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Abstract Traffic grooming is a central problem in optical networks. It
refers to pack low rate signals into higher speed streams, in order to
improve bandwidth utilization and reduce network cost. In WDM net-
works, the most accepted criterion is to minimize the number of electro-
nic terminations, namely the number of SONET Add-Drop Multiplexers
(ADMs). In this article we focus on ring and path topologies. On the one
hand, we provide the first inapproximability result for Traffic Groo-
ming for fixed values of the grooming factor g, answering affirmatively
the conjecture of Chow and Lin (Networks, 44 :194-202, 2004 ). More
precisely, we prove that Ring Traffic Grooming for fixed g ≥ 1 and
Path Traffic Grooming for fixed g ≥ 2 are APX-complete. That is,
they do not accept a PTAS unless P = NP. Both results rely on the fact
that finding the maximum number of edge-disjoint triangles in a graph
(and more generally cycles of length 2g+ 1 in a graph of girth 2g+ 1) is
APX-complete.

On the other hand, we provide a polynomial-time approximation algo-
rithm for Ring and Path Traffic Grooming, based on a greedy cover
algorithm, with an approximation ratio independent of g. Namely, the
approximation guarantee is O(n1/3 log2 n) for any g ≥ 1, n being the size
of the network. This is useful in practical applications, since in backbone
networks the grooming factor is usually greater than the network size.
As far as we know, this is the first approximation algorithm with this
property. Finally, we improve this approximation ratio under some extra
assumptions about the request graph.
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1 Introduction

1.1 Background and Problem Definition

Optical wavelength division multiplexing (WDM) is today the most pro-
mising technology to accommodate the explosive growth of Internet and tele-
communication traffic in wide-area, metro-area, and local-area networks. Using
WDM, the potential bandwidth of 50 THz of a fiber can be divided into multiple
non-overlapping wavelength or frequency channels. Since currently the commer-
cially available optical fibers can support over a hundred frequency channels,
such a channel has over one gigabit-per-second transmission speed. However,
the network is usually required to support traffic connections at rates that are
lower than the full wavelength capacity. In order to save equipment cost and
improve network performance, it turns out to be very important to aggregate
the multiple low-speed traffic connections, namely requests, into higher speed
streams. Traffic grooming is the term used to carry out this aggregation, while
optimizing the equipment cost. In WDM optical networks the most accepted
criterion is to minimize the number of electronic terminations, which is unani-
mously considered as the dominant cost, rather than the number of wavelengths.

SONET ring is the most widely used optical network infrastructure today. In
these networks, a communication between a pair of nodes is done via a lightpath,
and each lightpath uses an Add-Drop Multiplexer (ADM ), i.e. an electronic ter-
mination, at each of its two endpoints. If each request uses 1

g of the capacity of
a wavelength, g is said to be the grooming factor. The problem is equivalent to
assigning a wavelength to each request in such a way that for any wavelength and
any link of the network, there can be at most g requests using this link on this
wavelength. The aim is to minimize the total number of ADMs. In the graph-
theoretical approach that we use, the set of requests is modeled by a graph R,
and each vertex in the subgraph of R corresponding to a wavelength represents
an ADM. The problem, in the case where the communication network is a ring,
can be formally stated as follows :

Ring Traffic Grooming
Input : A cycle Cn on n vertices (network), a graph R (set of requests) on
vertices of Cn, and a grooming factor g.
Output : Find for each edge r = {x, y} of R, a path P (r) in Cn between x
and y, and a partition of the edges of R into subgraphs Rω, 1 ≤ ω ≤ W , such
that for each edge e in E(Cn) and for all ω, the number of paths P (r) using e,
r being an edge of Rω, is at most g.
Objective : Minimize

∑W
ω=1 |V (Rω)|.

The statement of Path Traffic Grooming is analogous, replacing Cn by Pn.
To fix ideas, consider a ring on five nodes and the complete graph of Fig. 1 as
request graph, and let g = 2. We exhibit two valid solutions of the problem,
both using two subgraphs (i.e. two wavelengths). The second solution is better
because it uses 9 vertices instead of 10.
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10 ADMs

9 ADMs

Fig. 1. Two valid partitions of K5 when g = 2, using different number of ADMs

1.2 Previous Work and our Contribution

The notion of traffic grooming was introduced in [12] for the ring topology.
Since then, traffic grooming has been widely studied in the literature (cf. [8],
[17], [20] for some surveys). The problem has been proved to be NP-complete
for ring networks and general g [4]. Many heuristics have been done [7], but exact
solutions have been found only for certain values of g and for the uniform all-to-
all traffic case in unidirectional ring [2], bidirectional ring [3], and path topologies
[2]. On the other hand, there was no result on the inapproximability of the
problem for fixed g ≥ 1. In [5] the authors conjecture that Traffic Grooming
is Max SNP-hard (or equivalently, APX-hard, modulo PTAS-reductions) for
any fixed value of the grooming factor. We answer affirmatively to this question in
Theorem 2, providing the first hardness result for the Ring Traffic Grooming
problem for fixed values of the grooming factor g.

Considering g as part of the input, in [14] it was proved that Path Traffic
Grooming does not accept a constant-factor approximation unless P = NP.
For fixed values of g, Path Traffic Grooming was proved to be in P for
g = 1 [2], but the complexity for fixed g ≥ 2 has been an open question for a
while. Recently, it has been proved in [18] that Path Traffic Grooming for
fixed g > 1 is NP-complete for bounded number of wavelengths. Our method
permits us to improve this result in Sect. 3, by proving the APX-completeness
of Path Traffic Grooming for any fixed g > 1 and unbounded number of
wavelengths. In particular, this extends the NP-completeness result of [18] to
the case where the number of wavelengths is not bounded.

The main ingredient of our approach is the proof of the APX-completeness
(given in Sect. 2) of the problem of finding the maximum number of edge-disjoint
triangles in a graph with bounded degree B : Maximum Bounded Edge Cove-
ring by Triangles (MECT-B for short). The proof is obtained by L-reduction
from Maximum Bounded Covering by 3-Sets, which was proved to be MAX
SNP-complete in [15]. A simple modification of this technique permits us to
prove the APX-completeness of finding the maximum number of edge-disjoint
odd cycles of given length in a graph. This later claim is then used to extend
our results to arbitrary values of g, see Sections 2, 3 and Appendices A, B.

The design of approximation algorithms for Traffic Grooming is the topic
of the second part of this paper. We present the results for the ring topology,
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but the same algorithm works also for the path topology. As we show in Sect.
3, it is trivial to obtain a O(

√
g)-approximation with running time polynomial

in g and n. For g = 1, the best algorithm in rings achieves an approximation
ratio of 10/7 [9]. For general g, the best approximation algorithm [11] achieves
an approximation factor of O(log g), but the problem is that the running time
is exponential in g (that is, ng). Since in practical applications SONET WDM
rings are widely used as backbone optical networks [8], [17], the grooming factor
is usually greater than the size of the network, i.e. g ≥ n. For those networks, the
running time of this algorithm becomes exponential in n. Thus, it turns out to be
important to find good approximation algorithms with running time polynomial
in both n and g. In Sect. 4 we provide such an approximation algorithm, consi-
dering g as part of the input. Our algorithm finds a solution of Ring Traffic
Grooming that approximates the optimal value within a factor O(n1/3 log2 n)
for any g ≥ 1. To the best of our knowledge, this is the first polynomial-time
approximation algorithm for the Ring Traffic Grooming problem with an
approximation ratio which does not depend on g. Although the performance of
this algorithm seems not to be very good at first sight, in fact we conjecture
that for the general instance of the problem it is not possible to get rid of a
factor nδ, for some constant δ > 0. Finally, we show that the general scheme of
the algorithm yields a O(log2 n)-approximation if the request graph excludes a
fixed graph as minor, for example if R is planar or of bounded genus. The main
theoretical contribution of the second part of this paper is to relate the Traffic
Grooming problem to the Dense k-Subgraph problem [10]. We conclude by
proposing some further research directions to better understand the complexity
of Traffic Grooming.

2 APX-completeness of MECT-B

In complexity theory, the class APX (Approximable) stands for all NP-
hard optimization problems that can be approximated within a constant factor.
The subclass PTAS (Polynomial Time Approximation Scheme) contains the
problems that can be approximated in polynomial time within a ratio 1 + ε for
all constants ε > 0. Intuitively, these problems are the easiest ones among all
NP-complete problems. Since, assuming P 6= NP, there is a strict inclusion of
PTAS into APX (for instance, Vertex Cover ∈ APX \ PTAS), an APX-
hardness result for a problem implies the non-existence of a PTAS. MECT-B
has been proved to be NP-complete [13], and the APX-hardness when requiring
node-disjoint triangles was proved in [15]. The proof of the APX-hardness of
MECT-B that we provide can be extended to obtain the APX-completeness of
the problem of finding the maximum number of edge-disjoint cycles of length
2g+1 for any fixed g ≥ 1, as sketched in Appendix A. For convenience, we prove
the Max SNP-hardness of MECT-B, which is known to be the same as the
APX-hardness modulo PTAS-reductions. MECT-B is trivially in APX, since
a simple greedy algorithm provides a 3-approximation.

Theorem 1. (a) MECT-B, B ≥ 10 is Max SNP-complete. Furthermore,
the problem remains Max SNP-complete in tripartite graphs.
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(b) More generally, given a (2g+1)-partite graph G of girth 2g+1, consisting
of (2g + 1) parts A0, . . . , A2g such that the only edges are between Ai and
Ai+1 (mod 2g + 1), i = 0, . . . , 2g, and such that all the graphs induced by
V (G) \Ai in G, for all i = 0, . . . , 2g, form a forest, the problem of finding
the maximum number of edge disjoint C2g+1’s in G is APX-complete.

Proof: We give the proof of part (a), the proof of part (b) is given in Appendix
A. L-reduction from Max 3SC-B4 and L-reduction to Indep. Set-B5 :
We define h : MECT-B → Indep. Set - (3/2(B-2)) as follows : given a graph
G as instance I of MECT-B, we define the following instance h(I) of Indep.
Set - (3/2(B-2)) : the graph h(G) contains a node vT for every triangle T in
G. There is an edge {vT0 , vT1} in h(G) iff T0 and T1 share an edge in G. Given
a solution A of h(I), we define a solution Sh(A) of I by taking the triangles
corresponding to nodes in A. It is easily verified that (h, Sh) is an L-reduction.

Now, we define f : Max 3SC-B → MECT-(3B+1) in the following way :
suppose that we are given as instance I, a collection C of 3-element subsets of
a set X such that every element of X belongs to at most B members of C. The
problem for I consists in finding the maximal number OPT (I) of disjoint subsets
in C. We construct an instance f(I) of MECT-(3B+1), i.e. we construct a graph
G = (V,E) in which we ask for the maximum numberOPT (f(I)) of edge-disjoint
triangles. Let C = {c1, . . . , cr}, with |ci| = 3. The local replacement f substitutes
for each element ci = {x, y, z} ∈ C, the graph Gi = (Vi, Ei) depicted in Fig. 2.

1
2

3
4

5
6

7
8

9
10

11
12

13

x [0] x[1] y [0] y [1] z[0] z [1]

a [1]i
a [2]i

a [3]i
a [4]i

a [5]i
a [6]i a [7]i

i

a [8]i
a [9]i

Fig. 2. Gadget used in the reduction of the proof of Theorem 1

To avoid confusion, note by t any element in ci, i.e. t ∈ {x, y, z}. Note that,
for each element t, the nodes t[0] and t[1], and the edge t[0]t[1] (corresponding
to the thick edges in Fig. 2) appear only once in G, regardless of the number
of occurrences of t. On the other hand, we add 9 new vertices ai[j], 1 ≤ j ≤ 9
for each subset ci, 1 ≤ i ≤ |C|. More precisely, G = (V,E) = ∪|C|i=1Gi, where
V =

⋃
t∈X{t[0], t[1]} ∪

⋃|C|
i=1{ai[j] : 1 ≤ j ≤ 9} and E =

⋃|C|
i=1Ei.

Now, given a solution A of f(I) of cost (or equivalently, size) c2, we modify
in polynomial time this solution to another equal or better solution A′ in the

4 Maximum Bounded Covering by 3-Sets : Given a collection of 3-subsets of a
given set, each element appearing in at most B subsets, find the maximum number
of disjoint subsets.

5 Maximum Bounded Independent Set : Given a graph of maximum degree ≤ B,
find a maximum independent set.
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following way : in each Gi, if the three triangles covering the edges x[0]x[1],
y[0]y[1], and z[0]z[1] (numbered 1, 7, 13 in Fig. 2) belong to A, we choose the
seven odd triangles of Gi to belong to A′. If not, we take the six even triangles.
Let c′2 ≥ c2 be the cost of A′. Then, we define a solution Sf (A) of I by choosing
the subset ci to be in Sf (A) if and only if A′ contains exactly 7 triangles in Gi.
We claim that the pair (f, Sf ) is an L-reduction : in each Gi there are 13 different
triangles, numbered from 1 to 13 in Fig. 2. The only way to choose 7 edge-disjoint
triangles in Gi is by taking all the odd triangles, and thus by covering the three
edges x[0]x[1], y[0]y[1], and z[0]z[1]. All other choices of triangles yield at most
6 edge-disjoint triangles. The key observation is that we are able to choose 7
triangles exactly OPT (I) times. Indeed, each time we choose 7 triangles we cover
the edges corresponding to 3 elements of ci, and since the number of disjoint ci’s
in C is OPT (I), this can be done exactly OPT (I) times. On the other hand,
one can easily see that OPT (I) ≥ |C|3B . Hence :

OPT (f(I)) = 7·OPT (I)+6(|C|−OPT (I)) ≤ OPT (I)+18B·OPT (I) = (18B+1)OPT (I)

To conclude, note that if the solution Sf (A) of I has cost c1, we have
OPT (I)−c1 ≤ OPT (f(I))−c2. To see this, we observe that OPT (f(I)) = 6r+
OPT (I), and also c′2 = 6r+c1, and so OPT (f(I))−OPT (I) = c1−c′2 ≤ c1−c2.

Both (f, Sf ) and (h, Sh) are L-reductions and MAX 3SC-B, B ≥ 3 and
Indep. Set-B, B ≥ 5 are Max SNP-complete [15]. Thus, MECT-B, B ≥ 10
is Max SNP-complete.

To prove the last claim, note that the graph G = (V,E) used in the proof is
tripartite, where the vertex sets defining the tripartition are :

V0 =
|X|⋃
t∈X

t[0] ∪
|C|⋃
i=1

{ai[2], ai[5]}, V1 =
|C|⋃
i=1

{ai[j] : j = 1, 4, 7, 8, 9}, V2 =
|X|⋃
i=1

t[1] ∪
|C|⋃
t∈X
{ai[3], ai[6]}

2

3 APX-completeness of Traffic Grooming

In this section we prove the hardness results for Ring Traffic Grooming
and Path Traffic Grooming. First we prove that Ring Traffic Grooming
belongs to APX when g is fixed. The same result holds for Path Traffic
Grooming.

Let us define the density ρ of a graph G as its edges-to-vertices ratio : ρ(G) =
|E(G)|
|V (G)| . To see that Ring Traffic Grooming is in APX for any fixed g ≥ 1,
we have to find a constant-factor approximation algorithm. We use the fact that
the best possible density ρ∗ of any subgraph used in the partition of the request
graph is O(

√
g), given by (possibly a subgraph of) a circulant graph [3]. We prove

that the cost A of any solution R1, . . . , RW is in the interval [ |E(R)|
ρ∗ , 2|E(R)|].

This clearly implies that any solution has cost at most 2ρ∗ = O(
√
g) times the

optimal cost. To see this, note that each edge of R contributes at most twice to
the cost, so A ≤ 2|E(R)|. On the other hand, we have

A =
W∑
ω=1

|V (Rω)| =
W∑
ω=1

|E(Rω)|
ρ(Rω)

≥
W∑
ω=1

|E(Rω)|
ρ∗

=
|E(R)|
ρ∗
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Thus, a O(
√
g)-approximation is obtained just by taking any partition of the

request graph.

Theorem 2. Ring Traffic Grooming is APX-complete for all fixed g ≥ 1.
Thus, it does not accept a PTAS unless P = NP.

Proof: We prove that Ring Traffic Grooming is APX-complete even if we
suppose that the degree of the request graph is bounded by a constant B ≥ 10.
First, we prove the result for g = 1. We consider a set of requests R made of
a tripartite graph with the three partition classes placed consecutively on the
ring, as shown in Fig. 3a. To simplify the presentation, suppose that R can be
partitioned into triangles. In any solution, the only possible involved subgraphs
are P2, P3, P4, and K3. It is clear that the best we can do is to groom the
requests into triangles (since triangles have the highest density) obtaining an
optimal cost of |E(R)|. From this we derive that |E(R)| is a lower bound for the
number of ADMs of any solution, and that each path used in a given solution
adds an additional unity of cost. For each solution S, the additional cost is at
least 4/3 times the number of edges covered by paths of S. This bound is tight
if all the paths are P4’s. Thus, the number A of ADMs used by S (i.e. the cost
of S), satisfies A ≥ (1 − ε)|E(R)| + ε 4

3 |E(R)| = (1 + ε
3 )|E(R)|, where ε is the

percentage of edges of R not covered by triangles in S. By Theorem 2, there
exists a constant ε0 such that we can find in polynomial time at most a fraction
(1− ε0) of the triangles of R. This means that (1 + ε0

3 )OPT is the best solution
we may obtain by a polynomial-time algorithm, implying the non-existence of a
PTAS.

For g > 1, we take a (2g+ 1)-partite graph as the request graph, in such way
that each cycle makes at least g tours around the center of the ring. Now, we can
reduce the grooming problem to the problem of finding a maximum number of
cycles of length 2g+ 1 in this graph (as in the case g = 1). This later problem is
also APX-complete, see Theorem 1 and Appendix A. The details can be found
in Appendix B. Hence, Ring Traffic Grooming is Max SNP-complete for
bounded number of requests per node B ≥ 10. 2

b)a)

Fig. 3. Request graph used in the proof of APX-completeness of Traffic
Grooming : a) in the ring for g = 1 ; b) in the path for g = 2

Theorem 3. Path Traffic Grooming is APX-complete for any fixed g ≥ 2.
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Proof: Again, the result holds even for bounded number B of requests per
node, B ≥ 10. We prove the result for g = 2, proceeding for g > 2 as in the
proof of Theorem 2. Consider a set of requests R made of a tripartite graph with
the three partition classes placed consecutively on the path one after another, as
shown in Fig. 3b. Since each triangle induces load 2, minimizing the number of
ADMs corresponds to finding the maximum number of edge-disjoint triangles.
Therefore, it does not accept a PTAS unless P = NP. 2

4 Approximating Ring Traffic Grooming

We are now interested in finding good approximation algorithms considering
g as part of the input. As we saw in Sect. 3, obtaining a O(

√
g)-approximation

is trivial. Since in practical applications SONET WDM rings are widely used
as backbone optical networks [8], [17], the grooming factor is usually greater
than the size of the network, i.e. g ≥ n. Thus, it turns out to be important to
find approximation algorithms with an approximation ratio not depending on
g. A general approximation algorithm with this property is the main result of
this section. It provides in the worst case a O(n1/3 log2 n)-approximation. We
describe it for the ring, but exactly the same arguments provide an algorithm
for the path. The main idea is to greedily find subgraphs with high density using
approximation algorithms for the Dense k-Subgraph problem, which is defined
as follows : given a graph G and an integer k, find an induced subgraph H ⊆ G
on k vertices with the highest density among all subgraphs on k vertices. In
[10] the authors provide a polynomial-time algorithm with approximation ratio
2n1/3. To simplify the presentation, suppose that n = 2t for some t > 0 :

Algorithm A :

Step 1) Divide the request set into log n classes, such that in each class Ci
the length of the requests lies in the interval [2i, 2i+1), i = 0, . . . , log n− 1.
For each class Ci, the ring can be divided into intervals of length 2i such
that the only requests are between consecutive intervals. In this way we ob-
tain n

2i subproblems for each class : each one consists in finding an optimal
solution in a bipartite graph of size 2 · 2i. More precisely, each subproblem
can be formulated as :

Bipartite Traffic Grooming
Input : A bipartite graph R, and a grooming factor g.
Output : Partition of the edges of R into subgraphs Rω with at most g
edges, 1 ≤ ω ≤W .
Objective : Minimize

∑W
ω=1 |V (Rω)|.

Solve all these Bipartite Traffic Grooming subproblems indepen-
dently, and output the union of all solutions.

Step 2) To solve each Bipartite Traffic Grooming subproblem in a bi-
partite graph R, proceed greedily (until all edges are covered) by finding
at step i a subgraph Ri of G \ (R1 ∪ · · · ∪ Ri−1) with at most g edges in
the following way :
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For each k = 2, . . . , 2g find a subgraph Bk of R \ (R1 ∪ · · · ∪ Ri−1) using
the algorithm of [10] for the Dense k-Subgraph problem.
• If for some k∗, |E(Bk∗)| > g, and |E(Bi)| ≤ g for all i < k∗, re-

move |E(B∗k)| − g arbitrary edges of Bk∗ and replace B∗k with this
new graph. Stop the search at k∗, and output the densest graph among
B2, . . . , Bk∗−1, Bk∗ .

• If not, output the densest subgraph among B2, . . . , B2g.

Let OPT be the optimal solution of Ring Traffic Grooming, and let OPT1

be the cost of the solution obtained by solving optimally all the subproblems
generated by Step 1 of Alg. A. We prove a lemma before stating the theorem.

Lemma 1. Let β be a given number. Suppose that we can find in any bipartite
graph R on at most n vertices, a subgraph with at most g edges which has density
at least 1/β times the density of the densest subgraph with at most g edges. Then
in the greedy procedure of Step 2 of Algorithm A we obtain a solution of cost
OPT2 such that OPT2 ≤ O(log n) · β ·OPT1.

Proof: Letm be the number of edges of the request graphR, and letR1, R2, . . . , Rr
be the subgraphs generated in order by the above algorithm, and covering all the
edges. We will prove that

∑
|V (Ri)| ≤ log(m) · β ·OPT1. To prove this, we first

enumerate the edges of R in order of appearance in Ri’s : all the edges in R1 will
be enumerated e1, . . . , eg1 (g1 = |E(R1)| ≤ g), all the edges in R2 will be enume-
rated eg1+1, . . . , eg1+g2 (g2 = |E(R2)| ≤ g), and so on. Let ρi be the density of
the subgraph Ri, i.e. ρi = |E(Ri)|

|V (Ri)| , and Σ =
∑
|V (Ri)| the total cost of the solu-

tion. For every edge ej ∈ Ri, we define c(ej) = 1
ρi

. We claim that
∑
j c(ej) = Σ.

To prove this equality just note that
∑
ej∈E(Ri)

c(ej) = |E(Ri)|
ρi

= |V (Ri)|, and so∑
j c(ej) =

∑
i |V (Ri)| = Σ. Let us define R′i to be the union of Ri, Ri+1, . . . , Rr.

We define ρ′i to be the density of the densest subgraph of R′i containing at most
g edges. Let us take an optimal solution for R′i, i.e. a decomposition of R′i into
subgraphs A1, . . . , As such that

∑s
k=1 |V (Ak)| is minimum. Let ρ1, . . . , ρs be the

density of these subgraphs. We have :
• ∀k ≤ s, ρk = dens(Ak) ≤ ρ′i : because each Ak is a subgraph of R′i

containing at most g edges, and ρ′i is the density of the densest subgraph
with at most g edges in R′i.
• ρ′i ≤ βρi : because we suppose that we can find an approximation of ρ′i up

to a factor 1/β.

This implies that
1
ρk
≥ 1
βρi

, and so
∑
k

|V (Ak)| =
∑
k

|E(Ak)|
ρk

≥
∑
k

|E(Ak)|
βρi

=
|E(R′i)|
βρi

But an optimal solution for R provides a solution for R′i of cost at least the opti-
mal solution for R′i, i.e.

∑
k |V (Ak)| ≤ OPT1. Using this in the above inequality

we get 1
ρi
≤ β·OPT1
|E(R′i)|

, and so for an edge ej ∈ Ri we have c(ej) = 1
ρi
≤ β·OPT1
|E(R′i)|

≤
β·OPT1
m−j+1 , and this proves that

Σ =
∑
j

c(ej) ≤ β ·(
∑
j

1
m− j + 1

)·OPT1 ≤ β ·log(m)·OPT1 ≤ 2β ·log(n)·OPT1

2
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Theorem 4. A is a polynomial-time approximation algorithm that approximates
Ring Traffic Grooming within a factor O(n1/3 log2 n) for any g ≥ 1.

Proof: Algorithm A returns a valid solution of Ring Traffic Grooming,
because each request is contained in some bipartite graph, and no request is
counted twice. The runtime is polynomial in both n and g, because we run at
most 2g − 1 times the algorithm of [10] for each subproblem, and there are
n(
∑t−1
i=0

1
2i )− 1 = 2n− 3 subproblems. We prove the approximation guarantee :

• We claim that OPT1 ≤ 2 log n ·OPT . Indeed, let ci be the optimal cost of
the subset of requests of length in the interval [2i, 2i+1), i = 0, . . . , log(n)−
1. It is clear that ci ≤ OPT for each i , and thus

∑logn−1
i=0 ci ≤ log n ·OPT .

Finally, OPT1 ≤ 2
∑logn−1
i=0 ci, because each vertex is taken into account

in two subproblems.
• The greedy procedure described in Step 2 of Algorithm A outputs a graph

whose density is at least 1
2n1/3 times the highest density (with at most g

edges) of the updated request graph. To see that, note that the optimal
density is achieved by a subgraph on at most 2g vertices (it would be
the case of g disjoint edges). Then, for each value of k, the algorithm of
[10] finds a 2n1/3-approximation of the maximum number of edges of an
induced subgraph on k vertices6. Thus, if we take the densest subgraph
among B2, . . . , B2g (removing edges if necessary) we also obtain a 2n1/3-
approximation of the highest density of a subgraph with at most g edges.
Let ρk be the density of Bk before removing edges. The explicit formula
of the highest density ρ that we output in Step 2 of Algorithm A is :

ρ := max
k∈{2,...,2g}

min
(
ρk,

g

k

)
Looking at the formula we understand why we stop at k = k∗ in the
algorithm. In other words, we can use β = 2n1/3 in Lemma 1.
• By combining the remarks above and Lemma 1 we obtain that the cost A

returned by Algorithm A satisfies A ≤ 2n1/3 ·OPT2 ≤ 4n1/3 log n·OPT1 ≤
8n1/3 log2 n ·OPT. 2

We can improve the approximation ratio of the algorithm if all the requests
have short length compared to the length of the ring. This situation is usual
in practical applications since nodes may want to communicate only with their
nearest neighbors. Let f(n) be any function of n. If all the requests have length
at most f(n), then the above algorithm provides an approximation ratio of
O(f(n)1/3 log2 n). Indeed, in Step 2 of Algorithm A, we have to find dense
subgraphs in bipartite graphs of size at most 2f(n), hence the factor 2n1/3 can
be replaced with 2(2f(n))1/3.

Remark that all the instances of Dense k-Subgraph problem in our algo-
rithm are bipartite. Using the results of [19], it is possible to obtain a better

6 In fact, the improved approximation ratio of the Dense k-Subgraph problem is
O(nδ) for some constant δ < 1/3 [10]. Obviously, the same applies to our algorithm,
replacing the exponent 1/3 with δ < 1/3.
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approximation ratio when the request graph is bipartite and satisfies some uni-
form density conditions. We omit the proof due to lack of space.

Corollary 1. If the request graph R is such that in any large enough subgraph
H ⊆ R, a densest subgraph (A∪B,E) satisfies |A|, |B| = O(

√
g) and |E| = Ω(g),

then for any constant ε > 0 there exists a polynomial-time algorithm for Ring
Traffic Grooming with approximation ratio O(nε log2 n).

To end this section, note that the results of [6] show that the density can be
approximated within a constant factor two in the class of graphs excluding a fixed
graph H as minor. Thus, if the request graph R is H-minor free (for instance if
R is planar, or of bounded genus,...), our algorithm achieves an approximation
factor of O(log2 n).

5 Conclusions and Further Research

This article deals with Traffic Grooming, a central problem in WDM
optical networks. The contribution of this work can be divided in two main
parts : on the one hand, we state the first hardness results for Ring Traffic
Grooming and Path Traffic Grooming for fixed values of g. More precisely,
we prove that Ring Traffic Grooming is APX-complete for fixed g ≥ 1, and
that Path Traffic Grooming is APX-complete for fixed g ≥ 2. In other
works, we rule out the existence of a PTAS for fixed values of g. To prove this
results we reduce Ring Traffic Grooming for g = 1 to the problem of finding
the maximum number of edge-disjoint triangles in a graph of degree bounded
by B (MECT-B for short). We prove that MECT-B is APX-complete, and we
generalize this reduction for Path Traffic Grooming and for all values of
g ≥ 1. On the other hand, we provide the first polynomial-time approximation
algorithm for Ring and Path Traffic Grooming with an approximation ratio
not depending on g, considering g as part of the input.

There remains still a lot of work to be done. It is a challenging open problem
to close the complexity gap of Traffic Grooming, that is, to provide an ap-
proximation algorithm with an approximation ratio matching the corresponding
inapproximability result. We are convinced that the inherent difficulty of the
problem resides in finding dense subgraphs with bounded number of edges. This
problem is strongly related to the problem of finding the densest subgraph with
bounded number of vertices, which has been recently proved to have, essentially,
the same difficulty as the Dense k-Subgraph problem [1]. The non-existence
of a PTAS for the Dense k-Subgraph problem has been proved in [16] in-
volving very technical proofs, and this is the best existing hardness result. A
long-standing conjecture claims that there exists some constant ε > 0 such that
finding a nε-approximation for Dense k-Subgraph is NP-hard [10]. As we pro-
ved in Sect. 4, an α-approximation for Dense k-Subgraph yields a O(α log2 n)-
approximation for Ring Traffic Grooming. We suspect that a similar result
in the other direction should also exist. Because of this, we conjecture that :
Conjecture 1. There exists some constant δ > 0, such that Ring Traffic
Grooming is hard to approximate within nδ when g is part of the input.
Acknowledgement. Many thanks to David Coudert, Mordechai Shalom and
Shmuel Zaks for helpful discussions.
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A Sketch of the proof of the APX-completeness of
finding the maximum number of odd cycles for g > 1

We provide here the proof of the fact that finding the maximum number of
C2g+1’s in a graph G is also APX-complete for any fixed g > 1. In fact, we need
and prove a stronger result (part (b) of Theorem 1) :

Theorem 5. Given a (2g + 1)-partite graph G of girth 2g + 1, consisting of
(2g + 1) parts A0, . . . , A2g such that the only edges are between Ai and Ai+1

(mod 2g + 1), i = 0, . . . , 2g, and such that all the graphs induced by V (G) \ Ai
in G, for all i = 0, . . . , 2g, form a forest, the problem of finding the maximum
number of edge disjoint C2g+1’s in G is APX-complete.

Proof: First, note that a greedy algorithm provides a constant factor approxi-
mation with factor 2g + 1. Now, consider the gadget of the proof of Theorem
1 (see Fig. 2). We modify this gadget in such a way that the same proof holds
for C2g+1’s instead of C3’s (triangles), and such that all the conditions of Theo-
rem 5 are verified. Given g > 1, we add a chain of 4g + 1 triangles between any
two pair of triangles corresponding to thick edges (that is, between the edges
corresponding to elements of X). Then we add g−1 inner points to all the edges
going from up to down in the triangles. An example if shown in Fig. 4.

1
2

3
4

4g+1

4g+2

4g+3

4g+4

4g+5 8g+1

8g+2

8g+3

x[0] x[1] y[0] y[1] z [0] z[1]

a [g]i
a [3g]i

a [2(2g)g+g]i
a [2(2g+1)g+g]i a [2(2g+2)g+g]i

a [4(2g)g+g]i a [4(2g)g+3g]i

i
a [2(2g)g]i

a [4(2g)g]i
a [4g]i a [2(2g+3)g]i

Fig. 4. Adding g − 1 inner points (depicted as © in the figure) to prove the
APX-completeness of finding edge-disjoint C2g+1’s

It is easily seen that the graph built in this way is (2g+ 1)-partite. Indeed, it
admits a partition into (2g+ 1) parts, numbered 0, . . . , 2g, which consist of enu-
merating the vertices cyclically. Let A0, . . . , A2g be the different parts. In such a
(2g+ 1)-partition, for any element t ∈ X, the vertex t[0] belongs to A0, and the
vertex t[1] belongs to A2g. We need this property to ensure the consistency of our
gadget when an element appears in more that one subset. Note that the graph
induced by V (G)\Ai in G, for all i = 0, . . . , 2g, form a forest. At this point, one
can rewrite the proof of Theorem 1 to obtain the result, just by changing the
multiplicative constants. 2
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B Sketch of the proof of the APX-completeness of Ring
Traffic Grooming for g > 1

We generalize the proof of the case g = 1. Let G be a graph satisfying the
conditions of Theorem 5 : G is a (2g+1)-partite graph, consisting of 2g+1 parts
A0, . . . , A2g such that the only edges are between Ai and Ai+1 (mod 2g + 1),
i = 0, . . . , 2g, and such that the graph induced between two consecutive parts
of G forms a forest (or more generally a graph of girth at least g + 1). Again,
in order to simplify the presentation suppose that this graph can be partitioned
into C2g+1’s.

Now, let c0, . . . , c2g be a permutation of the vertices of the cycle C2g+1, such
that the polygon (c0, . . . , c2g) makes g tours around the center (for g = 1 take
the triangle. For g arbitrary, let ci = exp( 2igπ

2g+1 )). Now replace each vertex ci with
an interval consisting of vertices of Ai. In this cyclic representation of the graph
G, each cycle makes at least g tours around the origin. To see this, recall that
the only possible edges are between Ai and Ai+1 (mod 2g + 1), i = 0, . . . , 2g,
and also the graph induced between two consecutive parts forms a forest. This
implies that every cycle should intersect each Ai at least once, and so this cycle
makes at least g tours around the origin, as the original cycle {c0, . . . , c2g} does
so. Each cycle used in the solution should be of length exactly 2g + 1, there is
no cycle of smaller length, and longer cycles use each edge more than g times,
as they make more than g tours around the origin. Then the problem is reduced
to finding edge-disjoint cycles of length 2g+ 1, which is also Max SNP-hard by
Theorem 5.

The proof of Theorem 2 can now be reproduced to obtain the same result for
any g, replacing the factor 4

3 for g = 1 (because the path with highest density
in any solution for g = 1 is a P4) with a factor 2g+2

2g+1 for a general g (because the
path with highest density in any solution for general g is a P2g+2).


