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1. Introduction. 

A computa t iona l  sys tem evolves by e lementary  computa t ions  from one s ta te  to the  other ,  in nota-  

t ion s - ~  s t. Examples  of s ta te  changes are t rans i t ions  of a machine,  ~- reduct ions  of ~- terms and 

rewri t ings in a t e rm  rewri t ing system. When  s ta tes  are abs t rac t  p rograms  one may  ext rac t  from 

their  syntact ica l  s t ruc ture  some indicat ion of what has been per formed and  where it has  happened .  

In  other  words,  one may  decorate  t rans i t ions  wi th  a label  w, thus ob ta in ing  s w s~, where w is 

an occurrence of action. Now assume tha t  s ~ so and v 8--+ s l :  in many  cases we may  have the 

intui t ion tha t  these two moves are compatible, or independent .  This means  tha t  we are able to 

define what  remains  of one move after the  other ,  in no ta t ion  v/u and  u/v, in such ~ way t ha t  v/u 

can happen  in s ta te  so, t ha t  is so v /u  s t, and s imilar ly  s l  u/v> s ' .  If u and  v are real ly  compat ible ,  

we should be able to  perform them in any order,  wi thout  affecting the result ,  t ha t  is: s t = s ' .  

This  is known as the  diamond property, or the paral le l  moves proper ty .  Moreover,  two sequences 

of t ransi t ions  should be regarded as equivalent,  if they  are equal  up to  commuta t i on  of compat ib le  
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moves, typically: 

s U~so v / u  sl ~_ s v s l  u / v  s I 

This is the essence of Berry and L~vy's equivalence by permutat ions for sequences of (elementary) 

computations. 

This equivalence was first elaborated by Lgvy in his thesis (e/. [15]) upon Church notion of 

residual for the A-calculus, and then used for recursive program schemes in [1]. It was further ex- 

tended to deterministic term rewriting systems by Huet and L~vy in [14], and to non-deterministic 

ones by Boudol in [3]. In any case, this equivalence allows one to associate with each ~state" a 

complete partial order of computations. These computations are equivalence classes of sequences 

of elementary moves, ordered by the prefix ordering, up to commutations. A similar notion is used 

for Petri nets by Nielsen, Plotkin and Winskel, who define in [20] an equivalence that "abstracts 

away f rom the ordering o f  concurrent firings o f  transit ions" (this is also used by van Glabbeek and 
Vaandrager in [13], and by Best and Devillers in [2] ; a similar idea is that of trace of Mazurkiewicz 

[16]). Moreover they show that for nets the ordered space of computations has a nice charac- 

terization: it is the space of configurations of an event structure. As a matter of fact, the three 

basic connectives of event structures - causality, concurrency and conflict - are already present 

in computations. Roughly speaking, two occurrences of actions (events) u and v are consistent 

(non-conflicting), with respect to a state s if they can appear in the same computation of s: 

U V 
8 . o .  - - ~  . . .  ----~ . . .  

In this case they are concurrent if they may be permuted: 

U ~ 73 U 
S . . . - - + . . . - - - ~ . . .  ~___ S . . °  ~ ° . . - - + . . .  

Otherwise they are causally related: one of them must precede the other. 

In this note we propose an equivalence by permutations for Milner's calculi CCS and SCCS 

[17,18], and show that the ordered space of computations of a term is the poser of configurations 

of an event structure. The events are simply occurrences of actions, and, roughly speaking, they 

are compatible if they lie on different sides of a parallel system, though some complications arise 

from communication. We show that each equivalence class of computations (up to permutations) 

may be represented as a one step transition, where the action is a labelled poset of events. With 

the exception of communication, this corresponds exactly to our semantics for "true concurrency" 

in [6,7]. Our operational semantics for CCS is similar to the one given by Degano, De Nicola and 

Montanari in [11] ~ who obtain a poset transition from a sequence of "atomic transitions" that they 

call atomic concurrent histories. The poset transition semantics provides us with an operational 

counterpart to the interpretation of CCS terms as event structures. However it remains to be 

checked that our constructions coincide, at least in interpreting CCS, with those given by Winskel 

in [22] (see also [23]). 

2. Pure CCS: terms and transitions. 

As in [17], we assume a fixed set A of names. We use a, fl , . . ,  to stand for names. We assume a 

set ~ of co-names (complementary names), disjoint from A and in bijection with it: the co-name 

of a is h, and its name is nm(a) -- a -- nm(h). Then h = A U A is the set of labels. We shall use 
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A to range over A, and extend the bijection so that ~ = A. As usual the set A of CCS actions is 
A -~ A U {r}, where r is a new symbol, not in A; by convention the name of r is T. We use a, b, 

c,... to range over A. We presuppose a collection X (disjoint from A) of identifiers, and use x, y, 
z,... to range over identifiers. 

The action construct of CCS will be denoted by a: p, while the parallel composition is (p II q)" 

We shall not use the relabelling operator, although it would not introduce any difficulty. The 

syntax of (pure) CCS terms is given by the following grammar: 

p ::= . " I  = I a: p I (p II p') I (p + p') I (p\oO I , = .p  

We shall use p, q, r , . . .  to range over terms; finite terms - built  wi thout  fixpoint I~x.p - should be 

viewed as finite trees, wi th  parallel composit ion and sum as binary node constructors,  action and 

restriction as unary  ones (with a parameter  in A and A respectively),  and nil as constant.  However 

this representation will remain implicit throughout  this paper.  For instance the te rm 

r = ( ( ~ : . ,  II ( a : . ,  + Z: .H))\~) 

will be identified with  the tree: 

I / \  
nil ~ ~J 

I I 
nll nll 

As is s tandard,  the fixpoint construction binds the defined identifier, and subst i tut ing q for x in 

p may require renaming the bound variables of p in order to avoid captures; the result of such a 

substi tut ion is denoted p [q/x].  Terms involving fixpoint define infinite trees, obtained by unfolding 

#x.p into p[l~x.p/x] ad infinitum. As it is usual, we assume tha t  there is a constant  fl, which is 

not  a CCS term,  in order to interpret  diverging terms such as I~X.X for instance. 

The  semantics of CCS terms is given by means of inference rules, allowing one to prove 

transitions of the form p a p ~  for terms. We assume these rules to be known (see [17]). Modern  

proof theory shows that  there are some advantages to reap from a syntax for proofs - if we think 

of inference rules as proof  constructions. The case of CCS is very simple, since the validity of a 

"proposition" p _+a p~ only depends on the s t ructure  of the te rm p. More precisely, a proof  of such 

a transi t ion is jus t  an indication of how we get the action a from the t e rm p. In the simplest  case, 

this indication is a pa th  which leads to an (outermost)  subterm a :  q. But  the action can also be 

a communicat ion r ,  in which case this indication is a pa th  to a pair of complementary  subterms 

)~ : q and A : q~. Then  we have to devise a syntax for these paths,  which are some kind of initial 

subterms. Let F be a set of function symbols, which are symbols with arity, f rom which we build 

terms. Then with each f E F of arity n we can associate a collection of new symbols fro, one 

for each m _C {1 , . . .  ,n} ,  so that  the arity of fm is the cardinali ty of m. For instance the "split" 

t e rm f{i ...... i~ } (Q~,- . - ,  tik) represents an initial sub term of f ( t l  . . . .  , tn) obtained by deleting some 

arguments  of f .  

I 
It 

J 
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In the case of CCS, we only need some of these constructs, namely a :  ¢, 11{1}, tt{2} and 11{1,2}, +{1} 

and +{2}, \a{1}. We shall use specific names for these, respectively %,  r0, ~rl, 6, a0, a l  and p~. 

The syntax for proofs of CCS transitions is thus given by the grammar: 

0 ::= "tat ~ro(O) [ ~'1(0) 16(0,0 ' )  1o0(0) lo1(0) ]p,:,(O) 

One should note that  although we call them proof terms, the 8% will not in general represent valid 

proofs; for instance pa(q~) does not correspond to any CCS transition, and the reader should be 

able to find other kinds of examples. The valid proofs are those built by means of the formation 

rules below. Usually one denotes by 0 : ~ the fact that  8 is a proof of the proposition <I,; since 
a ,  0 p, 

we shall use sequences of transitions, we prefer the notation p for: 0 is a p r o o f  o f  the fact  

t ha t  p pe r fo rms  the  action a and becomes  p' in doing so. We call these enriched transitions proved 

transitions. The rules of inference (and formation of proofs) are the following: 

act ion }- a : p a , ~% p 

a, a,  ~ro(O) 
parallel  compos i t ion  1 P 07 P' }- (P t1 q) ' (P' ]t q) 

b O' b, ~rl(O') 
parallel  compos i t ion  2 q ' ' q' ~- (P 11 q) . . . .  (p ]1 q') 

) , ,  O p, , X O' r , ,~(O,O') 
commun ica t i on  P ...... q ' ' q' ~- (P II q) ' ( / I I  q') 

sum1 P O p, ~ (p+q)  a,,,o(O_~) p, 

b, O' b,  0~I (O') 
s u m 2  q >q' ~- ( p + q )  ~q' 

a, o p, ,,,~Ca) # ,~ ~- (p\,~) a, p,~(o)(p,\,~) res tr ic t ion p ,,, ~ , 

a , O  p, 
f ixpoin t  p[ux.p/x] ~p' }- gx.p ,, , 

It should be clear that  if we drop the proof terms these rules are exactly those of CCS. Note also 

that  the proofs actually hold for the (infinite) trees that we get by unfolding the t~x.p's, since the 

(meta) rule for fixpoint does not introduce any special proof constructor. Let us see an example: 

we have for the previous term r = ((a: nll II (~: ." + Z: .,,))ks) 

and 

Decorating the transitions w i th  their proofs provides us w i th  a "maximal" concrete information. 
This can be weakened in various ways to obtain more abstract  semantics. For instance we can 

extract from a proof 8 of a transition p-~a p, the local res idual  associated with this proof, as 

defined by Castellani and Hennessy [8,9] (we omit the formal definition). Then one may consider 

decorated transitions of the form p a ,  p "  p, where p" is the local residual, and devise an enriched 

notion of bisimulation. 
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As a mat ter  of fact, we could have used transi t ions p 0_+ p,, since the action itself is determined by 

the proof: it is the label £(0) of the proof, defined as: 

(i) g("/a) : a; 

(ii) g(f(0)) = g(0)for all unary  proof constructor f ;  

3. Permutation of transitions. 

In order to define the equivalence by permutat ions  on sequences of transi t ions,  we first need a notion 

of concurrent proved transitions. Roughly speaking, two transi t ions are concurrent  if they occur 

on different sides of a parallel composition, whereas they are in conflict if they occur on different 

sides of a sum. However some complications arise from communicat ion,  which may introduce 

new conflicts. Typically, two communicat ions will be in conflict if they share one component.  

Conversely, they will be concurrent  if they are pairwise concurrent  - i.e. they have concurrent 
(corresponding) components.  

The relation of concurrency on proved transit ions is induced from a relation of concurrency 

between proof terms, denoted 0 .~ 0'. The relation ~-~ on proof terms is the least symmetric 

relation compatible with the proof constructors which satisfies the following clauses: 

(A1) ,~o(0) --~ ,~1(0') 

0 .-. 0' = . . f  ,~o(0) -~ eCe', o") (A2) 
t ,~(0)  ~ ~(0",o') 

~or instance, considering the term ((,~: n, II/~: n,) 11 a :  . ,),  we have ~ro(~, ('~e)) "-" a (~o( '~ ) , ' r2) .  
As regards communicat ion,  compatibil i ty of ~-~ with the constructor ~ amounts  to requiring: 

Note that  0 ~-~ 0' =~ 0 ~ 0'. 

a ,  00 b, 01 
DEFINITION (CONOURRENT TRANSITIONS). Let to = p ~ Po and t l  = p .... ~ Pl be two 

proved transitions for the same CCS term p. The transitions are concurrent, in notation to ~-, Q, 
i f  and only i f  Oo ~-~ 01. 

Note that  the concurrency relation between transi t ions is symmetr ic  and  irreflexive. The two 

transit ions of the example above are not  concurrent  sinc e they made two different choices at the 

subterm (2 : nit + ~ : nil). Let us see another  example of conflict, arising from communicat ion:  if q 
is the term (~ :  nil I[ ( a :  nil [[ a :  nil)) then the two transit ions 

q ..... q . . . . . . .  (n" tl (~:  n" II "")) 

are not  concurrent ,  since they share the same "sub-transit ion" r0(~/2). The conflict relation will 
be formalized later. 

We define now the residual 0/01 of a proof term by a concurrent  one, namely  what  is left of 

the proof 0 after 0'. This residual may differ from the proof term itself because of nondeterminist ic  

choices. For any concurrent  proofs 0, 0 t, the residual 0/0 '  is defined by: 
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,: # j ~ ~,:(o)/~s(o') = ~,:(o) 

f' ~oCO)/6(o', o") = ~oCO/e') and 
) ,sCr, O")/~oCO) = ,~CO'/o,e") 

o ~ o' ~ j ~,Co)/,~(o",o') = ~1(o/¢) and 

f ~,(O)/~,:(O') = ~,:(O/O') 

L p,~CO)/poCO') = p.CO/O') 
Oo~ o; and 01 ~ O i  ~ ,~COo, Ol)/6(o~,,ol)= ~(Oo/O;,O~/fi) 
Let us look at an example, which shows in which way residuals are affected by choices. The te rm 

p : ( (a:  nil tl b: nll) + c:  nil) may do the proved transitions: 

oo(~oCa)) C"" II b . , ) ,  oo(~,(b)) Ca" . .  il . .)  p ) : p . . . . . . . . . . . .  

So the proof of the b-transition is aO(r l (b)) .  On the other  hand,  once the a-transi t ion has hap- 

pened, the proof of the b-transition becomes ~1 (b) = ao (~rl (b))/ao (~r0 (a)), and we have: 

("" II b: . .)  (~ lCb)) ( . .  It "") 

The following result,  also known as the parallel moves lemma, states a "conditional Church-Rosser 

proper ty" ,  namely that  two transit ions are confluent whenever they are concurrent.  It  is much 

simpler in CCS than in >,-calculus or te rm rewrit ing systems, since a proof  of a transi t ion cannot be 

duplicated or deleted by another  concurrent one; it is always left unchanged,  up to the resolution 

of choices. 

a,  Oo b, 01 
LEMMA (THE DIAMOND LEMMA). Let to -- p )Po and t l  : p--------+pl be two proved 

b, o,/Oo ~ and transit ions.  I[ they  are concurrent  then there exists  a unique term ~ such that  Po ..... 

a, Oo/Ol _ 

Pl ~ P. 

This proper ty  is in fact much stronger than  confluence: it says tha t  a (proved) transit ion survives 

any concurrent  one. Therefore we can adopt  the s tandard  terminology ([1,3,14,15]): the transit ion 

b, 01/0o 
t~ = P0 - -  ~ ~ (with the notat ions of the diamond lemma) is the residual of t l  by to, denoted 

a, 0o/01> 
t l / tO  and similarly to~t1 = pl is the residual of to by t l .  This is the basis of the 

equivalence by permutat ions .  

Each CCS term p determines a set T°°(p)  of finite or infinite sequences of proved transitions 

of the form 
a l  , 01 a n  ~ On 

P--'-------+ P l  " ' "  Pn--1  > P n  " ' "  

Equivalently we could have presented these as sequences of steps: 

arc , 0rc 
t l ' "  t , ~ ' "  where trc : prc-1 - - ~ p ~  ( a n d p 0 = p )  

The set of finite such sequences is denoted T(p) ,  and we shall denote ss '  the concatenation of 

s E T(p)  and s '  E T°~(q), which is only defined if s ends at q. We are now ready to define the 
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permuta t ion  equivalence and the permuta t ion  preorder on T (p): intuitively two (finite) sequences 

of proved transi t ions are equivalent if they are the same up to permutat ions  of concurrent  steps; 

the preorder is jus t  the prefix order up to permutat ions.  We shall denote by << the usual prefix 

order: 

Vs e T°°(p)  Vs' E Too(p) s << s '  ¢~def s = s '  or 3s"  s s"  = s '  

DEFINITION (THE PERMUTATION EQUIVALENCE AND PREORDER). Le t  p be a CCS term. 

The  equivalence by  pe rmu ta t i ons  on T (p) is the least equivalence ~- such tha t  

soto(t~/ to)s~ ~- ~ot~(to/t~)s~ 

(provided tha t  to "J t l  and tha t  concatenat ion is defined). Th e  preorder  <~ is given by  

80 ,~, Sl "~:~def ~S S0 << S ~ 8 ~--- Sl 

The typical example  of equivalent sequences of transit ions is (omitt ing the obvious proofs): 

( a : p I I b : q ) - - a  (pilb:q) b ( p l i a ) _  (a:pllb:q) b(a:plIq)  a (pilq) 

Here one can commute  the two steps. There is another  kind of sequences of t ransi t ions where this 

is not  possible, for a step is caused, or created, by a previous one. The  typical example is obviously 

a : b :  n l l a b :  nil --~b nll 

The main idea of this note is that ,  if we only retain the actions and their  possible permutat ions ,  

we can represent the equivalence class of a sequence 

al  , O1 a n ,  On pt 
s : p  ) . . . . .  

as a one s tep  transi t ion p P-~ p' where P is a p o m s e t  (partially ordered mult iset  [21]) of actions of 

A, - tha t  is an isomorphism class of posets labelled in A. Such pomset  transit ions were introduced 

in [6] for a subset of CCS. Let us formalize this idea: we shall write s --,¢ s '  if g results f rom s by 

the t ransposi t ion of the steps i and i + 1, and ~ is the corresponding transposi t ion of { 1 , . . .  ,n},  

where n is the length of s (obviously ~ preserves the length of sequences). So c(i) = i + 1 and 

g(i + 1) = i. It should be clear that  s t ~ s if and only if there is a sequence ~'1,..-,  ~k of such 

transposit ions from s to g .  Let us denote this fact by s N~l,...,~k sf" Then  the equivalence class of 

al  , 01 an ,  0% p, p , 
s = p ) " .  determines a t ransi t ion p ~ p ,  where P = (E,  l, <)  is the  labelled 

poser defined by 

{ E = { e l , . . . , e , }  

l ( e ~ )  = a i  

ei < ej ~4, V~ t. S t _ N~ . . . . . .  ~ s ~ ~(i)  <_ n(J) where r / =  ~'k o . . .  o C1 

Note tha t  P is defined up to isomorphism, since the events ei are taken arbitrarily. A similar 

definition is given in [13] for Petri  nets. For instance the equivalence class of 

( a : p l l b : c : q ) - + a  ( p l l b : c : q ) _ ~ b  ( p i i c : q )  c_C+(pllq) 
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may be represented as a t ransi t ion whose label is a pomset  consisting of events e l ,  e2 and e3 

labelled a, b and c respectively, where e2 precedes es and ei is incomparable  wi th  e2 and e3, that  

is: 

C a: p II b: c: q) ~ (P II q) 

As we shall see, we can interpret  a te rm as an event s tructure,  so that  the pomsets  of actions of 

the te rm are the configurations of this event structure.  

The  preorder ~ is natural ly extended to (possibly infinite) sequences of proved transitions 
s E Too(p):  

so <~ sl  ¢~dof Vs ~ T(p) s << so ~ 3s '  ~ T(p)  g << sl  & s <~ s' 

It is easy to show that  for finite sequences of transitions s and s '  of the same t e rm 

s - - s '  ¢ ~ s  <~s' & s I <~s  

Therefore we shall keep the notat ion - for the equivalence on T°° (p )  induced by the preorder <~. 

We have 
J 

Then the quotient Coo(p) = Too(p)~ "~, which is the set of compu ta t ions  of p, is a part ial ly ordered 

set - the ordering on equivalence classes will be denoted E_. 

In [3], the maximal  comt)~atations (w. r. t. E)  were called terminat ing,  since, roughly speaking, 

it does not  remain anything to do after a maximal  computat ion.  More precisely, if an action is 

possible at some point  of a maximal  computat ion,  then after a finite amount  of t ime, this possibility 

disappears - either because the action has been done or because it is no longer enabled. Then for 

CCS the maximal  computat ions  set up a notion of fairness: these are the computat ions  satisfying 

a tlnite delay property .  For instance 

(a°~ ll b~) = (I "tx'a: x ll #x 'b :  x) a (#x 'a :  x ll l "tx'b: x) " "  a . . .  

is not maximal  since the proved transi t ion 

( a~ II b~) b, 7rl(~fb)(a w {[ bW ) 

has a residual along the whole computat ion.  On the other hand 

( a + b ) ~ = # x . ( a : x + b : x )  a - - * h t x . ( a : x + b : x )  . . .  a . . .  

is a maximal  computat ion.  Not too surprisingly, our proof  terms are similar to the labels used by 

Costa and Stirling in [10] to define various notions of fairness. However a maximal  computat ion 

is not  what  is usually called (weakly or strongly) fair computat ion.  This is so because our notion 

of proved transi t ion is ra ther  discriminating. For instance in r = # x . ( a :  x + / 3 :  nil), the act ion/~ 

has infinitely many distinct proofs (this is apparent  in the infinite tree of this term):  informally, 

at each point  of choice in r, a "new" fl is available. Then 
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is a maximal  computat ion:  at each step the potential  communicat ion  is different, and at each step 

it is discarded. There is no proved transi t ion which is "infinitely often" or "almost  always" enabled 

along this computat ion.  Similarly if q = / ~ x . a :  ( a :  x-b  ~ :  nil) then 

is a maximal  computat ion.  

4. Event Structures. 

It is known tha t  the posets of computat ions  C°°(p) are complete part ial  orders (el. [1,3] ). But we 

can say much more: the main result of this note is that  Coo(p) is the poset of configurations of an 

event structure.  The  following definition is a slight variat ion of Winskel 's one [23] - the domain 

of configurations will be coherent,  for inconsistency is given by a binary relation: 

DEFINITION (LABELLED EVENT STRUCTURES). An  A-labelled event structure is a structure 

(E,  -<, #, ~) where 

(i) E is the (denumerable) set of events, 

(ii) -< C E x E is an irreflexive relation (i.e. e -~ e I =~. e ~ el), the flow relation; 

(i i i)# C_ E × E is a symmetr ic  relation, the conflict relation; 

(iv) ~: E ~ A is the labelling function. 

Here too we denote ~ the reflexive closure of #. Note tha t  we do not  assume tha t  the conflict 

relation is irreflexive. We shall use self-conflicting (or inconsistent) events, which are the events 

e E E such that  e # e, in the interpreta t ion of the restriction operator.  

We shall always draw event structures up to isomorphism, tha t  is omi t t ing  the name of events; 

moreover  in the figures we shall represent e -< e I by e ~ e t. For instance 

a # b 

v' \ 
e 

is a s t ructure  with three events e, e ~ and e" respectively labelled a, b and c such tha t  e -~ e" and 

e #  e t. 

tn [6] we have introduced a notion of computa t ion  of an event s tructure,  which is a labelled 

poser of events. This  is jus t  what  Winskel calls a configuration, supplied with the causality 

ordering on events which holds in that  configuration. To define the computat ions  of an event 

s t ructure S = (E , -~ ,# , l )  we need to introduce an enabling relation F ~- e, for e E E and F _ E .  

Let us denote by Cs the set of confllct-free subsets of E ,  tha t  is: 

F E Cs  ~:~det F ~__ E • Me, e ! E F -~(e # e l) 

We interpret  e ~ -< e as meaning "e ~ is a condit ion for e ' .  Then  F ~- e means tha t  F is a maximal  

set of non-conflicting conditions for e, tha t  is: 

F t - e  ~'ae~ e ' E F  =~ e ' - < e a n d  

F U {e} is conflict-free: F U {e} E Cs and 

F is closed under non-conflicting conditions for e: 

e' -~ e & e t ~ F =~ 3e" E F e' # e" 

One can see that  the s t ructure  (E,  O s , k )  is what  Winskel calls a stable event  s t ructure  - w h e r e  

k is the minimal  enabling relation (el. [23] ) - if we relax the hypothesis tha t  the consistent sets 

are finite. 
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DEFINITION (CONFIGURATIONS), Given  an A-labeIled event structure S = (E, 4 ,# ,  ~) a con- 

figuration of S is a set of  events F C E such that 

(i) F satisfies the finite causes property: for all e E F there exists { e l , . . .  ,e~} C_ F such that 

er~=e&'~i3GC_.{ez  . . . . .  ei-1} G~-ei 

(ii) F is conflict-free (or consistent): F • Cs 

We denote by Z°°(S)  the set of configurations of the event s t ructure S. This set, ordered by 

inclusion, has a nice property: the poset (:Too(S), C) is a finitary prime algebraic coherent poset, 

that  is a coherent dI-domaln,  el. [20,23] - in fact our event structures are jus t  another concrete 

presentat ion of such domains. For F a configuration of S, we denote < y  ~--def ('~ CI (F  × F))*, the 

reflexive and transit ive closure of the restriction of -< to F .  Then we have: 

LEMMA. For any configuration F • ~roo(S) of  S the relation <-r is an ordering such that  

e<_Fe' 4~ VG•3roo(S)  G C F & e t E G  ~ e • G  

Moreover G C F is a configuration o r s  i f  and only i f  it is a left-closed subset o f F :  

V G C F .  G e F ° ° ( S )  ~ e @ G & e l < _ v e  =~ e ' • G  

The proof is given in [23]. The ordering < F  is the (local) causality relation in F.  The restriction 

l [ F  of the labelling £ to F is denoted i v .  

DEFINITION (COMPUTATIONS). Given an A-labeJled event s t ructure  S = (E, ~<,#,£) a compu- 

tation of S is a 1a belied poser (F, < v ,  ~v) where F is a configuration of  S. 

We shall denote by ~°° (S)  the set of computat ions of S. The previous result allows us to regard 

this set as ordered by inclusion, without  ambiguity since for any configuration F there is only one 

ordering < and only one labelling £ such that  (F, _<,g) is a computa t ion  of S. As we have shown 

in [6], we can define a t ransi t ion relation on event structures,  where at each step the performed 

action is a computa t ion  - that  is a labelled poset. For any computa t ion  P = (F, _<v,~v) of 

S -- (E, ~<, #, ~), let us define the remainder S[P] of S after P by: 

~ E ' = E - F  
) -<'=-< N (E' x E')  

S[P]=def(E' , -<' ,# ' ,g ' )  where ] e # ' e '  ~ e # e ' o r e = e ' & 3 e " • r e # e "  

~, ~' = ~[E' 

Then the t ransi t ions are 

s ~ s[P] for P e ~oo(S) 

There are two ways of interpret ing a CCS term as an event structure:  either we directly define 

from the syntactical materials a s t ructure $ (p) for each closed term p, or we define a construction 

on event structures for each CCS operator and interpret CCS by a morphism of algebra I °°. We 

shall take both ways; the constructions we use are adapted from those of Winskel [22,23]. 

4.1 Let us first define $ (p) : (~ (p),-<, # , l ) .  The events are occurrences of possible future actions 

for a term, so we define the set 0 of occurrences. We just  have to extend the syntax of proofs, 

allowing them to pass through a guard a:p ,  using the symbol a :  O}, which will be denoted ~/t. 

The syntax of occurrences is thus 

o ::= ~= re (o )  I ~o(o) 1 ~ (o)  I ~(o,o') I oo(o) I o~(o) I p~,(o) 
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For instance the occurrence of the action b in a :  b: nll is "~("/b). We extend the labelling to 

occurrences, in an obvious way: ~(-/~(o)) = ~(o). Let us now define the notions of conflict and 

flow on occurrences. The conflict relation o # o ~ is the least symmetric relation which satisfies the 

following, where we denote by ~ the reflexive closure of #: 

(B1) i # j =~ a~(o) # ai(o'  ) 

(m) o ~ o' ~ { ~o(o) # ~(o',o") 
~1(o) # ~(o",o') 

{ ~,(o1 # ~(o'1 
o~(o) # o,(o') 

(B3) o # o' =~ p~(o) # p,~(o') 

~'(o) # ~'(o') 
(B4) nm(e(o)) --- a ==~ p~(o) # p=(o) 

(BS) oo ~ o~ or o~ ~ ol and (oo, ol) # (o~,ol) =~ ~(oo, ol) # ~(o~,o~) 

oo # o0 or o~ # ol ~ ~(o0,o~) # ~(oo, o~) 

In the structure S(p), the flow represents possible immediate precedence. Quite obviously the 

relation o -< # is brought out by the action construct  a :  p - loosely speaking "/~ -< q'~(0). More 

precisely -< is the least relation on 0 compatible with the occurrence constructors tha t  satisfies 
the following clauses: 

(C1) qa -< '7~(0) where 0 is any proof term 
{ ~(o,o") -< ~o(o') { ~o(o) -< ~(o',o") 

(C2) o "< o' :=~ ~(o",o) -< r l (o ' )  and ~rl(o) -</~(o",o') 

{ ~(o, ol) -< ~(o',o~1 
(c~) o-< o' ~ ~(oo,o) ~ ~(o~,o') 
The relation -< is irreflexive; note on the other hand  that  it is not  transitive: for instance if oo -< o~ 

and ol -< o~ then ~ro(oo) -< ~(o~,ol) and  ~(o~,oi) -< ~rl(o~) bu t  we do not  have ~ro(o0) -< ~TI(O~). 
Let us see some examples: in the term r = ( a :  a :  nil II a :  nil) we have 

~(,~,-ya) ~ ~(, '(,~),-~) 
~(-y~, za) # ~(-~'(~), ~a) 

This shows that  # and -< are not  necessarily disjoint. The following example shows that  the 

transitive closure of -< is not disjoint from ,-- (extended to occurrences in the obvious way): in the 

term q = (a:  a :  nll II ~ :  b: nl 0 we have 

~o(~o) -~ ~(4~(z~),,~) ~ ~,(z~('~b)) 
~0(~o) 

Note also that  -< is not  asymmetric;  for instance in the term (a : fl : nit 11 fl : ~ : nil) we have 

*(~,~(~a))  ~ *(~'(~),~3) ~ *(z~,z'(~a)) 

To define the s tructure S (p) it just  remains to define the set 3 (p) of events, which is a subset  of the 

set 0 of occurrences - it should be understood that  in S(p) = (3(p),-% #, t )  the flow and conflict 

relations are the restrictions to 3 (p) of the relations we jus t  defined on occurrences. The set ~ (p) 

of events of p is defined inductively as follows: 
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(El )  ~ .  e e ( a :  p); 
if o e  e(p) then ¢ ( o )  e e(a" p) ; 

(~2)  it o e e(p~) then ~ ( o )  E e(po tl P~); 
if o e e(po) and d e 8 ( p l )  and l(o) = £(o0, then ~ ( o , d )  e 8(po 1t p~); 

(ES) if o E  8(pi) then ai(o) e 8(po +p~) ;  

(E4) if o E  8(p) then pa(o) e 8(p\ct) ;  

(Eh) if o E  e(p[I.tx.p/x]) then o e  8(~x.p).  

For instance if r = (a :  a :  nil It ~ :  b: , , ) \ ~  then S(r)  may  be drawn 

a ' .a; 

• . ~ .  b 

where the  dot ted  circles around ct and ~ indicate tha t  the corresponding events are self-conflicting. 

In this s t ructure  the enabling consists of (identifying the events with their  labels) {a} F r and  

{r} F b. Clearly a and ~ cannot  occur in a configuration since they are inconsistent.  

4.2 On the other hand,  the constructions on event s t ructures  corresponding to CCS operators  are 

as follows: 

(i) nll is the empty  event s tructure;  

(ii) if S == (E,  -<, #, £) then a :  S = ({e} U E,  -<', #, £') where 

• e ~ E  

• e • l e  I v~ e - K g o r ( e = e & 0 ~ - g )  

• £'(~) = a a . d  t'(e) = t(e)  for e e E; 

(iii) if Si = (El,  -<i, #i, t i )  for i = 0,1 then So II $1 = (E, -<, #, g) where 

• E = (Eo x {*})  U ({*} x E l )  U { ( e o , e l ) l e i  e Ei & Z(eo) = £(e l )}  

where * ¢ Eo u E1 

• e -~ e' ~ e = ( z , u )  & e' = ( z ' , v ' )  and x d0 ~' or V -<~ V' 

where, by convention, * :~i z and z .¢i * for any z. 
& e'  = = d  or  o r  

• e # d  ~ ~ ( x , y ) = e ' & x # o x o r y # 1 y  

where, by convention, -,(* ~i z) for any z. 

• £(e,*) = to(e),  i (* ,e )  = t l ( e )  and t(eo, el)  = r 

(iv) if S / =  (E / , -< i ,# i , t i )  for i = 0, 1 then So + $1 = (E,  < ,# ,~)  where 

• E = {(i, ei) lei EEi} 
• e -~ e' ~ e = ( i ,  e , )  & e ' =  (i ,  e~) & e~ - ~  e~ 

{ ' e = (i, ~;) & e ' =  (i, e~) & e~ #, e~ or 
• e # g  ¢* e = ( i ,  e i ) & e ' = ( j , e } ) & i # j  

• e ( i , e )  = t ~ ( e ) .  

(v) if S = (S ,  < , # , £ ) t h e n  S \ a  = ( S , - < , # ' , t ) w h e r e  

• e # ' e '  ~* e # e ' o ~ e = e ' & . ~ ( t ( e ) ) = .  
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The interpretat ion I °° (p) is given by the unique continuous morphism I °° from the free algebra of 

infinite trees to the algebra of labelled event structures (I  oo (~tx.p) is defined by a s tandard  fixpoint 

construction,  el. [22,6] ). Let us see some examples. The structure I ° ° ( ( a  : fl : nil II a : nil)) may be 

drawn: 
a , . # . . r . . # . . ~  

This example shows that  Ioo(p) may contain a substructure  V '  (e/. [6]).  The interpretat ions of 

( a :  a :  a :  nll l[ ~ :  nil) and (a:  a :  nil [I a :  b: nil) may be drawn respectively 

# T.  
/ /  # 

a # 

a li' a - 1  

The second s t ructure  contains a subst ructure  N and  a subst ructure  V, cf. [63. An example, 

suggested by M. Nielsen, shows that  -<* is not  an ordering: if we interpret  (a  : a : ~ : nl111 fl : b : ~ : nil) 

we get 

lr 
a - .  # . .  r . -  # . .  \ / \ / "  

a b 

/ 
f l ' '  # ' - r  . . . .  

II 

Note that  if r = ( a :  a :  f l :  nil I1 ~ :  b: ~ :  n l l ) \ a \ ~  then in the s tructure I°°(r) the enabl ing is such 

that  F ~- e =~ F ~ (~, so that  it has no configuration. The same is t rue for the interpretat ion 

of ( a :  fl : nil II ~ :  &: n l l ) \ a \~ ,  where the enabling relation is empty. One can also see tha t  in the 

interpretat ion of ( ( a :  fl:  nit I[ ~ :  nil) II a :  ~ :  nlt) \a,  fl, there is no enabl ing for the fl communication.  

THEOREM 1. For all closed CCS terms p the poser (C°°(p), ~) of computations of p is isomorphic 
to the poser (ffcc(S(p)),_c) of computations of the labeI1ed event structure S (p). Moreover the 
structure S (p) is isomorphic to I °° (p). 

We could prove moreover that  there is an exact correspondence (as in [6]) between equivalence 

classes of finite computat ions and the pomset transit ions on event structures,  tha t  is between the 

pomset t ransi t ions p -~P p' associated with the sequences of proved transi t ions 

a l  , O1 a n ,  ~n pt  
P . . . . . . .  ~P l  "'" Pn--1 

up to permutat ions,  and the transit ions 

s (p) P s (p)[el 
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Therefore we can say tha t  we have given an operat ional  meaning to the event  s t ructure  semantics for 

CCS. This provides also for a "truly concurrent" operational semantics for CCS, which generalizes 

the one we have given in [6] for a restricted language. This "poset semantics" is similar to the 

one given, via concurrent  histories, by Degano, De Nicola and Montanar i  in [11]. 

Its seems fair to say that ,  due to communicat ion,  the mathemat ica l  theory for CCS is not 

especially aesthetic. Communicat ion may be achieved by other means,  as proposed in [5,7] - but  

there, no mathemat ica l  theory is given. If we abandon communicat ion,  we get a more satisfactory 

theory: the  syntax for concurrent  - but  non communicat ing - systems is 

p ::= , " t =  I ,~: p l (p II p') t ( p +  p') I ~'=.p 

where aEA, and the set A of actions does not  need to have any part icular  structure.  The operational 

semantics is the same, but  obviously without  the communicat ion rule. Then  the "permutat ions of 

transit ions semantics" is exactly the semantics we have given in [6] for this calculus (if sequential 

composit ion p ; q of [6] is restricted to p E A), and the corresponding constructions on event 

structures are much more pleasant than the ones presented here. However, as is noted in [5] 

and [7],  the resulting calculus is too asynchronous. The next  section presents a first a t tempt  to 

remedy this deficiency. 

5. Synchrony and Asynchrony. 

In [18], Milner proposed the synchronous calculus SCCS, based on a s t ructured set of actions - 

namely a commutat ive  semigroup (A,  -). The main new construction was the synchronous product  

(p x q). However, Milner noted in [19] that  " I t  was not  made suf f ic ient ly  clear tha t  SCCS provides 

an asynchronous process model which stands In I ts own r ight" .  To some extent,  the calculus MEIJE 

of [4] - which is a variant of SCCS - does not  suffer this defect. It was shown in [4] that ,  among 

several equivalent formulations,  this calculus can be built  upon two basic kinds of parallelism: 

interleaving (p [ q) and synchronous product  (p x q). In this formulat ion of MEUE, the sum is 

not primitive,  but  may be derived using communication.  From now on we shall deal with this 

calculus, parameterized on a free commutative semigroup (A°,.) of actions, generated by the set 

A of atomic actions. We let aside communicat ion,  as well as the restriction operator,  which could 

be handled as in the previous sections, with respect to a commuta t ive  group of actions. Since 

we ignore communicat ion,  we need to regard sum as a primit ive operator  here. We shall give 

a so-called "non-interleaving" semantics for (p [ q), thus it is be t ter  to rename the two parallel 

operators asynchronous and synchronous parallelism respectively. Moreover we shall denote the 

synchronous parallelism by (p ® q), in order to avoid confusion with the  cartesian product ,  and we 

denote asynchronous parallelism by (p I[ q), as done so far in this paper.  Therefore the syntax of 

our calculus for synchrony and asynchrony - let us call it C - is 

p : : =  ° "  I ~ ( ,~: p t (p II p') I (p + p') I (p ® p') I , ~ .p  

where a belongs to the set A of atomic actions. The syntax for proofs of transitions is now 

O :::  "r~ t '~o(O) l ,q (e )  t oo(e) { ~ ( e )  1 ,~(o,e') 

and the inference rules are 
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a~ ~'/a 
action ~- a : p . . . . . .  ~ p 

asynchronous parallelism I p ~ p' k (p 11 q) a, ~ro [8)(p,  II q) 

b, O' b, ~r,(O') 
asynchronous parallelism 2 q -- ' --* q' ~- (P fl q) (P tl q') 

a, O p, a, oo(O) 
s u m l  p V (p+q)  ~p '  

b, o' b,  ~ (o'). 
s u m 2  q ~q' ~- ( p + q )  q' 

a ,  b, O' a-  b, ~(O, O') 
synchronous parallelism P 0 p , ,  q , ~ q' k (p ® q) + (p' ® q') 

fixpoint p[#x .p /x]  a '  O~ p t }- tzx.p a,  O p t 

We shall not repeat the definition of the equivalence by permutations and the associated preorder: 

it suffices to redefine the notion of concurrency - the diamond lemma will be the same as before. 

In E, the source of concurrency is asynchronous parallelism, therefore ~-~ is the least relation 

compatible with the proof constructors such that 

V O V O ' i # j  ~ . i ( O ) ~ j ( O ' )  

We still denote by ~ the permutation equivalence on sequences of (proved) transitions, and by 

(C°°(p), ~) the ordered space of computations of p. We could define an event structure S(p) for 

each term p of C, as in the previous section, but it is more instructive to give the constructions on 

event structures which allow us to define !oo(p) for each closed term p of {2. 

As noted by Girard ( [12] ) there are (at least) two natural ways to combine two sets of events 

E0 and El :  either we juxtapose these sets, by a disjoint union E0 W El,  or we form their cartesian 

product Eo × EI.  In Girard's terminology, the first kind of construction defines additive operators 

whereas the second one defines multiplicative operators (as a matter of fact, Girard proposes his 

constructions for what he calls coherent spaces, which are event structures without causality). For 

what regards the additive operators on event structures, there are three natural constructions, 

according to which relation, among causality, concurrency and conflict, is set between the events 

of E0 and El .  These are the constructions we used in [6], where our calculus only stands on 

the additive (asynchronous) side. On the other hand, one of the additive operators, asynchronous 

parallelism, is missing in SCCS. The construction a:  S is a special case of sequential composition, 

namely lifting; it is the same as for CCS, and so is So + $1. For what regards the construction 

So tl $1 = (E,-<,#,g), it is given as follows, assuming Si = (Zi,-<i,#i,~i) for i E {0,1}: 

* E = E o ~ V E I = { 0 } x E o U { 1 } × E 1  

. (i,  e) ~ (j ,  e') ,~  i = j e e ~ e' 

. ( i ,  e) # (j ,  e') ¢~ i = j s~ e #~ ~' 

. e ( i ,~ )  = l~C~) 

The asynchronous parallel composition and sum are analogous to Girard's additive conjunction 

and additive disjunction respectively. On the other side, for what regards concurrency in the mul- 

tiplicatives, Girard proposes three constructions: conjunction, disjunction a:nd implication (times, 
par and entail, or linear implication, in Girard's terminology). We cannot see however what could 

be a diamond lemma if we allowed multiplicative disjunction or implication as process constructors. 

Moreover, our interpretation of the synchronous product, though a multiplicative one, is slightly 
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different from Girard's multiplicative conjunction, since here the same event cannot be used twice 

in a computation. We define thus So ® $1 = (E0 × E1,-<,#,£) where 
! ! 

• ( e0 , e l )  -< ( e 0 , q )  ~* ~0 -<0 e~ or ~1 -<1 e~ 
{ ' '  , , ( e0 ,~ l )  ¢ ( ~ o , q )  ~ eo ~o 4,  or ~1 ~1 e l ,  or 

• (e0 ,~ l )  # (~0,~1) *~ ( ~ 0 , ~ )  = ( e~ ,e l )  and ~o #0 ~o or e~ #1 ~1 

• ~(~o,~1) = ~0(eo)-  e1(~1) 

The morphism I °° from C to event structures is now fully determined. For instance the inter- 

pretation of (a: b : nl 0 ® c : nil is a structure with two events e and e' labelled a • c and b- c such 

that e -< e' and e # e', therefore e' cannot occur in a computation of this structure. Similarly 

the interpretation of (a: ,11 It b: nil) ® c: nil consists of two events such that e # e', therefore the 

only two non-empty computations are a .  c and b. e. In both these examples, conflict arises from 

the sharing of a "sub-action". As another example, we can draw the interpretation of the term 

(a: nll }I b: rill) ¢D (C: d: rill) as i! 
a . c  . .  # - .  a . d  

# -< # 

b . c  . .  # . .  b . d  
ll 

The result we had for CCS, relatin; the event structure semantics to permutations of transitions, 

holds also for C: 

THEOREM 2. For any closed term p of C the poser (C ~ (p), U_) ofcomputat;.ons o fp  is isomorphic 

to the poser (Jroo(ioo (p)), C_) of computations of the labelled event structure Z °O (p). 

We have announced that this result remedies the lack of synchrony one finds in CCS without 

communication. Let us state this point more formally: in [6] we gave a direct operational meaning 

to the event structure semantics for the asynchronous part of the language C (without ®). This 

was achieved by giving rules to prove transitions p u~ p, where u is a pomset, but it was not clear 

how to describe such transitions for p = (q ® r). The equivalence by permutations brings an answer 

to this question. Indeed, the problem is the same as for CCS communication: it lies in the fact 

that parallel composition (either CCS composition with communication, or SCCS synchronous 

product) does not preserve the computations, since it may introduce conflicts. 
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