 
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that s 4 h2(&). Hence, s = hi(si); but then there must be ~2 E & such that siRs2, 

thus s = ht(si) = h&2), a contradiction. Cl 

4. Relation with abstraction homomorphisms 

Abstraction homomorphisms were defined in [7] on a class of acyclic transition 

systems lying between Milner’s synchronisation trees and general transition systems. 

Because these transition systems were acyclic, they were presented as partial orders of 

states with a minimal element (the initial state). As a minor variation w.r.t. the standard 

presentation, these transition systems are labelled by sequences of (observable) actions 

on states rather than by actions on transitions. In this note we shall refer to these 

particular transition systems as a-transition systems. 

Formally, if A* is the set of finite sequences over A, with empty sequence E, and 

-C is the covering relation of the partial order <: 

An a-transition system over A is of the form (A, S, r, 6, e), where Y E S and: 

(S, Y, < ) is a rooted poset of states: VS E S : Y <s 

L’: S -+ A’ is a monotonic labelling function, satisfying: 

e(r) = E, 

s -C s’ implies r!(s) = Qs’) or 3a E A - {z} s.t. Qs’) = e(s) . a, 
V’a E A*: {s E S(Qs) = O} is finite. 

The last property of the labelling corresponds to an image-finiteness condition on the 

transition relation. It also implies (together with monotonicity of e) that every state is 

finitely preceded, namely: Vs E S : {s’ E Sls’ <s} is finite. 

One may interpret the partial ordering relation < as a transition relation in two 

different ways: in the first way, which is the one suggested in [7], we take the transition 

relation to be simply the covering relation < of d, namely: s A s’ if s -C s’ and 

e(s) = Qs’), and for a # r, s 5 s’ if s -C s’ and Qs’) = 8(s) . a. 
We shall consider here a second interpretation, for which the transition relation is 

given by the ordering < itself, whenever the labelling of the two related states differs 

by at most one character: s A s’ if s<s’ and e(s) = L’(s’), and for a # r, s -5 s’ if 

s<s’ and Qs’) = E(s) . a. 

As an example, consider the following u-transition system (where the ordering goes 

from top to bottom), and the corresponding transition systems under the two interpre- 

tations (see Fig. 1). 

i 

T 

a G 
7 

7 

a 7 

a 
7 

Fig. 1. 
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Transition systems obtained by the Iirst interpretation only differ from the origi- 
nal transition systems for the labelling: they will therefore still be called a-transition 
systems, with a slight abuse of notation. Under the second interpretation, on the other 
hand, systems are completed with a strong transition s 5 s’ whenever there is a weak 
transition s i s’ in the first interpretation. This means in particular that a self-loop 
s A s is added on every state. Apart from these tight r-loops, the resulting transition 
systems are still acyclic. We shall call them ac-transition systems (for completed). 

Let us now recall from [7] the definition of abstraction homomorphism. 2 We will 
use the notation G&S) to represent the set of weak successors of state s under action a, 
namely ~~(8) = {s’]s<s’ & e(s) = /(s’)} and, for a # r, G=(S) = {s’(s<s’ dz Qs’) = 
e(s). a}. 

Given two u-transition systems d = (A,S,r, <, 8) and d’ = (A,S’,r’, <‘, J’), an 

abstraction homomorphism h : d - d’ is a mapping of S into S’ such that Vu E 

A,Vs E S: 
1. h(r) = r’, 

2. h( <a(s)) = ,<:(h(s)). 
For the coming discussion, it will be convenient to split property 2 in two parts: 

2(a) h( G&S)) C <L(h(s)) (transition preserving), 
2(b) h( Go(s)) 2 <A(h(s)) (zig-zag condition). 

It is easy to see that an abstraction homomorphism h preserves state labels, that is 
P(h(s)) = f(s). Note also that condition 2(b) implies forward surjectivity, namely if 
s’ E h(S) then {s”(s’<‘s”} G h(S). Therefore, since r’ = h(r) and {s’(r’<‘s’} = S’, 
abstraction homomorphisms are always surjective. 

We shall now comment on the meaning of conditions 2(a) and 2(b) depending 
on how we choose to interpret <. Under the first interpretation, we have G=(S) = 
3 (s) = {s/Is &- s’}, and property 2( a amounts to weak transition preserving, while ) 
property 2(b) amounts to the zig-zag condition of Lemma 1: 

(*) h(q) 3 si + (32: h(s2) = si and s1 3 ~2). 

In fact, in this case condition 2 is equivalent to the (a)-saturation property, since 
s’ E h(% (s)) iff s E (a)d(h-‘(s’)) and s’ E %-(h(s)) iff s E h-‘((a)dr(s’)). 

However in this interpretation abstraction homomorphisms are more permissive than 
(surjective) saturating homomorphisms, since they do not need satisfy the condition 
h(T) & T’. For instance the two mappings shown in Fig. 2 are abstraction homomor- 
phisms but not saturating homomorphisms. 

Under the second interpretation, on the other hand, <Js) =z (s) = {s’(s 3 s’}, and 
property 2(a) amounts to the transition preserving condition h(T) G T’, while property 
2(b) amounts to a strong zig-zag condition, namely: 

(**) h(s,) 5 s; + (3~~: h(s2) = s; and SI 5 ~2). 

z Since there are no operators on transition systems here, we consider the variant of abstraction homomor- 

phisms characterizing observational equivalence, rather than observational congruence. 



A. Arnold, I. CastelhmiITheoretical Computer Science IS6 (19%) 289-299 297 

qu - 1: - /a 
Fig. 2. 

Since (**) implies (*), it should be clear that in this case any abstraction homomor- 

phism is also a saturating homomorphism. To state this fact formally, let us introduce 

some notation: if d = (A,$ r, G, 4) is an a-transition system, we denote by di, .&z, 

where di = (A,$ Ti), the corresponding transition systems under the first and second 

interpretation for <. We call di the i-interpretation of ._&. So far we have established 

the following. 

Fact 1. Let d,d’ be a-transition systems, and s&‘~,_c$ be the corresponding 2- 

interpretations (ac-transition systems). If the mapping h:S - S’ is an abstraction 

homomorphism from A? to d’, then h is also a saturating homomorphism from zzlz 
to Jd;. 

We show now that any surjective saturating homomorphism between (interpretations 

of) a-transition systems is also an abstraction homomorphism. To this end, we first 

prove that, when restricted to interpretations of a-transition systems, sutjective saturat- 

ing homomorphisms satisfy the inclusion T’ G h(T) (i.e. every strong transition in the 

second system is the image of a strong transition in the first). This is not required in 

general for saturating homomorphisms. For instance the two mappings in Fig. 3 are 

saturating homomorphisms. 

Proposition 4. Let &, d’ be a-transition systems, and for each i E { 1,2} let &i, ~2: 
be their corresponding i-interpretations. If h: S - S’ is a surjective saturating ho- 

momorphism from di to d:, for i = 1 or i = 2, then T/ G h(Ti). 

Proof. Suppose si 5 .sG E Ti. By the surjectivity of h there exists si such that h(sl) = 

si. By the zig-zag condition (*) there exists sz such that h(sZ ) = si and si 3 ~2. We 

distinguish two cases: 

1. If i = 2, from si 3 sz we can deduce si s ~2, since ~22 is an ac-transition 

system. So this is the required strong transition. 

2. If i = 1, s{ 5 si implies s{ # si, since a{ is strictly acyclic: thus the case 

si = s2 (supposing a = z) is excluded because h is a function. Hence 3q0,. . . q,, such 

that ~1 = 40 5 41 . . . qi ’ --) qi+l ” ‘qn_1 L qn = S2. By the transition preserving con- 

dition h(Tl)cT,’ we have therefore h(qo) A h(ql)...h(qi) -% h(qi+l)...h(q,_l) L 
h(q,). Now, because T{ is the Hasse diagram of a partial ordering, there must be 

j E {O,..., n- 1) such that h(qo) = ... = h(qj) = S\ and h(qj+l) = ... = h(q,) = S; 

(in case a # z this j will coincide with i, because of the label preserving condition). 

Then qj 5 qj+l is the required strong transition. 0 
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Fig. 3. 

Proposition 5. Let &, d’ be a-transition systems, and for each i E { 1,2} let di, zl: 
be their corresponding i-interpretations. Iffor some i E { 1,2} the mapping h: S -+ S’ 
is a surjective saturating homomorphism from &i to .&[, then h is an abstraction 

homomorphism from x2 to d’. 

Proof. Suppose h is a surjective saturating homomorphism from -c4i to dj, for i = 1 or 

i = 2. We will show that h satisfies properties 1 and 2 of abstraction homomorphisms. 

Property 1. We want to show h(r) = r’. Since h is surjective, there exists s E S such 

that h(s) = r’. Let r = qo -% q1 . . .qn_l 2 qn = s be a path from r to s in di 

(since s is finitely preceded in -c9, this path always exists). From h(Ti) C T/ we deduce 

Mqo) 2 h(qt).. . h(q,_l) 2 h(qn) = r’. We distinguish now two cases: 
_ i = 1: since T[ is the Hasse diagram of a partial ordering with minimal element r’, 

we have necessarily n = 0, that is r = s. 
- i = 2: here if s’ -% r’ E Ti we have necessarily s’ = r’ and a = z. Thus 

h(qo) 2 h(ql)...h(qn-1) 3 h(q,) = r’ implies either n = 0 and s = r or 

Vi E (0,. . . , n - 1): h(qi) = r’ and ai+r = r. Thus in particular h(r) = h(qo) = r’. 
Property 2. Again, we distinguish two cases: 
_ i = 1: then property 2. is equivalent to the (a)-saturation property. 
_ i = 2: in this case property 2(a) is equivalent to h(T2) 2 T,‘, which is true for all 

saturating homomorphisms, while property 2(b) is equivalent to the strong zig- 

zag condition (**), which is a consequence of T2/ C h(Tz), satisfied by h by 

Proposition 4. Cl 

To sum up, surjective saturating homomorphisms are a subset of abstraction ho- 

momorphisms on a-transition systems, while they exactly correspond with them on 

ac-transition systems. 

Corollary 1. Let d,d’ be a-transition systems, and &z,LE9; be the corresponding 
ac-transition systems. A mapping h:S --+ S’ is an abstraction homomorphism from 
d to d’ if and only if it is a surjective saturating homomorphism from ~I82 to .&. 

Remark. When restricted to ac-transition systems, surjective saturating homomorphisms 

satisfy both conditions h(T) c T’ and T’ c h(T). Therefore they coincide on this class 

with the strong saturating homomorphisms used in [2] to characterize strong bisim- 

ulation equivalence. As a consequence, the above corollary could be strenghtened as 

follows. 
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Corollary 2. Let &,&I be a-transition systems, and JxI~, di be the corresponding 
ac-transition systems, A mapping h:S --+ S’ is an abstraction homomorphism from 

sz2 to d’ if and only if it is a strong surjective saturating homomorphism from .JZ?~ 

to 8:. 

In other words, reducibility between a-transition systems via an abstraction homo- 

morphism amounts to reducibility between the corresponding ac-transition systems via 

a strong surjective saturating homomorphism. This is indeed not surprising, since ac- 

transition systems are maximal w.r.t. transitions, and it is well-known that on such 

transition systems weak bisimulation reduces to strong bisimulation. 
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