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We show that the notion of bisimulation equivalence for a class of labelled transition 
systems (the class of nondeterministic processes) may be restated as one of “reducibility to a 
same system” via a simple reduction relation. This relation is proved to enjoy some desirable 
properties, notably the Church-Rosser property. We also show that, when restricted to finite 
nondeterministic processes, the relation yields unique minimal forms for processes and can be 
characterised algebraically by a set of reduction rules. 7 1987 Academic Press, Inc 

1. INTRODUCTION 

Labelled transition systems [K, P] are generally recognised as an appropriate 
model for nondeterministic computations. The motivation for studying such com- 
putations stems from the increasing interest in concurrent programming. 

When modelling communication between concurrent programs, some basic dif- 
ficulties have to be faced. A concurrent program is inherently part of a larger 
environment, with which it interacts in the course of its computation. Therefore a 
simple input-output function is not an adequate model. The model should retain 
some information about the internal states of a program, so as to be able to express 
the program’s behaviour in any interacting environment. Also, nondeterminacy 
arises when abstracting from such parameters as the relative speeds of concurrent 
programs: as a consequence, we need to regard any concurrent program as being 
nondeterministic. 

The question is then to find a model for nondeterministic programs that 
somehow accounts for intermediate states. On the other hand, only those inter- 
mediate states should be considered which are relevant to the “interactive” 
behaviour of the program. Now one can think of various criteria for selecting such 
significant states. 

In this respect labelled transition systems provide a very flexible model: by vary- 
ing the definition of the transition relation one obtains a whole range of different 
descriptions, going from a full account of the structure of a program to some more 
interesting “abstract” descriptions. However, even these abstract descriptions still 
need to be factored by equivalence relations (for a review see [B or DeN]). 
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A natural notion of equivalence, bisimulation equivalence, has been recently 
proposed by Park [Pa] for transition systems: informally speaking, two systems 
are said to bisimulate each other if a full correspondence can be established between 
their sets of states in such a way that from any two corresponding states the two 
(sub)systems will still bisimulate each other. 

In this paper we show that the notion of bisimulation equivalence for a class of 
labelled transition systems (the class of nondeterministic processes) may be restated 
as one of “reducibility to a same system” via a simple reduction relation. This 
relation is proved to enjoy some desirable properties, notably the Church-Rosser 
property. We also show that, when restricted to finite nondeterministic processes, 
the relation yields unique minimal forms for processes and can. be characterised 
algebraically by a set of reduction rules. 

The paper is organised as follows. In Section 2 we present our computational 
model, the class of nondeterministic processes. In Section 3 we argue that this basic 
model is not abstract enough, particularly when systems are allowed unobservable 
transitions as well as observable ones. We therefore introduce abstraction 
homomorphisms [CFM] as a means of simplifying the structure of a process by 
merging together some of its states: the result is a process with a simpler descrip- 
tion, but “abstractly equivalent” to the original one. We can then infer a reduction 
relation between processes from the existence of abstraction homomorphisms 
between them. We prove some significant properties of this relation, such as sub- 
stitutivity under typical operators and the Church-Rosser property. Based on the 
reduction relation, we define an abstraction equivalence relation on processes: two 
processes are equivalent iff they are reducible to a same process. 

In Sections 4 and 5 we study the relationship between our notions of reduction 
and abstraction and the notion of bisimulation between transition systems. The 
criterion we use for identifying states of a process via abstraction homomorphisms 
is similar to the one underlying the definition of bisimulation: we show in fact that 
our abstraction equivalence coincides with (the substitutive version of) bisimulation 
equivalence, and can therefore be used as a simple alternative formulation for it. 

In Section 6 we consider a small language for defining finite nondeterministic 
processes: essentially a subset of Milner’s CCS (Calculus of Communicating 
Systems) [Ml]. We find that our results combine neatly with some established 
facts about the language. On this language our equivalence is just Milner’s obser- 
vational congruence, for which a complete finite axiomatisation has been given in 
[HM]. So, on the one hand, we get a ready-made algebraic characterisation for 
abstraction equivalence; on the other hand, our characterisation proves helpful in 
working out a complete system of reduction rules for that language. We conclude by 
proposing a denotational tree-model for the language, which is isomorphic to the 
term-model in [HM]. The present paper is an extended version of [C], complete 
with proofs. 

571/34/2-3-S 
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2. NONDETERMINISTIC SYSTEMS 

In this section we introduce our basic computational model, the class of nondeter- 
ministic systems. Nondeterministic systems are essentially labelled transition systems 
with an initial state. 

We then characterise a subclass of acyclic systems that we call nondeterministic 
processes: in the remaining sections we shall be mainly concerned with this subclass. 

Let A be a set of elementary actions or transitions, containing a distinguished 
unobservable transition r. We will use p, v,... to range over A, and a, b,... to range 
over A - {z}. 

DEFINITION 2.1. A nondeterministic system (NDS) over A is a triple 
S=(Qu{r),A, -+), whereQu{r}isthesetofstatesofS,r~Qistheinitialstate 
(or root) of S, and + c [(Q u (r}) x A x (Q u {r})] is the transition relation on S. 

We will use q, q’ to range over Q u (r}, and write q -3 q’ for (q, ,a, q’) E -+ We 
interpret q 3 q’ as: S may evolve from state q to state q’ via a transition p. 

We will make use of the transitive and reflexive closure + * of + , which we call 
the derivation relation on S. For an NDS, S = (Q u {r}, A, -+ ), we will use Q,, r3, 
+ s instead of Q, r, -+ , whenever an explicit reference to S is required. 

According to our definition, and NDS S is a machine starting in some definite 
state and evolving through states by means of elementary transitions. On the other 
hand, each state of S may be thought of as the initial state of some NDS: We may 
then regard the system S as giving rise to new systems, rather than going through 
successive states. 

In fact, the whole class 9’ of NDSs may be described as a transition system 
(whose states are NDSs). We then say that S’ is a derivative of S whenever S -+ *S’. 
Thus for any SE 9, a one-to-one correspondence can be established between the 
states and the derivatives of S. In the following we will often use this correspon- 
dence between states and (sub)systems. 

We assume the class Y to be closed w.r.t. some simple operators: a nullary 
operator NIL, a set of unary operators ,U (one for each p E A), and a binary 
operator +. The intended meaning of these operators is the following: NIL 
represents termination, + is a free-choice operator, and the p’s provide a simple 
form of sequentialisation, called prefixing by the action ,u. 

The transition relation of a compound NDS may be inferred from those of the 
components by means of the rules: 

(i) +S4S 

(ii) S 1: S’ implies S + S” 4 S’, S” + S 3 S’. 

The operators will be given a precise definition for a subclass of 9, the class of 
nondeterministic processes that we will introduce in the next section. 
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2.1. Nondeterministic Processes 

As they are, NDSs have an isomorphic representation as (rooted) labelled 
directed graphs, whose nodes and arcs represent respectively the states and the 
transitions of a system. On the other hand, any NDS may be unfolded into an 
acyclic graph. We shall here concentrate on a class of acyclic NDSs that we call 
nondeterministic processes (NPDs). 

Basically, NDPs are NDSs whose derivation relation -+ * is a partial ordering. 
Each state of a process is assigned a Zabel, that represents the sequence of obser- 
vable actions leading from the root to that state. To make such a labelling con- 
sistent, we only allow two paths to join in the graph if they correspond to the same 
observable derivation sequence. The labelling is subject to the following further 
restriction: for any label CJ, there are at most finitely many states labelled by CT. As it 
will be made clear subsequently, this amounts to imposing a general image- 
finiteness condition on the systems, and is a crucial hypothesis for some of our 
results. 

In the formal definition, we will use the following notation: A* is the set of finite 
sequences over A, with the usual prefix ordering, and with an empty sequence E. 
The covering relation --c associated to a partial ordering 6 is given by: x -C y iff 
x < y and Y!z such that x < z < y. Also, we make the following convention: r acts as 
the identity over A* and is therefore replaced by E when occurring in strings. 

DEFINITION 2.2. A nondeterministic process (NDP) over A is a triple 
P=(Qu {r}, <,l), where 

(Q u {r I), < ) is a rooted poset of states: Vq, r < q 

1: Qu {r) +A* is a monotonic labelling function, satisfying: 

Z(r) = E 

4=4’ implies Z(q’) = Z(q). p, PEA 

VoEA*, (ql I(q) = a} is finite. 

Note that an NDP is very nearly a labelled tree: it only differs from a labelled 
tree in that it might have some confluent paths. The reason we do not directly 
adopt labelled trees as a model is purely technical (the proof that the model is 
closed w.r.t. reductions would be rather tricky). However, we intend that trees are 
our real object of interest: in particular, our examples will always be chosen from 
trees. 

As pointed out already, we label nodes with sequences of actions, rather than 
labelling arcs with single actions: this minor variation w.r.t. the standard notation 
(see, e.g., Milner’s synchronisation trees) will make it easier to compare different 
states of a process. 

It is easy to see that any NDP P is also an NDS, with + p given by -z. More 
precisely, for any p E A, the relation 1; p will be given by ((q, q’)(q -C q’ and 
l(d) = l(q). PI. 
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Note that, because of our convention that t = E, a transition z is represented in an 
NDP by the repetition of the same label on the two A related nodes. More 
generally, the label of a node will now represent the sequence of observable actions 
leading to it. For example, the tree 

E 

in our notation will be 

ab a 

In what follows, nondeterministic processes will always be considered up to 
isomorphism. 

DEFINITION 2.3. An isomorphism between two NDPs: P, = (Q, u {r, }, d,, I,) 
and P2 = (Q2 u {r,}, G2, I,) is a one-to-one correspondence: @: Q, u (r, } -+ 
Q2 u {r2) s.t. 

(i) l,(@(q)) = II (9) 

(ii) Q(q) G2 @(q’) iff qG1 4’. 

From now on we shall use: Pi = Pz to mean that P, is isomorphic to P,. 
We next define the operators NIL, p, and + on NDPs. Let Pi denote the NDP 

(Ql u {r,}, 6;, 1;). We have 

DEFINITION 2.4. (Operators on NDPs). 

NIL= ((rNILly {G-NIL, rdl, {@NIL, E)}) is the NDP with just a root rNu 
and an empty set of subsequent states 

,uP1 is the NDP P=(Qu (r} , 6, I), where r does not occur in Qi u { rl }, and: 

Q=Qlu {rl) 
< = QI u {(r, q)lqEQ) 

if q = r, 
otherwise. 

P, + P, is the NDP P= (Qu {r} , ,<, l), where r does not occur in Q, u Q2, and: 

Q=Q,uQz (disjoint union) 

S = G1 l’Qlu G2 l’Q2u~(r~q)lq~Q~ 
!=I1 rQlu12 rQ2u {(r3E)j. 

Let 9 G 9’ denote the class of all NDPs: in what follows, our treatment of non- 
deterministic systems will be confined to 9. 
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3. ABSTRACTION HOMOMORPHISMS 

The NDP-model, though providing a helpful conceptual simplification, does not 
appear abstract enough yet. It still allows, for example, for structural redundancies 
such as 

.A a 

Moreover, we want to be able, in most cases, to ignore unobservable transitions. 
Such transitions, being internal to a system, should only be detectable indirectly, on 
account of their capacity of affecting the observable behauiour of the system. 

We will therefore introduce a simplification operation on processes, which we call 
abstraction homomorphism. Essentially an abstraction homomorphism will trans- 
form a process in a structurally simpler (but semantically equivalent) process by 
merging together some of its states. 

The criterion for identifying states is that they be equivalent in some recursive 
sense: informally speaking, two states will be equivalent iff they have equivalent 
histories (derivation sequences) and equivalent futures or potentials (sets of sub- 
sequent states). 

DEFINITION 3.1. For any two NDPs PI = (Ql u {rllT <I7 11), 
P, = (Q2 u (r2}, G2, 12), a function 

h: ;,y;, 
i 

is an abstraction homomorphism (a.h.) from P, to P, ifi 

(9 N4d) = 4 (4) 
(ii) succ,(Nq)) = h(succ, (q)), 

where succ(q) = {q’(q <q’} is the set of successors of q, inclusive of q. 

Before giving examples, we shall just remark that any a.h. is surjectiue (instance 
of (ii), for q = r) and preserves the ordering d (again by (ii)). 

EXAMPLES. ( 1) 
E 
a 4’ 

i a q” --, ii h(q’)= h(q”) I 

This example motivates our definition of succ (9): we want to allow q”, a proper 
successor of q’, to be mapped to h(q”) = h(q’). 

(2) 

‘4: + %1,(q) 

Note that the set of predecessors of q is not preserved by the homomorphism. 
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(3) 

‘%ab + akab 

(4) 

‘kb + aAb 

These two examples show that the relation --c is not necessarily preserved. 

COUNTEREXAMPLES. 

(5) & 

: + 1: 
This is not an a.h., since by definition an a.h. never maps a proper state into a root. 
As a consequence, a process of the form tP can only be transformed into a process 
of the same form. 

This is not an a.h. because it would increase the set of successors of q. 

We pointed out earlier that any a.h. is surjective. In fact, it is the case that: 

PROPOSITION 3.2. Any injective a.h. from P, to P2 is an isomorphism between P, 
and P2 and vice versa. 

Proof Let h be an injective a.h. from P, to P2. To prove that h is an 
isomorphism between P, and P,, it is sufficient to show that 

h(q) 6 h(q) only if qG1 q’ 

as the other properties are trivially implied by those of a.h.s. 
So suppose h(q) <2 h(q’), i.e., h(q’) E succ(h(q)). Then also h(q’) E h(succ(q)), by 

property (ii) of h. Therefore 3q” E succ(q) s.t. h(q”) = h(q’). Since h is injective, it can 
only be q” = q’, whence q’ E succ(q), i.e., q <, q’. 

Conversely, let @ be an isomorphism between P, and P,. We want to show that 
@ is an a.h. from P, to P, (equivalently, we could show that @ is an a.h. from P, to 
P,). All we have to prove is that @ satisfies property (ii) of a.h.s, namely that 
@(succ(q)) = succ(@(q)). 



BISIMULATIONS AND HOMOMORPHISMS 217 

We prove that @(succ(q)) 2 succ(@(q)) (the reverse inclusion is easy). Suppose 
q” ~succ(@(q)). As @ is surjective, 3q’ s.t. q”= @(q’). So G(q) G2 @(q’), whence 
q <1 q’ by property (ii) of isomorphisms. Thus q’ E succ(q), whence q” = 
@5(4’) E @(succ(s)). I 

If h is an a.h. from P, to P2, we write h: P, + P,. Abstraction homomorphisms 
induce the following reduction relation % on processes: 

DEFINITION 3.3. P, "lls, P2 iff 3 a.h. h: P, -+ P,. 
We next prove a few properties of the relation 3. 

PROPERTY 3.4. 3 is reflexive, transitive, and antisymmetric. 

ProoJ Reflexivity and transitivity are easy to check. We prove here that 2 is 
antisymmetric, namely that: 

if h: P, 4 P, and h’: P, --f P, are a.h.‘s, then P, = P,. 

ForanyNDP P=(Qu(r}, <,I)andforanya~A*let Q,=(q(q~(Qu{r)), 
l(q) = o}. Note that, because of our finiteness restriction on 1, any such QC is finite. 

Now let P,=(Q,u (rl} , G1,ll), P2=(Q2u{r2}, &,4), and h:P,+P,, 
h’:P,-+P,. For any OEA*, define h,=h rQlb, hb=h’ rQzO. Then we have 

h,: QIO --f QzC surjectively, whence IQ,,\ > IQTgl. 

hb: Q,, + Q lo surjectively, whence lQzO 1 > lQ,a (. 

Summing up, we have I QIO 1 = lQzO I -C co. Therefore the function h, is injective and 
thus also h = lJopA* h, is injective. By Proposition 3.2 we then have that h is an 
isomorphism between P, and Pz. 

PROPERTY 3.5. 2 is preserved by the operators p and + . 

Proof: Let PI = (Q1 u {rl>, G,, I,), P,=(Q,u {rz}, G2, Z2), and h: P, -+ P,. 
We can deduce 

(1) PP, -++~P,,V/LEA. 
In fact, let P', = pP,, Pi = ,uPz, with states Q; u {r;} and Q; u {r;}, respectively. 

Then the functionf: (Q; u {r;}) + (Q;u {r;}) defined by 

if q=r; 
otherwise 

is (trivially) an a.h. from Pi to Pi. 
(2) P,+P*P,+P, VNDPP. 
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In fact, let Pi = P, + P, Pi = P, + P, with states Q’, v (r; } and Q; u {Y;}, respec- 
tively. Let Q u (T} be the states of P. Then the function f: (Q; u (r’, )) -+ 
(Q; u {r;} ) defined by 

if q=r;, 

if qEQI, 

if qEQ, 

is (trivially) an a.h. from Pi to Pi. 1 

In what follows, a relation which is preserved by our operators will often be 
called substitutive. 

We turn now to what is perhaps the most interesting feature of our reduction 
relation, namely its confluent behaviour. Confluence of a.h.‘s can be proved by stan- 
dard algebraic techniques, once the notion of congruence associated to an a.h. is 
formalised. 

DEFINITION 3.6. If P = (Q u {r } , 6, I) is an NDP, we say that an equivalence 
relation - on Q is a congruence on P iff, whenever q - q’: 

(i) f(q) = l(q’) (labels are preserved) 
(ii) q <p implies 3~‘“p s.t. q’ dp’ (successors are preserved) 

It can be proved that any congruence - satisfies the 

convexity property: q <p < q’ and q - q’ implies q -p - q’. 

(The proof is by induction on the length n of the longest chain: q’ --c q, K . . . --c qn 
s.t. Z(q’) = I(q,) = . . . = l(q,). That this length is finite is ensured by our finiteness 
restriction on the labelling 1. In fact, in absence of this restriction, the convexity 
property would not hold.) 

We now show that, for any NDP P, there is a one-to-one correspondence 
between congruences and abstraction homomorphisms on P. First, some notation: 
If P = (Q u {r}, <, I) is an NDP and h and a.h. on P, we define the equivalence -h 
on Q by 

-h = ((4, q’)lq, q’E Q, h(q) = W)). 

We can then prove the following two theorems. 

THEOREM 3.7. If P is an NDP and - is a congruence on P, then there exists an 
NDP PJ-, the quotient of P by -, and an a.h. h, from P to PJ- s.t. -,,- = -. 
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Proof. IfP=(Qu{r}, <,I), define P/-=(Q/- u{r’}, <‘,1’) by 

r’ < ‘Cql, VqEQ 
Cql G ‘[PI iff 3p’s.t. q Gp’ %p. 

r(r’) = c 

I’(Cql)=4q). 

Also, define h ,: Qu (r} -tQ/- u {r’} by 

h,(r)=r’ 

h - (4) = Csl, QqEQ. 

We shall prove that 

(1) Pi” is an NDP. 
(2) h, is an a.h. from P to P/W, and -A- = -. 

Proof of (1). To prove that P/- is an NDP: First, we check that < ’ is a partial 
ordering relation. Reflexivity and transitivity follow easily from the definition. To 
prove antisymmetry, use the convexity property of -. 

Second, we show that the labelling I’ meets the requirements. The properties of 
monotonicity and finiteness can be easily deduced from the same properties of the 
labelling 1. We prove here that [q] c [p] implies /‘([p])=I’([q]).p for some 
p E A. In fact, suppose [q] c [p]: this is because q <p’ -p, for some p’. That is, 
3PO )...) pn, n > 1, s.t. q =po -z 1.. -z pn = p’. Now it can be easily shown, by induc- 
tion on n 3 1, that 

PO- “‘<P” and [pa] -C [p,] implies 3pb,pi s.t. po~pb-~p;wpn. 

So, from [q] < [p’] we deduce that 3q’, p” s.t. q - q’ xp” -p’. Then 

and this ends the proof of (1). 

Proof of (2). We want to show that h, is an a.h. from P to PI-, and that 
‘-,,_ = ‘-. By definition, h, is a function s.t. r c, r’, Q + Q/w. 

Now we check the properties (i) and (ii) of a.h.‘s. 

Property (i): 

Z’(h, (r)) = Z’(r’) = E = I(r), 

I’(h- (4)) = I’(Cql) = l(q) for qEQ. 
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Property (ii): 

succ(h,(r))=succ(r’)=Q/- u {r’}=h,(Qu (rl)=h,(succ(r)) 

succ(h-(q))=succ(Cql)=iC~l I Cql~‘bI~=~C~l I~GP’-PI 

={[@I lq6p’}=h,((p’Iqdp’))=h,(succ(q)). 

So h, is indeed an a.h. from P to P/w. As for the equality wh- = -, it 
immediately follows from the definitions of h, and -h. 1 

THEOREM 3.8. If P, P’ are NDPs and h is an a.h. from P to P’, then -,, is a 
congruence on P and P’ is isomorphic to PI-,,. 

Proof Again, we show the result in two steps: 

(1) -h is a congruence on P. 

(2) P’ is isomorphic to P/wh. 

Proof of (1). We know that -,, is an equivalence relation on Q. We check that 
it satisfies the properties (i), (ii) of congruences. Suppose q -,, q’: this is because 
h(q) = h(q’). Therefore we have 

Property (i): f(q) = I’(h(q)) = I’(h(q’)) = l(q’). 

Property (ii): q <p means p E succ(q). Then h(p) E h(succ(q)) = succ(h(q)) = 
succ(h(q’))=h(succ(q’)). So ilp’~succ(q’) s.t. h(p)=h(p’). That is, 3p’ s.t. q’6p’ 
and P-J,,p’. 

Proof of (2). If P’=(Q’u{r’}, <‘,I’) and P/N~=(Q/-,,u {r”}, G”,?‘) is 
defined as for Theorem 3.7, let CD: Q/w,, u {r” > + Q’ u {r’} be the function given by 

@(r”) = r’ 

@(Cql) = h(q). 

Then @ is clearly well defined. We show that @ is an injective a.h. from P/N,, to P’. 
Then it will follow by Proposition 3.2 that CD is an isomorphism between P/wh 
and P’. 

It is easy to check that @ is injective, as 

h(q) = h(p) implies [q] = [p]. 

Moreover, @ satisfies the Properties (i) and (ii) of a.h.‘s: 

Property (i): II(@(r”)) = I’(r’) = E = I”(r”), 

I’(@( Cql)) = ~‘vdc7)) = 4q) = ,,( cc?1 1. 

Property (ii): succ(@([q]) = succ(h(q)) = h(succ(q)) = (h(p)jq<p} = 
~@(CPI)l4~P~ = {@(CP’l)lqGP”hp’) =@(succ(Cql). 8 
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To prove the confluence property of a.h.‘s, we will finally make use of 

LEMMA 3.9. If -,, w2 are congruences on an NDP P, then - 1,2 = [ -, u -*I*, 
the symmetric and transitive closure of the union of - 1 and No, is the least con- 
gruence - s.t. -, E - and -2 c -. 

Proof It is a standard result that -1,2 is the least equivalence on Q which 
includes both - , and - *. Then, if - ,,2 is a congruence, it will also be the least con- 
gruence which includes -1 and -2. 

We thus proceed to show that N,,~ is a congruence, namely that it satisfies the 
required Properties (i), (ii). Note first that q - 1,2 q’ iff 3n, jq,,..., q,, s.t. 

9 = 40 Iv l/2 . . . - 112 qn = 4’3 

where -l,2 means: either -, or -2. 
Then property (i) of congruences is easy to check. As for property (ii), suppose 

q<p and 

4 = 40 - l/2.. . - 112 qn = 4’. 

Since both -1 and -2 satisfy (ii), there exist po,..., p,, s.t. qi <pi and 

Thus, if we let p’ =p,,, we have p - ,,2p’ and q’ <pt. 1 

For the coming theorems, we will need some more notation. If h, h’ are two a.h.‘s 
on the same process, we say that h is weaker than h’ and write h < h’, iff -h C -h,. 
The following fact is then (almost) standard. 

LEMMA 3.10. (Factorisation of an abstraction homomorphism by a weaker 
one). IfP.P,,P2areNDPs,andh,:P-+P,, h,:P+P,,area.h.‘ss.t. h,<h2, then 
there exists a unique a.h. h2,1 : P, + P2 s.t. the following diagram commutes: 

P 

h 
J 

P, h= 
\ 

\ 
h/l \ 

L” 
p2 

Proof Let -1, -2 stand for -h,, -hz. In view of Theorem 3.8, we can assume 

PI =PI-1, P2= P/-2. 
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Then the unique mapping h,,, that can make the diagram commute is the one 
defined by 

h2,] (h I= r2 
~2,,(L-d1)=~2(4)= cq12, VqEQ. 

This mapping is a function, because 

cs11= C4’11 implies [q]* = [q’12 

for the hypothesis that -r E -2. 
We now show that hzl, is an a.h. Let as usual Ii and succi refer to Pi. Then h,,, 

satisfies 

0) ~,(Csll)=~(q)=~2(Cq12)=~2(h,,,(Cql,)) 
(ii) h2i1 (succ, Cql,)) = h2,1 (succ, (h, (4))) = h,,, (hi (succ, (4))) = 

~2,1(wlfIqQf)) = ~2WlqQil) = h,(succ,(q)) = succ,vb(q)) = 
s~cc2(~2,dC911))~ I 

We can finally prove 

THEOREM 3.11. (confluence of abstraction homomorphisms). If P, P, , P, are 
NDPs, and h,: P+ P,, h,: P+ P, are a.h.‘s, then 3 NDP P,, 3 a.h.‘s, A,,: P, + P,, 
hz3: P, -+ P, s.t. the following diagram commutes: 

P 

Proof: Let again -, and w2 stand for -h, and -h2. Define -3 = [ -, u w2]*. 
Since m3 is a congruence (by Lemma 3.9), there exist correspondingly an NDP 
PI-3 and an a.h. h,, : P + P/w3 (by Theorem 3.8). 

Let P, be P/w3 and h3=h,,. We have 

P 
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where both the pairs (hi, h3) and (h2, h3) meet the hypothesis of Lemma 3.10, hence 
the result with hi3 = h,,, , hz3 = h3,2. 1 

CONVENTION. In the following we will use * instead of % -’ whenever con- 
venient. 

We conclude this section by stating the 

COROLLARY 3.12. ( -+abs is Church-Rosser). If P, P,, P, are NDPs s.t. 
P, tabs P + abs Pz, then 3 NDP P, s.t. P, dabs P, cabs P,. fl 

3.1. Abstraction Equivalence 

The relation +abs gives us a criterion to regard two processes as “abstractly the 
same.” However, being essentially a simplification, +abs is not symmetric and 
therefore does not, for example, relate the two processes 

A A 
a a b a b b 

or the processes 
E 

E 

a E E 
a & 

a 

based on a, we will then define on NDPs a more general relation -.&, of 
reducibility to a same process. 

DEFINITION 3.13. N&s = def--%. *. 

We can immediately prove a few properties for -abs. 

PROPERTY 3.14. Nabs is an equivalence. 

Proof. Transitivity follows from the 2;’ that habs is Church-Rosser, which can 
be restated as: [% u *] * = 5 . -. 1 

PROPERTY 3.15. -a& is preserved by the operators p and + . 

Proof: Direct consequence of the substitutivity of -+abs under p and + . 1 

To sum up, we have now a substitutive equivalence wabs for NDPs that can be 
split, when required, in two reduction halves. The equivalence -a& will be called 
abstraction equivalence. In the coming section we will study how abstraction 
equivalence relates to bisimulation equivalence, a notion introduced by Park [Pa] 
for general transition systems. 
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4. BISIMULATION RELATIONS 

A natural method for comparing different systems is to check to which extent 
they can behave like each other, according to some definition of behaviour. 

Now, what is to be taken as the hehauiour of a system need not be known a 
priori. One can always, in fact, having fixed a criterion for deriving subsystems, let 
the behaviour of a system be recursively defined in terms of the behaviours of its 
subsystems. 

Based on such an implicit notion of behaviour, one gets an (equally implicit) 
notion of equivalence of behaviour, or bisimulation equioalence, between systems: 
two systems are said to be equivalent iff for any subsystem of either of the two, 
derived with some criterion, there exists an equivalent subsystem of the other, 
derived with the same criterion. 

For an NDS S, the transition relation provides an obvious criterion for deriving 
a subsystem S’: for any p, S’ is a p-subsystem of S iff S 3 S’. However, if we are to 
abstract from internal transitions, a weaker criterion will be needed. To this 
purpose the following weak transition relations % are introduced: 

The system S’ is called a pderivatioe of S iff S 3 s’. We then define bisimulation 
relations on NDSs as follows. 

DEFINITION 4.1. A (weak) bisimulation is a relation R E (9’ x 9) s.t. R c F(R), 
where (S,, S,)EF(R) iff V,UEA: 

(i) S, =9 S’, implies 3s; s.t. S2 *p S”, S; R S; 
(ii) S, *lr S; implies 3S’, s.t. S, ap S;, S’, R Si. 

Thus a bisimulation is exactly a post-fixed-point of the function F. As F is 
monotonic for relations under inclusion, it has a largest postfixed-point (which is 
also its largest fixed-point) given by u{ RIR G F(R)}. We will denote this largest 
bisimulation by ( E ), and, since ( x ) turns out to be an equivalence, refer to it as 
the bisimulation equivalence. 

Unfortunately, ( z ) is not preserved by all the operators. Precisely, ( x ) is not 
preserved by the operator +, as shown by the example 

I ; (z) NIL, but & A a (‘) 11 
On the other hand the relation ( z )+, obtained by closing ( z ) w.r.t. the operator 
+: 

s, <=)+s, iff VS:S+S, (x)S+S, 
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can be shown to be a substitutive equivalence, and in fact to be the largest such 
equivalence contained in ( x ). (For more details on ( z ) and ( z ) + we refer to 
CM29 M31.1 

To conclude, ( x )’ seems a convenient restriction on ( x ) to adopt when 
modelling NDSs. We will see in the next section that ( z )’ coincides, on NDPs, 
with our abstraction equivalence wabs. 

5. RELATING BISIMULATIONS TO ABSTRACTION HOMOMORPHISMS 

Looking back at our relations +abs and wabs, we notice that they rely on a 
notion of equivalence of states which, like bisimulations, is recursive. Moreover, the 
recursion builds up on the basis of a similarity requirement (equality of labels) that 
reminds of the criterion (equality of observable derioation sequences) used in 
bisimulations to derive corresponding subsystems. All this indicates there might be 
a close analogy between abstraction equivalence and bisimulation equivalence. 

In fact, since we know that -abs is substitutive, we shall try to relate it with the 
substitutive closure ( z )’ of ( GZ ). To this purpose, it will be convenient to have 
( z )’ itself be defined recursively. 

Note that (z )’ only differs from (z ) in that it takes into account the 
preemptive capacities a system can develop when placed in a sum context. Such 
preemptive capacities depend on the system having some silently reachable state 
where, informally speaking, some of the “alternatives” offered by the sum-context 
are no more available. This suggests that we should adopt, when looking for a 
direct definition of ( w )‘, the more restrictive transition relations A: 

In particular, we will have I& = -+“, n > 0. Note, on the other hand, that, for a E A, 
it will be: J = 25 . 

However, the equivalence ( z )’ is restrictiue with respect to ( z ) only as for as 
the first aT derivation steps are concerned: at further steps ( cz )’ behaves like 
( w ), as it can be seen from the example: 

So, if we are to recursively define ( z )’ in terms of the transitions P”, we will 
have to somehow counteract the strengthening effect of the E-” s at steps other than 
the first. 
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To this end, for any relation R c (9 x Y), a relation R, (“almost” R) is 
introduced: (S,, S,) E R, iff (S,, S,) E R or (rS,, S,) E R or (S,, tSZ) E R. 

We can then define a-bisimulation (“almost” bisimulation) relations on NDSs. 

DEFINITION 5.1. A (weak) a-bisimulution is a relation R c (Y x 9’) such that 
RcE(R,), where (S,, S,)EE(R,) iff V~LEA: 

(i) S, i9 S; implies 3s; s.t. S, P” S;, S; 4, S; 
(ii) Sz P” S; implies 3s; s.t. S, 1=9 S;, S; R, S;. 

Again, the equation R G E(R,) has a largest solution which is an equivalence 
relation, and which we will denote by ( z )“. Now the equivalence ( cz )” has been 
proven to coincide with ( z )’ (both the definition of (E )” and the proof that 
( x )” = ( z )’ are due to Hennessy). 

We mention in passing that, if R is an a-bisimulation, then R, is an ordinary 
bisimulation. In particular, for the maximal a-bisimulation ( z )“, we have 
( z ); = ( z ) (this fact will be used in the proof of Theorem 5.8 below). 

We proceed now to compare wabs with ( z )“. First, p-derivatives are redefined 
in terms of the new relations w”: S’ is a p-derivative of S iff S 19 s’. Then we are 
able to prove the 

THEOREM 5.2. -+abs is an a-bisimulation relation on NDPs. 

The proof relies on the following two lemmas. 

LEMMA 5.3. (-+abs almost preserves p-derivatives). Zf P, -+abs P, and P, &’ Pi 
then 3P; s.t. P, ti Pi where either P’, habs Pi or P’, babs rP;. 

Prooj We recall that any state of an NDP P is the initial state rp’ of some 
derivative NDP P’. Note that P Pr P’ implies Z(r,,) = p in P. 

Now let h: P, -+ P, be an a.h., and as usual let Qi, ri refer to P,, i= 1, 2. 
Suppose P, tip’,. Let r; be the initial state of P’, in P,; then r; E Ql (i.e., r; #r,) 

and I, (r;) = p. Now let r; = h(r’,). Then r; is the root of some derivative Pi of P,. 
Since h is an a.h., we have r; # rz and l(r;) = I(r;) = p. Therefore P, 1=9’ P2. 

Now let Q:= (qlqe Pi, rl< q}, i= 1,2. From Property (ii) of a.h.‘s, we know that 

h(Q’, u r;) = Q; u 4. 

Then we are in one of two cases: 

(1) h(Qi) = Q;. In this case h 1 (Q; u r;) is (trivially) an a.h. from Pi to Pi. 
Therefore Pi -+abs Pi. 

(2) h(Q;)= Q; ur;. Here h maps some states of Q; to r;. Note that these 
states will be labelled by p in P, and by E in Pi. Let QE denote the set of such states 
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in Pi: Q,= (4146 Q;, l(q)=&}. Also, let P;‘=zP;. Then Qz = Q;u r; and the 
function: h’:(Q; u r;) --) (Q; u r;) defined by 

h’(ri) = r; 

h’(QJ = 4 

h’(q) = h(q) otherwise, 

is (trivially) an a.h. Thus we have in this case P’, +abs zP;. 1 

LEMMA 5.4. (2-l almost preserves p-derivatives). 1f PI +abs P, then 
P, 19 Pi implies 3P’, s.t. P, & P’, where either Pi dabs P; or Pi jabs zP;. 

Proqfi Suppose P, &‘ Pi. Let r; be the initial state of P; in P,. Since h is sur- 
jective, 3 r’, # rl s.t. h(r;) = r;, Z(r’,) = I(&) = CL. Then, if P’, is the derivative of P, 
with root r;, we have P, 19 P’,, and the rest of the proof is the same as for 
Lemma 5.3. 1 

COROLLARY 5.5. -+abs 5 ( z )". 

Proof: ( z )” is the largest a-bisimulation. m 

Note that in Lemmas 5.3 and 5.4 we do not need to consider the case 
ZP; ,abs Pi. The reason this case does not arise in that a.h.‘s are single-valued 
relations. In fact, our next task will be to give a characterisation of a.h.‘s as 
relations on processes, 

TO this purpose, we will need some more notation. For any NDP P, let 
Der(P)= {P’lP-+ *P’ > and PDer(P)= (P’(P+ *PI, P # P’}. Also, we say that a 
bisimulation (resp. an a-bisimulation) relation R is between P, and P, iff P, R P, 
and RZ (Der(P,) x Der(P,)) u (Der(P,) x Der(P,)). 

Let =>O stand for $k . . * 2 if (T = ~1 . . . p,,. It is easy to see that, for any two 
systems S, , Sz, the following holds. 

LEMMA 5.6. If S, R S2 for some bisimulation R, then for any o E A*: 

(i) S, % S; implies 3S2 s.t. S2 g S2, S’, R S; 

(ii) S, &- S2 implies 3S’, s.t. S1 2G- S’,, S’, R Sk. 

Now, if we regard a.h.‘s as relations on processes, we have the following charac- 
terisation. 

THEOREM 5.7. A relation R on processes is an abstraction homomorphism from 
P, to P2 iff R is a single-valued bisimulation between P, and P2 s.t. 
p2 $ RWWpl)). 

Proof. Only if: Let R be an a.h. from P, to P,. Again, we assume that any 
state of Pi is the root rp; of some derivative Pi. Also, we write Pi R P; in place of 
R(rpi) = rpi whenever we want to treat R as a relation on processes. 

Now, R is by definition single-valued and s.t. P,RP, and RE 

571/34,‘2-3-6 
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(Der(P,)) x Der(P,)). Also, R(PDer(P,)) = PDer(P,) implies P, & R(PDer(P,)). 
What is left to show is that R is a bisimulation, namely that R c F(R). Suppose 
Pi R Pi, i.e., R(rp;) = r,;. Then 

Clause (i): If Pi =9’ P;‘, we have 

r,;E SUCC(rp;) and I( r,;) = I( rpi) . p. 

Now, since R(succ(r,;)) = succ(r,;) [Property (ii) of a.h.‘s], there exists 
r,; E succ(r,;) s.t. R(rp;) = rg), that is P; R Pi. Then I(rp;) = I(rp;) = I(r,;). p = 
Z(r,;) * p [using Property (i) of a.h.‘s]. So we have Pi jV PG, with P;’ R P;. 

Clause (ii): The proof is symmetric to that of Clause (i). 

This ends the proof of the on& zy part of the theorem. 
Zf: Now let R be a single-valued bisimulation between P, and Pz s.t. 

P2 I$ R(P Der(P,)). Then R can be regarded as a function R: (Ql LJ rl) + (Q2 u r2). 
By hypothesis we have R(r,) = r2, R(Q,)= Q2. We check now that R satisfies 
Properties (i) and (ii) of a.h.‘s. Suppose R(rpi) = rpi, i.e., Pi R Pi. Then 

Property (i): l(rp;) = cry A* means P, 3” Pi. Since P, R P2, we know, by 
Lemma 5.3, that 3Pl s.t. P2 aV Pi and Pi R PT. Since R is single-valued, it must be 
Pi = Pi. Whence I(r,;) = (r. 

Property (ii): r,; E succ(rpi) means %E A* s.t. Pi qa Pj’. Since Pi R Pi, by 
Lemma 5.3 3P$ s.t. Pi aa Pi and P; R Pi. So rp; = R(rp;) E succ(r,;). 

Thus we have shown that R(succ(r,;)Esucc(r,;). By a symmetrical argument we 
can show also: succ(r,;) c R(succ(r,;)), and this ends the proof of the theorem. 1 

So far we have been concentrating on how bisimulations relate to the reduction 
relation +abs. We now come to our main result, concerning the relationship 
between the abstraction CqUiValCIICC -& and the substitutive bisimulation 
equivalence ( x )“. It turns out that these two equivalences coincide. 

THEOREM 5.8. -abs = ( z )“. 

Proof of E . From Corollary 5.5 we can infer that wabs = [-%. *] E ( z )“, 
since ( x )” is symmetrically and transitively closed. 

Proof of 2, Suppose P, (z )” P,. We want to show that 3P, s.t. 
P,~P,~P,.ForanyNDPP,letDer,(P)={P’IP=>”P’}andPDer,(P)= 
{P’IP=aO p’, P#P’). 

Note that P, ( z )“Pz implies P, E (( z );) P2, i.e., P, E (( zz )) P2. Then it is 
easy to check that the relation 

R=(P,,P,)u(x) f(PDer,(P,)xPDer,(P,)) 

is a bisimulation between P, and P2 s.t. P2 $ R(P Der(P,)). 
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However, R will not, in general, be single-valued. Let then - be the equivalence 
induced by R on the states Q, of P,, 

iff 3P; E P Der(P,) s.t. both (Pi, Pi) and (Pi, P;)E R. 
Now, it can be easily shown that - is a congruence on P,. Therefore, by 

Theorem 3.7, 3NDP P,, 3 a.h. h s.t. h: P2 + P,. So Pz +abs P,. 
Now, by Theorem 5.7, h can be regarded as a bisimulation between P2 and P3. 

Consider then the composition: R’ = h 0 R. By construction R’ is single-valued and 
s.t. R’c (Der(P,) x Der(P,)). Also, R’ is a bisimulation because both R and h 
are. Finally, since P, 4 R(P Der(P,)) and P, $ h(P Der(P,)), we have 
P, $ R’( P Der(P,)). Thus, by Theorem 5.7 again, R’ is an a.h. from P, to P3. So 
P, -+ abs P,. 

Summing up, we have shown that P, +abs P3 tabs P,, that is to say, 
p, “abs p2. i 

In view of the last theorem, the equivalence -abs can be regarded as an alter- 
native definition for ( z )” = ( z )‘. In the next section, we will see how. this new 
characterisation can be used to derive a set of reduction rules for ( z )+ on finite 
processes. 

6. A LANGUAGE FOR FINITE PROCESSES 

In this section, we study the subclass of finite NDPs, and show how it can be 
used to model terms of a simple language L. 

The language is essentially a subset of Milner’s CCS (Calculus of Communicating 
Systems [M 11). In [HM] a set of axioms is presented for L that exactly charac- 
terises the equivalence ( z )” (and therefore mabs) on the corresponding transition 
systems. We show here that the reduction +abs itself can be characterised 
algebraically, by a set of reduction rules. These rules yield normal forms which coin- 
cide with the ones suggested in [HM]. 

Finally, we establish a notion of minimality for NDPs and use it to define a 
denotational model for L, a class of NDPs that we call representation trees. The 
model is shown to be isomorphic with Hennessy and Milner’s term model. 

We shall now introduce the language L. Following the approach of [HM], we 
define L as the term algebra T, over the signature 

L=Au {NIL, +}. 

If we assume the operators in Z to denote the corresponding operators on NDPs 
(A will denote the set of unary operators p), we can use finite NDPs to model terms 
in T,. If t is a term of T,, we will use P, for the corresponding NDP. 
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We point out, however, that the denotations for terms of Tz in 9 will always be 
trees, that is, NDPs P = (Q u {r } , < , 1) obeying the further constraint: 

confluence-freeness: 39” s.t. q < q” and q’<q” 

implies qd q’ or q’6q 

Now consider the set of axioms: E, 

El. x+x’=x’+x. 

sum-laws E2. x+(~‘+x”)=(x+x’)+x” 

E3. x+NIL=x 

E4. ~~x=,ux 

r-laws 

i 

E5. rx+x=rx 

E6. ~(x+ry)+~+Y=~(x+ry) 

absorption law - E7. x+x=x. 

Let =’ be the equality generated by E,. It has been proved [HM] that E, is a 
sound and complete axiomatisation for Milner’s observational congruence zc 
[Ml], namely that 

t = Ct’ iff P, zc P,,. 

The relation zc is defined as the closure w.r.t. the operator + of the relation 
(Milner’s observational equivalence): 

where (9 x 9) is the universal relation on NDPs and F is the function on relations 
introduced in Section 4. 

For image-finite systems, that is, systems satisfying the condition 

V state q, V,U: the set (q’lq 3 q’} is finite 

the relations z and xc are known to coincide with the relations ( z ) and ( z )” 
introduced in the previous sections. Now for NDPs the image-finiteness property is 
guaranteed by the finiteness restriction on the labelling function. So, in particular, 
we can assume zc to be defined as ( GZ >” on finite NDPs. Combining these facts 
together, we have that 

t=C t’ iff P, mabs P,.. 

In other words, =’ is an algebraic analogue for wabs. Note on the other hand 
that, although each axiom of EC could be viewed as a reduction rule (when applied 
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from left to right), the corresponding reduction relation + would not characterise 
abs -. Consider, for example, the terms t = aNIL+z(a NIL+ b NIL), 

t’ = z(a NIL + b NIL). We have P, 2 P,. but we cannot infer t + t’. 
However, using the axiomatisation E, as a reference, we are able to derive a new 

system of reduction rules, which characterises 2. To this end, let us define the 
relations 3 on the terms of T,: Vp E A *, let 2 be the least relation on terms that 
satisfies 

(i) pt 1: t 
(ii) t -1: t’ implies t + t” 1: t’, t” + t 3 t’. 

The weak relations ap and &’ are defined in terms of the -G’s just as in Sec- 
tion 4. 

Now let *’ be the reduction relation generated by the following set of reduction 
rules R, (where ++ stands for (+ n +--‘)): R, 

sumlaws 

1 

Rl. x+x’ox’+x 

R2. (x+x’)+x”trx+(x’+x”) 

R3. x+NIL+x 

1st z-law - R4. /~rx + px 

generalised R5. x + PLX’ + x, whenever x I+~ x’. 
absorption law - 

In what follows, we will often consider terms modulo the congruence induced by 
Rl-R3. When taken modulo Rl-R3, a term t can be expressed in the form Cipiti, 
where i E Z for some finite set of indices I. By convention xi pi ti = NIL if Z = 0. 

It is easy to check that the rules R, are sound for NDPs under +abs, in the sense 
that t -+’ t’ implies P, _tabs P,,. We proceed now to show that the rules R, are also 
complete for +abs, namely that if P, -+abs P,, then we can infer t +’ t’. To this pur- 
pose, we first prove a stronger version of Lemma 5.4. 

LEMMA 6.1. (a-l almost preserves p-summands). Zf P, dabs P2 and 

P2 +p Pi then 3P; s.t. P, --scl Pi, where either P’, dabs Pi or P; +abs~P;. 

Proof. Let h: P, --f P, be an a.h. and suppose P, --tU Pi. Then, if r; is the root of 
P; in P,, we have l(r;) = pu. Also, since h is surjective, r; = h(r;) for some state 
r; E Q 1. Now in general it will be 

rl- q1 - . . ’ -c qn = r; . 

Since h is order-preserving, this implies 

r,=h(r,)<h(q,)< *-- <h(q,)=h(r;)=r;. 
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Now, we know that r2 --c r; and r2 $ h(Qr ). Therefore it must be 

r,=h(r,)-ch(q,)= ... =h(q,)=h(r;)=r;. 

This implies 

I(q1)= ... = Z(q,) = I(r;) = p. 

Let Pi be the derivative of P, whose root is q;. Then we have P, -+p P’,, and the 
rest of the proof is the same as for Lemma 5.4. 1 

We now have the following (soundness and) completeness result. 

THEOREM 6.2. t jc t’ (fjf P, + abs P,, . 

Proof of Completeness. We show, by induction on the sum of the sizes of P, and 
P,., that P, jabs P,, implies t -+’ t’. 

Assume t = Cipiti, t’ =cj vjtj, where ieZ, jeJ. In the rest of the proof, we shall 
use P, P’ for P,, P,, and Pi, Pi for P,,, P,,. Let vjti be a summand of t’. By 
Lemma 6.1, 3i~ I s.t. pi = vi, and either Pi -+“’ Pi or Pi -+abs TPJ. By induction we 
have correspondingly either ti --+’ ti or ti +’ Ttj. In both cases we can deduce: 
piti +’ vjtJ. (using R4 for the latter case). 

So, corresponding to any jE J, we can find iE Z s.t. pit, +’ vi+ Let ZJ” I be the 
set of all indices i thus chosen to match some je J. Then 

Hence, substituting in t, 

kel-l, 

=t’+ C ,Ukfk. 

kel--I, 

We show now that (t’-tCkE,P,Jpktk)-+C t’, and this will end the proof of the 
theorem. Each & tk is a summand of t. Thus for P = P,, P, = P,,, we have 
P #jPk Pk. Since P dabs P’, we can deduce (by Lemma 5.3) that 3P” s.t. P’ wpk P”, 
where either P, -+abs P” or P, dabs zP”. 

Let now t” be s.t. P” = P,,,. Note that t’mpk 2”. By induction we have either 
fk -+’ t” or tk -+’ zt”. In any case we can deduce ,uk t, _tc pk t”. Thus we have 

Since t’ pPk t”, we can now use R5 to get 
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As this can be repeated for all k E (I- I,), we can conclude that 

t’ + c pktk +’ t’* 
kel--If 

To sum up, we have shown that 

c Pktk 
kel-I, 

COROLLARY 6.3. R, is a rewriting system for the equational theory EC. 

We can make use of our new axiomatisation for = ’ to characterise normal forms 
for terms in T,. We say that a term is in normal form if no proper reduction 
(R3, R4, or R5) can be applied to it. It can be shown that 

THEOREM 6.4. A term t = xi piti is a normal form iff (Hennessy-Mimer charac- 
terisation): 

(i) no ti is of the form zt’ 
(ii) each ti is a normal form 
(iii) for i #j, tj ct, t; Vti st. pjtj => @’ t;. 

Corresponding to normal forms, we have a notion of minimality for processes. 
We say that a process P is irreducible or minimal iff VP’: P jabs P’ implies P = P’. 
Then it is easy to see that 

THEOREM 6.5. For any finite NDP P, !I! minimal NDP P’ s.t. Pwabs P’. 

Proof For uniqueness, use + abs’~ Church-Rosser property. 1 

We shall denote by P the unique minimal process corresponding to the NDP P. 

COROLLARY 6.5. PNabs P’ iff 1; = 1;‘. 

As we mentioned earlier, the denotation P, of a term t is always a tree. However, 
its “abstract” denotation P, might not be a tree. We shall now propose a tree model 
for terms of T,, which is isomorphic to the term model TJ = ‘. 

Note first that any NDP which is not a tree has a unique unwinding into a tree. 
The tree-unwinding of an NDP P (which is not defined formally here) will be 
denoted by U(P). 

Now let 95 (representation trees) be the class: SLY = { U(P)1 P is a minimal 
NDP}. The denotation T, of a term t E T, in ZY is defined by: T, = U(P,). 

It can be easily shown that: 
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THEOREM 6.6. t = ’ t’ iff T, = T,, 

We shall finally argue that our model 99 is isorrzorphic to the term model 
T,/= c. WY is a C-algebra satisfying the axioms EC (by Theorem 6.6) with the 
operators defined by 

PUP) = u&h 

U(P,) + UP,) = U(P$j,. 

Therefore, since T,/ = ’ is the initial C-algebra satisfying the axioms EC, we know 
that 

3! Z-homomorphism Y: T,/ = ’ -+ SW. 

It is easily seen that Y is given by: Y([t]) = U(P,)= T,. Also, by Theorem 6.6 
again, Y is a bijection between T, and &RF. 

7. CONCLUSION 

We have proposed an alternative definition for the (substitutive) bisimulation 
equivalence ( z5 )+ for a class of transition systems. Note that the ordinary 
bisimulation equivalence could be characterised just as easily, by slightly changing 
the definition of homomorphism; in fact it would be enough to drop the 
requirement that proper states should be preserved. Also, using our definition, we 
have been able to derive a denotational model for the language L, which is 
isomorphic to Hennessy and Milner’s term model for the same language. 

Our approach is intended to extend to richer languages, for programs which are 
both nondeterministic and concurrent (meaning that the actual concurrency is not 
interpreted nondeterministically). Some simple results have already been reached in 
that direction. 
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