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Xavier Muñoz1 and Ignasi Sau1,2

1 Graph Theory and Combinatorics Group at Applied Mathematics IV
Department of UPC - Barcelona, Spain

xml@ma4.upc.edu
2 Mascotte joint Project - INRIA/CNRS-I3S/UNSA - 2004

route des Lucioles - Sophia-Antipolis, France
Ignasi.Sau@sophia.inria.fr

Abstract. Traffic grooming is a major issue in optical networks. It refers
to grouping low rate signals into higher speed streams, in order to re-
duce the equipment cost. In SONET WDM networks, this cost is mostly
given by the number of electronic terminations, namely Add-Drop Mul-
tiplexers (ADMs for short). We consider the unidirectional ring topology
with a generic grooming factor C, and in this case, in graph-theoretical
terms, the traffic grooming problem consists in partitioning the edges of
a request graph into subgraphs with at most C edges, while minimizing
the total number of vertices of the decomposition.

We consider the case when the request graph has bounded degree Δ,
and our aim is to design a network (namely, place the ADMs at each
node) being able to support any request graph with maximum degree at
most Δ. The existing theoretical models in the literature are much more
rigid, and do not allow such adaptability. We formalize the problem, and
we solve the cases Δ = 2 (for all values of C) and Δ = 3 (except the case
C = 4). We also provide lower and upper bounds for the general case.

Keywords: optical networks, SONET over WDM, traffic grooming,
ADM, graph decomposition, cubic graph, bridgeless graph.

1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed
streams (see the surveys [3,9,16,18,22]). By using traffic grooming, it is possible
to bypass the electronics at the nodes which are not sources or destinations
of traffic, and therefore reducing the cost of the network. Typically, in a WDM
(Wavelength Division Multiplexing) network, instead of having one SONET Add
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Drop Multiplexer (ADM) on every wavelength at every node, it may be possible
to have ADMs only for the wavelengths used at that node (the other wavelengths
being optically routed without electronic switching).

The so called traffic grooming problem consists in minimizing the total number
of ADMs to be used, in order to reduce the overall cost of the network. The
problem is easily seen to be NP-complete for an arbitrary set of requests. See
[1, 11, 12] for hardness and approximation results of traffic grooming in rings,
trees and star networks.

Here we consider unidirectional SONET/WDM ring networks. In that case
the routing is unique and we have to assign to each request between two nodes a
wavelength and some bandwidth on this wavelength. If the traffic is uniform and
if a given wavelength can carry at most C requests, we can assign to each request
at most 1

C of the bandwidth. C is known as the grooming ratio or grooming factor.
Furthermore if the traffic requirement is symmetric, it can be easily shown (by
exchanging wavelengths) that there always exists an optimal solution in which
the same wavelength is given to a pair of symmetric requests. Then without loss
of generality we will assign to each pair of symmetric requests, called a circle,
the same wavelength. Then each circle uses 1

C of the bandwidth in the whole
ring. If the two end-nodes are i and j, we need one ADM at node i and one at
node j. The main point is that if two requests have a common end-node, they
can share an ADM if they are assigned the same wavelength.

The traffic grooming problem for a unidirectional SONET ring with n nodes
and a grooming ratio C has been modeled as a graph partition problem in
both [2] and [15] when the request graph is given by a symmetric graph R. To a
wavelength λ is associated a subgraph Bλ ⊂ R in which each edge corresponds
to a pair of symmetric requests (that is, a circle) and each node to an ADM. The
grooming constraint, i.e. the fact that a wavelength can carry at most C requests,
corresponds to the fact that the number of edges |E(Bλ)| of each subgraph Bλ

is at most C. The cost corresponds to the total number of vertices used in the
subgraphs involved in the partition, and the objective is therefore to minimize
this number.

This problem has been well studied when the network is a unidirectional
ring [3, 4, 7, 8, 9, 13, 15, 14, 16, 20, 21]. With the all-to-all set of requests, optimal
constructions for a given grooming ratio C were obtained using tools of graph
and design theory, in particular for grooming ratio C = 3, 4, 5, 6 and C ≥ N(N−
1)/6 [3].

Most of the research efforts in this grooming problem have been devoted
to finding the minimum number of ADMs required either for a given set of
connection requests (typically a uniform all-to-all communication pattern) or
for a general traffic pattern. In all this articles the traffic pattern has been
considered as an input for the problem of placing the ADMs. In this paper we
consider the traffic grooming problem from a different point of view: assuming
a given network topology, it would be desirable to place the minimum number
of ADMs as possible at each node in such a way that they could be configured
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to handle different traffic patterns or graphs of requests. One cannot expect to
change the equipment of the network each time the traffic requirements change.

Without any restriction on the graph of requests, the number of required
ADMs is given by the worst case, i.e. when the Graph of Requests is the complete
graph. However, in many cases some restrictions on the graph of requests might
be assumed. From a practical point of view, it is interesting to design a network
being able to support any request graph with maximum degree not exceeding
a given constant. This situation is usual in real optical networks, since due to
technology constraints the number of allowed communications for each node
is usually bounded. This flexibility can also be thought from another point of
view: if we have a limited number of available ADMs to place at the nodes of the
network, then it is interesting to know which is the maximum degree of a request
graph that our network is able to support, depending on the grooming factor.
Equivalently, given a maximum degree and a number of available ADMs, it is
useful to know which values of the grooming factor the network will support.

The aim of this article is to provide a theoretical framework to design such
networks with dynamically changing traffic. We study the case when the physical
network is given by an unidirectional ring, which is a widely used topology (for
instance, SONET rings). In [6] the authors consider this problem from a more
practical point of view: they call t-allowable a traffic matrix where the number
of circuits terminated at each node is at most t, and the objective is also to
minimize the number of electronic terminations. They give lower bounds on the
number of ADMs and provide some heuristics.

In addition, we also suppose that each pair of communicating nodes establishes
a two-way communication. That is, each pair (i, j) of communicating nodes in
the ring represents two requests: from i to j, and from j to i. Thus, such a pair
uses all the edges of the ring, therefore inducing one unity of load. Hence, we
can use the notation introduced in [4] and consider each request as an edge, and
then again the grooming constraint, i.e. the fact that a wavelength can carry at
most C requests, corresponds to the fact that the number of edges |E(Bλ)| of
each subgraph Bλ is at most C. The cost corresponds to the total number of
vertices used in the subgraphs involved in the partition.

Namely, we consider the problem of placing the minimum number of ADMs in
the nodes of the ring in such a way that the network could support any request
graph with maximum degree bounded by a constant Δ. Note that using this
approach, as far as the degree of each node does not exceed Δ, the network can
support a wide range of traffic demands without the installation of additional
electronic switches at the nodes. The problem can be formally stated as follows:
Traffic Grooming in Unidirectional Rings with Bounded-Degree

Request Graph

Input: Three integers n, C, and Δ.
Output: An assignment of A(v) ADMs to each node v ∈ V (Cn), in such a

way that for any undirected request graph R with maximum degree at
most Δ, it exists a partition of E(R) into subgraphs Bλ, 1 ≤ λ ≤ Λ,
such that:
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(i) |E(Bλ)| ≤ C for all λ; and
(ii) each vertex v ∈ V (Cn) appears in at most A(v) subgraphs.

Objective: Minimize
∑

v∈V (Cn) A(v), and the optimum is denoted A(n, C, Δ).

When the request graph is restricted to belong to a subclass of graphs C of the
class of graphs with maximum degree at most Δ, then the optimum is denoted
A(n, C, Δ, C). Obviously, for any subclass of graph C, A(n, C, Δ, C) ≤ A(n, C, Δ).

In this article we solve the cases corresponding to Δ = 2 and Δ = 3 (giving
a conjecture for the case C = 4), and give lower bounds for the general case.
The remainder of the article is structured as follows: in Section 2 we give some
properties of the function A(n, C, Δ), to be used in the following sections. In
Section 3 we focus on the case Δ = 2, giving a closed formula for all values of C.
In Section 4 we study the case Δ = 3, solving all cases except the case C = 4,
for which we conjecture the solution. Finally, Section 5 is devoted to conclusions
and open problems.

2 Properties of A(n, C, Δ)

In this section we describe some properties of the function A(n, C, Δ).
Lemma 1. The following statements hold:

(i) A(n, C, 1) = n.
(ii) A(n, 1, Δ) = Δn.
(iii) If C′ ≥ C, then A(n, C′, Δ) ≤ A(n, C, Δ).
(iv) If Δ′ ≥ Δ, then A(n, C, Δ′) ≥ A(n, C, Δ).
(v) A(n, C, Δ) ≥ n for all Δ ≥ 1.
(vi) If C ≥ nΔ

2 , A(n, C, Δ) = n.

Proof. (i) The request graph can consist in a perfect matching, so any solution
uses 1 ADM per node.

(ii) A Δ-regular graph can be partitioned into nΔ
2 disjoint edges.

(iii) Any solution for C is also a solution for C′.
(iv) If Δ′ ≥ Δ, the subgraphs with maximum degree at most Δ are a subclass

of the class of graphs with maximum degree at most Δ′.
(v) Combine (i) and (iv).
(vi) In this case all the edges of the request graph fit into one subgraph.

Since we are interested in the number of ADMs required at each node, let us
consider the following definition:

Definition 1. Let M(C, Δ) be the least positive number M such that, for any
n ≥ 1, the inequality A(n, C, Δ) ≤ Mn holds.

Lemma 2. M(C, Δ) is a natural number.

Proof. First of all, we know by Lemma 1 that, for any C ≥ 1, A(n, C, Δ) ≤
A(n, 1, Δ) = Δn. Thus A(n, C, Δ) is upper-bounded by Δn. On the other hand,
since any vertex may appear in the request graph, A(n, C, Δ) is lower-bounded
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by n. Suppose now that M is not a natural number. That is, suppose that
r < M < r + 1 for some positive integer r. Therefore, there must be at least
(r+1−M)n vertices with at most r ADMs each. For each n, let Vn,r be the subset
of vertices of the request graph with at most r ADMs. Then, since r+1−M > 0,
we have that limn→∞ |Vn,r| = ∞. In other words, there is an arbitrarily big
subset of vertices with at most r ADMs per vertex. But we can consider a
request graph with maximum degree at most Δ on the set of vertices Vn,r, and
this means that r ADMs per node is enough, a contradiction with the optimality
of M .

If the request graph is restricted to belong to a subclass of graphs C of the class of
graphs with maximum degree at most Δ, then the corresponding positive integer
is denoted M(C, Δ, C). Again, for any subclass C, M(C, Δ, C) ≤ M(C, Δ).
We provide now a lower bound on M(C, Δ).

Proposition 1 (General Lower Bound). M(C, Δ) ≥ ⌈
C+1

C
Δ
2

⌉
.

Proof. Erdös and Sachs [10] proved that for any integer k there exist k-regular
graphs with arbitrary large girth. For each value of C and Δ, let G be a Δ-
regular graph with girth at least C + 1, and let n = |V (G)|. Clearly all the
subgraphs (with at most C edges) involved of the partition of the Δn/2 edges
of G are trees. Therefore, the total number of vertices of any partition is at
least Δ(C+1)

2C n (this can be easily seen using that the function (x + 1)/x with
1 ≤ x ≤ C is minimized when x = C). Then necessarily a vertex must occur in
at least Δ(C+1)

2C subgraphs, yielding the desired bound.

Let a Δ-graph be a graph with maximum degree at most Δ. By Lemma 2,
A(n, C, Δ) is of the form A(n, C, Δ) = M(C, Δ)n−α(C, Δ), where M(C, Δ) and
α(C, Δ) are natural numbers depending only on C and Δ. Since the network must
be designed in order to support any Δ-graph, if there exists a Δ-graph H that
requires strictly more than M(C, Δ) ADMs at some vertex of the network, then
by considering the same graph H on different subsets of vertices of the network,
we could force at least M(C, Δ)+ 1 ADMs in Ω(n) nodes of the network, which
would be in contradiction with the definition of M(C, Δ). That is, each vertex
can appear in at most M(C, Δ) subgraphs.

In other words, for each value of C and Δ, the problem reduces to finding the
least positive integer M such that the edges of any Δ-graph can be partitioned
into subgraphs with at most C edges, in such a way that each vertex appears in
at most M subgraphs.
Due to the above discussion, in the sequel we focus on determining the parameter
M(C, Δ) for each value of C and Δ. Observe also that any Δ-graph H is a
subgraph of some Δ-regular graph G (with possible more vertices). Note also
that if we restrict a partition of G to the vertices of H , the number of occurrences
of the vertices cannot increase. Said otherwise, to determine the value of M(C, Δ)
it is enough to consider Δ-regular graphs.

Lemma 3. The following statements hold trivially:
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(i) M(C, 1) = 1 for all C ≥ 1.
(ii) M(1, Δ) = Δ for all Δ ≥ 1.
(iii) If C′ ≥ C, then M(C′, Δ) ≤ M(C, Δ).
(iv) If Δ′ ≥ Δ, then M(C, Δ′) ≥ M(C, Δ).
(v) M(C, Δ) ≤ Δ for all C, Δ ≥ 1.

3 Case Δ = 2

In this case we provide not only the value of M(C, 2), but also the exact expres-
sion of the cost function A(n, C, 2).

Proposition 2. A(n, C, 2) = 2n − (C − 1).

Proof. Consider the case when the request graph is 2-regular and has girth
greater than C (such a graph exists by [10]). Then, a feasible solution is ob-
tained by placing 2 ADMs at each vertex. We count in how many vertices we
can assure that we can place only one ADM.
Let us see first that we cannot use 1 ADM in more than C − 1 vertices. Suppose
this, i.e. that we have 1 ADM in C vertices and 2 in all the others. Then, consider
a set of requests given by a cycle H of length C +1 containing all the C vertices
with 1 ADM inside it, and other cycles containing the remaining vertices. In this
situation, we are forced to use 2 subgraphs for the vertices of H , and at least 2
vertices of H must appear in both subgraphs. Hence we will need more than 1
ADM in some vertex that had initially only 1 ADM.

Now, let us see that we can always save C − 1 ADMs. Let {a0, a1, . . . , aC−2}
be the set of vertices with only 1 ADM, that we can choose arbitrarily. We will
see that we can decompose the set of requests in such a way that the vertices
ai always appear with degree 2 in some subgraph, covering in this way both
requests of each vertex with only 1 ADM. Indeed, suppose first that two of these
vertices (namely, ai and aj) do not appear consecutively in one of the disjoint
cycles of the set of requests. Let bi be the nearest vertex to ai in the cycle
in the direction of aj , and conversely for bj (bi may be equal to bj if ai and
aj are separated by exactly one vertex). Then, consider two paths (eventually,
cycles) of the form {bi, ai, . . .} and {bj, aj , . . .}, to assure that both ai and aj

lie in the middle of the subgraph. We do the same construction for each pair of
non-consecutive vertices.

Now, consider all the vertices {a0, . . . , ai, . . . , at−1} which are adjacent in the
same cycle of the request graph, with t ≤ C − 1. Let b0 be the nearest vertex
to a0 different from a1, and let bt−1 be the nearest vertex to at−1 different
from at−2. Then, consider a subgraph with the path (or cycle, if b0 = bt−1)
{b0a0a1 . . . at−1bt−1}.

4 Case Δ = 3

We study the cases C = 3 and C ≥ 5 in Sections 4.1 and 4.2, respectively. We
discuss the open case C = 4 in Section 5.
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4.1 Case C = 3

We study first the case when the request graph is a bridgeless cubic graph, and
then the case of a general request graph.

Bridgeless Cubic Request Graph. We will need some preliminary graph
theoretical concepts. Let G = (V, E) be a graph. For A, B ⊆ V , an A-B path in
G is a path from x to y, with x ∈ A and y ∈ B.

If A, B ⊆ V and X ⊆ V ∪ E are such that every A-B path in G contains
a vertex or an edge from X , we say that X separates the sets A and B in G.
More generally we say that X separates G if G−X is disconnected, that is, if X
separates in G some two vertices that are not in X . A separating set of vertices
is a separator.

A vertex which separates two other vertices of the same component is a cut-
vertex, and an edge separating its ends is a bridge. Thus, the bridges in a graph
are precisely those edges that do not lie on any cycle. A set M of independent
edges in a graph G = (V, E) is called a matching. A matching that covers all
the vertices in V is called perfect. A k-regular spanning subgraph is called a
k-factor. Thus, a subgraph H ⊆ G is a 1-factor of G if and only if E(H) is a
perfect matching of V . Such a matching is also called perfect matching.

We recall a well known result from matching theory proved by Petersen in
1891 [17]:

Theorem 1 ( [17]). Every bridgeless cubic graph has a 1-factor.

If we remove a 1-factor from a cubic graph, what it remains is a disjoint set of
cycles.

Corollary 1. Every bridgeless cubic graph has a decomposition into a 1-factor
and disjoint cycles.

An example of a decomposition of a bridgeless cubic graph into disjoints cycles
and a 1-factor is depicted in Fig. 1a.

Proposition 3. Let C be the class of cubic graphs with a perfect matching. Then,

M(3, 3, C) = 2.

Proof. Let us proof that we can always partition the request graph into paths
with 3 edges in such a way that each vertex appears in 2 paths. To do so, we take
the decomposition given by Proposition 1, together with a clockwise orientation
of the edges of each cycle. With this orientation, each edge of the 1-factor has
two incoming and two outgoing edges of the cycles. For each edge of the 1-factor
we take its two incoming edges, and form in this way a path of length 3. It is
easy to verify that this is indeed a decomposition into paths of length three. For
instance, if we do this construction in the graph of Fig. 1a, and we label the
edges of the 1-factor as {A,B,. . . ,G} and the ones of the cycles as {1,2,. . . ,14}
(see Fig. 1b), we obtain the following decomposition:

{1, A, 6}, {5, B, 2}, {3, C, 8}, {7, D, 9}, {14, E, 11}, {10, F, 12}, {4, G, 13}
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a) b)

u vw

c)

Fig. 1. a) Decomposition of a bridgeless cubic graph into disjoints cycles and a 1-
factor. b) Decomposition of a bridgeless cubic graph into paths of length 3. c) Cubic
bridgeless graph used in the proof of Proposition 3.

Now let us see that we cannot do better, i.e. with 2n−1 ADMs. If such a solution
exists, there would be at least one vertex with only 1 ADM, and the average of
the number of ADMs of all the other vertices must not exceed 2. In order to see
that this is not always possible, consider the cubic bridgeless graph on 10 vertices
of Fig. 1c. Let w be the vertex with only 1 ADM. This graph has no triangles
except those containing w. Since we can use only 1 ADM in w, we must take all
its requests in one subgraph. It is not possible to cover the 4 remaining requests
of the nodes u and v in one subgraph, and thus without loss of generality we will
need 3 ADMs in u. With these constraints, one can check that the best solution
uses 20 ADMs, that is 2n > 2n − 1.

General Request Graph. It turns out that when the request graph is not
restricted to be bridgeless we have that M(3, 3) = 3.

Proposition 4. M(3, 3) = 3.

Proof. By (ii) and (iii) of Lemma 3 we know that M(3, 3) ≤ 3. We shall exhibit
a counterexample showing that M(3, 3) > 2, proving the result. Consider the
cubic graph G depicted in Fig. 2a. We will prove that it is not possible to
partition the edges of G into subgraphs with at most 3 edges in such a way that
each vertex appears in at most 2 subgraphs.

Indeed, suppose the opposite, i.e. that we can partition the edges of G into
subgraphs B1, . . . , Bk with |E(Bi)| ≤ 3 in such a way that each vertex appears
in at most 2 subgraphs, and let us reach a contradiction.

Following the notation illustrated in Fig. 2a, let A1, A2, A3 be the connected
components of G \ {e1, e2, e3}. Let also, with abuse of notation, ai = Ai ∩ ei,
i = 1, 2, 3, and a0 = e1 ∩ e2 ∩ e3.

Claim. There exist an index i∗ ∈ {1, 2, 3} and a subgraph Bk∗ containing a0,
such that Bk∗ ∩ Ai∗ = {ai∗}.
Proof. Among all the subgraphs B1, . . . , Bk involved in the decomposition of
G, consider the � subgraphs Bj1 , . . . , Bj�

covering the edges {e1, e2, e3}. If � =
1, then the subgraph Bj1 is a star with three edges and center a0, and then
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Fig. 2. a) Cubic graph G that can not be edge-partitioned into subgraphs with at
most 3 edges in such a way that each vertex appears in at most 2 subgraphs. b)
Graph that cannot be partitioned into 2 connected subgraphs with at most 3 edges. c)
Counterexample of Proposition 4 showing that M(3, 3) = 3.

Bj1 ∩ Ai = {ai} for each i = 1, 2, 3. If � ≥ 3, then the vertex a0 appears in
3 subgraphs, a contradiction. Hence it remains to handle the case � = 2. If
the claim was not true, it would imply that for each i = 1, 2, 3 it would exist
jf(i) ∈ {j1, j2} such that Bf(i) ∩Ai contains at least one edge. In particular, this
would imply that the graph depicted in Fig. 2b could be partitioned into two
connected subgraphs with at most three edges, which is clearly not possible.

Suppose without loss of generality that the index i∗ given by Claim 4.1 is equal
to 1. Thus, a1 appears in a subgraph Bk∗ that does not contain any edge of A1.
Therefore, the edges of A1 must be partitioned into connected subgraphs with at
most 3 edges, in such a way that a1 appears in only 1 subgraph, and all its other
vertices in at most 2 subgraphs, each. Let us now see that this is not possible,
obtaining the contradiction we are looking for.

Indeed, since a1 has degree 2 in A1 and it can appear in only one subgraph, it
must have degree two in the subgraph in which it appears, i.e. in the middle of a
P3 or a P4, because A1 is triangle-free. It is easy to see that this is equivalent to
partitioning the edges of the graph H depicted in Fig. 2c into subgraphs with
at most 3 edges, in such a way that the thick edge e appears in a subgraph with
at most 2 edges, and each vertex appears in at most 2 subgraphs. Observe that
H is cubic and triangle-free. Let n1 be the total number of vertices of degree 1 in
all the subgraphs of the decomposition of H . Since each vertex of H can appear
in at most 2 subgraphs and H is cubic, each vertex can appear with degree 1 in
at most 1 subgraph. Thus, n1 ≤ |V (H)| = 6.

Since we have to use at least 1 subgraph with at most 2 edges and |E(H)| = 9,
there are at least 1 +

⌈
9−2
3

⌉
= 4 subgraphs in the decomposition of H . But each

subgraph involved in the decomposition of H has at least 2 vertices of degree 1,
because H is triangle-free. Therefore, n1 ≥ 8, a contradiction.

4.2 Case C ≥ 5

For C ≥ 5 we can easily prove that M(C, 3) = 2, making use of a conjecture
made by Bermond et al. in 1984 [5] and proved by Thomassen in 1999 [19]:
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Theorem 2 ( [19]). The edges of a cubic graph can be 2-colored such that each
monochromatic component is a path of length at most 5.

A linear k-forest is a forest consisting of paths of length at most k. The linear
k-arboricity of a graph G is the minimum number of linear k-forests required to
partition E(G), and is denoted by lak(G) [5]. Theorem 2 is equivalent to saying
that, if G is cubic, then la5(G) = 2.

Let us now see that Theorem 2 implies that M(C, 3) = 2 for all C ≥ 5. Indeed,
all the paths of the linear forests have at most 5 edges, and each vertex will
appear in exactly 2 linear 5-forests, so the decomposition given by Theorem [19]
is a partition of the edges of a cubic graph into subgraphs with at most 5 edges,
in such a way that each vertex appears in at most 2 subgraphs. In fact the result
of [19] is stronger, in the sense that G can be any graph of maximum degree at
most 3. Thus, we deduce that

Corollary 2. For any C ≥ 5, M(C, 3) = 2.

Thomassen also proved [19] that 5 cannot be replaced by 4 in Theorem 2. This
fact do not imply that M(4, 3) = 3, because of the following reasons: (i) the
subgraphs of the decomposition of the request graph are not restricted to be
paths, and (ii) it is not necessary to be able to find a 2-coloring of the subgraphs of
the decomposition (a coloring in this context means that each subgraph receives
a color, and 2 subgraphs with the same color must have empty intersection).

5 Conclusions

We considered the traffic grooming problem in unidirectional WDM rings when
the request graph belongs to the class of graph with maximum degree Δ. This
formulation allows the network to support dynamic traffic without reconfiguring
the electronic equipment at the nodes. We formally defined the problem, and we
focused mainly on the cases Δ = 2 and Δ = 3, solving completely the former
and solving all the cases of the latter, except the case when the grooming value
C equals 4. We proved in Section 4.1 that M(3, 3) = 3, and in Section 4.2 that
M(C, 3) = 2 for all C ≥ 5. Proposition 3 states that M(4, 3, C) = 2, C being the

Table 1. Values of M(C, Δ). The case C = 4, Δ = 3 is a conjectured value.

C|Δ 1 2 3 4 5 6 . . . Δ

1 1 2 3 4 5 6 . . . Δ

2 1 2 3 ≥ 3 ≥ 4 ≥ 5 . . . ≥ ˚
3Δ
4

ˇ

3 1 2 3 ≥ 3 ≥ 4 ≥ 4 . . . ≥ ˚
2Δ
3

ˇ

4 1 2 2? ≥ 3 ≥ 4 ≥ 4 . . . ≥ ˚
5Δ
8

ˇ

5 1 2 2 ≥ 3 ≥ 3 ≥ 4 . . . ≥ ˚
3Δ
5

ˇ

. . . . . . . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 ≥ 3 ≥ ˚
C+1

C
5
2

ˇ ≥ 4 . . . ≥ ˚
C+1

C
Δ
2

ˇ
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class of cubic graph with a perfect matching. Because of the integrality of M(C, Δ)
and Lemma 3, M(4, 3) equals either 2 or 3. We conjecture that M(4, 3) = 2.

We also deduced lower and upper bounds in the general case (any value of C
and Δ). Table 1 summarizes the values of M(C, Δ) that we obtained.

This problem can find wide applications in the design of optical networks us-
ing WDM technology. It would be interesting to continue the study for larger
values of Δ, which will certainly rely on graph decomposition results. Another
generalization could be to restrict the request graph to belong to other classes
of graphs for which there exist powerful decomposition tools, like graphs with
bounded tree-width, or families of graphs excluding a fixed graph as a minor.

Acknowledgement. The authors want to thank the anonymous referees for
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