
JOURNAL OF COMPUTER AN11 SYSTEM SCIENCES 34, 21&235 (1987)

Bisimulations and Abstraction Homomorphisms

ILARIA CASTELLANI*

Computer Science Department, Universily of Edinburgh, United Kingdom

Received October 1985; revised January 1986

We show that the notion of bisimulation equivalence for a class of labelled transition
systems (the class of nondeterministic processes) may be restated as one of “reducibility to a
same system” via a simple reduction relation. This relation is proved to enjoy some desirable
properties, notably the Church-Rosser property. We also show that, when restricted to finite
nondeterministic processes, the relation yields unique minimal forms for processes and can be
characterised algebraically by a set of reduction rules. 7 1987 Academic Press, Inc

1. INTRODUCTION

Labelled transition systems [K, P] are generally recognised as an appropriate
model for nondeterministic computations. The motivation for studying such com-
putations stems from the increasing interest in concurrent programming.

When modelling communication between concurrent programs, some basic dif-
ficulties have to be faced. A concurrent program is inherently part of a larger
environment, with which it interacts in the course of its computation. Therefore a
simple input-output function is not an adequate model. The model should retain
some information about the internal states of a program, so as to be able to express
the program’s behaviour in any interacting environment. Also, nondeterminacy
arises when abstracting from such parameters as the relative speeds of concurrent
programs: as a consequence, we need to regard any concurrent program as being
nondeterministic.

The question is then to find a model for nondeterministic programs that
somehow accounts for intermediate states. On the other hand, only those inter-
mediate states should be considered which are relevant to the “interactive”
behaviour of the program. Now one can think of various criteria for selecting such
significant states.

In this respect labelled transition systems provide a very flexible model: by vary-
ing the definition of the transition relation one obtains a whole range of different
descriptions, going from a full account of the structure of a program to some more
interesting “abstract” descriptions. However, even these abstract descriptions still
need to be factored by equivalence relations (for a review see [B or DeN]).

* Supported by a scholarship from the Consiglio Nazionale delle ricerche, Italy.

210
0022-OtJOO/87 $3.00
Copynght 0 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.

BISIMULATIONS AND HOMOMORPHISMS 211

A natural notion of equivalence, bisimulation equivalence, has been recently
proposed by Park [Pa] for transition systems: informally speaking, two systems
are said to bisimulate each other if a full correspondence can be established between
their sets of states in such a way that from any two corresponding states the two
(sub)systems will still bisimulate each other.

In this paper we show that the notion of bisimulation equivalence for a class of
labelled transition systems (the class of nondeterministic processes) may be restated
as one of “reducibility to a same system” via a simple reduction relation. This
relation is proved to enjoy some desirable properties, notably the Church-Rosser
property. We also show that, when restricted to finite nondeterministic processes,
the relation yields unique minimal forms for processes and can. be characterised
algebraically by a set of reduction rules.

The paper is organised as follows. In Section 2 we present our computational
model, the class of nondeterministic processes. In Section 3 we argue that this basic
model is not abstract enough, particularly when systems are allowed unobservable
transitions as well as observable ones. We therefore introduce abstraction
homomorphisms [CFM] as a means of simplifying the structure of a process by
merging together some of its states: the result is a process with a simpler descrip-
tion, but “abstractly equivalent” to the original one. We can then infer a reduction
relation between processes from the existence of abstraction homomorphisms
between them. We prove some significant properties of this relation, such as sub-
stitutivity under typical operators and the Church-Rosser property. Based on the
reduction relation, we define an abstraction equivalence relation on processes: two
processes are equivalent iff they are reducible to a same process.

In Sections 4 and 5 we study the relationship between our notions of reduction
and abstraction and the notion of bisimulation between transition systems. The
criterion we use for identifying states of a process via abstraction homomorphisms
is similar to the one underlying the definition of bisimulation: we show in fact that
our abstraction equivalence coincides with (the substitutive version of) bisimulation
equivalence, and can therefore be used as a simple alternative formulation for it.

In Section 6 we consider a small language for defining finite nondeterministic
processes: essentially a subset of Milner’s CCS (Calculus of Communicating
Systems) [Ml]. We find that our results combine neatly with some established
facts about the language. On this language our equivalence is just Milner’s obser-
vational congruence, for which a complete finite axiomatisation has been given in
[HM]. So, on the one hand, we get a ready-made algebraic characterisation for
abstraction equivalence; on the other hand, our characterisation proves helpful in
working out a complete system of reduction rules for that language. We conclude by
proposing a denotational tree-model for the language, which is isomorphic to the
term-model in [HM]. The present paper is an extended version of [C], complete
with proofs.

571/34/2-3-S

212 ILARIA CASTELLANI

2. NONDETERMINISTIC SYSTEMS

In this section we introduce our basic computational model, the class of nondeter-
ministic systems. Nondeterministic systems are essentially labelled transition systems
with an initial state.

We then characterise a subclass of acyclic systems that we call nondeterministic
processes: in the remaining sections we shall be mainly concerned with this subclass.

Let A be a set of elementary actions or transitions, containing a distinguished
unobservable transition r. We will use p, v,... to range over A, and a, b,... to range
over A - {z}.

DEFINITION 2.1. A nondeterministic system (NDS) over A is a triple
S=(Qu{r),A, -+), whereQu{r}isthesetofstatesofS,r~Qistheinitialstate
(or root) of S, and + c [(Q u (r}) x A x (Q u {r})] is the transition relation on S.

We will use q, q’ to range over Q u (r}, and write q -3 q’ for (q, ,a, q’) E -+ We
interpret q 3 q’ as: S may evolve from state q to state q’ via a transition p.

We will make use of the transitive and reflexive closure + * of + , which we call
the derivation relation on S. For an NDS, S = (Q u {r}, A, -+), we will use Q,, r3,
+ s instead of Q, r, -+ , whenever an explicit reference to S is required.

According to our definition, and NDS S is a machine starting in some definite
state and evolving through states by means of elementary transitions. On the other
hand, each state of S may be thought of as the initial state of some NDS: We may
then regard the system S as giving rise to new systems, rather than going through
successive states.

In fact, the whole class 9’ of NDSs may be described as a transition system
(whose states are NDSs). We then say that S’ is a derivative of S whenever S -+ *S’.
Thus for any SE 9, a one-to-one correspondence can be established between the
states and the derivatives of S. In the following we will often use this correspon-
dence between states and (sub)systems.

We assume the class Y to be closed w.r.t. some simple operators: a nullary
operator NIL, a set of unary operators ,U (one for each p E A), and a binary
operator +. The intended meaning of these operators is the following: NIL
represents termination, + is a free-choice operator, and the p’s provide a simple
form of sequentialisation, called prefixing by the action ,u.

The transition relation of a compound NDS may be inferred from those of the
components by means of the rules:

(i) +S4S

(ii) S 1: S’ implies S + S” 4 S’, S” + S 3 S’.

The operators will be given a precise definition for a subclass of 9, the class of
nondeterministic processes that we will introduce in the next section.

BISIMULATIONS AND HOMOMORPHISMS 213

2.1. Nondeterministic Processes

As they are, NDSs have an isomorphic representation as (rooted) labelled
directed graphs, whose nodes and arcs represent respectively the states and the
transitions of a system. On the other hand, any NDS may be unfolded into an
acyclic graph. We shall here concentrate on a class of acyclic NDSs that we call
nondeterministic processes (NPDs).

Basically, NDPs are NDSs whose derivation relation -+ * is a partial ordering.
Each state of a process is assigned a Zabel, that represents the sequence of obser-
vable actions leading from the root to that state. To make such a labelling con-
sistent, we only allow two paths to join in the graph if they correspond to the same
observable derivation sequence. The labelling is subject to the following further
restriction: for any label CJ, there are at most finitely many states labelled by CT. As it
will be made clear subsequently, this amounts to imposing a general image-
finiteness condition on the systems, and is a crucial hypothesis for some of our
results.

In the formal definition, we will use the following notation: A* is the set of finite
sequences over A, with the usual prefix ordering, and with an empty sequence E.
The covering relation --c associated to a partial ordering 6 is given by: x -C y iff
x < y and Y!z such that x < z < y. Also, we make the following convention: r acts as
the identity over A* and is therefore replaced by E when occurring in strings.

DEFINITION 2.2. A nondeterministic process (NDP) over A is a triple
P=(Qu {r}, <,l), where

(Q u {r I), <) is a rooted poset of states: Vq, r < q

1: Qu {r) +A* is a monotonic labelling function, satisfying:

Z(r) = E

4=4’ implies Z(q’) = Z(q). p, PEA

VoEA*, (ql I(q) = a} is finite.

Note that an NDP is very nearly a labelled tree: it only differs from a labelled
tree in that it might have some confluent paths. The reason we do not directly
adopt labelled trees as a model is purely technical (the proof that the model is
closed w.r.t. reductions would be rather tricky). However, we intend that trees are
our real object of interest: in particular, our examples will always be chosen from
trees.

As pointed out already, we label nodes with sequences of actions, rather than
labelling arcs with single actions: this minor variation w.r.t. the standard notation
(see, e.g., Milner’s synchronisation trees) will make it easier to compare different
states of a process.

It is easy to see that any NDP P is also an NDS, with + p given by -z. More
precisely, for any p E A, the relation 1; p will be given by ((q, q’)(q -C q’ and
l(d) = l(q). PI.

214 ILARIA CASTELLANI

Note that, because of our convention that t = E, a transition z is represented in an
NDP by the repetition of the same label on the two A related nodes. More
generally, the label of a node will now represent the sequence of observable actions
leading to it. For example, the tree

E

in our notation will be

ab a

In what follows, nondeterministic processes will always be considered up to
isomorphism.

DEFINITION 2.3. An isomorphism between two NDPs: P, = (Q, u {r, }, d,, I,)
and P2 = (Q2 u {r,}, G2, I,) is a one-to-one correspondence: @: Q, u (r, } -+
Q2 u {r2) s.t.

(i) l,(@(q)) = II (9)

(ii) Q(q) G2 @(q’) iff qG1 4’.

From now on we shall use: Pi = Pz to mean that P, is isomorphic to P,.
We next define the operators NIL, p, and + on NDPs. Let Pi denote the NDP

(Ql u {r,}, 6;, 1;). We have

DEFINITION 2.4. (Operators on NDPs).

NIL= ((rNILly {G-NIL, rdl, {@NIL, E)}) is the NDP with just a root rNu
and an empty set of subsequent states

,uP1 is the NDP P=(Qu (r} , 6, I), where r does not occur in Qi u { rl }, and:

Q=Qlu {rl)
< = QI u {(r, q)lqEQ)

if q = r,
otherwise.

P, + P, is the NDP P= (Qu {r} , ,<, l), where r does not occur in Q, u Q2, and:

Q=Q,uQz (disjoint union)

S = G1 l’Qlu G2 l’Q2u~(r~q)lq~Q~
!=I1 rQlu12 rQ2u {(r3E)j.

Let 9 G 9’ denote the class of all NDPs: in what follows, our treatment of non-
deterministic systems will be confined to 9.

BISIMULATIONS AND HOMOMORPHISMS 215

3. ABSTRACTION HOMOMORPHISMS

The NDP-model, though providing a helpful conceptual simplification, does not
appear abstract enough yet. It still allows, for example, for structural redundancies
such as

.A a

Moreover, we want to be able, in most cases, to ignore unobservable transitions.
Such transitions, being internal to a system, should only be detectable indirectly, on
account of their capacity of affecting the observable behauiour of the system.

We will therefore introduce a simplification operation on processes, which we call
abstraction homomorphism. Essentially an abstraction homomorphism will trans-
form a process in a structurally simpler (but semantically equivalent) process by
merging together some of its states.

The criterion for identifying states is that they be equivalent in some recursive
sense: informally speaking, two states will be equivalent iff they have equivalent
histories (derivation sequences) and equivalent futures or potentials (sets of sub-
sequent states).

DEFINITION 3.1. For any two NDPs PI = (Ql u {rllT <I7 11),
P, = (Q2 u (r2}, G2, 12), a function

h: ;,y;,
i

is an abstraction homomorphism (a.h.) from P, to P, ifi

(9 N4d) = 4 (4)
(ii) succ,(Nq)) = h(succ, (q)),

where succ(q) = {q’(q <q’} is the set of successors of q, inclusive of q.

Before giving examples, we shall just remark that any a.h. is surjectiue (instance
of (ii), for q = r) and preserves the ordering d (again by (ii)).

EXAMPLES. (1)
E
a 4’

i a q” --, ii h(q’)= h(q”) I

This example motivates our definition of succ (9): we want to allow q”, a proper
successor of q’, to be mapped to h(q”) = h(q’).

(2)

‘4: + %1,(q)

Note that the set of predecessors of q is not preserved by the homomorphism.

216 ILARIA CASTELLANI

(3)

‘%ab + akab

(4)

‘kb + aAb

These two examples show that the relation --c is not necessarily preserved.

COUNTEREXAMPLES.

(5) &

: + 1:
This is not an a.h., since by definition an a.h. never maps a proper state into a root.
As a consequence, a process of the form tP can only be transformed into a process
of the same form.

This is not an a.h. because it would increase the set of successors of q.

We pointed out earlier that any a.h. is surjective. In fact, it is the case that:

PROPOSITION 3.2. Any injective a.h. from P, to P2 is an isomorphism between P,
and P2 and vice versa.

Proof Let h be an injective a.h. from P, to P2. To prove that h is an
isomorphism between P, and P,, it is sufficient to show that

h(q) 6 h(q) only if qG1 q’

as the other properties are trivially implied by those of a.h.s.
So suppose h(q) <2 h(q’), i.e., h(q’) E succ(h(q)). Then also h(q’) E h(succ(q)), by

property (ii) of h. Therefore 3q” E succ(q) s.t. h(q”) = h(q’). Since h is injective, it can
only be q” = q’, whence q’ E succ(q), i.e., q <, q’.

Conversely, let @ be an isomorphism between P, and P,. We want to show that
@ is an a.h. from P, to P, (equivalently, we could show that @ is an a.h. from P, to
P,). All we have to prove is that @ satisfies property (ii) of a.h.s, namely that
@(succ(q)) = succ(@(q)).

BISIMULATIONS AND HOMOMORPHISMS 217

We prove that @(succ(q)) 2 succ(@(q)) (the reverse inclusion is easy). Suppose
q” ~succ(@(q)). As @ is surjective, 3q’ s.t. q”= @(q’). So G(q) G2 @(q’), whence
q <1 q’ by property (ii) of isomorphisms. Thus q’ E succ(q), whence q” =
@5(4’) E @(succ(s)). I

If h is an a.h. from P, to P2, we write h: P, + P,. Abstraction homomorphisms
induce the following reduction relation % on processes:

DEFINITION 3.3. P, "lls, P2 iff 3 a.h. h: P, -+ P,.
We next prove a few properties of the relation 3.

PROPERTY 3.4. 3 is reflexive, transitive, and antisymmetric.

ProoJ Reflexivity and transitivity are easy to check. We prove here that 2 is
antisymmetric, namely that:

if h: P, 4 P, and h’: P, --f P, are a.h.‘s, then P, = P,.

ForanyNDP P=(Qu(r}, <,I)andforanya~A*let Q,=(q(q~(Qu{r)),
l(q) = o}. Note that, because of our finiteness restriction on 1, any such QC is finite.

Now let P,=(Q,u (rl} , G1,ll), P2=(Q2u{r2}, &,4), and h:P,+P,,
h’:P,-+P,. For any OEA*, define h,=h rQlb, hb=h’ rQzO. Then we have

h,: QIO --f QzC surjectively, whence IQ,,\ > IQTgl.

hb: Q,, + Q lo surjectively, whence lQzO 1 > lQ,a (.

Summing up, we have I QIO 1 = lQzO I -C co. Therefore the function h, is injective and
thus also h = lJopA* h, is injective. By Proposition 3.2 we then have that h is an
isomorphism between P, and Pz.

PROPERTY 3.5. 2 is preserved by the operators p and + .

Proof: Let PI = (Q1 u {rl>, G,, I,), P,=(Q,u {rz}, G2, Z2), and h: P, -+ P,.
We can deduce

(1) PP, -++~P,,V/LEA.
In fact, let P', = pP,, Pi = ,uPz, with states Q; u {r;} and Q; u {r;}, respectively.

Then the functionf: (Q; u {r;}) + (Q;u {r;}) defined by

if q=r;
otherwise

is (trivially) an a.h. from Pi to Pi.
(2) P,+P*P,+P, VNDPP.

218 ILARIA CASTELLANI

In fact, let Pi = P, + P, Pi = P, + P, with states Q’, v (r; } and Q; u {Y;}, respec-
tively. Let Q u (T} be the states of P. Then the function f: (Q; u (r’,)) -+
(Q; u {r;}) defined by

if q=r;,

if qEQI,

if qEQ,

is (trivially) an a.h. from Pi to Pi. 1

In what follows, a relation which is preserved by our operators will often be
called substitutive.

We turn now to what is perhaps the most interesting feature of our reduction
relation, namely its confluent behaviour. Confluence of a.h.‘s can be proved by stan-
dard algebraic techniques, once the notion of congruence associated to an a.h. is
formalised.

DEFINITION 3.6. If P = (Q u {r } , 6, I) is an NDP, we say that an equivalence
relation - on Q is a congruence on P iff, whenever q - q’:

(i) f(q) = l(q’) (labels are preserved)
(ii) q <p implies 3~‘“p s.t. q’ dp’ (successors are preserved)

It can be proved that any congruence - satisfies the

convexity property: q <p < q’ and q - q’ implies q -p - q’.

(The proof is by induction on the length n of the longest chain: q’ --c q, K . . . --c qn
s.t. Z(q’) = I(q,) = . . . = l(q,). That this length is finite is ensured by our finiteness
restriction on the labelling 1. In fact, in absence of this restriction, the convexity
property would not hold.)

We now show that, for any NDP P, there is a one-to-one correspondence
between congruences and abstraction homomorphisms on P. First, some notation:
If P = (Q u {r}, <, I) is an NDP and h and a.h. on P, we define the equivalence -h
on Q by

-h = ((4, q’)lq, q’E Q, h(q) = W)).

We can then prove the following two theorems.

THEOREM 3.7. If P is an NDP and - is a congruence on P, then there exists an
NDP PJ-, the quotient of P by -, and an a.h. h, from P to PJ- s.t. -,,- = -.

BISIMULATIONS AND HOMOMORPHISMS 219

Proof. IfP=(Qu{r}, <,I), define P/-=(Q/- u{r’}, <‘,1’) by

r’ < ‘Cql, VqEQ
Cql G ‘[PI iff 3p’s.t. q Gp’ %p.

r(r’) = c

I’(Cql)=4q).

Also, define h ,: Qu (r} -tQ/- u {r’} by

h,(r)=r’

h - (4) = Csl, QqEQ.

We shall prove that

(1) Pi” is an NDP.
(2) h, is an a.h. from P to P/W, and -A- = -.

Proof of (1). To prove that P/- is an NDP: First, we check that < ’ is a partial
ordering relation. Reflexivity and transitivity follow easily from the definition. To
prove antisymmetry, use the convexity property of -.

Second, we show that the labelling I’ meets the requirements. The properties of
monotonicity and finiteness can be easily deduced from the same properties of the
labelling 1. We prove here that [q] c [p] implies /‘([p])=I’([q]).p for some
p E A. In fact, suppose [q] c [p]: this is because q <p’ -p, for some p’. That is,
3PO)...) pn, n > 1, s.t. q =po -z 1.. -z pn = p’. Now it can be easily shown, by induc-
tion on n 3 1, that

PO- “‘<P” and [pa] -C [p,] implies 3pb,pi s.t. po~pb-~p;wpn.

So, from [q] < [p’] we deduce that 3q’, p” s.t. q - q’ xp” -p’. Then

and this ends the proof of (1).

Proof of (2). We want to show that h, is an a.h. from P to PI-, and that
‘-,,_ = ‘-. By definition, h, is a function s.t. r c, r’, Q + Q/w.

Now we check the properties (i) and (ii) of a.h.‘s.

Property (i):

Z’(h, (r)) = Z’(r’) = E = I(r),

I’(h- (4)) = I’(Cql) = l(q) for qEQ.

220 ILARIA CASTELLANI

Property (ii):

succ(h,(r))=succ(r’)=Q/- u {r’}=h,(Qu (rl)=h,(succ(r))

succ(h-(q))=succ(Cql)=iC~l I Cql~‘bI~=~C~l I~GP’-PI

={[@I lq6p’}=h,((p’Iqdp’))=h,(succ(q)).

So h, is indeed an a.h. from P to P/w. As for the equality wh- = -, it
immediately follows from the definitions of h, and -h. 1

THEOREM 3.8. If P, P’ are NDPs and h is an a.h. from P to P’, then -,, is a
congruence on P and P’ is isomorphic to PI-,,.

Proof Again, we show the result in two steps:

(1) -h is a congruence on P.

(2) P’ is isomorphic to P/wh.

Proof of (1). We know that -,, is an equivalence relation on Q. We check that
it satisfies the properties (i), (ii) of congruences. Suppose q -,, q’: this is because
h(q) = h(q’). Therefore we have

Property (i): f(q) = I’(h(q)) = I’(h(q’)) = l(q’).

Property (ii): q <p means p E succ(q). Then h(p) E h(succ(q)) = succ(h(q)) =
succ(h(q’))=h(succ(q’)). So ilp’~succ(q’) s.t. h(p)=h(p’). That is, 3p’ s.t. q’6p’
and P-J,,p’.

Proof of (2). If P’=(Q’u{r’}, <‘,I’) and P/N~=(Q/-,,u {r”}, G”,?‘) is
defined as for Theorem 3.7, let CD: Q/w,, u {r” > + Q’ u {r’} be the function given by

@(r”) = r’

@(Cql) = h(q).

Then @ is clearly well defined. We show that @ is an injective a.h. from P/N,, to P’.
Then it will follow by Proposition 3.2 that CD is an isomorphism between P/wh
and P’.

It is easy to check that @ is injective, as

h(q) = h(p) implies [q] = [p].

Moreover, @ satisfies the Properties (i) and (ii) of a.h.‘s:

Property (i): II(@(r”)) = I’(r’) = E = I”(r”),

I’(@(Cql)) = ~‘vdc7)) = 4q) = ,,(cc?1 1.

Property (ii): succ(@([q]) = succ(h(q)) = h(succ(q)) = (h(p)jq<p} =
~@(CPI)l4~P~ = {@(CP’l)lqGP”hp’) =@(succ(Cql). 8

BISIMULATIONS AND HOMOMORPHISMS 221

To prove the confluence property of a.h.‘s, we will finally make use of

LEMMA 3.9. If -,, w2 are congruences on an NDP P, then - 1,2 = [-, u -*I*,
the symmetric and transitive closure of the union of - 1 and No, is the least con-
gruence - s.t. -, E - and -2 c -.

Proof It is a standard result that -1,2 is the least equivalence on Q which
includes both - , and - *. Then, if - ,,2 is a congruence, it will also be the least con-
gruence which includes -1 and -2.

We thus proceed to show that N,,~ is a congruence, namely that it satisfies the
required Properties (i), (ii). Note first that q - 1,2 q’ iff 3n, jq,,..., q,, s.t.

9 = 40 Iv l/2 . . . - 112 qn = 4’3

where -l,2 means: either -, or -2.
Then property (i) of congruences is easy to check. As for property (ii), suppose

q<p and

4 = 40 - l/2.. . - 112 qn = 4’.

Since both -1 and -2 satisfy (ii), there exist po,..., p,, s.t. qi <pi and

Thus, if we let p’ =p,,, we have p - ,,2p’ and q’ <pt. 1

For the coming theorems, we will need some more notation. If h, h’ are two a.h.‘s
on the same process, we say that h is weaker than h’ and write h < h’, iff -h C -h,.
The following fact is then (almost) standard.

LEMMA 3.10. (Factorisation of an abstraction homomorphism by a weaker
one). IfP.P,,P2areNDPs,andh,:P-+P,, h,:P+P,,area.h.‘ss.t. h,<h2, then
there exists a unique a.h. h2,1 : P, + P2 s.t. the following diagram commutes:

P

h
J

P, h=
\

\
h/l \

L”
p2

Proof Let -1, -2 stand for -h,, -hz. In view of Theorem 3.8, we can assume

PI =PI-1, P2= P/-2.

222 ILARIA CASTELLANI

Then the unique mapping h,,, that can make the diagram commute is the one
defined by

h2,] (h I= r2
~2,,(L-d1)=~2(4)= cq12, VqEQ.

This mapping is a function, because

cs11= C4’11 implies [q]* = [q’12

for the hypothesis that -r E -2.
We now show that hzl, is an a.h. Let as usual Ii and succi refer to Pi. Then h,,,

satisfies

0) ~,(Csll)=~(q)=~2(Cq12)=~2(h,,,(Cql,))
(ii) h2i1 (succ, Cql,)) = h2,1 (succ, (h, (4))) = h,,, (hi (succ, (4))) =

~2,1(wlfIqQf)) = ~2WlqQil) = h,(succ,(q)) = succ,vb(q)) =
s~cc2(~2,dC911))~ I

We can finally prove

THEOREM 3.11. (confluence of abstraction homomorphisms). If P, P, , P, are
NDPs, and h,: P+ P,, h,: P+ P, are a.h.‘s, then 3 NDP P,, 3 a.h.‘s, A,,: P, + P,,
hz3: P, -+ P, s.t. the following diagram commutes:

P

Proof: Let again -, and w2 stand for -h, and -h2. Define -3 = [-, u w2]*.
Since m3 is a congruence (by Lemma 3.9), there exist correspondingly an NDP
PI-3 and an a.h. h,, : P + P/w3 (by Theorem 3.8).

Let P, be P/w3 and h3=h,,. We have

P

BISIMULATIONS AND HOMOMORPHISMS 223

where both the pairs (hi, h3) and (h2, h3) meet the hypothesis of Lemma 3.10, hence
the result with hi3 = h,,, , hz3 = h3,2. 1

CONVENTION. In the following we will use * instead of % -’ whenever con-
venient.

We conclude this section by stating the

COROLLARY 3.12. (-+abs is Church-Rosser). If P, P,, P, are NDPs s.t.
P, tabs P + abs Pz, then 3 NDP P, s.t. P, dabs P, cabs P,. fl

3.1. Abstraction Equivalence

The relation +abs gives us a criterion to regard two processes as “abstractly the
same.” However, being essentially a simplification, +abs is not symmetric and
therefore does not, for example, relate the two processes

A A
a a b a b b

or the processes
E

E

a E E
a &

a

based on a, we will then define on NDPs a more general relation -.&, of
reducibility to a same process.

DEFINITION 3.13. N&s = def--%. *.

We can immediately prove a few properties for -abs.

PROPERTY 3.14. Nabs is an equivalence.

Proof. Transitivity follows from the 2;’ that habs is Church-Rosser, which can
be restated as: [% u *] * = 5 . -. 1

PROPERTY 3.15. -a& is preserved by the operators p and + .

Proof: Direct consequence of the substitutivity of -+abs under p and + . 1

To sum up, we have now a substitutive equivalence wabs for NDPs that can be
split, when required, in two reduction halves. The equivalence -a& will be called
abstraction equivalence. In the coming section we will study how abstraction
equivalence relates to bisimulation equivalence, a notion introduced by Park [Pa]
for general transition systems.

224 ILARIA CASTELLANI

4. BISIMULATION RELATIONS

A natural method for comparing different systems is to check to which extent
they can behave like each other, according to some definition of behaviour.

Now, what is to be taken as the hehauiour of a system need not be known a
priori. One can always, in fact, having fixed a criterion for deriving subsystems, let
the behaviour of a system be recursively defined in terms of the behaviours of its
subsystems.

Based on such an implicit notion of behaviour, one gets an (equally implicit)
notion of equivalence of behaviour, or bisimulation equioalence, between systems:
two systems are said to be equivalent iff for any subsystem of either of the two,
derived with some criterion, there exists an equivalent subsystem of the other,
derived with the same criterion.

For an NDS S, the transition relation provides an obvious criterion for deriving
a subsystem S’: for any p, S’ is a p-subsystem of S iff S 3 S’. However, if we are to
abstract from internal transitions, a weaker criterion will be needed. To this
purpose the following weak transition relations % are introduced:

The system S’ is called a pderivatioe of S iff S 3 s’. We then define bisimulation
relations on NDSs as follows.

DEFINITION 4.1. A (weak) bisimulation is a relation R E (9’ x 9) s.t. R c F(R),
where (S,, S,)EF(R) iff V,UEA:

(i) S, =9 S’, implies 3s; s.t. S2 *p S”, S; R S;
(ii) S, *lr S; implies 3S’, s.t. S, ap S;, S’, R Si.

Thus a bisimulation is exactly a post-fixed-point of the function F. As F is
monotonic for relations under inclusion, it has a largest postfixed-point (which is
also its largest fixed-point) given by u{ RIR G F(R)}. We will denote this largest
bisimulation by (E), and, since (x) turns out to be an equivalence, refer to it as
the bisimulation equivalence.

Unfortunately, (z) is not preserved by all the operators. Precisely, (x) is not
preserved by the operator +, as shown by the example

I ; (z) NIL, but & A a (‘) 11
On the other hand the relation (z)+, obtained by closing (z) w.r.t. the operator
+:

s, <=)+s, iff VS:S+S, (x)S+S,

BISIMULATIONS AND HOMOMORPHISMS 225

can be shown to be a substitutive equivalence, and in fact to be the largest such
equivalence contained in (x). (For more details on (z) and (z) + we refer to
CM29 M31.1

To conclude, (x)’ seems a convenient restriction on (x) to adopt when
modelling NDSs. We will see in the next section that (z)’ coincides, on NDPs,
with our abstraction equivalence wabs.

5. RELATING BISIMULATIONS TO ABSTRACTION HOMOMORPHISMS

Looking back at our relations +abs and wabs, we notice that they rely on a
notion of equivalence of states which, like bisimulations, is recursive. Moreover, the
recursion builds up on the basis of a similarity requirement (equality of labels) that
reminds of the criterion (equality of observable derioation sequences) used in
bisimulations to derive corresponding subsystems. All this indicates there might be
a close analogy between abstraction equivalence and bisimulation equivalence.

In fact, since we know that -abs is substitutive, we shall try to relate it with the
substitutive closure (z)’ of (GZ). To this purpose, it will be convenient to have
(z)’ itself be defined recursively.

Note that (z)’ only differs from (z) in that it takes into account the
preemptive capacities a system can develop when placed in a sum context. Such
preemptive capacities depend on the system having some silently reachable state
where, informally speaking, some of the “alternatives” offered by the sum-context
are no more available. This suggests that we should adopt, when looking for a
direct definition of (w)‘, the more restrictive transition relations A:

In particular, we will have I& = -+“, n > 0. Note, on the other hand, that, for a E A,
it will be: J = 25 .

However, the equivalence (z)’ is restrictiue with respect to (z) only as for as
the first aT derivation steps are concerned: at further steps (cz)’ behaves like
(w), as it can be seen from the example:

So, if we are to recursively define (z)’ in terms of the transitions P”, we will
have to somehow counteract the strengthening effect of the E-” s at steps other than
the first.

226 ILARIA CASTELLANI

To this end, for any relation R c (9 x Y), a relation R, (“almost” R) is
introduced: (S,, S,) E R, iff (S,, S,) E R or (rS,, S,) E R or (S,, tSZ) E R.

We can then define a-bisimulation (“almost” bisimulation) relations on NDSs.

DEFINITION 5.1. A (weak) a-bisimulution is a relation R c (Y x 9’) such that
RcE(R,), where (S,, S,)EE(R,) iff V~LEA:

(i) S, i9 S; implies 3s; s.t. S, P” S;, S; 4, S;
(ii) Sz P” S; implies 3s; s.t. S, 1=9 S;, S; R, S;.

Again, the equation R G E(R,) has a largest solution which is an equivalence
relation, and which we will denote by (z)“. Now the equivalence (cz)” has been
proven to coincide with (z)’ (both the definition of (E)” and the proof that
(x)” = (z)’ are due to Hennessy).

We mention in passing that, if R is an a-bisimulation, then R, is an ordinary
bisimulation. In particular, for the maximal a-bisimulation (z)“, we have
(z); = (z) (this fact will be used in the proof of Theorem 5.8 below).

We proceed now to compare wabs with (z)“. First, p-derivatives are redefined
in terms of the new relations w”: S’ is a p-derivative of S iff S 19 s’. Then we are
able to prove the

THEOREM 5.2. -+abs is an a-bisimulation relation on NDPs.

The proof relies on the following two lemmas.

LEMMA 5.3. (-+abs almost preserves p-derivatives). Zf P, -+abs P, and P, &’ Pi
then 3P; s.t. P, ti Pi where either P’, habs Pi or P’, babs rP;.

Prooj We recall that any state of an NDP P is the initial state rp’ of some
derivative NDP P’. Note that P Pr P’ implies Z(r,,) = p in P.

Now let h: P, -+ P, be an a.h., and as usual let Qi, ri refer to P,, i= 1, 2.
Suppose P, tip’,. Let r; be the initial state of P’, in P,; then r; E Ql (i.e., r; #r,)

and I, (r;) = p. Now let r; = h(r’,). Then r; is the root of some derivative Pi of P,.
Since h is an a.h., we have r; # rz and l(r;) = I(r;) = p. Therefore P, 1=9’ P2.

Now let Q:= (qlqe Pi, rl< q}, i= 1,2. From Property (ii) of a.h.‘s, we know that

h(Q’, u r;) = Q; u 4.

Then we are in one of two cases:

(1) h(Qi) = Q;. In this case h 1 (Q; u r;) is (trivially) an a.h. from Pi to Pi.
Therefore Pi -+abs Pi.

(2) h(Q;)= Q; ur;. Here h maps some states of Q; to r;. Note that these
states will be labelled by p in P, and by E in Pi. Let QE denote the set of such states

BISIMULATIONS AND HOMOMORPHISMS 221

in Pi: Q,= (4146 Q;, l(q)=&}. Also, let P;‘=zP;. Then Qz = Q;u r; and the
function: h’:(Q; u r;) --) (Q; u r;) defined by

h’(ri) = r;

h’(QJ = 4

h’(q) = h(q) otherwise,

is (trivially) an a.h. Thus we have in this case P’, +abs zP;. 1

LEMMA 5.4. (2-l almost preserves p-derivatives). 1f PI +abs P, then
P, 19 Pi implies 3P’, s.t. P, & P’, where either Pi dabs P; or Pi jabs zP;.

Proqfi Suppose P, &‘ Pi. Let r; be the initial state of P; in P,. Since h is sur-
jective, 3 r’, # rl s.t. h(r;) = r;, Z(r’,) = I(&) = CL. Then, if P’, is the derivative of P,
with root r;, we have P, 19 P’,, and the rest of the proof is the same as for
Lemma 5.3. 1

COROLLARY 5.5. -+abs 5 (z)".

Proof: (z)” is the largest a-bisimulation. m

Note that in Lemmas 5.3 and 5.4 we do not need to consider the case
ZP; ,abs Pi. The reason this case does not arise in that a.h.‘s are single-valued
relations. In fact, our next task will be to give a characterisation of a.h.‘s as
relations on processes,

TO this purpose, we will need some more notation. For any NDP P, let
Der(P)= {P’lP-+ *P’ > and PDer(P)= (P’(P+ *PI, P # P’}. Also, we say that a
bisimulation (resp. an a-bisimulation) relation R is between P, and P, iff P, R P,
and RZ (Der(P,) x Der(P,)) u (Der(P,) x Der(P,)).

Let =>O stand for $k . . * 2 if (T = ~1 . . . p,,. It is easy to see that, for any two
systems S, , Sz, the following holds.

LEMMA 5.6. If S, R S2 for some bisimulation R, then for any o E A*:

(i) S, % S; implies 3S2 s.t. S2 g S2, S’, R S;

(ii) S, &- S2 implies 3S’, s.t. S1 2G- S’,, S’, R Sk.

Now, if we regard a.h.‘s as relations on processes, we have the following charac-
terisation.

THEOREM 5.7. A relation R on processes is an abstraction homomorphism from
P, to P2 iff R is a single-valued bisimulation between P, and P2 s.t.
p2 $ RWWpl)).

Proof. Only if: Let R be an a.h. from P, to P,. Again, we assume that any
state of Pi is the root rp; of some derivative Pi. Also, we write Pi R P; in place of
R(rpi) = rpi whenever we want to treat R as a relation on processes.

Now, R is by definition single-valued and s.t. P,RP, and RE

571/34,‘2-3-6

228 ILARIA CASTELLANI

(Der(P,)) x Der(P,)). Also, R(PDer(P,)) = PDer(P,) implies P, & R(PDer(P,)).
What is left to show is that R is a bisimulation, namely that R c F(R). Suppose
Pi R Pi, i.e., R(rp;) = r,;. Then

Clause (i): If Pi =9’ P;‘, we have

r,;E SUCC(rp;) and I(r,;) = I(rpi) . p.

Now, since R(succ(r,;)) = succ(r,;) [Property (ii) of a.h.‘s], there exists
r,; E succ(r,;) s.t. R(rp;) = rg), that is P; R Pi. Then I(rp;) = I(rp;) = I(r,;). p =
Z(r,;) * p [using Property (i) of a.h.‘s]. So we have Pi jV PG, with P;’ R P;.

Clause (ii): The proof is symmetric to that of Clause (i).

This ends the proof of the on& zy part of the theorem.
Zf: Now let R be a single-valued bisimulation between P, and Pz s.t.

P2 I$ R(P Der(P,)). Then R can be regarded as a function R: (Ql LJ rl) + (Q2 u r2).
By hypothesis we have R(r,) = r2, R(Q,)= Q2. We check now that R satisfies
Properties (i) and (ii) of a.h.‘s. Suppose R(rpi) = rpi, i.e., Pi R Pi. Then

Property (i): l(rp;) = cry A* means P, 3” Pi. Since P, R P2, we know, by
Lemma 5.3, that 3Pl s.t. P2 aV Pi and Pi R PT. Since R is single-valued, it must be
Pi = Pi. Whence I(r,;) = (r.

Property (ii): r,; E succ(rpi) means %E A* s.t. Pi qa Pj’. Since Pi R Pi, by
Lemma 5.3 3P$ s.t. Pi aa Pi and P; R Pi. So rp; = R(rp;) E succ(r,;).

Thus we have shown that R(succ(r,;)Esucc(r,;). By a symmetrical argument we
can show also: succ(r,;) c R(succ(r,;)), and this ends the proof of the theorem. 1

So far we have been concentrating on how bisimulations relate to the reduction
relation +abs. We now come to our main result, concerning the relationship
between the abstraction CqUiValCIICC -& and the substitutive bisimulation
equivalence (x)“. It turns out that these two equivalences coincide.

THEOREM 5.8. -abs = (z)“.

Proof of E . From Corollary 5.5 we can infer that wabs = [-%. *] E (z)“,
since (x)” is symmetrically and transitively closed.

Proof of 2, Suppose P, (z)” P,. We want to show that 3P, s.t.
P,~P,~P,.ForanyNDPP,letDer,(P)={P’IP=>”P’}andPDer,(P)=
{P’IP=aO p’, P#P’).

Note that P, (z)“Pz implies P, E ((z);) P2, i.e., P, E ((zz)) P2. Then it is
easy to check that the relation

R=(P,,P,)u(x) f(PDer,(P,)xPDer,(P,))

is a bisimulation between P, and P2 s.t. P2 $ R(P Der(P,)).

BISIMULATIONS AND HOMOMORPHISMS 229

However, R will not, in general, be single-valued. Let then - be the equivalence
induced by R on the states Q, of P,,

iff 3P; E P Der(P,) s.t. both (Pi, Pi) and (Pi, P;)E R.
Now, it can be easily shown that - is a congruence on P,. Therefore, by

Theorem 3.7, 3NDP P,, 3 a.h. h s.t. h: P2 + P,. So Pz +abs P,.
Now, by Theorem 5.7, h can be regarded as a bisimulation between P2 and P3.

Consider then the composition: R’ = h 0 R. By construction R’ is single-valued and
s.t. R’c (Der(P,) x Der(P,)). Also, R’ is a bisimulation because both R and h
are. Finally, since P, 4 R(P Der(P,)) and P, $ h(P Der(P,)), we have
P, $ R’(P Der(P,)). Thus, by Theorem 5.7 again, R’ is an a.h. from P, to P3. So
P, -+ abs P,.

Summing up, we have shown that P, +abs P3 tabs P,, that is to say,
p, “abs p2. i

In view of the last theorem, the equivalence -abs can be regarded as an alter-
native definition for (z)” = (z)‘. In the next section, we will see how. this new
characterisation can be used to derive a set of reduction rules for (z)+ on finite
processes.

6. A LANGUAGE FOR FINITE PROCESSES

In this section, we study the subclass of finite NDPs, and show how it can be
used to model terms of a simple language L.

The language is essentially a subset of Milner’s CCS (Calculus of Communicating
Systems [M 11). In [HM] a set of axioms is presented for L that exactly charac-
terises the equivalence (z)” (and therefore mabs) on the corresponding transition
systems. We show here that the reduction +abs itself can be characterised
algebraically, by a set of reduction rules. These rules yield normal forms which coin-
cide with the ones suggested in [HM].

Finally, we establish a notion of minimality for NDPs and use it to define a
denotational model for L, a class of NDPs that we call representation trees. The
model is shown to be isomorphic with Hennessy and Milner’s term model.

We shall now introduce the language L. Following the approach of [HM], we
define L as the term algebra T, over the signature

L=Au {NIL, +}.

If we assume the operators in Z to denote the corresponding operators on NDPs
(A will denote the set of unary operators p), we can use finite NDPs to model terms
in T,. If t is a term of T,, we will use P, for the corresponding NDP.

230 ILARIA CASTELLANI

We point out, however, that the denotations for terms of Tz in 9 will always be
trees, that is, NDPs P = (Q u {r } , < , 1) obeying the further constraint:

confluence-freeness: 39” s.t. q < q” and q’<q”

implies qd q’ or q’6q

Now consider the set of axioms: E,

El. x+x’=x’+x.

sum-laws E2. x+(~‘+x”)=(x+x’)+x”

E3. x+NIL=x

E4. ~~x=,ux

r-laws

i

E5. rx+x=rx

E6. ~(x+ry)+~+Y=~(x+ry)

absorption law - E7. x+x=x.

Let =’ be the equality generated by E,. It has been proved [HM] that E, is a
sound and complete axiomatisation for Milner’s observational congruence zc
[Ml], namely that

t = Ct’ iff P, zc P,,.

The relation zc is defined as the closure w.r.t. the operator + of the relation
(Milner’s observational equivalence):

where (9 x 9) is the universal relation on NDPs and F is the function on relations
introduced in Section 4.

For image-finite systems, that is, systems satisfying the condition

V state q, V,U: the set (q’lq 3 q’} is finite

the relations z and xc are known to coincide with the relations (z) and (z)”
introduced in the previous sections. Now for NDPs the image-finiteness property is
guaranteed by the finiteness restriction on the labelling function. So, in particular,
we can assume zc to be defined as (GZ >” on finite NDPs. Combining these facts
together, we have that

t=C t’ iff P, mabs P,..

In other words, =’ is an algebraic analogue for wabs. Note on the other hand
that, although each axiom of EC could be viewed as a reduction rule (when applied

BISIMULATIONS AND HOMOMORPHISMS 231

from left to right), the corresponding reduction relation + would not characterise
abs -. Consider, for example, the terms t = aNIL+z(a NIL+ b NIL),

t’ = z(a NIL + b NIL). We have P, 2 P,. but we cannot infer t + t’.
However, using the axiomatisation E, as a reference, we are able to derive a new

system of reduction rules, which characterises 2. To this end, let us define the
relations 3 on the terms of T,: Vp E A *, let 2 be the least relation on terms that
satisfies

(i) pt 1: t
(ii) t -1: t’ implies t + t” 1: t’, t” + t 3 t’.

The weak relations ap and &’ are defined in terms of the -G’s just as in Sec-
tion 4.

Now let *’ be the reduction relation generated by the following set of reduction
rules R, (where ++ stands for (+ n +--‘)): R,

sumlaws

1

Rl. x+x’ox’+x

R2. (x+x’)+x”trx+(x’+x”)

R3. x+NIL+x

1st z-law - R4. /~rx + px

generalised R5. x + PLX’ + x, whenever x I+~ x’.
absorption law -

In what follows, we will often consider terms modulo the congruence induced by
Rl-R3. When taken modulo Rl-R3, a term t can be expressed in the form Cipiti,
where i E Z for some finite set of indices I. By convention xi pi ti = NIL if Z = 0.

It is easy to check that the rules R, are sound for NDPs under +abs, in the sense
that t -+’ t’ implies P, _tabs P,,. We proceed now to show that the rules R, are also
complete for +abs, namely that if P, -+abs P,, then we can infer t +’ t’. To this pur-
pose, we first prove a stronger version of Lemma 5.4.

LEMMA 6.1. (a-l almost preserves p-summands). Zf P, dabs P2 and

P2 +p Pi then 3P; s.t. P, --scl Pi, where either P’, dabs Pi or P; +abs~P;.

Proof. Let h: P, --f P, be an a.h. and suppose P, --tU Pi. Then, if r; is the root of
P; in P,, we have l(r;) = pu. Also, since h is surjective, r; = h(r;) for some state
r; E Q 1. Now in general it will be

rl- q1 - . . ’ -c qn = r; .

Since h is order-preserving, this implies

r,=h(r,)<h(q,)< *-- <h(q,)=h(r;)=r;.

232 ILARIA CASTELLANI

Now, we know that r2 --c r; and r2 $ h(Qr). Therefore it must be

r,=h(r,)-ch(q,)= ... =h(q,)=h(r;)=r;.

This implies

I(q1)= ... = Z(q,) = I(r;) = p.

Let Pi be the derivative of P, whose root is q;. Then we have P, -+p P’,, and the
rest of the proof is the same as for Lemma 5.4. 1

We now have the following (soundness and) completeness result.

THEOREM 6.2. t jc t’ (fjf P, + abs P,, .

Proof of Completeness. We show, by induction on the sum of the sizes of P, and
P,., that P, jabs P,, implies t -+’ t’.

Assume t = Cipiti, t’ =cj vjtj, where ieZ, jeJ. In the rest of the proof, we shall
use P, P’ for P,, P,, and Pi, Pi for P,,, P,,. Let vjti be a summand of t’. By
Lemma 6.1, 3i~ I s.t. pi = vi, and either Pi -+“’ Pi or Pi -+abs TPJ. By induction we
have correspondingly either ti --+’ ti or ti +’ Ttj. In both cases we can deduce:
piti +’ vjtJ. (using R4 for the latter case).

So, corresponding to any jE J, we can find iE Z s.t. pit, +’ vi+ Let ZJ” I be the
set of all indices i thus chosen to match some je J. Then

Hence, substituting in t,

kel-l,

=t’+ C ,Ukfk.

kel--I,

We show now that (t’-tCkE,P,Jpktk)-+C t’, and this will end the proof of the
theorem. Each & tk is a summand of t. Thus for P = P,, P, = P,,, we have
P #jPk Pk. Since P dabs P’, we can deduce (by Lemma 5.3) that 3P” s.t. P’ wpk P”,
where either P, -+abs P” or P, dabs zP”.

Let now t” be s.t. P” = P,,,. Note that t’mpk 2”. By induction we have either
fk -+’ t” or tk -+’ zt”. In any case we can deduce ,uk t, _tc pk t”. Thus we have

Since t’ pPk t”, we can now use R5 to get

BISIMULATIONS AND HOMOMORPHISMS 233

As this can be repeated for all k E (I- I,), we can conclude that

t’ + c pktk +’ t’*
kel--If

To sum up, we have shown that

c Pktk
kel-I,

COROLLARY 6.3. R, is a rewriting system for the equational theory EC.

We can make use of our new axiomatisation for = ’ to characterise normal forms
for terms in T,. We say that a term is in normal form if no proper reduction
(R3, R4, or R5) can be applied to it. It can be shown that

THEOREM 6.4. A term t = xi piti is a normal form iff (Hennessy-Mimer charac-
terisation):

(i) no ti is of the form zt’
(ii) each ti is a normal form
(iii) for i #j, tj ct, t; Vti st. pjtj => @’ t;.

Corresponding to normal forms, we have a notion of minimality for processes.
We say that a process P is irreducible or minimal iff VP’: P jabs P’ implies P = P’.
Then it is easy to see that

THEOREM 6.5. For any finite NDP P, !I! minimal NDP P’ s.t. Pwabs P’.

Proof For uniqueness, use + abs’~ Church-Rosser property. 1

We shall denote by P the unique minimal process corresponding to the NDP P.

COROLLARY 6.5. PNabs P’ iff 1; = 1;‘.

As we mentioned earlier, the denotation P, of a term t is always a tree. However,
its “abstract” denotation P, might not be a tree. We shall now propose a tree model
for terms of T,, which is isomorphic to the term model TJ = ‘.

Note first that any NDP which is not a tree has a unique unwinding into a tree.
The tree-unwinding of an NDP P (which is not defined formally here) will be
denoted by U(P).

Now let 95 (representation trees) be the class: SLY = { U(P)1 P is a minimal
NDP}. The denotation T, of a term t E T, in ZY is defined by: T, = U(P,).

It can be easily shown that:

234 ILARIA CASTELLANI

THEOREM 6.6. t = ’ t’ iff T, = T,,

We shall finally argue that our model 99 is isorrzorphic to the term model
T,/= c. WY is a C-algebra satisfying the axioms EC (by Theorem 6.6) with the
operators defined by

PUP) = u&h

U(P,) + UP,) = U(P$j,.

Therefore, since T,/ = ’ is the initial C-algebra satisfying the axioms EC, we know
that

3! Z-homomorphism Y: T,/ = ’ -+ SW.

It is easily seen that Y is given by: Y([t]) = U(P,)= T,. Also, by Theorem 6.6
again, Y is a bijection between T, and &RF.

7. CONCLUSION

We have proposed an alternative definition for the (substitutive) bisimulation
equivalence (z5)+ for a class of transition systems. Note that the ordinary
bisimulation equivalence could be characterised just as easily, by slightly changing
the definition of homomorphism; in fact it would be enough to drop the
requirement that proper states should be preserved. Also, using our definition, we
have been able to derive a denotational model for the language L, which is
isomorphic to Hennessy and Milner’s term model for the same language.

Our approach is intended to extend to richer languages, for programs which are
both nondeterministic and concurrent (meaning that the actual concurrency is not
interpreted nondeterministically). Some simple results have already been reached in
that direction.

ACKNOWLEDGMENTS

The definition of abstraction homomorphism and the idea of using it to characterise Mimer’s notions
of observational equivalence and congruence comes from a joint work with U. Montanari at Pisa
University. I would like to thank him for inspiration and for subsequent discussions. I would also like to
thank my supervisor M. Hennessy for the substantial help he gave me all along, and R. Mimer for
helpful suggestions.

REFERENCES

[BR] S. BROOKES, AND C. ROUNDS, Behavioural equivalence relations induced by program logic% in
“Proceedings, Int. Colloq. Automata, Lang., and Programming, ‘83,” Lect. Notes in Comput.
Sci. Vol. 154, Springer-Verlag, New York/Berlin, 1983.

BISIMULATIONS AND HOMOMORPHISMS 235

cc1 I. CASTELLANI, Bisimulations and abstraction homomorphisms, in “Proceedings, Theory and
Practice of Software Development Conf., Berlin, 1985,” Lect. Notes in Comput. Sci. Vol. 185,
Springer-Verlag, New York/Berlin, 1985.

[CFM] I. CASTELLANI, P. FRANCESCHI, AND U. MONTANARI, Labelled event structures: A model for
observable concurrency, in “Proceedings IFIP TC2 Working Conference on Formal Descrip-
tion of Programming Concepts II, Garmisch, 1982,” North-Holland, Amsterdam, 1983.

[DeN] R. DE NICOLA, “Behavioural Equivalences for Transition Systems,” Internal Report I.E.I., Pis‘a,
Italy, 1984.

[HM] M. HENNESSY, AND R. MILNER, Algebraic laws for nondeterminism and concurrency, J. Assoc.
Compur. Mach. 32 (1985).

WI R. KELLER, Formal verification of parallel programs, Comm. ACM 19, No. 7 (1976).
[Ml] R. MILNER, “A Calculus of Communicating Systems,” Lect. Notes in Comput. Sci. Vol. 92,

Springer-Verlag, New York/Berlin, 1980.
[M2] R. MILNER, Calculi for synchrony and asynchrony, J. Theorer. Comput. Sci. 25 (1982).
[M3] R. MILNER, Lectures on a calculus for communicating systems, in “Proceedings, Marktoberdorf

Summerschool 1984,” NATO AS1 Series F, Vol. 14, Springer-Verlag, New York/Berlin, 1985.
[Pal D. PARK, “Concurrency and Automata on Infinite Sequences, in Lect. Notes in Comput. Sci.

Vol. 104, Springer-Verlag, New York/Berlin, 1981.
CPI G. PLOTKIN, “A Structured Approach to Operational Semantics,” DAIMI FN-19, Computer

Science Dept, Aarhus Umversity, 1981.

