Permutation of Transitions:

An Event Structure Semantics for CCS and SCCS

Gérard Boudol & Ilaria Castellani
INRIA Sophia-Antipolis
06560-VALBONNE FRANCE

Abstract. We apply Berry & Lévy’s notion of equivalence by permutations to CCS and
MEIJE/SCCS, thus obtaining a pomset transition semantics for these calculi. We show that this
provides an operational counterpart for an event structure semantics for CCS and SCCS similar
to the one given by Winskel.

Keywords: process algebras, pomset-labelled transition systems, event structures.

Contents
Introduction
Pure CCS: terms and transitions
Permutation of transitions

Event structures

R

Synchrony and asynchrony

1. Introduction.

A computational system evolves by elementary computations from one state to the other, in nota-
tion s — §’. Examples of state changes are transitions of a machine, S-reductions of A-terms and
rewritings in a term rewriting system. When states are abstract programs one may extract from
their syntactical structure some indication of what has been performed and where it has happened.
In other words, one may decorate transitions with a label w, thus obtaining s W, o , where w is

an occurrence of action. Now assume that s % so and s —»s;: in many cases we may have the
intuition that these two moves are compatible, or independent. This means that we are able to
define what remains of one move after the other, in notation v/u and u/v, in such a way that v/u

/

can happen in state sg, that is so vlu, ', and similarly s; MY, ¢, If w and v are really compatible,
we should be able to perform them in any order, without affecting the result, that is: s’ = 5",
This is known as the diamond property, or the parallel moves property. Moreover, two sequences
of transitions should be regarded as equivalent, if they are equal up to commutation of compatible

412

moves, typically:
v/u u/v
5% sg-———>/ PUNSEPRLN sl——>/ s

This is the essence of Berry and Lévy’s equivalence by permutations for sequences of (elementary)
computations,

This equivalence was first elaborated by Lévy in his thesis (¢f. [15]1) upon Church notion of
residual for the A-calculus, and then used for recursive program schemes in [1]. It was further ex-
tended to deterministic term rewriting systems by Huet and Lévy in [14], and to non-deterministic
ones by Boudol in [3]. In any case, this equivalence allows one to associate with each “state” a
complete partial order of computations. These computations are equivalence classes of sequences
of elementary moves, ordered by the prefix ordering, up to commutations. A similar notion is used
for Petri nets by Nielsen, Plotkin and Winskel, who define in [20] an equivalence that “abstracts
away from the ordering of concurrent firings of transitions” {this is also used by van Glabbeek and
Vaandrager in [13], and by Best and Devillers in [2]; a similar idea is that of trace of Mazurkiewicz
[16]1). Moreover they show that for nets the ordered space of computations has a nice charac-
terization: it is the space of configurations of an event structure. As a matter of fact, the three
basic connectives of event structures — causality, concurrency and conflict — are already present
in computations. Roughly speaking, two occurrences of actions (events) v and v are consistent
(non-conflicting), with respect to a state s if they can appear in the same computation of s:

u v
Boee —y soe 3 onn

In this case they are concurrent if they may be permuted:

v

w v U
Srre —F s iy san Gy e e

R
»

Otherwise they are causally related: one of them must precede the other.

In this note we propose an equivalence by permutations for Milner’s calculi CCS and SCCS
[17,18], and show that the ordered space of computations of a term is the poset of configurations
of an event structure. The events are simply occurrences of actions, and, roughly speaking, they
are compatible if they lie on different sides of a parallel system, though some complications arise
from communication. We show that each equivalence class of computations (up to permutations)
may be represented as a one step transition, where the action is a labelled poset of events. With
the exception of communication, this corresponds exactly to our semantics for “true concurrency”
in [6,7]. Our operational semantics for CCS is similar to the one given by Degano, De Nicola and
Montanari in [11], who obtain a poset transition from a sequence of “atomic transitions” that they
call atomic concurrent histories. The poset transition semantics provides us with an operational
counterpart to the interpretation of CCS terms as event structures. However it remains to be
checked that our constructions coincide, at least in interpreting CCS, with those given by Winskel
in [22] (see also [23]).

2. Pure CCS: terms and transitions.

As in [171, we assume a fixed set A of names. We use a, f,... to stand for names. We assume a
set A of co-names (complementary names), disjoint from A and in bijection with it: the co-name
of o is @, and its name is nm(a) = a = nm(&). Then A = A U A is the set of Jabels. We shall use

413

A to range over A, and extend the bijection so that X = A. As usual the set A of CCS actions is
A = AU {r}, where 7 is a new symbol, not in A; by convention the name of 7 is 7. We use a, b,
¢,... to range over A. We presuppose a collection X (disjoint from A) of identifiers, and use z, y,
z,... to range over identifiers.

The action construct of CCS will be denoted by a: p, while the parallel composition is (p]] ¢).
We shall not use the relabelling operator, although it would not introduce any difficulty. The
syntax of (pure) CCS terms is given by the following grammar:

pu=nilz|a:p|(pllp)|(p+9)|(P\) | pzp

We shall use p, g, r,... to range over terms; finite terms — built without fixpoint uz.p — should be
viewed as finite trees, with parallel composition and sum as binary node constructors, action and
restriction as unary ones (with a parameter in A and A respectively), and nll as constant. However
this representation will remain implicit throughout this paper. For instance the term

r={(a:nlt]| (a:nll + B:ni))\a)

will be identified with the tree:

As is standard, the fixpoint construction binds the defined identifier, and substituting ¢ for z in
p may require renaming the bound variables of p in order to avoid captures; the result of such a
substitution is denoted plg/z]. Terms involving fixpoint define infinite trees, obtained by unfolding
pz.p into plpz.p/z] ad infinitum. As it is usual, we assume that there is a constant {1, which is
not a CCS term, in order to interpret diverging terms such as uz.z for instance.

The semantics of CCS terms is given by means of inference rules, allowing one to prove
transitions of the form p-% p' for terms. We assume these rules to be known (see [171). Modern
proof theory shows that there are some advantages to reap from a syntax for proofs ~ if we think
of inference rules as proof constructions. The case of CCS is very simple, since the validity of a
“proposition” p 4, p’ only depends on the structure of the term p. More precisely, a proof of such
a transition is just an indication of how we get the action a from the term p. In the simplest case,
this indication is a path which leads to an (outermost) subterm a: ¢. But the action can also be
a communication 7, in which case this indication is a path to a pair of complementary subterms
A:g and X:¢'. Then we have to devise a syntax for these paths, which are some kind of initial
subterms. Let F be a set of function symbols, which are symbols with arity, from which we build
terms. Then with each f € F of arity n we can associate a collection of new symbols f,,, one
for each m C {1,...,n}, so that the arity of f,, is the cardinality of m. For instance the “split”
term fii, iy {tiss .-, 20,) Tepresents an initial subterm of f{t1,...,t,) obtained by deleting some
arguments of f.

414

In the case of CCS, we only need some of these constructs, namely a: ¢, H{l}, “{z} and !4{1,2}’ +{13
and +{3}, \a(l}. We shall use specific names for these, respectively v4, 7o, 71, 6, 00, 01 and p,.
The syntax for proofs of CCS transitions is thus given by the grammar:

8 u= o |mo(0) | m1(0) | 6(8,0") | 00 (6) | 01(8) | par(6)

One should note that although we call them proof terms, the #’s will not in general represent valid
proofs; for instance po(va) does not correspond to any CCS transition, and the reader should be
able to find other kinds of examples. The valid proofs are those built by means of the formation
rules below. Usually one denotes by 6: & the fact that is a proof of the proposition ®; since

. . a,d .
we shall use sequences of transitions, we prefer the notation p —— p’ for: ¢ is a proof of the fact
that p performs the action a and becomes p' in doing so. We call these enriched transitions proved
transitions. The rules of inference (and formation of proofs) are the following:

a5 Ya

action Farp——p
) a, 0] a, ”To(e) !
parallel composition 1 p——p F (pllgg——>({' |l q)
» b, o b, mi{¢') ,
parallel composition2 ¢——¢ + (pllg—>(p]¢)
X. ¢ 6(0,¢
communication P —A—’—(L P, q 3‘—’-0—* qg + (P H Q) Li—“(‘“,—‘l* (P' H Q')
9 s oo(f
sum 1 p b (p+q)ﬁ_ﬁ9i_)ﬂ,f
L. 8 b 9
sum 2 q—’—o;q' b (p+q)_’£l—(‘—)"‘I'
 pall
restriction p—a—’ip' , am(a) #a F (p\a) 1“{0“(—)‘* (p'\e)
fixpoint pluz.p/z] *a—’ip' - /»w-Pi’-g’P'

It should be clear that if we drop the proof terms these rules are exactly those of CCS. Note also
that the proofs actually hold for the (infinite) trees that we get by unfolding the uz.p’s, since the
(meta) rule for fixpoint does not introduce any special proof constructor. Let us see an example:
we have for the previous term r = ({a: nlt || (& ali + 8: ni))\)

. B, pal(mifoy (’Yﬁ)))% ((eez ot | ni)\)

and

T pa(b(Vas00(7g)))

> ({nt1]| i)\ &)

Decorating the transitions with their proofs provides us with a “maximal” concrete information.
This can be weakened in various ways to obtain more abstract semantics. For instance we can
extract from a proof # of a transition p-% p’ the Jocal residual associated with this proof, as
defined by Castellani and Hennessy [8,9] (we omit the formal definition). Then one may consider

. a,p”’ . .
decorated transitions of the form p &P, p' where p'’ is the local residual, and devise an enriched

notion of bisimulation.

415

As a matter of fact, we could have used transitions p LN 7', since the action itself is determined by
the proof: it is the Jabel £(8) of the proof, defined as:

(i) tv) = a;
(ii) £(f(6)) = £(8) for all unary proof constructor f;
(iii) £(5(6,0")) =r.

3. Permutation of transitions.

In order to define the equivalence by permutations on sequences of transitions, we first need a notion
of concurrent proved transitions. Roughly speaking, two transitions are concurrent if they occur
on different sides of a parallel composition, whereas they are in conflict if they occur on different
sides of a sum. However some complications arise from communication, which may introduce
new conflicts. Typically, two communications will be in conflict if they share one component.
Conversely, they will be concurrent if they are pairwise concurrent — i.e. they have concurrent
{corresponding) components.

The relation of concurrency on proved transitions is induced from a relation of concurrency
between proof terms, denoted § — #'. The relation — on proof terms is the least symmetric
relation compatible with the proof constructors which satisfies the following clauses:

(A1) mo(6) ~ m1(6)

mo(8) — 6(8',6")

m(8) — 6(6",8")

For instance, considering the term ((a: nii || 8: nll) || @: nli), we have mo(m1(75)) ~ 6(70(Va)s¥5)-
As regards communication, compatibility of «— with the constructor § amounts to requiring:

(A2) -0 = {

0o — 6} and 6, — 8, = 8(0o,8,) — 6(05,6))
Note that § «— 8" => 8 # ¢'.

a, b 5,6
DEFINITION (CONCURRENT TRANSITIONS). Let to = p——po and t; = p—>— p; be two
proved transitions for the same CCS term p. The transitions are concurrent, in notation to — ty,
if and only if 8o — 8.

Note that the concurrency relation between transitions is symmetric and irreflexive. The two
transitions of the example above are not concurrent since they made two different choices at the
subterm {&: nli + B: nit), Let us see another example of conflict, arising from communication: if ¢
is the term (@: it || (@: nil || &: nil)) then the two transitions

¢ 20020, ey, g 2 20m O

are not concurrent, since they share the same “sub-transition” no(vz). The conflict relation will
be formalized later,

We define now the residual /8’ of a proof term by a concurrent one, namely what is left of
the proof 4 after #'. This residual may differ from the proof term itself because of nondeterministic
choices. For any concurrent proofs 8, #', the residual /4’ is defined by:

416

i#£ g = mi(0) [n;(6") = m:i(6)
no(B) /6(8',6") = mo(6/6’) and
5(8',8") [mo(0) = 6(6'/0,6")
71(0) /6(6",0') = m1(8/8') and
5(0",0")/my(0) = 8(8",6'/6)
7:(6)/m:(0") = ms(0/0")
60— 8 = < oi(0)/o:(0')=0/8
pa(0)/pa(0') = pa(6/6")
6o~ 05 and 6, — 8] = 6(60,01)/6(65,0)) = 6(60/65,8:/6%)
Let us look at an example, which shows in which way residuals are affected by choices. The term
p={((a:nit || b: nil) + ¢: nll) may do the proved transitions:

oo{71 (b))
p“—————‘*—-)

8 =

oo(mo(a))
p—~————-—-—-—§

{ni]} bz nlt), (@:nlr{| nn)

So the proof of the b-transition is og(7y(b)). On the other hand, once the a-transition has hap-
pened, the proof of the b-transition becomes 7y (b) = oo{m1(b))/o0(7a(a}}, and we have:
(b
(nit || b2 nit) (m), (nit || nit)
The following result, also known as the parallel moves lemma, states a “conditional Church-Rosser
property”, namely that two transitions are confluent whenever they are concurrent. It is much
simpler in CCS than in A-calculus or term rewriting systems, since a proof of a transition cannot be

duplicated or deleted by another concurrent one; it is always left unchanged, up to the resolution
of choices.

9 b,8
LEMMA (THE DIAMOND LEMMA). Let o = p—2-po and t; = p—>-5p; be two proved

b,0,/8
transitions. If they are concurrent then there exists a unique term p such that po —-’—-il—g) p and

a, 60/ 91 -
py———p
This property is in fact much stronger than confluence: it says that a (proved) transition survives
any concurrent one. Therefore we can adopt the standard terminology ({1,3,14,15]): the transition
b, 6,/6
th=po ~—’~—1~/—-0~> p (with the notations of the diamond lemma) is the residual of t; by to, denoted

a, 00/01

t1/to and similarly ¢o/t; = py ———— P is the residual of t; by t;. This is the basis of the
equivalence by permutations.

Each CCS term p determines a set 7 °°(p) of finite or infinite sequences of proved transitions
of the form

41,01 Qp on

P—P1 "t Pnoi———Pn **

Equivalently we could have presented these as sequences of steps:

0

a
ty---tn-++ where t,=pn1 ———5p, (and po=p)

The set of finite such sequences is denoted T (p), and we shall denote ss’ the concatenation of
s € T(p) and s’ € T°(g), which is only defined if s ends at ¢. We are now ready to define the

417

permutation equivalence and the permutation preorder on T (p): intuitively two (finite) sequences
of proved transitions are equivalent if they are the same up to permutations of concurrent steps;
the preorder is just the prefix order up to permutations. We shall denote by < the usual prefix
order:

Vse€ T®(p) V' € T®(p) s € s gt 8= or Is" ss’ = &'
DEFINITION (THE PERMUTATION EQUIVALENCE AND PREORDER). Let p be a CCS term.
The equivalence by permutations on T (p) is the least equivalence ~ such that
Soto(tl/to)SI ~ Sotl(to/tl)sl
(provided that to ~— t; and that concatenation is defined). The preorder < is given by
80 < 381 Ddef IS 80 K s & 5~ 5;

The typical example of equivalent sequences of transitions is (omitting the obvious proofs):

WMW@£MWQLMMzWMW®AWM®&MM

Here one can commute the two steps. There is another kind of sequences of transitions where this
is not possible, for a step is caused, or created, by a previous one. The typical example is obviously

aibi it % bz i G i

The main idea of this note is that, if we only retain the actions and their possible permutations,
we can represent the equivalence class of a sequence

o 01,81 anson‘ 7
= 2y e p

as a one step transition p—!i» p' where P is a pomset {partially ordered multiset [211} of actions of
A, — that is an isomorphism class of posets labelled in A. Such pomset transitions were introduced
in [6] for a subset of CCS. Let us formalize this idea: we shall write s ~, s’ if s/ results from s by
the transposition of the steps ¢ and ¢ + 1, and ¢ is the corresponding transposition of {1,...,n},
where n is the length of s (obviously = preserves the length of sequences). So ¢(i) =i+ 1 and
¢(1 + 1) = 1. It should be clear that s’ ~ s if and only if there is a sequence ¢i,..., ¢ of such
transpositions from s to s’. Let us denote this fact by s ~¢1 e '+ Then the equivalence class of

[/ g
§ = pm vor Sno0n, p’ determines a transition pL p', where P = (E,1,<) is the labelied

poset defined by

E={e;,...,en}
Hei)=a;
;< e & Vs~ o8 = n(t)<n(j) wherenp=gpo---0¢

Note that P is defined up to isomorphism, since the events e; are taken arbitrarily. A similar
definition is given in [13] for Petri nets. For instance the equivalence class of

(@:pllbiciq) S (plibie:q) B (pllciq) S (pq)

418

may be represented as a transition whose label is a pomset consisting of events e;, ¢z and e3
labelled a, b and ¢ respectively, where e; precedes ez and ey is incomparable with e; and es, that
is:

a b

|

c
(a:pfbic:q) ———(pliq)
As we shall see, we can interpret a term as an event structure, so that the pomsets of actions of
the term are the configurations of this event structure.
The preorder < is naturally extended to {possibly infinite) sequences of proved transitions
s€ T{p):
S05 81 et VSET(p) s <o = IeT(p <1 &sg s

1t is easy to show that for finite sequences of transitions s and s’ of the same term
s=d Bsgs &<

Therefore we shall keep the notation = for the equivalence on T7°°(p) induced by the preorder <.
We have

so~shdsi sy = so< st & shgs)

Then the quotient C*°(p) = T °°(p)/=2, which is the set of computations of p, is a partially ordered
set — the ordering on equiiv»zllence classes will be denoted C.

In [3], the maximal computations (w. r. t. C) were called terminating, since, roughly speaking,
it does not remain anything to do after a maximal computation. More precisely, if an action is
possible at some point of a maximal computation, then after a finite amount of time, this possibility
disappears — either because the action has been done or because it is no longer enabled. Then for
CCS the maximal computations set up a notion of fairness: these are the computations satisfying
a finite delay property. For instance

(a¥ | b°) = (uz.a: z || pzb: 2) S (uzwa o || pzbiz) - 5
is not maximal since the proved transition

b) My ('Yb)
e

(a* [%) (a® &%)

has a residual along the whole computation. On the other hand
(a+b)“ =pz.(a:c+b:z) Buzfatz+biz) - B -

is a maximal computation. Not too surprisingly, our proof terms are similar to the labels used by
Costa and Stirling in [10] to define various notions of fairness. However a maximal computation
is not what is usually called (weakly or strongly) fair computation. This is so because our notion
of proved transition is rather discriminating. For instance in r = pz.(e: z + B nll), the action S
has infinitely many distinct proofs {this is apparent in the infinite tree of this term): informally,
at each point of choice in r, a “new” § is available. Then

(rB:n\B-D(r||B:nti)\B - & ...

419

is a maximal computation: at each step the potential communication is different, and at each step
it is discarded. There is no proved transition which is “infinitely often” or “almost always” enabled
along this computation. Similarly if ¢ = uz.a: {a: z+ B:nil) then

(@ B:n\BS & (g Brni\B - B & ...

is a maximal computation.

4. Event Structures.

It is known that the posets of computations C*°(p) are complete partial orders (¢f. [1,3]). But we
can say much more: the main result of this note is that C°°(p) is the poset of configurations of an
event structure. The following definition is a slight variation of Winskel’s one [23] - the domain
of configurations will be coherent, for inconsistency is given by a binary relation:

DEFINITION (LABELLED EVENT STRUCTURES). An A-labelled event structure is a structure
(E,=<,#,£) where

(i) E is the (denumerable) set of events,

(ii) < C E x E is an irreflexive relation (i.e. e < e/ => e # ¢'), the flow relation;

(iii) # C E x E is a symmetric relation, the conflict relation;

(iv) & E — A is the labelling function.

Here too we denote § the reflexive closure of #. Note that we do not assume that the conflict
relation is irreflexive. We shall use self-conflicting {or inconsistent) events, which are the events
e € E such that e # e, in the interpretation of the restriction operator.

We shall always draw event structures up to isomorphism, that is omitting the name of events;
moreover in the figures we shall represent e < ¢’ by e —— ¢/. For instance

a # b
v' N
e
is a structure with three events ¢, ¢/ and ¢” respectively labelled a, b and ¢ such that e < ¢ and
ete
In [6] we have introduced a notion of computation of an event structure, which is a labelled
poset of events. This is just what Winskel calls a configuration, supplied with the causality
ordering on events which holds in that configuration. To define the computations of an event
structure § = (E, <, #,£) we need to introduce an enabling relation F | ¢, for e € E and F C E.
Let us denote by Cg the set of conflict-free subsets of E, that is:

FeCs ©aet FCE&Ve,e'cF —(c#e)

We interpret e’ < e as meaning “e’ is a condition for ¢”. Then F F e means that F is a maximal
set of non-conflicting conditions for e, that is:
Fte ©ger ¢€F = ¢ <eand
F U {e} is conflict-free: F U {e} € Cg and
F is closed under non-conflicting conditions for e:
€ <e&e¢F = Je'cFe e
One can see that the structure (E,Cg,t) is what Winskel calls a stable event structure — where

k- is the minimal enabling relation (¢f. [23]1) — if we relax the hypothesis that the consistent sets
are finite.

420

DEFINITION {CONFIGURATIONS). Given an A-labelled event structure § = (E,~<,#,£) a con-
figuration of S is a set of events F' C E such that
(i) F satisfies the finite causes property: for all e € F there exists {e1,...,e,} C F such that
en = e & Vi 3G C {e1,...,6i-1} Gl e
(ii} F is conflict-free (or consistent): F € Cg

We denote by F°°(S) the set of configurations of the event structure §. This set, ordered by
inclusion, has a nice property: the poset (¥°°(S), Q) is a finitary prime algebraic coherent poset,
that is a coherent dI-domain, ¢f. [20,23] - in fact our event structures are just another concrete
presentation of such domains. For F a configuration of S, we denote <p =get (< 1 {F X F})*, the
reflexive and transitive closure of the restriction of < to F. Then we have:

LEMMA. For any configuration F € 7°°(S) of S the relation < is an ordering such that
e<pe & VGeFX(S)GLF&eeG = ecq@

Moreover G C F is a configuration of S if and only if it is a left-closed subset of F':
VGCF. GeF*(8) & ecG&e<pe > el

The proof is given in {23]. The ordering <p is the (local) causality relation in F. The restriction
L[F of the labelling £ to F is denoted £p.

DEFINITION {COMPUTATIONS). Given an A-labelled event structure S = (E, <, #,£) a compu-
tation of S is a labelled poset (F,<p,&r) where F is a configuration of S.

We shall denote by §%°(S) the set of computations of S. The previous result allows us to regard
this set as ordered by inclusion, without ambiguity since for any configuration F there is only one
ordering < and only one labelling £ such that (F, <,£) is a computation of S. As we have shown
in [6], we can define a transition relation on event structures, where at each step the performed
action is a computation - that is a labelled poset. For any computation P = (F,<p,fr) of
8 = (E,<,#,£), let us define the remainder S|P] of § after P by:

E'=E—~F

<'=<N(E'x E')

e# e & etdore=e &' cFete
¢ =L[E

S[P] =qet (E', <',#’,£’) where

Then the transitions are

s 2.51P] for Pege(s)
There are two ways of interpreting a CCS term as an event structure: either we directly define
from the syntactical materials a structure §(p) for each closed term p, or we define a construction
on event structures for each CCS operator and interpret CCS by a morphism of algebra I, We
shall take both ways; the constructions we use are adapted from those of Winskel [22,23].

4.1 Let us first define S{p) = (£(p), <, #,£). The events are occurrences of possible future actions
for a term, so we define the set O of occurrences. We just have to extend the syntax of proofs,
allowing them to pass through a guard a:p, using the symbol a: (13, which will be denoted ~.
The syntax of occurrences is thus

o = 7| 7:(0) | mo(0) [m1(0) | 6(0,0") | o0(0) | 01(0) | pa(o)

421

For instance the occurrence of the action b in a:b:nil is v, (). We extend the labelling to
occurrences, in an obvious way: £(v,(0)) = £(0). Let us now define the notions of conflict and
flow on occurrences. The conflict relation o # o’ is the least symmetric relation which satisfies the
following, where we denote by § the reflexive closure of #:
(B1) {#7 = oi(o) #0;(c)

; wo{o) # 6{d’,0")
(B2) ofod = {7‘,1(0) # 5(o", ')
wi{o) # mi(o")
o:(0) # 0:(0')
pa(0) # pa(o')
Ya(0) # 15(0’)
(B4) nm(£(0)) = a = p,(o) # pa(o)
(B5) 09§ of or 01 § 0} and (00, 0;) # (0h,0}) = 6(00,01) # 6{c},0})

oo # 0o or oy #0; = 6(00,0;) ¥ 6{0g,01)

(B3) o#0 =

In the structure $(p), the flow represents possible immediate precedence. Quite obviously the
relation o < o' is brought out by the action construct a: p — loosely speaking v, < v.{(4). More
precisely < is the least relation on O compatible with the occurrence constructors that satisfies
the following clauses:

(C1}) +a <~44(6) where 8 is any proof term
§{0,0") < mo(o wo{o) < {0, 0"
{C2) o=<d = 5%();/,0% < ,;:%0/% and {ngog < (5%0"’,0'3
8(0,01) < 8(d',0%)
6(00,0) < 6(0h,0")
The relation < is irreflexive; note on the other hand that it is not transitive: for instance if og < o}
and o1 < 0} then mg(a0) < 8(0h,01) and 6(of),01) < m1(o}) but we do not have mo(00) < m1(0}).
Let us see some examples: in the term » = (ot a: it || @: nit) we have

{C3) o<d = {

6(’70”'764) =< 6('7:1('70)v'755)
6(var7g) # 6(1a(7a)s7g)

This shows that # and < are not necessarily disjoint. The following example shows that the
transitive closure of < is not disjoint from (extended to occurrences in the obvious way): in the
term ¢ = (a: a:nll || &: bz nil) we have

To(Ya) < §(va(Va)s 1) < M1 (Vg (7))
70(7a) ~ 71 (Vg (7))

Note also that < is not asymmetric; for instance in the term (a: #:nit || 8: @: nlt) we have
8 (v 75 (7)) < 8(va (78, 75) < 5(%,72;(7&))

To define the structure $(p) it just remains to define the set £ (p) of events, which is a subset of the
set O of occurrences — it should be understood that in $(p) = (£(p), <, #,£) the flow and conflict
relations are the restrictions to £(p) of the relations we just defined on occurrences. The set £ {p)
of events of p is defined inductively as follows:

422

(B1} ~e€&(a:p);
if o€ £(p) then v, (0) € E(a:p) ;
(E2) ifoc&(p) thenmi(0) €€(pollpr);
if 0 € £(po) and o € £(p1) and £(0) = £(0’), then &(0,0") € & (po || p1);
(E3) if o€ &(ps) then 0(0) € €(po + p1);
(E4) if o€ €(p) then paf0) € £{p\a);
(E5) if o€ E(plpz.p/z]) then o€ & (uz.p).

For instance if r = {a: ez nif || @: b2 nit)\& then ${r) may be drawn

e

a

where the dotted circles around « and & indicate that the corresponding events are self-conflicting.
In this structure the enabling consists of (identifying the events with their labels} {a} I 7 and
{r} F b. Clearly o and & cannot occur in a configuration since they are inconsistent.

4.2 On the other hand, the constructions on event structures corresponding to CCS operators are
as follows:
(i} nit is the empty event structure;
(ii) it S = (E,~<,#,£) then a: S = ({e} UE, <, #,£) where
s c& FE
se<e & e<eor{e=ec&Bl-e)
» /{(e) = a and ¥(e} = £(e) for e€ E;
(iii) if S; = (Ei, <y, #;,4;) for ¢ = 0,1 then 8o || 81 = (E, <, #,£) where
o E=(Eox {+})U({*}x E1) U{(eo,e1)|e: € Ei & £(e0) = £{e1)}
where x & Eq U E;
se<e & e=(z,y)&e=(dy)and z <oz’ ory <1 ¢

where, by convention, x £; z and z #£; * for any z.
, e={z,y)&e=(zy)&e#teandzor’ oryf ¢, or
s che & ’
e=(ny)=c &z#ozory#y
where, by convention, —(* §; 2) for any 2.
o Le,x) = Lo(e), £(*,€) = £;(e) and L(eg,€1) =T
(iv) if S; = (By, <, #:,4;) for ¢ = 0,1 then Sy + Sy = (E, <, #,£) where
E ={(s,e;) | e € E;}
ee<e & e=(i,e)&e = (i,¢) &e <iel
, e={i,e;) & e ={(iel) &e; #; e, or
cete @ {e:(i,e,-)&e’:(j,e;.)&z';éj
o Ui, e) = Li(e).
(v) if § = (E,<,#,£) then S\a = (E,<,#,{) where

se# e & ehe ore=c &nm(l(e)) = a

423

The interpretation J°(p) is given by the unique continuous morphism I from the free algebra of
infinite trees to the algebra of labelled event structures (I °°(uz.p) is defined by a standard fixpoint
construction, ¢f. {22,61). Let us see some examples. The structure 7°°{{a: Bz nll|| @: nlt)) may be

drawn: _
T T Y

B
This example shows that J°(p) may contain a substructure 7’ (¢f. [6]1). The interpretations of
(aza:a:ni] @:nt) and (a: a:nil || &: b: nll) may be drawn respectively

;* r N R
a./ {\T#*
+\ BN
a # B

The second structure contains a substructure N and a substructure ¥7, ¢f. [6]. An example,
suggested by M. Nielsen, shows that <* is not an ordering: if we interpret (a: a: 8: nil||B: b: &: nil)
we get

L
NN
LN,

il

Note that if r = (a:a: B:nll || B:b: @: nit)\a\B then in the structure 7°(r) the enabling is such
that F e = F # 0, so that it has no configuration. The same is true for the interpretation

of (a: Binil|| B+ &z nit)\e\B, where the enabling relation is empty. One can also see that in the
interpretation of ({c: B nil|| &z nil) || : B : nil)\ e, B, there is no enabling for the 8 communication.

THEOREM 1. For all closed CCS terms p the poset (C*°(p),C) of computations of p is isomorphic
to the poset (§°°(8(p)), C) of computations of the labelled event structure S{p). Moreover the
structure §(p) is isomorphic to I°°(p).

We could prove moreover that there is an exact correspondence (as in [6]1) between equivalence
classes of finite computations and the pomset transitions on event structures, that is between the

pomset transitions p ¥l p' associated with the sequences of proved transitions

0'1361 Gn>6 ’
p——p1 " Pp—1— P

up to permutations, and the transitions

s(p) L s(p)[P]

424

Therefore we can say that we have given an operational meaning to the event structure semantics for
CCS. This provides also for a “truly concurrent” operational semantics for CCS, which generalizes
the one we have given in [6] for a restricted language. This “poset semantics” is similar to the
one given, via concurrent histories, by Degano, De Nicola and Montanari in [11].

Its seems fair to say that, due to communication, the mathematical theory for CCS is not
especially aesthetic. Communication may be achieved by other means, as proposed in [5,7] — but
there, no mathematical theory is given. If we abandon communication, we get a more satisfactory
theory: the syntax for concurrent ~ but non communicating — systems is

pu=nifzfaip|(plp)|(p+0)|uzp

where a€ A, and the set A of actions does not need to have any particular structure. The operational
semantics is the same, but obviously without the communication rule. Then the “permutations of
transitions semantics” is exactly the semantics we have given in [6] for this calculus (if sequential
composition p ; ¢ of [6] is restricted to p € A), and the corresponding constructions on event
structures are much more pleasant than the ones presented here. However, as is noted in [5]
and [71, the resulting calculus is too asynchronous. The next section presents a first attempt to
remedy this deficiency.

5. Synchrony and Asynchrony.

In [18], Milner proposed the synchronous calculus SCCS, based on a structured set of actions —
namely a commutative semigroup (4,-). The main new construction was the synchronous product
(p % ¢). However, Milner noted in [19] that “it was not made sufficiently clear that SCCS provides
an asynchronous process model which stands In its own right”. To some extent, the calculus MEIJE
of [4] — which is a variant of SCCS - does not suffer this defect. It was shown in [4] that, among
several equivalent formulations, this calculus can be built upon two basic kinds of parallelism:
interleaving {p | ¢) and synchronous product (p x ¢). In this formulation of MELJE, the sum is
not primitive, but may be derived using communication. From now on we shall deal with this
calculus, parameterized on a free commutative semigroup (A°,-) of actions, generated by the set
A of atomic actions. We let aside communication, as well as the restriction operator, which could
be handled as in the previous sections, with respect to a commutative group of actions. Since
we ignore communication, we need to regard sum as a primitive operator here. We shall give
a so-called “non-interleaving” semantics for (p| ¢), thus it is better to rename the two parallel
operators asynchronous and synchronous parallelism respectively. Moreover we shall denote the
synchronous parallelism by {p ® ¢), in order to avoid confusion with the cartesian product, and we
denote asynchronous parallelism by {p || ¢), as done so far in this paper. Therefore the syntax of
our calculus for synchrony and asynchrony — let us call it C ~ is

pu=nitfz|aip|(plp) [(e+p) | (p®P) | uzp
where a belongs to the set A of atomic actions. The syntax for proofs of transitions is now
0 = 7o | m0(0) | m1(0) | 00(6) | 01(0) | w(6,0)

and the inference rules are

. (l, ’Yﬂ
action Faip——>p
. a, 0 12 a, To (0)]
asynchronous parallelism 1 p——p F (pllg) ——> ' @)
. b,o' , b, my(0") ,
asynchronous parallelism 2 g——¢ F (pllg) ———= (| ¢)
, 8 , oold
sum 1 P“LP’ F(pt+aq) o),
b, ¢ b, oy (0
sum 2 ¢g——4d + (p+q) 1, ¢
, 8 b, o a-b, x(6,0'
synchronous parallelism pL—»p' ,g——q F (p®g) (6,0) »eq)
3 0 3 a
fixpoint pluz.p/z] RARAPYS UT.D —c-l—-ép’

We shall not repeat the definition of the equivalence by permutations and the associated preorder:
it suffices to redefine the notion of concurrency — the diamond lemma will be the same as before.
In C, the source of concurrency is asynchronous parallelism, therefore - is the least relation
compatible with the proof constructors such that

VOVE i #£ 5 = wi(8) — x;(6)

We still denote by =~ the permutation equivalence on sequences of (proved) transitions, and by
(C*(p), &) the ordered space of computations of p. We could define an event structure §(p) for
each term p of C, as in the previous section, but it is more instructive to give the constructions on
event structures which allow us to define J*°(p) for each closed term p of C.
As noted by Girard ([12]) there are (at least) two natural ways to combine two sets of events

Es and Ey: either we juxtapose these sets, by a disjoint union Eo & Ey, or we form their cartesian
product Eg x Ej. In Girard’s terminology, the first kind of construction defines additive operators
whereas the second one defines multiplicative operators (as a matter of fact, Girard proposes his
constructions for what he calls coherent spaces, which are event structures without causality). For
what regards the additive operators on event structures, there are three natural constructions,
according to which relation, among causality, concurrency and conflict, is set between the events
of Eo and E;. These are the constructions we used in [6], where our calculus only stands on
the additive (asynchronous) side. On the other hand, one of the additive operators, asynchronous
parallelism, is missing in SCCS. The construction a: S is a special case of sequential composition,
namely lifting; it is the same as for CCS, and so is Sg + Sy. For what regards the construction
So || Sy = (E, <, #,£), it is given as follows, assuming S; = (E;, <;, #;,4;) for i € {0,1}:

¢ E=E;WE;={0} x Ecu{1} x Eq

o (i,e) < (j,¢) @ i=j&ke=<;¢€

s (f,e)#(j,ef) © i=7&e#; ¢

o £(i,e) = Li(e)

The asynchronous parallel composition and sum are analogous to Girard’s additive conjunction
and additive disjunction respectively. On the other side, for what regards concurrency in the mul-
tiplicatives, Girard proposes three constructions: conjunction, disjunction and implication (times,
par and entail, or linear implication, in Girard’s terminology). We cannot see however what could
be a diamond lemma if we allowed multiplicative disjunction or implication as process constructors.
Moreover, our interpretation of the synchronous product, though a multiplicative one, is slightly

426

different from Girard’s multiplicative conjunction, since here the same event cannot be used twice
in a computation. We define thus So @ 8y = (Eo X Ey,=<,#,£) where
o (e0,e1) < (eh,€]) & €0 <pehores <€)
;. {eo, e1) # (eh,€}) & eo o €f or ey §y €}, or
* (eo,e1) # (ebre1) & { {eo,€1) = (eh,€}) and eg #0 eo or ey #; €3
[] 8(60,61) = éo(eo) . 31(61)

The morphism I from C to event structures is now fully determined. For instance the inter-
pretation of (a: b: nil) ® ¢: nif is a structure with two events e and ¢’ labelled a - ¢ and b- ¢ such
that ¢ < ¢’ and e # ¢, therefore ¢/ cannot occur in a computation of this structure, Similarly
the interpretation of {a:nl || b: nll) ® c: nil consists of two events such that e # e', therefore the
only two non-empty computations are a - ¢ and b-¢. In both these examples, conflict arises from
the sharing of a “sub-action”. As another example, we can draw the interpretation of the term
{a:nnllb:oit) @ (e:d:nlt) as

jL
The result we had for CCS, relating the event structure semantics to permutations of transitions,
holds also for C:

THEOREM 2. For any closed term p of C the poset (C°°(p),C.) of computations of p is isomorphic
to the poset (F°°(I°(p)}, C) of computations of the labelled event structure J°(p).

We have announced that this result remedies the lack of synchrony one finds in CCS without
communication. Let us state this point more formally: in [6] we gave a direct operational meaning
to the event structure semantics for the asynchronous part of the language C (without ®). This
was achieved by giving rules to prove transitions p % p’ where u is a pomset, but it was not clear
how to describe such transitions for p = {¢®r). The equivalence by permutations brings an answer
to this question. Indeed, the problem is the same as for CCS communication: it lies in the fact
that parallel composition (either CCS composition with communication, or SCCS synchronous
product) does not preserve the computations, since it may introduce conflicts.

REFERENCES

{11 G.BERRY, J.-J. LEVY, Minimal and Optimal Computations of Recursive Programs, J. of
ACM 26 (1979) 148-175.

[2] E. BEsT, R. DEVILLERS, Interleaving and Partial Orders in Concurrency: A Formal Com-
parison, in Formal Description of Programming Concepts III, North-Holland (1987) 299-321.

[3] G.BouboL, Computational Semantics of Term Rewriting Systems, in Algebraic Methods
in Semantics (M. Nivat, J.C. Reynolds, Eds), Cambridge University Press (1985) 169-236.

[4] G. BoubpoL, Notes on Algebraic Calculi of Processes, in Logics and Models of Concurrent
Systems (K. Apt, Ed.) NATO ASI Series F13 (1985) 261-303.

(3] G.BOUDOL, Communication is an Abstraction, Actes du Second Colloque C® (1987) 45-63,
and INRIA Res. Rep. 636.

[e]

7

{8l

(9]

{10}

[11]

[12]

{13}

{14]

[15]

{16]

(17]

[18]

[19]
[20]

[21]

[22]

[23]

427

G. BoupoL, L. CASTELLANI, On the Semantics of Concurrency: Partial Orders and Tran-
sition Systems, TAPSOFT 87, Lecture Notes in Comput. Sci. 249 (1987) 123-137.

G. BoUuDOL, I. CASTELLANI, Concurrency and Atomicity, Theoretical Comput. Sci. 59
{(1988) 1-60.

I. CASTELLANI, M. HENNESSY, Distributed Bisimulations, Comput. Sci. Rep. 5-87, Uni-
versity of Sussex (1987).

I. CASTELLANI, Bisimulations for Concurrency, Ph. D. Thesis, University of Edinburgh
(1988).

G. CosTA, C. STIRLING, Weak and Strong Fairness in CCS, Information and Computation
73 (1987) 207-244.

P. DEcGANO, R.DE NicoLA, U. MONTANARI, Partial Ordering Derivations for CCS,
FCT 85, Lecture Notes in Comput. Sci. 199 {1985) 520-533.

J.-Y. GIRARD, Linear Logic, Theoretical Comput. Sci. 50 {(1987) 1-102.

R.van GLABBEEK, F.VAANDRAGER, Petri Net Models for Algebraic Theories of Con-
currency, Proceedings PARLE Conference, Eindhoven, Lecture Notes in Comput. Sci. 259
(1087) 224-242.

G. HUET, J.-J. LEVY, Call-by-need Computations in Non-ambiguous Linear Term Rewrit-
ing Systems, IRIA-LABORIA Report 359 (1979).

J.-J. LEVY, Optimal Reductions in the Lambda Calculus, in To H.B. CURRY: Essays
on Combinatory Logic, Lambda Calculus and Formalism (J.P. Seldin, J.R. Hindley, Eds),
Academic Press (1980) 159-191.

A. MAZURKIEWICZ, Concurrent Program Schemes and their Interpretations, Aarhus Work-
shop on Verification of Parallel Programs, Daimi PB-78, Aarhus University {(1977)-

R. MILNER, A Calculus of Communicating Systems, Lecture Notes in Comput. Sci. 92
(1980) reprinted in Report ECS-LFCS-86-7, Edinburgh University.

R. MILNER, Calculi for Synchrony and Asynchrony, Theoret. Comput. Sci. 25 {1983) 267-
310.

R. MILNER, Process Constructors and Interpretations, IFIP 86 (1986) 507-514.

M. NIELSEN, G.PLOTKIN, G. WINSKEL, Petri Nets, Event Stuctures and Domains, The-
oret. Comput. Sci. 13 (1981) 85-108.

V.R. PRATT, Modelling Concurrency with Partial Orders, Intern. J. of Parallel Program-
ming 15 (1986) 33-71.

G. WINSKEL, Event Structure Semantics for CCS and Related Languages, Daimi PB-159,
Aarhus University (1983) s.a. 92 ICALP, Lecture Notes in Comput. Sci. 140 {1982) 561-576.

G. WINSKEL, Event Structures, Advances in Petri Nets 86, Lecture Notes in Comput. Sci.
255 (1987) 325-392.

