
P e r m u t a t i o n of T r a n s i t i o n s :

A n E v e n t S t r u c t u r e S e m a n t i c s for C C S a n d S C C S

GErard Boudol & / /a r ia CasteI1ani

INRIA Sophia-Ant ipol is

06560-VALBONNE F R A N C E

Abstract. We apply Berry & L~vy's not ion of equivalence by pe rmuta t ions to CCS and

MEIJE/SCCS, thus obta in ing a pomset t rans i t ion semantics for these calculi. We show tha t this

provides an opera t iona l coun te rpar t for an event s t ruc ture semant ics for CCS and SCCS similar

to the one given by Winskel.

Keywords: process algebras, pomset - labe l led t rans i t ion systems, event s t ructures .

1. In t roduc t ion

2. Pure CCS: te rms and t rans i t ions

3. Pe rmuta t ion of t rans i t ions

4. Event s t ructures

5. Synchrony and asynchrony

Contents

1. Introduction.

A computa t iona l sys tem evolves by e lementary computa t ions from one s ta te to the other , in nota-

t ion s - ~ s t. Examples of s ta te changes are t rans i t ions of a machine, ~- reduct ions of ~- terms and

rewri t ings in a t e rm rewri t ing system. When s ta tes are abs t rac t p rograms one may ext rac t from

their syntact ica l s t ruc ture some indicat ion of what has been per formed and where it has happened .

In other words, one may decorate t rans i t ions wi th a label w, thus ob ta in ing s w s~, where w is

an occurrence of action. Now assume tha t s ~ so and v 8--+ s l : in many cases we may have the

intui t ion tha t these two moves are compatible, or independent . This means tha t we are able to

define what remains of one move after the other , in no ta t ion v/u and u/v, in such ~ way t ha t v/u

can happen in s ta te so, t ha t is so v /u s t, and s imilar ly s l u/v> s ' . If u and v are real ly compat ible ,

we should be able to perform them in any order, wi thout affecting the result , t ha t is: s t = s ' .

This is known as the diamond property, or the paral le l moves proper ty . Moreover, two sequences

of t ransi t ions should be regarded as equivalent, if they are equal up to commuta t i on of compat ib le

412

moves, typically:

s U~so v / u sl ~_ s v s l u / v s I

This is the essence of Berry and L~vy's equivalence by permutat ions for sequences of (elementary)

computations.

This equivalence was first elaborated by Lgvy in his thesis (e/. [15]) upon Church notion of

residual for the A-calculus, and then used for recursive program schemes in [1]. It was further ex-

tended to deterministic term rewriting systems by Huet and L~vy in [14], and to non-deterministic

ones by Boudol in [3]. In any case, this equivalence allows one to associate with each ~state" a

complete partial order of computations. These computations are equivalence classes of sequences

of elementary moves, ordered by the prefix ordering, up to commutations. A similar notion is used

for Petri nets by Nielsen, Plotkin and Winskel, who define in [20] an equivalence that "abstracts

away f rom the ordering o f concurrent firings o f transit ions" (this is also used by van Glabbeek and
Vaandrager in [13], and by Best and Devillers in [2] ; a similar idea is that of trace of Mazurkiewicz

[16]). Moreover they show that for nets the ordered space of computations has a nice charac-

terization: it is the space of configurations of an event structure. As a matter of fact, the three

basic connectives of event structures - causality, concurrency and conflict - are already present

in computations. Roughly speaking, two occurrences of actions (events) u and v are consistent

(non-conflicting), with respect to a state s if they can appear in the same computation of s:

U V
8 . o . - - ~ . . . ----~ . . .

In this case they are concurrent if they may be permuted:

U ~ 73 U
S . . . - - + . . . - - - ~ . . . ~___ S . . ° ~ ° . . - - + . . .

Otherwise they are causally related: one of them must precede the other.

In this note we propose an equivalence by permutations for Milner's calculi CCS and SCCS

[17,18], and show that the ordered space of computations of a term is the poser of configurations

of an event structure. The events are simply occurrences of actions, and, roughly speaking, they

are compatible if they lie on different sides of a parallel system, though some complications arise

from communication. We show that each equivalence class of computations (up to permutations)

may be represented as a one step transition, where the action is a labelled poset of events. With

the exception of communication, this corresponds exactly to our semantics for "true concurrency"

in [6,7]. Our operational semantics for CCS is similar to the one given by Degano, De Nicola and

Montanari in [11] ~ who obtain a poset transition from a sequence of "atomic transitions" that they

call atomic concurrent histories. The poset transition semantics provides us with an operational

counterpart to the interpretation of CCS terms as event structures. However it remains to be

checked that our constructions coincide, at least in interpreting CCS, with those given by Winskel

in [22] (see also [23]).

2. Pure CCS: terms and transitions.

As in [17], we assume a fixed set A of names. We use a, fl , . . , to stand for names. We assume a

set ~ of co-names (complementary names), disjoint from A and in bijection with it: the co-name

of a is h, and its name is nm(a) -- a -- nm(h). Then h = A U A is the set of labels. We shall use

4 t 3

A to range over A, and extend the bijection so that ~ = A. As usual the set A of CCS actions is
A -~ A U {r}, where r is a new symbol, not in A; by convention the name of r is T. We use a, b,

c,... to range over A. We presuppose a collection X (disjoint from A) of identifiers, and use x, y,
z,... to range over identifiers.

The action construct of CCS will be denoted by a: p, while the parallel composition is (p II q)"

We shall not use the relabelling operator, although it would not introduce any difficulty. The

syntax of (pure) CCS terms is given by the following grammar:

p ::= . " I = I a: p I (p II p') I (p + p') I (p\oO I , = .p

We shall use p, q, r , . . . to range over terms; finite terms - built wi thout fixpoint I~x.p - should be

viewed as finite trees, wi th parallel composit ion and sum as binary node constructors, action and

restriction as unary ones (with a parameter in A and A respectively), and nil as constant. However

this representation will remain implicit throughout this paper. For instance the te rm

r = ((~ : . , II (a : . , + Z: .H))\~)

will be identified with the tree:

I / \
nil ~ ~J

I I
nll nll

As is s tandard, the fixpoint construction binds the defined identifier, and subst i tut ing q for x in

p may require renaming the bound variables of p in order to avoid captures; the result of such a

substi tut ion is denoted p [q/x]. Terms involving fixpoint define infinite trees, obtained by unfolding

#x.p into p[l~x.p/x] ad infinitum. As it is usual, we assume tha t there is a constant fl, which is

not a CCS term, in order to interpret diverging terms such as I~X.X for instance.

The semantics of CCS terms is given by means of inference rules, allowing one to prove

transitions of the form p a p ~ for terms. We assume these rules to be known (see [17]). Modern

proof theory shows that there are some advantages to reap from a syntax for proofs - if we think

of inference rules as proof constructions. The case of CCS is very simple, since the validity of a

"proposition" p _+a p~ only depends on the s t ructure of the te rm p. More precisely, a proof of such

a transi t ion is jus t an indication of how we get the action a from the t e rm p. In the simplest case,

this indication is a pa th which leads to an (outermost) subterm a : q. But the action can also be

a communicat ion r , in which case this indication is a pa th to a pair of complementary subterms

)~ : q and A : q~. Then we have to devise a syntax for these paths, which are some kind of initial

subterms. Let F be a set of function symbols, which are symbols with arity, f rom which we build

terms. Then with each f E F of arity n we can associate a collection of new symbols fro, one

for each m _C {1 , . . . ,n} , so that the arity of fm is the cardinali ty of m. For instance the "split"

t e rm f{i i~ } (Q~,- . - , tik) represents an initial sub term of f (t l , tn) obtained by deleting some

arguments of f .

I
It

J

414

In the case of CCS, we only need some of these constructs, namely a : ¢, 11{1}, tt{2} and 11{1,2}, +{1}

and +{2}, \a{1}. We shall use specific names for these, respectively %, r0, ~rl, 6, a0, a l and p~.

The syntax for proofs of CCS transitions is thus given by the grammar:

0 ::= "tat ~ro(O) [~'1(0) 16(0,0 ') 1o0(0) lo1(0)]p,:,(O)

One should note that although we call them proof terms, the 8% will not in general represent valid

proofs; for instance pa(q~) does not correspond to any CCS transition, and the reader should be

able to find other kinds of examples. The valid proofs are those built by means of the formation

rules below. Usually one denotes by 0 : ~ the fact that 8 is a proof of the proposition <I,; since
a , 0 p,

we shall use sequences of transitions, we prefer the notation p for: 0 is a p r o o f o f the fact

t ha t p pe r fo rms the action a and becomes p' in doing so. We call these enriched transitions proved

transitions. The rules of inference (and formation of proofs) are the following:

act ion }- a : p a , ~% p

a, a, ~ro(O)
parallel compos i t ion 1 P 07 P' }- (P t1 q) ' (P']t q)

b O' b, ~rl(O')
parallel compos i t ion 2 q ' ' q' ~- (P 11 q) (p]1 q')

) , , O p, , X O' r , ,~(O,O')
commun ica t i on P q ' ' q' ~- (P II q) ' (/ I I q')

sum1 P O p, ~ (p+q) a,,,o(O_~) p,

b, O' b, 0~I (O')
s u m 2 q >q' ~- (p + q) ~q'

a, o p, ,,,~Ca) # ,~ ~- (p\,~) a, p,~(o)(p,\,~) res tr ic t ion p ,,, ~ ,

a , O p,
f ixpoin t p[ux.p/x] ~p' }- gx.p ,, ,

It should be clear that if we drop the proof terms these rules are exactly those of CCS. Note also

that the proofs actually hold for the (infinite) trees that we get by unfolding the t~x.p's, since the

(meta) rule for fixpoint does not introduce any special proof constructor. Let us see an example:

we have for the previous term r = ((a: nll II (~: ." + Z: .,,))ks)

and

Decorating the transitions w i th their proofs provides us w i th a "maximal" concrete information.
This can be weakened in various ways to obtain more abstract semantics. For instance we can

extract from a proof 8 of a transition p-~a p, the local res idual associated with this proof, as

defined by Castellani and Hennessy [8,9] (we omit the formal definition). Then one may consider

decorated transitions of the form p a , p " p, where p" is the local residual, and devise an enriched

notion of bisimulation.

415

As a mat ter of fact, we could have used transi t ions p 0_+ p,, since the action itself is determined by

the proof: it is the label £(0) of the proof, defined as:

(i) g("/a) : a;

(ii) g(f(0)) = g(0)for all unary proof constructor f ;

3. Permutation of transitions.

In order to define the equivalence by permutat ions on sequences of transi t ions, we first need a notion

of concurrent proved transitions. Roughly speaking, two transi t ions are concurrent if they occur

on different sides of a parallel composition, whereas they are in conflict if they occur on different

sides of a sum. However some complications arise from communicat ion, which may introduce

new conflicts. Typically, two communicat ions will be in conflict if they share one component.

Conversely, they will be concurrent if they are pairwise concurrent - i.e. they have concurrent
(corresponding) components.

The relation of concurrency on proved transit ions is induced from a relation of concurrency

between proof terms, denoted 0 .~ 0'. The relation ~-~ on proof terms is the least symmetric

relation compatible with the proof constructors which satisfies the following clauses:

(A1) ,~o(0) --~ ,~1(0')

0 .-. 0' = . . f ,~o(0) -~ eCe', o") (A2)
t ,~(0) ~ ~(0",o')

~or instance, considering the term ((,~: n, II/~: n,) 11 a : . ,), we have ~ro(~, ('~e)) "-" a (~o('~) , ' r2) .
As regards communicat ion, compatibil i ty of ~-~ with the constructor ~ amounts to requiring:

Note that 0 ~-~ 0' =~ 0 ~ 0'.

a , 00 b, 01
DEFINITION (CONOURRENT TRANSITIONS). Let to = p ~ Po and t l = p ~ Pl be two

proved transitions for the same CCS term p. The transitions are concurrent, in notation to ~-, Q,
i f and only i f Oo ~-~ 01.

Note that the concurrency relation between transi t ions is symmetr ic and irreflexive. The two

transit ions of the example above are not concurrent sinc e they made two different choices at the

subterm (2 : nit + ~ : nil). Let us see another example of conflict, arising from communicat ion: if q
is the term (~ : nil I[(a : nil [[a : nil)) then the two transit ions

q q (n" tl (~: n" II ""))

are not concurrent , since they share the same "sub-transit ion" r0(~/2). The conflict relation will
be formalized later.

We define now the residual 0/01 of a proof term by a concurrent one, namely what is left of

the proof 0 after 0'. This residual may differ from the proof term itself because of nondeterminist ic

choices. For any concurrent proofs 0, 0 t, the residual 0/0 ' is defined by:

416

,: # j ~ ~,:(o)/~s(o') = ~,:(o)

f' ~oCO)/6(o', o") = ~oCO/e') and
) ,sCr, O")/~oCO) = ,~CO'/o,e")

o ~ o' ~ j ~,Co)/,~(o",o') = ~1(o/¢) and

f ~,(O)/~,:(O') = ~,:(O/O')

L p,~CO)/poCO') = p.CO/O')
Oo~ o; and 01 ~ O i ~ ,~COo, Ol)/6(o~,,ol)= ~(Oo/O;,O~/fi)
Let us look at an example, which shows in which way residuals are affected by choices. The te rm

p : ((a: nil tl b: nll) + c: nil) may do the proved transitions:

oo(~oCa)) C"" II b . ,) , oo(~,(b)) Ca" . . il . .) p) : p

So the proof of the b-transition is aO(r l (b)) . On the other hand, once the a-transi t ion has hap-

pened, the proof of the b-transition becomes ~1 (b) = ao (~rl (b))/ao (~r0 (a)), and we have:

("" II b: . .) (~ lCb)) (. . It "")

The following result, also known as the parallel moves lemma, states a "conditional Church-Rosser

proper ty" , namely that two transit ions are confluent whenever they are concurrent. It is much

simpler in CCS than in >,-calculus or te rm rewrit ing systems, since a proof of a transi t ion cannot be

duplicated or deleted by another concurrent one; it is always left unchanged, up to the resolution

of choices.

a, Oo b, 01
LEMMA (THE DIAMOND LEMMA). Let to -- p)Po and t l : p--------+pl be two proved

b, o,/Oo ~ and transit ions. I[they are concurrent then there exists a unique term ~ such that Po

a, Oo/Ol _

Pl ~ P.

This proper ty is in fact much stronger than confluence: it says tha t a (proved) transit ion survives

any concurrent one. Therefore we can adopt the s tandard terminology ([1,3,14,15]): the transit ion

b, 01/0o
t~ = P0 - - ~ ~ (with the notat ions of the diamond lemma) is the residual of t l by to, denoted

a, 0o/01>
t l / tO and similarly to~t1 = pl is the residual of to by t l . This is the basis of the

equivalence by permutat ions .

Each CCS term p determines a set T°°(p) of finite or infinite sequences of proved transitions

of the form
a l , 01 a n ~ On

P--'-------+ P l " ' " Pn--1 > P n " ' "

Equivalently we could have presented these as sequences of steps:

arc , 0rc
t l ' " t , ~ ' " where trc : prc-1 - - ~ p ~ (a n d p 0 = p)

The set of finite such sequences is denoted T(p) , and we shall denote ss ' the concatenation of

s E T(p) and s ' E T°~(q), which is only defined if s ends at q. We are now ready to define the

417

permuta t ion equivalence and the permuta t ion preorder on T (p): intuitively two (finite) sequences

of proved transi t ions are equivalent if they are the same up to permutat ions of concurrent steps;

the preorder is jus t the prefix order up to permutat ions. We shall denote by << the usual prefix

order:

Vs e T°°(p) Vs' E Too(p) s << s ' ¢~def s = s ' or 3s" s s" = s '

DEFINITION (THE PERMUTATION EQUIVALENCE AND PREORDER). Le t p be a CCS term.

The equivalence by pe rmu ta t i ons on T (p) is the least equivalence ~- such tha t

soto(t~/ to)s~ ~- ~ot~(to/t~)s~

(provided tha t to "J t l and tha t concatenat ion is defined). Th e preorder <~ is given by

80 ,~, Sl "~:~def ~S S0 << S ~ 8 ~--- Sl

The typical example of equivalent sequences of transit ions is (omitt ing the obvious proofs):

(a : p I I b : q) - - a (pilb:q) b (p l i a) _ (a:pllb:q) b(a:plIq) a (pilq)

Here one can commute the two steps. There is another kind of sequences of t ransi t ions where this

is not possible, for a step is caused, or created, by a previous one. The typical example is obviously

a : b : n l l a b : nil --~b nll

The main idea of this note is that , if we only retain the actions and their possible permutat ions ,

we can represent the equivalence class of a sequence

al , O1 a n , On pt
s : p)

as a one s tep transi t ion p P-~ p' where P is a p o m s e t (partially ordered mult iset [21]) of actions of

A, - tha t is an isomorphism class of posets labelled in A. Such pomset transit ions were introduced

in [6] for a subset of CCS. Let us formalize this idea: we shall write s --,¢ s ' if g results f rom s by

the t ransposi t ion of the steps i and i + 1, and ~ is the corresponding transposi t ion of { 1 , . . . ,n},

where n is the length of s (obviously ~ preserves the length of sequences). So c(i) = i + 1 and

g(i + 1) = i. It should be clear that s t ~ s if and only if there is a sequence ~'1,..-, ~k of such

transposit ions from s to g . Let us denote this fact by s N~l,...,~k sf" Then the equivalence class of

al , 01 an , 0% p, p ,
s = p) " . determines a t ransi t ion p ~ p , where P = (E, l, <) is the labelled

poser defined by

{ E = { e l , . . . , e , }

l (e ~) = a i

ei < ej ~4, V~ t. S t _ N~ ~ s ~ ~(i) <_ n(J) where r / = ~'k o . . . o C1

Note tha t P is defined up to isomorphism, since the events ei are taken arbitrarily. A similar

definition is given in [13] for Petri nets. For instance the equivalence class of

(a : p l l b : c : q) - + a (p l l b : c : q) _ ~ b (p i i c : q) c_C+(pllq)

418

may be represented as a t ransi t ion whose label is a pomset consisting of events e l , e2 and e3

labelled a, b and c respectively, where e2 precedes es and ei is incomparable wi th e2 and e3, that

is:

C a: p II b: c: q) ~ (P II q)

As we shall see, we can interpret a te rm as an event s tructure, so that the pomsets of actions of

the te rm are the configurations of this event structure.

The preorder ~ is natural ly extended to (possibly infinite) sequences of proved transitions
s E Too(p):

so <~ sl ¢~dof Vs ~ T(p) s << so ~ 3s ' ~ T(p) g << sl & s <~ s'

It is easy to show that for finite sequences of transitions s and s ' of the same t e rm

s - - s ' ¢ ~ s <~s' & s I <~s

Therefore we shall keep the notat ion - for the equivalence on T°° (p) induced by the preorder <~.

We have
J

Then the quotient Coo(p) = Too(p)~ "~, which is the set of compu ta t ions of p, is a part ial ly ordered

set - the ordering on equivalence classes will be denoted E_.

In [3], the maximal comt)~atations (w. r. t. E) were called terminat ing, since, roughly speaking,

it does not remain anything to do after a maximal computat ion. More precisely, if an action is

possible at some point of a maximal computat ion, then after a finite amount of t ime, this possibility

disappears - either because the action has been done or because it is no longer enabled. Then for

CCS the maximal computat ions set up a notion of fairness: these are the computat ions satisfying

a tlnite delay property . For instance

(a°~ ll b~) = (I "tx'a: x ll #x 'b : x) a (#x 'a : x ll l "tx'b: x) " " a . . .

is not maximal since the proved transi t ion

(a~ II b~) b, 7rl(~fb)(a w {[bW)

has a residual along the whole computat ion. On the other hand

(a + b) ~ = # x . (a : x + b : x) a - - * h t x . (a : x + b : x) . . . a . . .

is a maximal computat ion. Not too surprisingly, our proof terms are similar to the labels used by

Costa and Stirling in [10] to define various notions of fairness. However a maximal computat ion

is not what is usually called (weakly or strongly) fair computat ion. This is so because our notion

of proved transi t ion is ra ther discriminating. For instance in r = # x . (a : x + / 3 : nil), the act ion/~

has infinitely many distinct proofs (this is apparent in the infinite tree of this term): informally,

at each point of choice in r, a "new" fl is available. Then

419

is a maximal computat ion: at each step the potential communicat ion is different, and at each step

it is discarded. There is no proved transi t ion which is "infinitely often" or "almost always" enabled

along this computat ion. Similarly if q = / ~ x . a : (a : x-b ~ : nil) then

is a maximal computat ion.

4. Event Structures.

It is known tha t the posets of computat ions C°°(p) are complete part ial orders (el. [1,3]). But we

can say much more: the main result of this note is that Coo(p) is the poset of configurations of an

event structure. The following definition is a slight variat ion of Winskel 's one [23] - the domain

of configurations will be coherent, for inconsistency is given by a binary relation:

DEFINITION (LABELLED EVENT STRUCTURES). An A-labelled event structure is a structure

(E, -<, #, ~) where

(i) E is the (denumerable) set of events,

(ii) -< C E x E is an irreflexive relation (i.e. e -~ e I =~. e ~ el), the flow relation;

(i i i)# C_ E × E is a symmetr ic relation, the conflict relation;

(iv) ~: E ~ A is the labelling function.

Here too we denote ~ the reflexive closure of #. Note tha t we do not assume tha t the conflict

relation is irreflexive. We shall use self-conflicting (or inconsistent) events, which are the events

e E E such that e # e, in the interpreta t ion of the restriction operator.

We shall always draw event structures up to isomorphism, tha t is omi t t ing the name of events;

moreover in the figures we shall represent e -< e I by e ~ e t. For instance

a # b

v' \
e

is a s t ructure with three events e, e ~ and e" respectively labelled a, b and c such tha t e -~ e" and

e # e t.

tn [6] we have introduced a notion of computa t ion of an event s tructure, which is a labelled

poser of events. This is jus t what Winskel calls a configuration, supplied with the causality

ordering on events which holds in that configuration. To define the computat ions of an event

s t ructure S = (E , -~ ,# , l) we need to introduce an enabling relation F ~- e, for e E E and F _ E .

Let us denote by Cs the set of confllct-free subsets of E , tha t is:

F E Cs ~:~det F ~__ E • Me, e ! E F -~(e # e l)

We interpret e ~ -< e as meaning "e ~ is a condit ion for e ' . Then F ~- e means tha t F is a maximal

set of non-conflicting conditions for e, tha t is:

F t - e ~'ae~ e ' E F =~ e ' - < e a n d

F U {e} is conflict-free: F U {e} E Cs and

F is closed under non-conflicting conditions for e:

e' -~ e & e t ~ F =~ 3e" E F e' # e"

One can see that the s t ructure (E, O s , k) is what Winskel calls a stable event s t ructure - w h e r e

k is the minimal enabling relation (el. [23]) - if we relax the hypothesis tha t the consistent sets

are finite.

420

DEFINITION (CONFIGURATIONS), Given an A-labeIled event structure S = (E, 4 ,# , ~) a con-

figuration of S is a set of events F C E such that

(i) F satisfies the finite causes property: for all e E F there exists { e l , . . . ,e~} C_ F such that

er~=e&'~i3GC_.{ez ei-1} G~-ei

(ii) F is conflict-free (or consistent): F • Cs

We denote by Z°°(S) the set of configurations of the event s t ructure S. This set, ordered by

inclusion, has a nice property: the poset (:Too(S), C) is a finitary prime algebraic coherent poset,

that is a coherent dI-domaln, el. [20,23] - in fact our event structures are jus t another concrete

presentat ion of such domains. For F a configuration of S, we denote < y ~--def ('~ CI (F × F))*, the

reflexive and transit ive closure of the restriction of -< to F . Then we have:

LEMMA. For any configuration F • ~roo(S) of S the relation <-r is an ordering such that

e<_Fe' 4~ VG•3roo(S) G C F & e t E G ~ e • G

Moreover G C F is a configuration o r s i f and only i f it is a left-closed subset o f F :

V G C F . G e F ° ° (S) ~ e @ G & e l < _ v e =~ e ' • G

The proof is given in [23]. The ordering < F is the (local) causality relation in F. The restriction

l [F of the labelling £ to F is denoted i v .

DEFINITION (COMPUTATIONS). Given an A-labeJled event s t ructure S = (E, ~<,#,£) a compu-

tation of S is a 1a belied poser (F, < v , ~v) where F is a configuration of S.

We shall denote by ~°° (S) the set of computat ions of S. The previous result allows us to regard

this set as ordered by inclusion, without ambiguity since for any configuration F there is only one

ordering < and only one labelling £ such that (F, _<,g) is a computa t ion of S. As we have shown

in [6], we can define a t ransi t ion relation on event structures, where at each step the performed

action is a computa t ion - that is a labelled poset. For any computa t ion P = (F, _<v,~v) of

S -- (E, ~<, #, ~), let us define the remainder S[P] of S after P by:

~ E ' = E - F
) -<'=-< N (E' x E')

S[P]=def(E' , -<' ,# ' ,g ') where] e # ' e ' ~ e # e ' o r e = e ' & 3 e " • r e # e "

~, ~' = ~[E'

Then the t ransi t ions are

s ~ s[P] for P e ~oo(S)

There are two ways of interpret ing a CCS term as an event structure: either we directly define

from the syntactical materials a s t ructure $ (p) for each closed term p, or we define a construction

on event structures for each CCS operator and interpret CCS by a morphism of algebra I °°. We

shall take both ways; the constructions we use are adapted from those of Winskel [22,23].

4.1 Let us first define $ (p) : (~ (p),-<, # , l) . The events are occurrences of possible future actions

for a term, so we define the set 0 of occurrences. We just have to extend the syntax of proofs,

allowing them to pass through a guard a:p , using the symbol a : O}, which will be denoted ~/t.

The syntax of occurrences is thus

o ::= ~= re (o) I ~o(o) 1 ~ (o) I ~(o,o') I oo(o) I o~(o) I p~,(o)

421

For instance the occurrence of the action b in a : b: nll is "~("/b). We extend the labelling to

occurrences, in an obvious way: ~(-/~(o)) = ~(o). Let us now define the notions of conflict and

flow on occurrences. The conflict relation o # o ~ is the least symmetric relation which satisfies the

following, where we denote by ~ the reflexive closure of #:

(B1) i # j =~ a~(o) # ai(o')

(m) o ~ o' ~ { ~o(o) # ~(o',o")
~1(o) # ~(o",o')

{ ~,(o1 # ~(o'1
o~(o) # o,(o')

(B3) o # o' =~ p~(o) # p,~(o')

~'(o) # ~'(o')
(B4) nm(e(o)) --- a ==~ p~(o) # p=(o)

(BS) oo ~ o~ or o~ ~ ol and (oo, ol) # (o~,ol) =~ ~(oo, ol) # ~(o~,o~)

oo # o0 or o~ # ol ~ ~(o0,o~) # ~(oo, o~)

In the structure S(p), the flow represents possible immediate precedence. Quite obviously the

relation o -< # is brought out by the action construct a : p - loosely speaking "/~ -< q'~(0). More

precisely -< is the least relation on 0 compatible with the occurrence constructors tha t satisfies
the following clauses:

(C1) qa -< '7~(0) where 0 is any proof term
{ ~(o,o") -< ~o(o') { ~o(o) -< ~(o',o")

(C2) o "< o' :=~ ~(o",o) -< r l (o ') and ~rl(o) -</~(o",o')

{ ~(o, ol) -< ~(o',o~1
(c~) o-< o' ~ ~(oo,o) ~ ~(o~,o')
The relation -< is irreflexive; note on the other hand that it is not transitive: for instance if oo -< o~

and ol -< o~ then ~ro(oo) -< ~(o~,ol) and ~(o~,oi) -< ~rl(o~) bu t we do not have ~ro(o0) -< ~TI(O~).
Let us see some examples: in the term r = (a : a : nil II a : nil) we have

~(,~,-ya) ~ ~(, '(,~),-~)
~(-y~, za) # ~(-~'(~), ~a)

This shows that # and -< are not necessarily disjoint. The following example shows that the

transitive closure of -< is not disjoint from ,-- (extended to occurrences in the obvious way): in the

term q = (a: a : nll II ~ : b: nl 0 we have

~o(~o) -~ ~(4~(z~),,~) ~ ~,(z~('~b))
~0(~o)

Note also that -< is not asymmetric; for instance in the term (a : fl : nit 11 fl : ~ : nil) we have

*(~,~(~a)) ~ *(~'(~),~3) ~ *(z~,z'(~a))

To define the s tructure S (p) it just remains to define the set 3 (p) of events, which is a subset of the

set 0 of occurrences - it should be understood that in S(p) = (3(p),-% #, t) the flow and conflict

relations are the restrictions to 3 (p) of the relations we jus t defined on occurrences. The set ~ (p)

of events of p is defined inductively as follows:

422

(El) ~ . e e (a : p);
if o e e(p) then ¢ (o) e e(a" p) ;

(~2) it o e e(p~) then ~ (o) E e(po tl P~);
if o e e(po) and d e 8 (p l) and l(o) = £(o0, then ~ (o , d) e 8(po 1t p~);

(ES) if o E 8(pi) then ai(o) e 8(po +p~) ;

(E4) if o E 8(p) then pa(o) e 8(p\ct) ;

(Eh) if o E e(p[I.tx.p/x]) then o e 8(~x.p).

For instance if r = (a : a : nil It ~ : b: , ,) \ ~ then S(r) may be drawn

a ' .a;

• . ~ . b

where the dot ted circles around ct and ~ indicate tha t the corresponding events are self-conflicting.

In this s t ructure the enabling consists of (identifying the events with their labels) {a} F r and

{r} F b. Clearly a and ~ cannot occur in a configuration since they are inconsistent.

4.2 On the other hand, the constructions on event s t ructures corresponding to CCS operators are

as follows:

(i) nll is the empty event s tructure;

(ii) if S == (E, -<, #, £) then a : S = ({e} U E, -<', #, £') where

• e ~ E

• e • l e I v~ e - K g o r (e = e & 0 ~ - g)

• £'(~) = a a . d t'(e) = t(e) for e e E;

(iii) if Si = (El, -<i, #i, t i) for i = 0,1 then So II $1 = (E, -<, #, g) where

• E = (Eo x {*}) U ({*} x E l) U { (e o , e l) l e i e Ei & Z(eo) = £(e l)}

where * ¢ Eo u E1

• e -~ e' ~ e = (z , u) & e' = (z ' , v ') and x d0 ~' or V -<~ V'

where, by convention, * :~i z and z .¢i * for any z.
& e' = = d or o r

• e # d ~ ~ (x , y) = e ' & x # o x o r y # 1 y

where, by convention, -,(* ~i z) for any z.

• £(e,*) = to(e), i (* ,e) = t l (e) and t(eo, el) = r

(iv) if S / = (E / , -< i ,# i , t i) for i = 0, 1 then So + $1 = (E, < ,# ,~) where

• E = {(i, ei) lei EEi}
• e -~ e' ~ e = (i , e ,) & e ' = (i , e~) & e~ - ~ e~

{ ' e = (i, ~;) & e ' = (i, e~) & e~ #, e~ or
• e # g ¢* e = (i , e i) & e ' = (j , e }) & i # j

• e (i , e) = t ~ (e) .

(v) if S = (S , < , # , £) t h e n S \ a = (S , - < , # ' , t) w h e r e

• e # ' e ' ~* e # e ' o ~ e = e ' & . ~ (t (e)) = .

423

The interpretat ion I °° (p) is given by the unique continuous morphism I °° from the free algebra of

infinite trees to the algebra of labelled event structures (I oo (~tx.p) is defined by a s tandard fixpoint

construction, el. [22,6]). Let us see some examples. The structure I ° ° ((a : fl : nil II a : nil)) may be

drawn:
a , . # . . r . . # . . ~

This example shows that Ioo(p) may contain a substructure V ' (e/. [6]). The interpretat ions of

(a : a : a : nll l[~ : nil) and (a: a : nil [I a : b: nil) may be drawn respectively

T.
/ / #

a #

a li' a - 1

The second s t ructure contains a subst ructure N and a subst ructure V, cf. [63. An example,

suggested by M. Nielsen, shows that -<* is not an ordering: if we interpret (a : a : ~ : nl111 fl : b : ~ : nil)

we get

lr
a - . # . . r . - # . . \ / \ / "

a b

/
f l ' ' # ' - r

II

Note that if r = (a : a : f l : nil I1 ~ : b: ~ : n l l) \ a \ ~ then in the s tructure I°°(r) the enabl ing is such

that F ~- e =~ F ~ (~, so that it has no configuration. The same is t rue for the interpretat ion

of (a : fl : nil II ~ : &: n l l) \ a \~ , where the enabling relation is empty. One can also see tha t in the

interpretat ion of ((a : fl: nit I[~ : nil) II a : ~ : nlt) \a, fl, there is no enabl ing for the fl communication.

THEOREM 1. For all closed CCS terms p the poser (C°°(p), ~) of computations of p is isomorphic
to the poser (ffcc(S(p)),_c) of computations of the labeI1ed event structure S (p). Moreover the
structure S (p) is isomorphic to I °° (p).

We could prove moreover that there is an exact correspondence (as in [6]) between equivalence

classes of finite computat ions and the pomset transit ions on event structures, tha t is between the

pomset t ransi t ions p -~P p' associated with the sequences of proved transi t ions

a l , O1 a n , ~n pt
P ~P l "'" Pn--1

up to permutat ions, and the transit ions

s (p) P s (p)[el

424

Therefore we can say tha t we have given an operat ional meaning to the event s t ructure semantics for

CCS. This provides also for a "truly concurrent" operational semantics for CCS, which generalizes

the one we have given in [6] for a restricted language. This "poset semantics" is similar to the

one given, via concurrent histories, by Degano, De Nicola and Montanar i in [11].

Its seems fair to say that , due to communicat ion, the mathemat ica l theory for CCS is not

especially aesthetic. Communicat ion may be achieved by other means, as proposed in [5,7] - but

there, no mathemat ica l theory is given. If we abandon communicat ion, we get a more satisfactory

theory: the syntax for concurrent - but non communicat ing - systems is

p ::= , " t = I ,~: p l (p II p') t (p + p') I ~'=.p

where aEA, and the set A of actions does not need to have any part icular structure. The operational

semantics is the same, but obviously without the communicat ion rule. Then the "permutat ions of

transit ions semantics" is exactly the semantics we have given in [6] for this calculus (if sequential

composit ion p ; q of [6] is restricted to p E A), and the corresponding constructions on event

structures are much more pleasant than the ones presented here. However, as is noted in [5]

and [7], the resulting calculus is too asynchronous. The next section presents a first a t tempt to

remedy this deficiency.

5. Synchrony and Asynchrony.

In [18], Milner proposed the synchronous calculus SCCS, based on a s t ructured set of actions -

namely a commutat ive semigroup (A, -). The main new construction was the synchronous product

(p x q). However, Milner noted in [19] that " I t was not made suf f ic ient ly clear tha t SCCS provides

an asynchronous process model which stands In I ts own r ight" . To some extent, the calculus MEIJE

of [4] - which is a variant of SCCS - does not suffer this defect. It was shown in [4] that , among

several equivalent formulations, this calculus can be built upon two basic kinds of parallelism:

interleaving (p [q) and synchronous product (p x q). In this formulat ion of MEUE, the sum is

not primitive, but may be derived using communication. From now on we shall deal with this

calculus, parameterized on a free commutative semigroup (A°,.) of actions, generated by the set

A of atomic actions. We let aside communicat ion, as well as the restriction operator, which could

be handled as in the previous sections, with respect to a commuta t ive group of actions. Since

we ignore communicat ion, we need to regard sum as a primit ive operator here. We shall give

a so-called "non-interleaving" semantics for (p [q), thus it is be t ter to rename the two parallel

operators asynchronous and synchronous parallelism respectively. Moreover we shall denote the

synchronous parallelism by (p ® q), in order to avoid confusion with the cartesian product , and we

denote asynchronous parallelism by (p I[q), as done so far in this paper. Therefore the syntax of

our calculus for synchrony and asynchrony - let us call it C - is

p : : = ° " I ~ (,~: p t (p II p') I (p + p') I (p ® p') I , ~ .p

where a belongs to the set A of atomic actions. The syntax for proofs of transitions is now

O ::: "r~ t '~o(O) l ,q (e) t oo(e) { ~ (e) 1 ,~(o,e')

and the inference rules are

425

a~ ~'/a
action ~- a : p ~ p

asynchronous parallelism I p ~ p' k (p 11 q) a, ~ro [8)(p, II q)

b, O' b, ~r,(O')
asynchronous parallelism 2 q -- ' --* q' ~- (P fl q) (P tl q')

a, O p, a, oo(O)
s u m l p V (p+q) ~p '

b, o' b, ~ (o').
s u m 2 q ~q' ~- (p + q) q'

a , b, O' a- b, ~(O, O')
synchronous parallelism P 0 p , , q , ~ q' k (p ® q) + (p' ® q')

fixpoint p[#x .p /x] a ' O~ p t }- tzx.p a, O p t

We shall not repeat the definition of the equivalence by permutations and the associated preorder:

it suffices to redefine the notion of concurrency - the diamond lemma will be the same as before.

In E, the source of concurrency is asynchronous parallelism, therefore ~-~ is the least relation

compatible with the proof constructors such that

V O V O ' i # j ~ . i (O) ~ j (O ')

We still denote by ~ the permutation equivalence on sequences of (proved) transitions, and by

(C°°(p), ~) the ordered space of computations of p. We could define an event structure S(p) for

each term p of C, as in the previous section, but it is more instructive to give the constructions on

event structures which allow us to define !oo(p) for each closed term p of {2.

As noted by Girard ([12]) there are (at least) two natural ways to combine two sets of events

E0 and El : either we juxtapose these sets, by a disjoint union E0 W El, or we form their cartesian

product Eo × EI. In Girard's terminology, the first kind of construction defines additive operators

whereas the second one defines multiplicative operators (as a matter of fact, Girard proposes his

constructions for what he calls coherent spaces, which are event structures without causality). For

what regards the additive operators on event structures, there are three natural constructions,

according to which relation, among causality, concurrency and conflict, is set between the events

of E0 and El . These are the constructions we used in [6], where our calculus only stands on

the additive (asynchronous) side. On the other hand, one of the additive operators, asynchronous

parallelism, is missing in SCCS. The construction a: S is a special case of sequential composition,

namely lifting; it is the same as for CCS, and so is So + $1. For what regards the construction

So tl $1 = (E,-<,#,g), it is given as follows, assuming Si = (Zi,-<i,#i,~i) for i E {0,1}:

* E = E o ~ V E I = { 0 } x E o U { 1 } × E 1

. (i, e) ~ (j , e') ,~ i = j e e ~ e'

. (i , e) # (j , e') ¢~ i = j s~ e #~ ~'

. e (i ,~) = l~C~)

The asynchronous parallel composition and sum are analogous to Girard's additive conjunction

and additive disjunction respectively. On the other side, for what regards concurrency in the mul-

tiplicatives, Girard proposes three constructions: conjunction, disjunction a:nd implication (times,
par and entail, or linear implication, in Girard's terminology). We cannot see however what could

be a diamond lemma if we allowed multiplicative disjunction or implication as process constructors.

Moreover, our interpretation of the synchronous product, though a multiplicative one, is slightly

426

different from Girard's multiplicative conjunction, since here the same event cannot be used twice

in a computation. We define thus So ® $1 = (E0 × E1,-<,#,£) where
! !

• (e0 , e l) -< (e 0 , q) ~* ~0 -<0 e~ or ~1 -<1 e~
{ ' ' , , (e0 ,~ l) ¢ (~ o , q) ~ eo ~o 4, or ~1 ~1 e l , or

• (e0 ,~ l) # (~0,~1) *~ (~ 0 , ~) = (e~ ,e l) and ~o #0 ~o or e~ #1 ~1

• ~(~o,~1) = ~0(eo)- e1(~1)

The morphism I °° from C to event structures is now fully determined. For instance the inter-

pretation of (a: b : nl 0 ® c : nil is a structure with two events e and e' labelled a • c and b- c such

that e -< e' and e # e', therefore e' cannot occur in a computation of this structure. Similarly

the interpretation of (a: ,11 It b: nil) ® c: nil consists of two events such that e # e', therefore the

only two non-empty computations are a . c and b. e. In both these examples, conflict arises from

the sharing of a "sub-action". As another example, we can draw the interpretation of the term

(a: nll }I b: rill) ¢D (C: d: rill) as i!
a . c . . # - . a . d

-< #

b . c . . # . . b . d
ll

The result we had for CCS, relatin; the event structure semantics to permutations of transitions,

holds also for C:

THEOREM 2. For any closed term p of C the poser (C ~ (p), U_) ofcomputat;.ons o fp is isomorphic

to the poser (Jroo(ioo (p)), C_) of computations of the labelled event structure Z °O (p).

We have announced that this result remedies the lack of synchrony one finds in CCS without

communication. Let us state this point more formally: in [6] we gave a direct operational meaning

to the event structure semantics for the asynchronous part of the language C (without ®). This

was achieved by giving rules to prove transitions p u~ p, where u is a pomset, but it was not clear

how to describe such transitions for p = (q ® r). The equivalence by permutations brings an answer

to this question. Indeed, the problem is the same as for CCS communication: it lies in the fact

that parallel composition (either CCS composition with communication, or SCCS synchronous

product) does not preserve the computations, since it may introduce conflicts.

REFERENCES

[I] G. BERRY, J.-J. L~VY, Minimal and Optimal Computations of Recursive Programs, J. of

ACM 26 (~979) 148-175.

[2] E. BEST, R. DEVILLERS, Interleaving and Partial Orders in Concurrency: A Formal Com-

parison, in Formal Description of Programming Concepts III, North-Holland (1987) 299-321.

[3] G. BOUDOL, Computational Semantics of Term Rewriting Systems, in Algebraic Methods

in Semantics (M. Nivat, J.C. Reynolds, Eds), Cambridge University Press (1985) 169-236.

[4] C. BOUDOL, Notes on Algebraic Calculi of Processes, in Logics and Models of Concurrent

Systems (K. Apt, Ed.) NATO ASI Series F13 (1985) 261-303.

[5] G. BOUDOL, Communication is an Abstraction, Acres du Second Colloque C 3 (1987) 45-63,

and INRIA Res. Rep. 636.

427

[6] G. BOUDOL, I. CASTELLANI, On the Semantics of Concurrency: Partial Orders and Tran-
sition Systems, TAPSOFT 87, Lecture Notes in Comput. Sci. 249 (1987) 123-137.

[7] G. BOUDOL, I. CASTELLANI, Concurrency and Atomicity, Theoretical Comput. Sci. 59
(t988) 1-60.

[8] I. CASTELLANI, M. HENNESSY, Distributed Bisimulations, Comput. Sci. Rep. 5-87, Uni-
versity of Sussex (1987).

[9] I. CASTELLANI, Bisimulations for Concurrency, Ph. D. Thesis, University of Edinburgh
(1988).

[10] G. COSTA, C. STIRLING, Weak and Strong Fairness in CCS, Information and Computation
73 (1987) 207-244.

[11] P. DEGANO, R. DE NICOLA, U. MONTANARI, Partial Ordering Derivations for CCS,
FCT 85, Lecture Notes in Comput. Sci. 199 (1985) 520-533.

[12] J.-Y. GIRARD, Linear Logic, Theoretical Comput. Sci. 50 (1987) 1-102.

[13] R. van GLABBEEK, F. VAANDRAGER, Petri Net Models for Algebraic Theories of Con-
currency, Proceedings PARLE Conference, Eindhoven, Lecture Notes in Comput. Sei. 259
(1987) 224-242.

[14] G. HUET, J.- J. LI~VY, Call-by-need Computations in Non-ambiguous Linear Term Rewrit-
ing Systems, IRIA-LABORIA Report 359 (1979)-

[15] J.-J. LEVY, Optimal Reductions in the Lambda Calculus, in To H.B. CURRY: Essays
on Combinatory Logic, Lambda Calculus and Formalism (J.P. Seldin, J.P~ Hindley, Eds),
Academic Press (198o) 159-191.

[16] A. MAZURKIEWICZ, Concurrent Program Schemes and their Interpretations, Aarhus Work-
shop on Verification of Parallel Programs, Daimi PB-78~ Aarhus University (i977)-

[17] R. MILNER, A Calculus of Communicating Systems, Lecture Notes in Comput. Sci. 92
(198o) reprinted in Report ECS-LFCS-86-7, Edinburgh University.

[18] R. MILNER, Calculi for Synchrony and Asynchrony, Theoret. Comput. Sci. 25 (1983) 267-
310.

[19] R. MILNER, Process Constructors and Interpretations, IFIP 86 (1986) 507-514.

[20] M. NIELSEN, G. PLOTKIN, G. WINSKEL, Petri Nets, Event Stuctures and Domains, The-
oreS. Comput. Sci. 13 (1981) 85-108.

[21] V.R. PRATT, Modelling Concurrency with Partial Orders, Intern. J. of Parallel Program-
ming 15 (1986) 33-71.

[22] G. WINSKEL, Event Structure Semantics for CCS and Related Languages, Daimi PB-159,
Aarhus University (1983) s.a. 9 th ICALP, Lecture Notes in Comput. Sci. 140 (1982) 561-576.

[23] G. WINSKEL, Event Structures, Advances in Petri Nets 86, Lecture Notes in Comput. Sci.
255 (1987) 325-392.

