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If there were any real proof that the sun is in the centre of the universe and the

earth in the third heaven, and that the sun does not go around the earth, but the

earth round the sun, then we would have to proceed with great circumspection in

explaining passages of scripture which appear to teach the contrary, and rather admit

that we did not understand them, than declare an opinion to be false which is proved

to be true. As for myself, I shall not believe that there are such proofs until they are

shown to me. Nor is it proof that, if the sun be supposed to be at the centre of the

universe and the earth in the third heaven, everything works out the same as if it

were the other way around.

Cardinal Roberto Bellarmino, Master of Controversial Questions at the Collegio

Romano, in a letter of 12 April 1615 to Paolo Antonio Foscarini, Carmelite monk,

replying to an enquiry about the truth of the Copernican system (Opere, Vol. 12, p.

165).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Indeed, someone who does philosophy or psychology will perhaps say “I feel that I

think in my head”. But what that means he won’t be able to say. For he will not be

able to say what kind of feeling that is; but merely to use the expression that he ‘feels’;

as if he were saying “I feel this stitch here”. Thus he is unaware that it remains to be

investigated what his expression “I feel” means here, that is to say: what consequences

we are permitted to draw from this utterance. Whether we may draw the same ones

as we would from the utterance “I feel a stitch here”.

Ludwig Wittgenstein, Remarks on the Philosophy of Psychology, Vol. 1, # 350, Basil

Blackwell, Oxford, 1980. Translated by G. E. M. Anscombe.
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Abstract

Object recognition is a central problem in computer vision. Typically it
is assumed to follow a sequential model in which successively more specific
hypotheses are generated about the image. This is a rather simplistic model,
allowing as it does no margin for error at any point. We follow a more
general approach in which the various representations involved are allowed
to influence one another from the outset. As a guide and ultimate goal, we
study the problem of finding the region occupied by human beings in images,
and the separation of the region into arms, legs and head. We approach the
problem as that of defining a functional on the space of boundaries in images
whose minimum specifies the region occupied by the human figure.

Previous work that uses such functionals suffers from a number of diffi-
culties. These include an uncontrollable dependence on scale, an inability to
find the global minimum for boundaries in polynomial time, and the inability
to include region as well as boundary information. We present a new form
of functional on boundaries in a manifold that solves these problems, and
is also the unique form of functional in a specific class that possesses a non-
trivial, efficiently computable global minimum. We describe applications of
the model to single images and to the extraction of boundaries from stereo
pairs and motion sequences.

In addition, the functionals used in previous work could not include
information about the shape of the region sought. We develop a model for
the part structures of boundaries that extends previous work to the case of real
images, thus including shape information in the functional framework. We
show that such part structures are hyperpaths in a hypergraph. An ‘optimal
hyperpath’ algorithm is developed that globally minimizes the functional
under some conditions.

We show how to use exemplars of a shape to construct a functional that
includes specific information about the topology of the part structure sought.
An algorithm is developed that globally minimizes such functionals in the
case of a fixed boundary. The behaviour of the functional mimics an aspect
of human shape comparison.
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CHAPTER I

SEEING MACHINES

A background is drawn for the work. The study of vision is
difficult both philosophically and practically, but the notion of
seeing machines clarifies the issues somewhat. A definition of a
visual system as a module of a seeing machine is given, and this
necessitates a discussion of image semantics as the appropriate
output of a visual system. The ideas discussed are formalized
using probability theory and working assumptions used to render
the problem tractable. We then consider briefly what it means to
test a visual system empirically.

T HE nature of vision is obscure. To a great extent this reflects the difficulties
associated with any discussion of mental phenomena, whether in the

biological/psychological sciences or in computer science. Indeed the very
use of the word phenomena here is misleading. What we refer to as mental
phenomena are exclusively experiences of ourselves, unless we count particular
physical and chemical measurements that may be made on our brains and
whose connection to the first kind of mental phenomena is largely unknown.
These experiences are not phenomena in the same sense that the behavior
of a falling object is a phenomenon. Others do not observe my ‘mental
phenomena’. They may hear me speak as if I have observed something, but
we do not observe ourselves as we observe a physical event or even as we
observe others, except metaphorically. It is not clear what we mean when
we say that we ‘see’ something or that we ‘recognize’ an object, once we step
outside the normal realms of discourse and attempt to analyze such statements
in the abstract. For example, what does it mean to ask the questions “do we
recognize every object in our field of view?” or “do we see every object in our
field of view?”? Avoiding the dilemmas and confusions raised by these issues
is not always easy.

By way of contrast, computer vision is the attempt to construct seeing
machines. In full generality, a seeing machine is any machine that uses images
to help accomplish a task. Such tasks are extremely varied. They range over
almost all of human and animal activity: counting widgets passing by on
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a conveyor belt; navigating through a complex environment; extracting the
region corresponding to a human being in an image; animation; copying a
design; handwriting recognition; and on and on. Human beings allegedly
devote a third of the volumes of their brains to visual processing, which gives
some indication of the problems facing computer vision. Nevertheless, by
approaching the study of vision in this operational way, it is to be hoped that
we can avoid the philosophical concerns mentioned in the first paragraph,
and eventually shed some light on what we are talking about when we discuss
human vision, as well as constructing useful technology along the way.

The first thing we will do however, is to make a simplifying assumption
that reduces the operational content of our model. We will postulate a
separation between those parts of the machine that deal with the images
themselves and those parts that perform other tasks such as planning or
locomotion. The picture is of a ‘module’ (called the visual system) that takes
images as input (the images are made available according to a plan formulated
elsewhere in the machine), and that produces as output statements about the
image. Such a picture has advantages and disadvantages. On the positive
side, it is a useful abstraction since we are not forced to contemplate general
intelligent behaviour in addition to the already formidable difficulties of image
understanding, and it opens the possibility of discovering task-independent
methods. On the negative side, the separation means that we must now test
the performance of the visual system independently of a specific task. In
what could such a test consist? We are forced to refer the notion of image
understanding to human performance, since that is the only visual system to
whose output we have access.

1. IMAGE SEMANTICS

In performing a given task, the images used by the seeing machine will be
endowed with a semantics. This semantics encodes what the seeing machine
as a whole does with the images it acquires: what consequences it can draw
from these images. A semantics can be thought of as a collection of statements
about the image that are true. In general the semantics will clearly depend
on the task. The job of the visual system is to output a statement from the
semantics on receiving an image as input.

In order for the semantics to be testable in any meaningful way, the
relevant people must agree on the statements in it: ground truth is established
by human consensus. This may be because the semantics is agreed upon for a
specific type of image and task, for example a blueprint, but often this is not
the case. For example, the statement that there is a black rectangle at such
and such a location in figure 1 is unlikely to produce disagreement among
observers. On the other hand, the statement that this image is a picture of a
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FIGURE 1. A black rectangle or a book?

black book might well, and yet it is not an unreasonable interpretation of the
image. While this may seem to subjectivize the notion of the meaning of an
image, in practice it is all that we have once we separate visual understanding
from task performance. In the future, given a theory as to why we divide
the world into the objects and concepts that we use (such a theory is not
inconceivable: perhaps there is an informationally optimal way to do this,
to which human understanding is an approximation), this situation might
be changed. In the meantime, human consensus is what we mean by image
understanding.

In order to compare two visual systems, we must have not only the notion
of ground truth provided by human consensus, but also a notion of how
‘close’ to correct a given statement is. Given the output of a visual system on
a particular image, this latter notion (an evaluation function) will compare the
statement to the image semantics and output a real number, the evaluation
of the output. Two visual systems can then be compared by, for example,
using a probability distribution of possible inputs and computing the mean
evaluations. The evaluation function is not given a priori. It too must be
agreed upon, and will in general be task-dependent. In fact, in a typical task
the evaluation function will depend upon a number of other factors that
only logically become available to us once we consider the task itself. For
example, the resources needed for the visual system to output its statement
might be extremely important in reality, and may offset the accuracy of the
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result. These factors are completely task-dependent and we do not consider
them further except to ensure that they are not prohibitive (for example, an
algorithm that takes time exponential in the size of the input).

It is hard to give a clearly defined semantics for many images. For example,
depictions of real scenes can be given a semantics by making statements about
possible scenes prefixed by “If a real scene had generated the image, then in
that scene . . . ”. The problem is that in some cases there may not be enough
consensus to render such statements free of their dependence on the speaker.
One way is to choose a semantics based on the author’s intent, but this may
not have been expressed in enough detail to be useful. More pragmatically,
statements about such images must be referred back to the task that generated
them. The successful (or otherwise) completion of the task will then be the
best measure of the correctness of the visual system.

Rather than go into the details of different types of image semantics, we
will restrict ourselves immediately to the case of real images, which is to say
those images formed by a camera or cameras (including the case of biological
vision). By the scene we mean the world including the camera(s). The scene
itself has a semantics (which may differ from person to person, and certainly
from culture to culture), which can include statements about time and about
the relations of the views of different cameras (for example, “the volumes of
the world viewed by these two cameras intersect”). This semantics may be
translated into a semantics for the image by prefixing every statement in the
scene semantics by “In the scene that generated this image . . . ”.

The semantics of the scene must be testable in the same sense as discussed
above for it to generate a testable image semantics. In many cases there is
no problem. People will agree by and large on many things. The physics of
the scene for example is agreed upon, including the geometric structure and
motion of the objects and surfaces in the scene. Thus questions such as those
asked in stereo vision or optical flow computation can be tested with reference
to this semantics. People will also identify the human beings in the scene
and the volumes occupied by them reliably, so that statements about object
recognition can also be tested. Other properties, for example human facial
expression, are less likely to produce unanimity, and again a referral back to
the practical application may be necessary.

1.1. Internal Representation of Images

Internally to the visual system, for the purposes of model building and
computation, an image will be represented by a map from some domain to
some co-domain. We give some examples. A single image is a real-valued
function on a domain D in the plane. An image may be R3-valued in the case
of coloured images, and it can be more exotic, such as S1-valued if we have

4



a phase image for example. We can consider n such images at once, which
we need to do in the case of stereo for example, in which case the image is
a product map Dn → Rn (or alternatively D × N → R). (We could also
consider products of images with different domains.) In the case of motion,
we deal with maps from D× R → R, where the domain now includes time.
It is not inconceivable that the domain might also be topologically more
complicated: a 360◦ view for example, or a 4π solid angle view. Of course we
can also combine these and any other possibilities in various ways.

2. PROBABILISTIC MODELS

In order to begin to formalize these notions, we turn to probability theory.
Probability theory is the extension of logic to uncertain statements, or in other
words to cases in which our state of knowledge can be described no longer
by 1 when we know something to be true, or 0 when we know it to be false,
but must be described by the interval [0, 1]. Despite many attempts to devise
alternative pictures, probability theory remains in practice the pre-eminent
method, because it seems to be the only system that satisfies certain simple
desiderata of consistency.

2.1. Decision Theory

Suppose we have an hypothesis space H, and a data space D, and prob-
ability distributions Pr(D = d|H = h), which describes our knowledge
of how the model represented by the hypothesis generates the data, and
Pr(H = h), which describes our prior knowledge of the likelihood of the
hypothesis h.1 Then we can form the posterior probability that hypothe-
sis h is correct given data d and our prior knowledge using Bayes theorem:
Pr(H = h|D = d) = Pr(D = d|H = h)Pr(H = h)/Pr(D = d).

If we wish to make a decision as to which hypothesis to pick (and use in
any subsequent adventures), we must choose a loss function. This is a function
L on H × H, whose value L(h, h′) gives the loss consequent on assuming
that the true hypothesis is h when it is in fact h′. The choice of a loss function
is entirely disjoint from the probability calculation. Two different uses of the
same data and same hypotheses might have different loss functions, and hence
the decision we would make about which hypothesis to use might change with
the situation. Even given a loss function, there are still some choices we can
make as to what to do with it. We can choose to minimize the maximum
1By and large we will use calligraphic letters for spaces, capital letters for variables over spaces,
and lower case letters for points in spaces. We will often abbreviate the notation Pr(H = h)
by Pr(h) where the context makes it clear what is meant. We treat every object as an arrow, so
that function composition will be denoted by juxtaposition. The only exception will be for
points in spaces, where parentheses will be used. Thus f(g(h(x))) will be written fgh(x).
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loss, or maximize the minimum loss or, most usually, minimize the expected
loss given the data. Some hypothesis spaces have relatively natural choices of
loss function. It is well known that for vector spaces for example, choosing an
Euclidean norm with respect to some basis means that the minimum expected
loss is achieved by using the expectation of the hypothesis as an estimate. If a
Manhattan norm is used, the resulting estimate should be the median. Some
loss functions, of William Tell type, that are small when the hypotheses are
the same, grow as the difference between them grows, and shrink again for
large differences, offer effectively no good estimate at all.

Unfortunately, all these possibilities assume a great deal of structure on the
space of hypotheses. In the absence of anything except the preconditions for
probability theory, there is only one obvious loss function, the delta function.
This says that a “miss is as good as a mile”. It is large and negative when the
estimated hypothesis is the correct one, and zero otherwise. It is easy to see
that the requirement to minimize the expected loss with this loss function
leads to a best estimate given by arg maxh∈H Pr(H = h|D = d). This is
the MAP (maximum a posteriori) estimate. It has three great advantages.
The first is that it is always applicable. The second is that it is not necessary
to compute integrals over vast hypothesis spaces. The third is that it can
be re-expressed in a useful way by minimizing the negative logarithm of the
probability rather than maximizing the probability. The negative logarithm of
the probability is known as the energy by analogy with statistical physics, and
its use simplifies the notation involved considerably. The disadvantage of the
MAP estimate is that it throws away all of the probability distribution. It is the
saddle-point approximation to the estimate using the mean and, interpreted
in that way, is only really accurate if the distribution is extremely peaked
about the maximum. Nevertheless, because of its computational tractability
the MAP estimate will be used throughout this thesis.

It is in principle possible to compute how reliable the estimate is for any
of these scenarios by considering the mean value of fluctuations around the
estimate. This is normally extremely difficult to do for the models considered
in computer vision.

2.2. Real Image Semantics

As discussed at the beginning of the chapter, each real image has a se-
mantics, unknown to the visual system, derived from the semantics of the
scene. Call the space of all possible complete scene semantics S, and the
space of all possible images I. Complete here means that the scene semantics
is sufficiently large to make the image a function of the semantics, up to noise
introduced by the microphysics of the scene (recall that the camera is a part
of the scene), and to contain the statements in which we are interested. The
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notion of completeness depends upon the camera: for a ‘shadow’ camera that
takes silhouette pictures, a complete semantics would be much smaller that
that required for a conventional camera for example. Given such a semantics,
we can imagine a probability distribution Pr(I = i|S = s) whose form is in
principle known from the physics of the scene and the camera.

Of course just because the image is a function of the scene does not mean
that the reverse is true. Nevertheless, given a prior probability distribution
on possible complete semantics, we can generate the joint distribution of
images and semantics, Pr(I = i&S = s) = Pr(I = i|S = s)Pr(S = s).
From here we can generate the posterior probability of the semantics, Pr(S =
s|I = i) = Pr(I = i&S = s)/Pr(I = i), where Pr(I = i) can be found by
marginalization.

In general, it will be true that Pr(I = i|S = s) = Pr(I = i|T = t),
where t ⊂ s. Many aspects of the scene do not affect the resulting image.
These depend on the camera. The example of the shadow camera has already
been given. Properties of the scene in different spectral ranges may also
be irrelevant because the camera does not record its interaction with most
spectral ranges. Of most importance in practice however, are the physical
limitations imposed by the transparency or otherwise of parts of the scene
to the physical carrier producing the image. The most obvious example is
the gathering of light by a ‘normal’ camera. The camera gathers light passing
through a small cross-section in certain directions only due to the opacity of
its body and transparency of its lens. This means that most of the world is
out of view. In the part of the world that is in view, opaque objects block the
light from objects further from the camera but projecting to the same point
in the image domain. Information about any of these parts of the scene is
irrelevant to the formation of the image. For visible light, such occlusion
is very important. It is less important for X-ray images for example, and
assumes an entirely different form for ultrasound images. If the frequency
of the carrier is low enough, there may be diffusion effects that render the
useful idea of image formation as projection an approximation. The study of
image formation is thus rather complicated. We will deal with one or more
monochromatic cameras operating in the visible spectrum. We assume that
at each instant they behave as orthogonal or projective maps from R3 to R2,
creating a single image D → R, and that the intensity of the light at each
point of D is faithfully preserved in the value of the map.

Note that just because the image does not depend on S \T does not mean
that we can find out nothing about this part of the scene semantics, because
we have the prior on scene semantics to consider too. In fact the posterior
distribution onR = S \T is given by Pr(R = r|I = i) =

∑
t Pr(R = r|T =
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t)Pr(T = t|I = i). UnlessR is independent of T , we can acquire knowledge
about R. We can frequently fill in missing objects in images for example.

The discussion so far must all be taken formally of course. We do not
know what the space of complete semantics is, and still less do we know how
to define a measure on it. This does not prevent it being a useful way of
thinking, but it does prevent us doing any computations with it. To do that,
we must simplify. By looking at the enormous space S × I, we are looking
at the ‘microstates’ of the system, the most detailed picture that we can have.
To render this useful, we need a thermodynamics, dealing with much smaller
spaces of ‘macrostates’. Just as in physical thermodynamics, the choice of
macrostate is up to the modeller. Some properties can be held constant
while others are allowed to “flap in the breeze”. What aids us, is that in the
performance of a particular task, we are generally not interested in the totality
of information about the scene, even if such could be acquired. There will in
general be one frame of discernment, Q, indexed by a (possibly continuous)
value q in a space Q, so that each complete image semantics contains one (and
necessarily only one) proposition Q(q) from the frame of discernment. The
frame of discernment then defines a macrostate by inducing an equivalence
relation on S. Two semantics are equivalent if they both contain Q(q). This
produces a projection from the space S × I to the space Q × I, and hence
we can push forward the probability distribution from the larger space. This
is not an approximation if our loss function depends only on the true and
estimated values of q. In that case, in making the MAP estimate, all other
degrees of freedom will integrate out, leaving the pushed forward probability
distribution as the one to maximize over.

We make a similar looking assumption about the dependence on the data,
but in this case it represents a real approximation. We typically assume that

Pr(Q(q)|I = i) = Pr(Q(q)|F (q, I) = F (q, i)).(I.1)

In other words, the probability that we make the statementQ(q) about image i
depends only on the value of a specific functional from a family of functionals
on the image space, the member of the family being determined by q. (We
may have to deal with continuous spaces and densities but we stay with the
discrete notation for simplicity. Nothing is changed.) It is not clear that
dependence of the data used on the hypothesis always makes sense, but in
our case it does: it will amount to a drastic independence assumption. A
simple example is the following. We write the space of images as a product,
I = I1 × I2. For the moment we assume that this factorization does not
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depend on the value of Q. Now, in line with the previous equation, we write

Pr(Q(q)|I = i) = Pr(Q(q)|I1 = i1 & I2 = i2)(I.2)

= Pr(Q(q)|I1 = i1)

This equation is equivalent to the assumption

Pr(I2 = i2|Q(q) & I1 = i1) = Pr(I2 = i2|I1 = i1)(I.3)

If the factorization depends on the value of Q then these independence
relations must hold for all q. We discuss this further in relation to our
specific model in the next chapter.

3. TESTING

It is not necessary that the semantics of real images takes the form de-
scribed above. If photographs are places in an art gallery for example, a whole
new type of semantics can come into play that concerns the image directly,
with no real relation to the scene that generated it. Comments about the
relation between the colours in the image, their density, their placement, the
intensities, may often be made without reference to the scene. This becomes
true per force for extremely abstract images.

Nevertheless, in most applications considered, statements about the scene
are the ones in which we are interested. If the visual system outputs statements
that do not lie in this semantics, what are we to make of them? Let us call such
systems visual processes. They may make mathematically correct statements
about the image. For example, the partitioning of the image domain into
subsets that are homogeneous in some (perhaps well-defined) way, creates a
statement about the image function. This may be an interesting mathematical
fact, but unless a correspondence has been established between such partitions
and statements about the scene, nothing is being said that can be tested. A
tautology is being stated instead.

Some areas of computer vision, for example stereo and motion compu-
tations, do not suffer from this apparent problem. The statements that they
make are about the scene (stereo for example talks about minimum distances
from the camera to the objects in the scene along the lines of projection, with
some provisos), and can in principle be measured and tested. Of course, it
is still necessary to define an evaluation function, and it is not always clear
exactly what this should be in the absence of a defined task, as we discussed
earlier. Similarly, visual systems that output statements of the form “In the
scene that generated this image there was a human being in the volume
back projected from this region in the image, and his pose was one among
such-and-such family of poses” (specifying positions of arms and legs etc.) are
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testable: they will be agreed upon by the vast majority of people. In con-
trast, statements such as “In the scene that generated this image there were
such-and-such number of objects visible” are not testable. It is very unlikely
that people would agree upon such a statement simply because ‘object’ is not
well-defined.

Having made these points, it must be stressed that they are not arguments
against the development of visual processes. Indeed, it is essential to develop
many and varied types and versions of visual processes. It is equally essential
to try and create visual systems within which they can operate and produce
testable results.

4. POSTSCRIPT

In the remainder of the thesis, we concentrate on a problem in object
recognition. The next chapter describes this problem and justifies the ap-
proach we will take to trying to solve it. We then move on to describe the
novel visual processes to which the attempt to construct this visual system
leads us.
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CHAPTER II

OBJECT RECOGNITION

Object recognition is a central problem in computer vision. We
define an object recognition task we would like to solve and hence
a visual system that we would like to build. This will serve to
guide the work and as its ultimate goal. We specify the structure
of the statements we would like to make, and hence the structure
of probability distributions for those statements. We then argue
through a combination of examples and a review of previous work
that the problem of image ambiguity forces us to compute the
MAP estimate for the full distribution rather than using a greedy
approach involving marginalization to break the estimation into
stages. We argue that this means the use of models at several
levels of specificity and abstraction simultaneously, in contrast to
a commonly held position that sees a visual system as a sequence
of processing stages.

F IRST we must specify the visual system that we would like to build. This
system will make statements about single real images of the form “The

region in the image domain projected to by the volume occupied by one of
the human beings in the scene isR, and this region divides into the following
parts corresponding to the projections of the arms, legs, torso and head”.
Any configuration of a human being in the scene generates a statement of
this form, and thus a solution to the problem is testable.We will assume that
the scenes that generated the images input to the visual system do all contain
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FIGURE 2. The hierarchy of models.

at least one human being at least partly visible in the image.1 This problem
may seem rather specific or artificial in form. The reasons for this specificity
will be developed in this chapter. It does not mean that the visual processes
with which we will primarily be concerned are that specific; indeed they are
rather general. It is nevertheless useful to have this example in mind for the
sake of concreteness, and as a guide to approaches and models, even if in the
end more general examples can be given using the same apparatus.

We choose this problem because, first of all, it is useful. Automated
information retrieval for example would benefit from the ability to perform
this or similar tasks. Surveillance and miliary applications also abound.
Second, it is important. Object recognition is a central problem in computer
vision for good reason. Much of what we say about images concerns the

1We are not dealing with the question of whether or not a human being is present. We do
not expect our model to answer this question, and in the abstract the probability distribution
that we write down will not refer to this possibility. In practice however, the model that we
construct will be applicable to images that do not contain human beings. We do not expect
the answers found for such images to make sense, but given an answer on a particular image,
it may be possible to perform further tests to see if the answer found makes sense as a human
being in respects beyond those considered in our model. For example, we can look for eyes
in the region corresponding to the head. If the image contains a human being, we might
expect them to be present. If the image does not, it would be very unlikely that something
like an eye would be present.
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objects in them. Human beings are not trivial objects to recognize in images,
especially if colour is not used. Describing regions in general and their shape
in particular becomes important, and it leads us to investigate how to describe
shape and how to use those descriptions in models and algorithms. The
knowledge gained will be of use in the construction of systems to recognize
other objects.

That shape is extremely important for object recognition may seem obvi-
ous, but psychological work confirms and illuminates this importance. Ac-
cording to Rosch, Mervis, Gray, Johnson, and Boyes-Braem [RMG+76], in
human behaviour there is a significant difference between object classifica-
tion into basic level categories and into more refined groupings. Basic level
categories are best defined by example. Examples are ‘dog’ as opposed to
‘mammal’, ‘Retriever’, or ‘Fido’, and ‘chair’ as opposed to ‘furniture’, ‘Ot-
toman’, or ‘Shaker Rocker’. According to [RMG+76], basic level categories
are “the most inclusive categories whose members: (a) possess significant num-
bers of attributes in common, (b) have motor programs which are similar to
one another, (c) have similar shapes, and (d) can be identified from averaged
shapes of members of the class”. They are also “the most inclusive categories
for which a concrete image of the category as a whole can be formed”, are
“the first categorizations made during the perception of the environment”,
are “the earliest categories sorted and earliest named by children”, and are
“the most codable, most coded, and most necessary in language”. For our
purposes (c) and (d), and the fact that an image can be formed of the category
as a whole are the most important properties. These suggest that shape is
the critical determining factor in membership of a basic level category, and as
such justify the use of a shape-based model for such types of recognition. This
is to be contrasted with more inclusive categories, whose members may have
widely varying shapes, “mammal” for example, and which seem to be created
by cognitive abstraction; and more concrete categories, whose members need
attributes beyond shape to distinguish them, for example “Labrador retriever”
or “Ian’s face”.

There is also support for the use of regions (or equivalently boundaries
or closed curves) to represent objects in image domains. Psychological work
has emphasized the importance of closure in perception since the Gestalt
movement. Work in illusory contours has also shown the importance of the
Gestalt concept of closure to the perceptual organization involved in these
phenomena [Kan71, Kan79]. Illusory contours demonstrate the concept of
completion, which is a simple example of the image function in one part of the
image domain being correlated with, and hence informing us about, structure
in another part of the image domain, as discussed in a slightly different context
in the next section. More recent work by Kovács and Julesz, and Elder and
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Zucker has demonstrated that closure is a very important determinant of
contour saliency [KJ93, EZ93, EZ94].

1. PROBABILISTIC MODEL

In chapter I we laid out the bare bones of a probabilistic model for the
inferences we wish to make about the scene from the image. We will now
specialize this model further to the case at hand. This will enable us to discuss
the model of the visual system we use and to contrast it with previous work.

Let us call the space of regions together with their named (in the sense of
‘arm’, ‘leg’, etc.) part structures, Q. Then the set of statements “The volume
occupied by one of the human beings in the scene projects to the structure
q ∈ Q in the image” is our frame of discernment.2 We will therefore be
concerned with constructing probability distributions of the form Pr(Q =
q|I = i), and we will need to find the maximum of such a distribution over
the space Q. To do this, we need to know a lot more about the structure of
Q. It seems natural to break up this space according to the following logic.
The names attached to a part structure clearly depend on that part structure,
which in its turn clearly depends on the region whose parts it is supposed to
describe. This suggests that the space has a double bundle structure. From
the full space Q there is a projection to a space P that ‘forgets’ the names
attached to the part structure and leaves just the decomposition of the region
into parts, and the region itself. Then from P there is a projection that forgets
the part structure, leaving us with the space of regions, which we will call B:

Q
πQ // P

πP // B(II.1)

This structure is more or less as generic as it can be if the notions of part
structure and region are to have a meaning separate from the meaning of q
itself, which we must certainly demand that they do in order to make the
kind of statements we wish to make. Given such a structure, we can of course
push the probability distributions forward from Q to P and B. Then we have
trivially

Pr(Q = q|I = i) = Pr(Q = q|πQ(Q) = πQ(q) & I = i)

× Pr(πQ(Q) = πQ(q)|πPπQ(Q) = πPπQ(q) & I = i)

× Pr(πPπQ(Q) = πPπQ(q)|I = i)(II.2)

This equation is the normal factorization of a probability, but its structure is
very suggestive. We will discuss it further in the next section. In terms of

2Actually this is not a frame of discernment unless there is only one human being in the scene
that generated the image visible. We will therefore assume this in order to avoid dealing with
the issue of multiple objects.
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energy functionals, it corresponds to the following:

E(q, i) = EQ(q, p, i) + EP(p, b, i) + EB(b, i)(II.3)

where it is understood that p = πQ(q) and b = πP(p).
We will make an assumption about the dependence of the image on the

scene of the form given in equation I.1. We will say that

− ln Pr(Q = q|I = i) = E(q, iRq) + lnZ(i).(II.4)

As discussed in chapter I, the functionalE will be called the energy. If we need
to refer to it, which will be seldom, Z will be known as the partition function.
The notation iRq denotes the restriction of the image to Rq = πPπQ(q). We
are saying that the probability that the structure q corresponds to a human
being depends only on the properties of the image inRq, up to a normalisation
factor Z(i) that depends only on the image. Note that we are not saying that
the probability depends only on Rq. The q entering into the functional E
contains all the information about part structure and so on that we require.
We are saying that the only data we need to consider is that inRq. Equation I.3
implies that the fact that a human being projects to the region Rq does not
affect the probability of the image outside this region. These assumptions are
not likely to be correct. They imply that the MAP estimate depends only on
iRq . This is plainly false, since the context provided by the rest of the image
may be crucial, especially if the human figure is largely occluded. Indeed there
seems almost no limit to the amount that the rest of the image can tell us
about q. It is possible to take a picture and excise the human figure entirely,
and yet we can still make a good guess that there was a human figure occupying
a certain region standing in a certain pose, and perhaps even dressed in a
certain way. If the surroundings are familiar enough, we may even be able to
identify the person. For examples, see figure 3.

Nevertheless, we will use this approximation simply in order to move
forward. It seems likely that the rest of the image can only help significantly
at the level of the semantics, in which case we are faced with the task of
achieving an understanding of the whole image simultaneously. In any case,
it may turn out to be sufficient to consider the region alone, with the rest of
the image providing confirmatory evidence, since the MAP estimate can be
the same even for widely differing distributions.

Given this assumption, the task before us is to construct the functional
E(q, iRq). To do that, we must clarify the spaces Q, P and B that are involved
(we will call them representations) and define the probability distributions (or
equivalently their energies) on these spaces. Before going on to do that over
the next few chapters, it is interesting to spend some time discussing object
recognition in general. This will turn out to justify the complex and specific
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FIGURE 3. We know where the missing person is.

nature of the statements we wish to make, and shed more light on the structure
of equation II.2.

2. HIERARCHIES OF REPRESENTATIONS

A common picture of object recognition is as a sequence of processing
stages dealing with increasingly complicated entities, the output of one stage
being passed to the input of the next. The output of the final stage is the
required answer. To give an example: perhaps the first stage produces an
edge map, a thresholded gradient image. The next stage tries to link some
of the points belonging to edges into a coherent structure, perhaps a closed
curve. Then a stage finds the part structure of this closed curve before a
final stage compares the part structure to that of a human being. Notice
that this picture is analogous to the structure of Q and to the factorization
given in equation II.2, if we envisage estimating q using an approximate greedy
approach in which we first maximize over Pr(B = b|I = i), and then use the
result b′ to maximize over Pr(P = p|πP(P ) = b′& I = i) to get p′, and then
use p′ to maximize over Pr(Q = q|πQ(Q) = p′& I = i).

Previous work in computer vision has by and large favoured this sequential
approach to image understanding. A classic and extreme expression of this
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point of view is given in Marr and Nishihara [MN78]. They say that up
to the stage of the 2.5D sketch, “no higher-level information is yet brought
to bear: the computations proceed by utilizing only what is available in the
image itself”.3 It is not clear what can be meant by “available in the image
itself”. Since the image is simply a function, it could presumably exist in any
world whatsoever. When photographed, some of these worlds might produce
images exactly like our own, but for entirely different reasons, leading to
entirely different image semantics. Even a seemingly innocent operation such
as edge detection is assuming that the model of an edge that is inevitably
used in the process is relevant to the world in a particular way. This does
not imply that there is no well-defined sense in which edges contain more
information than (for example) homogeneous areas. This information might
not be relevant for object boundary recognition however. Consider a world
composed of black and white rectangles moving against a grey background.
The strongest intensity edges are those within the body of the object. They
would be extremely useful for object recognition, but not interpreted as object
boundaries. In such a world, this assumption would lead to all sorts of terrible
injuries.4

If we discard the idea of model-independent visual processing, what is
wrong with the sequential picture, if anything? Certainly it cuts the amount
of computation we must do, since we are only ever maximizing over a small
fraction of Q at a time. The problem is that a mistake at an early stage will
prevent successful recognition. If an incorrect region is identified at the first
stage, nothing can be done later on to correct this, meaning that we must find
the correct solution at the first stage. It is as if the first stage must know that
it is looking for a human being before it begins. A powerful demonstration
of the difficulties that images can create for such systems is given in figure 5.
This image is very well-known, but familiarity should not breed contempt.
The lesson of this image cannot be stressed enough. The image is so hard

3The 2.5D sketch is essentially image segmentation information plus depth information.
4The terms ‘top-down’ and ‘bottom-up’ are often used in discussing visual processes. These
terms are rather insidious. They encourage the idea that there are two, qualitatively distinct
types of visual process: ‘bottom-up’ processes are ‘data-driven’, whereas ‘top-down’ processes
contain a priori knowledge of the world. This in turn leads to the notion that we can deal first
with ‘bottom-up’ processes, and only invoke ‘top-down’ processes later in the visual system.
The terminology also provides support to the notion that ‘bottom-up’ processes are ‘objective’
since they (allegedly) depend on the data alone. In fact, as we have noted in the text, even the
most trivial of ‘bottom-up’ processes, such as edge extraction, assume a priori knowledge of
the world in the form of a model, in this case a model of what constitutes a ‘good’ edge and
its relevance to object boundaries. Thus the difference between ‘bottom-up’ and ‘top-down’
is not qualitative, but if anything is quantitative. The terms lower and higher level therefore
seem more appropriate. The text describes what this implicit ordering might consist in.

17



FIGURE 4. A world in which assuming that intensity edges
represented object boundaries would lead to problems.

FIGURE 5. What is in the picture? A well-known but contin-
ually important image.

to interpret that human beings can normally only see the primary object in
the image after being given explicit verbal clues. Nevertheless, when viewed
with the appropriate knowledge, the image does contain a dalmatian dog. It
is important that there is no doubt about this. One cannot see whatever one
likes in the image. Being told that the image contains a motor car will not
produce the same effect. Admittedly the image is an extreme example, but
the difficulty it presents, which can be summarized in the phrase ‘local image
ambiguity’, exists in almost all real world images.
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FIGURE 6. The model uses Dijkstra’s algorithm to find the
curve between the two end points that globally maximizes
a measure of the total image gradient magnitude along the
curve, while also trying to keep the curve short. The left hand
figure shows a trace of the algorithm. The green areas are
those points in the image that have already been explored.
The right hand figure shows the path found in green (lighter),
and the semantically correct path in red.

Further to illustrate the problem, figure 6 shows the result of running a
typical curve detection algorithm on this image. This process finds the curve
between the two end points that globally maximizes a measure of the total
image gradient magnitude along the curve, while also trying to keep the curve
short. Application of other techniques would lead to equally nonsensical
results. It is clear that local, generic knowledge about such quantities as
image gradients will never be enough to find the boundary of the dalmatian
on its own. This in turn tells us that greedy schemes such as that outlined
above cannot work in general.

One possible solution to this problem is that the output of the greedy
sequential process is compared to the image again in some way, and the initial
stages of the process altered in accordance with this comparison to produce
an improved estimate for the output of the first stage. This is then passed up
the various stages and the process repeated. Examples of this kind of model
are the SCERPO system of Lowe [Low85], and the FORMS system of Zhu
and Yuille [ZY96b]. The latter build a system to recognize object silhouettes
by first splitting the object into a number of parameterized parts using their
own version of the symmetry axis (to be discussed in the next chapter). The
system then extracts candidate objects from a ‘database’ based on the part
decomposition. A number of operators are then used to deform the original
part decomposition so that it matches as well as possible to one of the models.
If the initial part decomposition is too unlike all the models in the database,
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a new object is assumed found, and added to the existing models. This is
too strong a reaction, but is really the only possible one in a system where
it is still possible for the low-level models to produce completely the wrong
answer. Unfortunately the work lacks a theoretical framework within which it
can be analyzed and developed. For example, it does not explicitly optimize a
functional; it is rather a set of procedures. Because of the lack of a theoretical
construct, it is unclear how to extend the system beyond the space of closed
contours with which it deals and into the domain of real images, except
by assuming that the contours are extracted by some ideal low-level process,
exactly what we are trying to avoid.

The architecture described and implemented in the SCERPO system
performs a sequence of tasks similar to FORMS: extraction of structure from
the image, comparison with a set of models and choice of likely candidates,
and subsequent verification and extension of the representation (in this case
of edges) by projection back into the image.

In the work of Sarkar and Boyer [SB93], a Bayesian network is used for
the perceptual organization of an image. The system is designed to identify
simple geometric figures in gray-scale images. Like the SCERPO and FORMS
systems, the work lacks a clear theoretical formulation, making it hard to
analyze, but out of the three models described, all of which can be viewed as
as approximating a true MAP estimate, the use of Bayesian networks seems
the most principled way to incorporate feedback into an algorithm.

Another possibility is to pass a number of hypotheses to the next stage,
or to be more formal, to pass a probability distribution over the more likely
hypotheses. This may be a satisfactory solution in some cases, and is clearly
an improvement over the previous approach, but in the case of the dalmatian
we can envision the downfall of this process too. One problem is that the
probability distribution can only be efficiently described by a few samples
if it has low entropy, or in other words, if the number of reasonably likely
hypotheses is not too large. Clearly however, the number of hypotheses in
the dalmatian case is enormous, and most importantly, is not likely to narrow
very much until the specific shape of a dalmatian (or at least a dog) is taken
into account. This will be near the final stage of processing. In the meantime
we have to process the vast number of hypotheses generated by the image, or
risk making an irreversible mistake. A second problem is that it is not at all
clear that the correct region need be among the most likely hypotheses at this
first stage, which suggests that we must keep the whole distribution. In this
case however, we are computing the exact MAP estimate for equation II.2,
and we might as well admit it and attack the problem directly. The point
is not that passing up multiple hypotheses is an impossible approach, but
merely to suggest that things would be a lot more efficient if the information
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from all the stages were available at once, to narrow the distribution from the
beginning and hence direct the search.

The latter assertion can be made more formal. If we have a joint probabil-
ity distribution Pr(X = x&Y = y), then we have the following two ways to
form a distribution overx. One is to marginalise, creatingP (x) = Pr(X = x)
by summation or integration over y. Another is to maximize over y for each
x, giving a function y∗(x). We can then create Pr(X = x&Y = y∗(x)) and
re-normalize to give a distributionQ(x). Note that maximizingQ(x) over x to
give x∗ gives the full MAP estimate for Pr(X = x&Y = y), 〈x∗, y∗(x∗)〉, so
that we have lost nothing in terms of our estimating power. The distribution
Q(x) always has a lower entropy than P (x). To see this, note that the entropy
of P (x) does not change if we re-label the y values in a different way for each
x, because it is a summation. We can do this re-labelling in such a way that
the labels of the y∗(x) become the same. In that case, the distribution Q(x)
becomes just the conditional probability that X = x given that Y has value
y∗. But conditioning always reduces the entropy, so that H(Q) ≤ H(P ).
Thus in a model like equation II.2, which is general enough to cover almost
all possibilities, the extra information supplied by the models for Q and P
can always be viewed as defining a more complicated probability distribution
forB. This distribution always has a lower entropy than the marginalized dis-
tribution Pr(B = b|I = i) does on its own, and it defines the region sought
with more certainty. For this reason we need the higher-level models, even
if all we are interested in is the boundary. We pay a price for this specificity
however, which is that the entropy of the full distribution Pr(Q = q|I = i)
over which we must maximize is always larger than that of both the conditional
and the marginal distributions. We have gained accuracy at the expense of
increased computational load. An interesting question is whether there is a
characterization of when and to what extent this is worth doing.

There is a hierarchical structure to the concepts we are using that is
reflected in the structure of the distribution in equation II.2. A region
may be used to describe the projection of any object whatever, and we can
anticipate that the probability distribution on regions alone will depend on
generic properties only, by which we mean properties that could describe the
projection of any object and that are not specific to human beings. The idea
of a part structure on the other hand narrows the field considerably. We
will define part structure more carefully later, but for now it suffices to say
that by part structure we mean articulated parts such as arms and legs, rather
than surface features such as eyes or hair. Such a structure does not describe
well all types of object, and we might expect that the probability distribution
on the combined space of part structures and regions will narrow the search
to ‘articulated objects’ using some characteristic geometric properties of such
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objects in addition to the generic region properties. In the final stage, which
corresponds to the naming of the parts, we expect the probability distribution
to contain information specific to human body structure.

We therefore have a progression from a generic model of ‘Everyobject’ to
a specific model of a human being, via a model of articulated objects. At the
same time, however, as the models are becoming more specific, they are also
becoming more abstract. By this we mean that in some sense (and making
this sense precise is not easy) the representations become ‘more invariant’.
Certainly a region is invariant to changes in the image produced for instance
by changing illumination. A part structure will be independent of certain
changes in the region, and so on. This is possible because the more generic
models takes care of the dirty details, leaving the more specific models free
to describe higher level structures. Both the progressions ‘generic to specific’
and ‘concrete to abstract’ are useful. The generic models should be useful not
just in the particular task considered but in other similar tasks, thus avoiding
redundancy. Abstraction is convenient for a couple of reasons. It leads to
economy of representation, because the more abstract representations keep
only the information relevant to the task at hand, and it also lends its power to
the description of the relations between objects. If, as seems likely, we would
eventually need some kind of reasoning engine to take into account context
and encode high-level knowledge of the world, this engine will take a far
simpler form in terms of abstract descriptions than it would using B-splines.

3. POSTSCRIPT

All the approaches discussed above can be seen as methods for computing
approximations to the exact MAP estimate, but the arguments suggest that
these approximations are likely to fail badly in general. We will therefore
concentrate on computing the full MAP estimate if possible. The picture
of the visual system that emerges is then not one of successive stages, but
of a number of interacting representations, each of which influences all the
others. There is still a notion of hierarchy, from generic to specific and
simultaneously from concrete to abstract, and this is important. The generic
parts of the system can be re-used, thus preventing redundancy. They also
narrow the search considerably (think of matching a dog template directly
into the dalmatian image). The generic parts of the system are also the
concrete parts, and as such they serve to couple the image to the more
abstract representations. In fact every representation serves this purpose,
coupling a more concrete to a more abstract representation. The existence
of the concrete representations also enables the abstract ones to exist by
modelling aspects of the object that the abstraction ignores. The utility of
abstract representations becomes clear as soon as we begin to consider relating
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objects to one another or reasoning about them. We now proceed with the
first stage of the development of the visual system we have been discussing.
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CHAPTER III

GENERIC OBJECT MODELS

As a first step, we focus on the space B of regions, the simplest of
the representation types described in the previous chapter. After
defining the representation space and some possible functionals
on this space, we review previous work that uses these or similar
concepts. Based on criticisms of this work, we propose a new
form of energy functional on boundaries in the image domain.
This functional takes the form of an energy density, and solves
many of the problems with previous work in the area through a
combination of pleasing formal properties: it is scale-invariant,
can incorporate both region and boundary information, and can
be globally minimized in polynomial time for any choice of data.
The application of the functional to single images is demonstrated.

T HE guiding task we have set ourselves is that of finding the region of
the image domain occupied by a human being in the scene, assuming

that one is present, and of finding certain additional information about
this region, namely its part structure and the labels of its parts. We wish
our visual system to return one of the following set of statements from the
image semantics: “The volume occupied by one of the human beings in the
scene projects to the structure q ∈ Q in the image”. The space Q of named
part structures of regions has a double bundle structure, projecting first to a
space P of part structures and regions, and second to a space B of regions.
Because in our model, the region in the image is a geometric projection of
a volume in the scene, such a statement enables us to say a great deal about
the scene semantics independent of the viewpoint and camera: the location
of the human being in the scene, their posture and so on. The last chapter
argued that to do this successfully meant using different representations of the
region simultaneously, to capture different types of information at different
levels of specificity and abstraction, rather than following a greedy step-by-step
approach. The representations play a dual role: they enable the construction
of more sophisticated models connecting the semantics to the image, while
at the same time encoding the statements in the semantics in which we
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are interested. Thus paradoxically, even in order to obtain information
about the region alone, it is necessary to introduce extra structure on that
region first. The visual system then produces a statement of the above form
by choosing those representations that maximize the probability over their
combined space.

In this chapter, we focus on what can be done by considering the region
alone, in the absence of any extra structure, or in other words we look at the
distribution Pr(B = b|I = i). We pursue the extra structure in chapter V.

1. REPRESENTATIONS AND FUNCTIONALS

Mathematically speaking, we are interested in functionals B × I
E→ R,

the energy of the distribution. In order to define such a functional, we must
first define exactly what we mean by the space of regions B. We choose to
represent a region R by its boundary ∂R. Although mathematically it makes
little difference whether we choose to think in terms of regions or boundaries,
at least in two dimensions, algorithmically it makes a big difference as we will
see later in this chapter.

We think of regions and their boundaries in the image domain (single or
otherwise) as two- and one-chains, since we will primarily need to integrate
over them. We also have the space of zero-chains, which are collections of
weighted points. The boundary operator ∂ takes the space of two-chains to the
space of one-chains and the space of one-chains to that of zero-chains. As
usual, chains in the image of the boundary operator are called boundaries,
while those in its kernel are called closed. A closed chain is known as a cycle,
and all boundaries are cycles (“the boundary of a boundary is zero”: ∂2 = 0).
In general the reverse is not true, but if the homology is trivial, which it will
be in almost all the spaces we consider, then all cycles are boundaries. In two
dimensions, the boundary operator on two-chains has a well-defined inverse
because there are no non-trivial closed regions. This means that regions and
boundaries are interchangeable. In higher dimensions this is not usually the
case.

We will restrict the form of boundaries that we consider. We will almost
always force the boundaries to have a single component, so that there is no
sub-chain of the boundary that is itself a boundary. In two-dimensions, this
means that the regions we consider will be simply connected. (At the end
of the next chapter we discuss what can be done if we relax this constraint.)
In fact, we will do more than this. We will restrict ourselves to the space
of equivalence classes of continuous piecewise-smooth embeddings of the
oriented circle, S1, in the image domain D (a generic element of the latter
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space of maps being denoted γ).1 Members of an equivalence classes are
related by the continuous piecewise-smooth automorphisms of S1. A generic
member of this latter space will be denoted ε, while the space itself will be
denoted Diff(S1). The orientation-preserving subgroup will be denoted by
Diff+(S1). An equivalence class therefore defines the same subset of the
image domain independent of the particular map and orientation used to
represent it.

Although in this chapter we will write as if all boundaries are in the image
domain D for single images, equipped with a Euclidean metric, our notation
will apply to the case of a general Riemannian manifold (and beyond in fact).2

This means that we have the freedom to change the metric on the image
domain as required, and to deal with domains more exotic than subsets of
the plane. For example, in the next chapter we deal with multiple images
without having to rethink the formalism. It costs nothing to deal with this
more general case, and in fact treating the material this way may be beneficial,
since it encourages us to think geometrically and to express the invariances
that we need in a clear fashion.

1.1. Invariance Issues

Any probability distributions we write down should be invariant under
a change of representative map in the equivalence class corresponding to a
boundary, because all members of a class have the same image set, and hence
encode the same geometric information. Therefore, replacement of γ by γε

1We choose this class of boundaries for two reasons. First, they are relatively easy to describe
and visualize, but general enough to include everything we might need. In particular, they
can have corners. Second, the boundaries that we obtain when we embed a graph into the
domain of an image lie in this class, and the optimizations of the models to be described rely
on embedded graphs.
2For completeness and later use we define two-dimensional Euclidean space, E2, of which
D is a subset. E2 is an affine space 〈X, T 〉, where X is a manifold isomorphic to R2

(and henceforth identified with it) on which the two-dimensional vector space T acts by
translation. The space T is the tangent space to X , and is also isomorphic to R2. The
translations generated by T identify the fibres of the tangent bundle to X in a canonical
way, and T can be identified with each fibre. Tangent vectors can thus be viewed as elements
of T and compared at will. The tangent space T will be equipped with an inner product
(., .) (and hence X is equipped with a metric). We write ‖v‖ to mean (v, v)1/2. The inner
product is used to define an antisymmetric product (., .)×, defined as (u, v)× = (u, v⊥),
where (v, v⊥) = 0, and (v⊥, v⊥) = (v, v). Clearly the definition of v⊥ requires a choice of
orientation. Nothing will depend on this choice.
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should have no effect:

S1
γ // D

S1

ε

OO

γε

>>~~~~~~~~

(III.1)

It is not hard to write down functionals that do not have this behaviour,
and it is worth pointing out that this is not a trivial matter. Nothing in the
image can distinguish between γ and γε, and the choice of one or the other is
arbitrary. Energy functionals that do depend on this choice are meaningless.

We would also like the functionals we consider to be invariant under
isometries of the image domain, assuming that the data possesses such sym-
metries also.3 Thus in the Euclidean case, we would like the functional to
be invariant under translations and rotations, if the data is. If D

θ→ D is
an isometry of the image domain, then we require that our functionals be
independent of the change from γ to θγ.

The functionals should also behave sensibly under global changes in the
scale of the metric. We will require that scaling the image domain by a
constant factor merely scale our functional by a constant factor also. This
amounts to invariance to a change in the size of the image (or in the discrete
case, to a change of sampling rate). It is essential if the energies are to have
any real meaning, since image size may be varied without varying the semantic
content. (There is another meaning to the phrase ‘scale invariance’ that is as
important as this one. We will return to it later in the chapter.)

1.2. Linear Functionals

The simplest functionals on the space of chains in a manifold are the linear
functionals. These are the functionals that are expressible by integration
over the chain. They are linear in the sense that the integral over a linear
combination of chains is the linear combination of the integrals over the
constituents. Such functionals correspond to probability distributions with
simple dependence characteristics: they are first-order when viewed as Markov
random fields on the domain of the chain.

3Note that being told ‘which way up’ an image should be is data, and probability distributions
built using this data may violate the symmetry condition. We do not make use of this
possibility.
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The following equations give four useful and general forms of linear
functional. We have written them as functionals of γ, but they are all well-
defined on boundaries.

E(γ) =

∫
S1

γ∗A =

∫
∂R

A

E(γ) =

∫
S1

∗γγ
∗f

E(γ) =� γ∗φ, γ∗φ�=

∫
S1

γ∗φ ∗γ γ
∗φ(III.2)

The first is constructed from a one-form A on D, and need not involve a
metric.4 The second is constructed from a function f on D, and involves
a metric via the Hodge star. In the last example, φ can be a function or
one-form on D. This integral is orientation-independent and positive. The
brackets� ·, · � denote the inner product on the space of forms described in
appendix A. We will always assume that the metric on S1 is the metric pulled
back from D, so that the Hodge star ∗γ on S1 is determined by the particular
representative γ chosen from the equivalence class of embeddings described
above. This is to ensure the necessary invariance under the replacement of
γ by another member of the same equivalence class. It is defined using the
metric pulled back from D by γ, and has the property that ∗γε = ε∗ ∗γ ε

−1 ∗,
thus ensuring the required invariance. All the functionals are integrals of
one-forms on S1 of course, but the point of the different types is to show how
such one-forms can be constructed from data on D.

Before giving some examples of one-forms, it is worth pointing out the
wealth of more complicated possibilities inherent in the idea of functionals

on boundaries. Given the map γ, we can construct product maps S1n γn

→ Dn

and construct functionals for these maps. The linear functionals on such
spaces of maps take the form for example of multiple integrals in which
different points of the boundary interact with one another. This can lead
to fascinating behaviour: finger-like structures that bear some resemblance to
objects with articulated parts are one possibility [Gol97]. (Our approach to
constructing functionals for such shapes is different superficially, but perhaps
leads to the similar types of functional.) Since the human ability to identify
the regions occupied by human beings in images defines such a functional
(modulo assumptions we are making about the dependence on the rest of
the image and on prior contextual knowledge, which we are not attempting

4We use the language of differential forms throughout because it is the most correct and
concise, and because it reveals the invariances of the quantities involved most clearly. Ap-
pendix A provides a (very brief) description of differential forms and a dictionary to convert
to the language of vector calculus.
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to model), there is no reason to expect that these and yet more complicated
examples are not of relevance to the problem. This is another argument for
getting to the point where the visual processes can be taken seriously as visual
systems and tested, however limited the universe of images.

Continuing with our simple linear functionals, we give some concrete
examples of equations III.2 in the case of single images on a domain D. The
one-form A can be taken to be ∗di, where ∗ is the Hodge star on D (rather
than the induced Hodge star on S1). In the Euclidean case, using a concrete
(but arbitrary) coordinate system on the circle, t, and a Euclidean coordinate
system xa on D, the functional becomes

∫
S1 dt εa

bγ̇a(t)(~∇i)b(γ(t)), where
εa

b is the unit determinant antisymmetric tensor in two dimensions. This
integral (which is orientation-dependent) will have a large magnitude when
the image gradient is directed perpendicular to the boundary and of large
magnitude. If we were to minimize this energy over all boundaries in the
image, we would find the region with the most image gradient flowing into
or out of it. Alternatively, we can use the magnitude of the image gradient
squared as a function φ on D. This form is orientation-independent, but does
not consider the relative directions of the image gradient and the boundary.
It will prove useful to have a positive orientation-independent energy that
decreases with increasing image function gradient. An example that we will
use later is given by taking φ = |di|−1.5

2. PREVIOUS WORK

These examples are not new (although it is hard to find the directed
version in the literature, perhaps because it is orientation-dependent). That
a large image gradient on the boundary of a region makes the region more
likely to be the projection of an object has long been accepted in computer
vision. There is a great deal of previous work that relies on this fact. This
work suffers from a number of problems though, as we now discuss.

2.1. Boundary Extraction Processes

The earliest work in the area focuses on edge maps, or atomic edge
segments known as edgels, and attempts to link the points in the edge map or
the edgels together using various criteria, particularly co-circularity and low
curvature. This approach, which involves thresholding the image gradient to
find the edges, and hence selecting the ‘best’ edges at the outset, incorporates
all the problems discussed in the last chapter. For example, it is not at all
clear that by choosing the ‘best’ edges at the first stage, we actually capture the
information we need for subsequent processing. A great deal of the image is

5The modulus of a form, |φ|, is defined is |φ|2 = ∗(φ ∗ φ). It is a positive function.
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being thrown away.6 In addition, a lot of this work suffers from the defect that
it is described in a concrete algorithmic way only, no abstract characterization
being given. This does not prevent it being tested (assuming that it meets
the criteria discussed in chapter I), but it does prevent a clear analysis of the
properties of the model.

Ullman [Ull76] develops a simple model of contour completion using
two circular arcs, one tangent to edge elements at either end of a contour
gap. A minimum curvature criterion is used to select between these curves.
Parent and Zucker [PZ89] use a relaxation labeling process to compute a most
probable assignment of discrete tangent and curvature values to each point
in the image, with a constraining relation built on co-circularity. The process
has the effect of de-noising images with respect to the contours they contain,
or equivalently, of making contours more salient. The latter is also the subject
of Shashua and Ullman’s work [SU88]. They compute a transformation of
the image intensity, creating a new image in which the intensity at a point
is a measure of the saliency of that point. The saliency function at point P
is defined in terms of curve segments passing through P: it is the maximum
over all curve segments passing through P of a function defined on each curve
segment. The value of this function increases as the length and smoothness of
the curve segment increases. Like most similar early work it suffers from the
lack of a clear theoretical description of what the algorithm achieves. Luckily,
Alter and Basri [AB97] provide a thorough analysis of [SU88], pointing out
the method’s preference for a σ shape over an o for example, since the
extra spur on the σ would produce higher saliency due to lower curvature.
Guy and Medioni [GM96] describe another similar system. They define
an extension field, a vector field whose orientation at a point describes the
preferred direction of continuation of the line germ generating the field, and
whose magnitude describes how much influence the given germ has on the
line direction at that point. At each point in the image, a voting system,
using the contributions from all the extension fields at that point, computes
the preferred direction and more importantly, a measure of saliency of that
point. The results are somewhat similar to the work of Shashua and Ullman.
Elder and Zucker [EZ96] develop a process for finding closed contours using
chains of tangent vectors, but they drastically prune the search space to render
tractable the exponential problem they have set themselves.

A better-defined approach emerges with the work of Kass, Witken and
Terzopoulos [KWT88] on active contours, more concisely and popularly known
as ‘snakes’. In this work, functionals are defined on a space of boundaries or
open curves, and are optimized locally using gradient descent methods. (The

6Ironically, in the Dalmatian image the edge information is enough, because the image is
binary.
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evolution of the snake during this minimization leads to the epithet ‘active’,
although it has no significance in terms of image semantics.) The functionals
typically used have gradient terms as already described (usually those versions
that do not depend on the relative orientation of the gradient and the curve),
and a length term (which is simply the last of equations III.2 with φ = I,
where I is the function that is everywhere unity.). They also have a slightly
more complex term involving the curvature of the curve, designed to smooth
the curve. This results from lifting the curve from the image domain to its
tangent bundle using some choice of frame on the circle. This frame is usually
taken to be the unit tangent vector field on the circle as defined using the
pulled-back metric, although the functional must be invariant to this choice.

Later work used level set methods for the optimization problem. This
type of process allows for the possibility of topology change, which seems to
have led to the misapprehension that such methods are global. This is not the
case. The principle reason for their use is algorithmic: they are numerically
more stable. The possibility of topology change is an added bonus.

Unfortunately the global optimization problem for these functionals is
NP-hard, which forces all these processes to rely on local optimization.7 Local
methods bring with them an unknown dependence on initial conditions,
and an unspecified mechanism for choosing those conditions. They do
not provide any information about the significance of the boundary for the
image as a whole. Viewed as a MAP estimate they are particularly bizarre.
Why should a local maximum of a probability distribution matter at all?
Kass, Witken and Terzopoulos were well aware of this, as they were of the
limitations of the types of local image data that they use. In their original
paper, they quote Marr and Nishihara, whose view they describe as typical of
computer vision at that time (and possibly still), as saying that up to the 2.5D
sketch "no higher-level information is yet brought to bear: the computations
proceed by utilizing only what is available in the image itself." But as we
discussed in chapter II, nothing is present in the image alone: the image is a
function and nothing else; a choice of models must be made. Not to do this
explicitly is merely to fail to acknowledge your assumptions. Kass, Witken
and Terzopoulos then go on to say that "This rigidly sequential approach
propagates mistakes made at a low level without opportunity for correction."
As the paper stresses, this places "stringent demands on the reliability of low-
level mechanisms." Instead the paper proposes that low-level processes should

7To see that the problem is NP-hard in the discrete case if the cycle is required to be simple,
consider a graph G. Equip each edge of the graph with a negative weight. Now the minimum
weight simple cycle is a Hamiltonian cycle. Allowing non-simple cycles renders the problem
ill-defined due to the presence of a negative cycle. Restricting the weights to be positive
renders the problem tractable but the solution trivial.
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provide "alternative organizations among which higher-level processes may
choose," and suggests that selection of an organization from the alternatives
should be "accomplished by the addition of energy terms that push the model
towards the desired solution." The authors end with a strong statement of their
view on the structure of the visual system: "We believe that the ability to have
all levels of visual processing influence the lowest-level visual interpretations
will turn out to be very important." This is essentially the view of this thesis.

Subsequent work attempted to overcome the locality constraint by using
graphical methods. Unfortunately, here too the computational complexity
of finding a non-trivial solution to the minimal boundary problem meant
that either the work concentrated on open curves or it used various ad
hoc mechanisms to ensure closure that then destroyed the optimality of the
algorithms. Amini et al. used dynamic programming as part of a gradient
descent procedure. Their process could be summarized as ‘evolve, minimize,
repeat’. Montanari used dynamic programming to find the minimum energy
path between given end-points, a problem that is not NP-hard and that
possesses a non-trivial solution. Geiger et al. use an initialization with a series
of points, and a choice of window around those points, to delineate the space
of curves considered. They then use dynamic programming and an ad hoc
mechanism to close the curve. The process does not find the global optimum.

The dynamic programming approach relies on the fact that the curve
is one-dimensional, so that a directed acyclic graph can be created and the
topological ordering used to decide in what order to process the vertices.
Dijkstra’s algorithm, which is essentially the same thing except that it includes
the brilliant idea of using the current vertex weight to order the vertices, can
be used to solve all of these problems more efficiently. All of this work uses
initialization and restricted regions of the image to limit the space of curves
over which the optimization proceeds, and the algorithms find local minima
or approximations to global minima over a limited set of curves. It would
seem that to find a non-trivial global minimum requires open curves, but
unfortunately open curves do not segment anything, so that further work
is needed to group them. This frustrating choice was one of the prime
motivations for the work described in this chapter. As will be discussed a little
later, obtaining a non-trivial solution for boundaries in polynomial time rules
out models of all the above forms, and specifies a new and essentially unique
form of functional.

Mumford provides an interesting overview of the history of energy min-
imizing curves, and elaborates the connection to certain types of stochastic
process [Mum94]. Focusing on "elastica", curves that minimize a linear com-
bination of the length and integrated squared curvature, he shows that they
can be viewed alternatively as the most probable paths taken by a particle
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undergoing a particular type of random walk in the plane, and hence as diffu-
sion processes. The advantage of the probabilistic formulation is that it lays
open the full distribution of paths rather than just the most probable one.

Williams and Jacobs [WJ97] provide a similar approach to the grouping of
edge maps into closed curves. À la Mumford, they model curve completion
as a random walk in the tangent bundle of the image domain. The emphasis
is on computing the stochastic completion field, a measure of the likelihood that
a path will pass through a given point on its way from a given source to a given
sink. The authors stress that the model they use is Markov, and this allows
them to split the stochastic completion field into two contributions, one from
the source and one from the sink, and compute the full field as a product
of the two, each of which is computable by a linear operation. They also
emphasize the important point that the full probability distribution of paths
is available to them via their method, rather than just the minimum energy
path, and that this information may play an important role, for example in
describing the sharpness of illusory edges. As is shown in [WJ97], their model
is equivalent to an energy minimization formulation using an energy that is a
weighted sum of the squared curvature and the length, but the formulation
as a random walk enables the authors to emphasize the neurological basis of
their model. They identify a group of cells within V2 that seem to have the
behavior required of the stochastic completion field.

Williams and Thornber [WT98] provide an interesting analysis of the
transitions that take place in the distribution of stochastic paths as parameters
in the image are varied, and in particular, the transition from differentiable
contours to contours with corners. They do not give an energy formulation
of their model, but such an analysis would be most interesting. The phase
transitions should be predictable from the energy also and perhaps more said
about their universality.

The work of Cox, Rao, and Zhong [CRZ96] is closely related to the work
in this chapter. They use a graph algorithm known as the pinned ratio
algorithm to find closed contours in an image. The process can be made
initialization-free, and finds a global minimum under some weak constraints.
It suffers from the severe drawback that the region information used must be
strictly positive everywhere in the image, which rules out many quantities of
interest.

2.2. Energy Densities

All of this work (with the possible exception of [WT98, WJ97, CRZ96,
TW96]) suffers also from an unacknowledged difficulty: an uncontrolled
dependence on scale. By this, we do not mean the scaling behaviour of the
energy functional under a re-scaling of the metric discussed at the beginning
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of this section. To illustrate the differences, we refer the reader to figure 7.
This figure shows three type of scale invariance. The bottom left is metric
scaling. The bottom right is invariance to an expansion in the size of the image
domain: simply the addition of more data. By assumption and subsequent
design, our energies are invariant under such changes.

The third type of scaling shown at the top is the one we are addressing
now. If we have two boundaries in the image domain that are scaled versions
of one another,8 and if the data at the boundaries is the same, what reason
would we have to pick one boundary over the other? Of course there are
many reasons, but they are all task-dependent. What we do not want is a
preference for one or the other to creep into our models in an uncontrolled
and unnoticed way especially if it is parameter-dependent. Yet this is true
of all the work discussed so far. The energy functionals used are all extensive
quantities, a physical example being mass, that scale with the length of the
curve. It is as if we were to ask “Which weighs more, lead or water?” and
then to answer the question by putting some arbitrary samples of lead and
water on the scales. Another problem associated with extensive energies is
that of ‘skipping’, shown in figure 8. In order to join two points x and y in
the image domain, the curve may choose a short path that the data does not
support at all to a longer one that is well supported simply because of length.
Note that we are not considering the case in which an explicit length term is
added. This behaviour is solely due to the extensive nature of the energy.

To overcome these problems, it is necessary to use an intensive quantity:
an energy density. This change, motivated by the above argument, turns out
to bring with it a quite remarkable benefit:

For energy densities on boundaries, the global optimization
problem can be solved in polynomial time.

That what seems like a more complicated functional should be easier to
optimize is an interesting lesson. In fact, it turns out that in many problems,
converting the quantity involved to a density renders the problem polynomial.
For further details concerning this interesting fact, we recommend the paper
of Meggido [Meg79].

The following analysis shows that orientation-dependent energy densities
on boundaries are really the only ones we should consider if we are interested
in global optima, as they are the only ones that have both efficiently com-
putable and non-trivial solutions. To see this, let us divide up problems of this
nature into eight categories, depending upon whether they search for open or
8Note that we must restrict ourselves to a vector space for this to mean anything. It also raises
the interesting question of invariance under conformal transformations, or local changes of
scale. As it stands this group is far too large, but it is true that depth creates a local scale
change.
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FIGURE 7. On the left, the first type of scale invariance is
a global change in the metric. Under such a change, we
would like energy functionals simply to scale, so that the MAP
estimate is unchanged. Otherwise our results would depend
on image size. In the second type, on the right, we do not
change the boundary, but simply enlarge the image around
it. We are assuming that our functionals depend only on
the image function restricted to the region that we would like
to find, so that such a change will not affect the energy. In
other approaches, notably image partitioning, this invariance
does not hold. While it seems likely that the probability of a
region does depend on the rest of the image, as we discussed
in chapter II, this dependence will be via the image semantics
rather than via the details of the image function itself. This is
further discussed in section 2.3. In the third type of invariance,
at the top, we simply scale the boundary (restricting ourselves
to Euclidean space). Unless we have a reason for preferring
large or small boundaries (in which case we will explicitly
incorporate this preference), our energy functionals should
not be biased towards one or the other.

closed curves, whether the energy functional is a density or not, and whether
it is orientation-dependent or not (‘oriented’ or ‘un-oriented’).9 We can form

9We ignore the possibility of orientation-independent but non-positive energies.
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FIGURE 8. Instead of taking the long way round to join the
red to the green dot, the model recommends the short white
line that has no image support. This is due to the extensive
nature of the energy, not a term that explicitly penalizes length.

the chart shown in figure 1, listing these possibilities and the properties of
their global solutions.

We thus see that only intensive orientation-dependent energies on the
space of boundaries have non-trivial global optima that are simultaneously
efficiently computable. The new form of energy that we discuss here has
exactly this form, but before going on to discuss such energy densities, it is
interesting to consider another problem that is often categorized as similar to
the type we have been discussing: image partitioning.

2.3. Image Partitioning Processes

Image partitioning processes, as their name suggests, partition the im-
age domain. The competition between image partitioning approaches and
boundary extraction has a long history, although the problems involved are
very different, and it is not obvious that they should be lumped together.
The former tends to use properties of regions such as texture and homogene-
ity, while the latter looks at the properties of boundaries, using information
such as image gradients. One difficulty with boundary extraction processes
that we did not mention in the last section is their failure to incorporate
region information. Image partitioning processes on the other hand typi-
cally do incorporate region information and often, although not always, are
initialization-free. They suffer however from difficulties of their own. The
most important technical problem is that they usually find it hard to include
important boundary properties such as smoothness and local gradients. One
of the most interesting properties of the new models described in this chapter
is that they allow the use of both region and boundary information while still
being efficiently globally optimizable.
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Extensive Un-oriented Open Trivial ↓ 0. Finds smallest weight edge.
Closed Trivial ↓ 0. Finds smallest weight edge.

Oriented Open Trivial ↑ ∞. Wraps around negative cy-
cle, or NP-hard if simplicity is enforced.

Closed Trivial ↑ ∞. Wraps around negative cy-
cle, or NP-hard if simplicity is enforced.

Intensive Un-oriented Open Trivial ↓ 0. Finds smallest ratio edge.
Closed Trivial ↓ 0. Finds smallest ratio edge.

Oriented Open Trivial ↓ 0. Finds largest ratio edge.
Closed Non-trivial—finds minimum ratio

weight cycle in polynomial time.
TABLE III.1. The different possibilities for energy functionals
on boundaries. The notation ↓ 0 means that in the con-
tinuous case the trivial solution is simply a point, while the
notation ↑ ∞ means that it is an infinite path or cycle. The
notes in the last column refer also to the discrete case, which
we discuss is section 4. We assume that we are minimizing
the energy for both orientation-independent and orientation-
dependent energies. The latter case is the same as maximizing
an orientation-independent energy, since cycles come in pairs
with opposite orientations and hence signs. The search over
open curves is assumed to be over all open curves in the
image domain without constraint. If the space of curves is
constrained to be that between two fixed points, then the
problem becomes polynomial.

The paper of Zhu and Yuille [ZY96a] uses region and boundary informa-
tion within one energy optimization model to partition the image domain.
The work brings active contour and region growing techniques together,
which in itself is interesting. The model and the algorithm are rather com-
plex however, and only local minima can be found. Nevertheless the model
is important for the serious attempt to bring together these two types of
information.

Causing quite a stir over the last couple of years has been the work of
Shi and Malik [SM97]. They use the graphical concept of a normalized cut to
partition the image into two parts. The image domain in the discrete case
is converted into a weighted complete graph with the pixels as vertices. The
weights typically fall off sharply with Euclidean distance. This dependence on
distance means that the resulting partition of the vertices into two sets makes
sense as often as not. Without it, any subset of the image domain could be

38



a partition. For a given partition of the vertex set into two subsets A and B,
the weight of the cut is given by E(A,B)

E(A,A)
+ E(B,A)

E(B,B)
, where E(C,D) is the sum

of the edge weights of the edges with one end in C and the other end in D.
Since the graph is undirected (it is not clear what a directed version could
mean), E(A,B) = E(B,A). The advantage of a normalized cut as against,
for example a minimum cut, is that it is normalized. One might think that
this means that it is scale-invariant in a modified version of sense three from
section 2.2. In fact this is not really so. If the data is ignored, the method
tends to prefer partitioning the vertex set into two equinumerous subsets. (In
contrast, use of the minimum cut tends to find partitions consisting of one
very small and one very large region.) The process bears some resemblance to
the Fisher linear discriminant, since it compares ‘between-group’ differences
to ‘within-group’ differences. Unfortunately, the problem of finding the
partition with the minimum normalized cut value is NP-hard. Shi and
Malik come up with an approximate process by relaxing the characteristic
function of one of the subsets to a real-valued function (essentially an un-
normalized probability). The relaxed problem has a generalized eigenvalue
solution corresponding to modes of oscillation of the graph viewed as a system
of masses and springs. They then threshold the real-valued function with the
largest eigenvalue to obtain a solution. Functions with smaller eigenvalues
are regarded as alternative partitions.10

As it stands, the normalized cut process says nothing about the boundaries
of the regions it finds. Indeed the notion of geometry is only weakly coded into
the edge weights. Leung and Malik [LM98] extend [SM97] by incorporating
weak contour continuity information into the region-based model. The
problem is that by creating a model so unconcerned with geometry (it is
really a generalized clustering algorithm), the incorporation of geometric
information is hard and unnatural. Many subsequent papers, one of which
we discuss in the next chapter, have applied the technique to slightly different
problems. The most recent papers are still working on the incorporation of
boundary information.

There is a mass of other work that uses fields defined on the image domain
to partition it. Mumford and Shah describe a variational formulation for
image approximation by a piecewise-smooth function [MS85, MS89]. One
could then view the discontinuities as a partition, providing they took a
sensible form. Markov random fields, which are essentially the discrete version

10There is another ‘normalised’ cut known as the minimum quotient cut. The input is a
graph 〈V,E〉, a vertex-weight function w, and an edge-weight function c. The solution is the
subset C ⊂ V that minimizes c(C)

min(w(C),w(V \C)) , where c(C) is the sum of the weights of
the edges into or out of C, and w is applied to a set of vertices by summation. This problem
is NP-hard but approximable within log(card(V )) [MT90].
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of fields defined on the image domain, are used by Geman and Geman [GG84]
primarily for image restoration. All these processes use variants of gradient
descent or Monte Carlo methods to optimize locally the functionals they use.
The whole field of anisotropic scale spaces, which involves evolving the image
function under the action of a non-linear operator, attempts to remove noise
and other clutter from images while preserving for example important edges.
While not strictly speaking partitioning processes, they can be used to aid in
such processes and the spirit is similar.

One problem with image partitioning processes concerns scale invariance
in sense two of section 2.2. Image partitioning processes are not so invariant.
Expanding the image domain can frequently change the results of such pro-
cesses. This dependence is not the same thing as using image data outside the
occupied region in a semantic way to influence the probability distribution
over regions. It is instead a kind of action at a distance, for which there seems
little justification in semantics. Although in certain extreme circumstances
expanding the image domain may change the probabilities of certain objects
being distinct, image partitioning processes suffer from this problem in all
circumstances. This brings into question what such processes are actually
saying about the image.

We argued in chapter I from another direction that it is not clear, except
in a few instances, what type of statement partitioning processes are trying to
make about the image, or even what they are aiming for as part of a larger
visual system. The idea of partitioning a scene into objects does not seem
to be a testable one, in the language of chapter I, except in very limited
circumstances. The idea of using a field on the image to recognize objects is
counter-intuitive anyway, since normally we think of objects as being in space,
rather than as continuous with it, but with some added value.11 Embeddings
of volumes in space naturally push forward to the image; the same is not
true of fields. Fields are more appropriate for describing surface properties,
so that if the image consists of a single object in whose surface properties
we are interested, fields may be a good bet. The analysis of satellite imagery
often falls into this category. Even here however, discontinuities may make a
picture in turns of embedded objects more suitable.

11In physics it is an article of faith that we can in principle analyse every object in terms of its
constituent quantum fields, and hence represent the state of the world accurately by fields on
space. Unfortunately, what concerns us here is not physics but image semantics, which in its
turn derives from how we talk about the world. It is not clear how contingent our concepts
and language are. Even if they are determined by physics, we do not know how.
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3. GLOBALLY OPTIMAL REGIONS AND BOUNDARIES

We have argued that the extensive energy functionals previously used for
the extraction of boundaries from images suffer from a number of problems,
chief among these being their lack of scale-invariance and the difficulty of
finding the global minimum. We then argued that an intensive energy
density would solve these problems. We now proceed to introduce such an
energy density.

The new energy density functional is defined on the space of oriented
boundaries in the image domain, B, defined as above in terms of embeddings
of S1. The definition is

E[∂R] =
N [∂R]

D[∂R]
(III.3)

=

∫
∂R

A

� γ∗φ, γ∗φ�
.

where γ is any representative of ∂R. We use the notation ∂R rather than
b to emphasize that the domain of integration is a boundary. As above, A
is any one-form on D, and we use φ to denote any function or one-form
on D as in equation III.2. The equation defines N and D, the numerator
and denominator functionals. Note that the integrand in the denominator
is always positive by construction. The denominator can be generalized to
be a sum of terms like that shown, each of which is built from any function
or one-form. Note that because we are considering oriented boundaries, the
values of the energy come in pairs, with opposite signs.

The denominator is a weighted measure of the length of the boundary, and
has the effect of damping the scaling behaviour of the energy. Indeed, under
certain conditions on the one-form in the numerator, the energy functional is
scale-invariant in the second manner discussed above: it has no inherent bias
towards large or small boundaries. In the case that the one-form is derived
from a linear operator applied to the image function, the condition is that
the operator have compact support. This means that the operator will scale
appropriately along with the data. The condition is true for example for image
function gradients.

Energy densities have an obvious but intriguing relation to extensive
energies of the form H[∂R] = N [∂R]− βD[∂R], where β ∈ R. Indeed this
relation is the basis for the optimization algorithm and we discuss it further
in section 4.4. The relation amounts to a choice of β for which H is positive
with minimum value 0.
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3.1. Region Information

Under certain conditions, which include the Euclidean case, much more
can be done with the energy in equation III.3. We would like to be able to
say something about the region that is the interior of the boundary; indeed
that is where we began. For example, it would be useful to find the boundary
that, in addition to having high image function gradients along its length, also
contained a region of highly homogeneous image function, or that contained
a particular texture. This is exactly the type of extra information that we
can incorporate into our model using Stokes’ theorem.12 This says that the
integral of a one-form A along a boundary is equal to the integral of its
derivative dA over the region contained by the boundary:

∫
∂R

A =
∫

R
dA.

Thus if the measure of optimality of a regionR can be expressed as the integral
of a two-form F over the region, E[R] =

∫
R
F, and if we can find a one-form

A such that dA = F, then we can re-express the measure of region optimality∫
R
F as an integral over the boundary

∫
∂R

A, and use this to measure the
optimality of a region in equation III.3.

Given any exact two-form F on M , we can by definition find a one-form
A whose differential dA = F. In addition, if the 2-cohomology group
H2(M ; R) of M is trivial (as it is, for example, for R2), then all closed forms
F (a form is closed if dF = 0) are exact. In two dimensions all two-forms
are closed, meaning that we can take any two-form F and find a one-form A
such that dA = F. What is more, the construction of this one-form is trivial.
It involves an integration along the x direction with y held fixed, and an
integration along the y direction with x held fixed (or a similar procedure in
another coordinate system) to generate the two components of the one-form.
In the discrete case, this means scanning the image just twice. In higher
dimensions the cohomology may still be trivial, but now not all two forms are
closed. The two forms that are closed are exactly those whose integrals over a
region depend only on the boundary of that region. These quantities are not
usually the most interesting. In particular, this restriction prevents us doing
all that we might wish in the case of multiple images in the next chapter.

The above discussion means that any measure of region optimality ex-
pressible as an integral over the region can be re-expressed as an integral over
its boundary. Thus the new functional can include region information such
as homogeneity and texture as easily as it can boundary information such as
image function gradients. For example, suppose the one-form A measures

12The vector calculus version of this theorem is known as Green’s theorem in two dimensions,
and Gauss’ theorem in three dimensions. The original Stokes’ theorem is also subsumed
into the differential form version.
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some boundary information, whereas the two-form F measures region infor-
mation. We want a measure of the form

∫
∂R

A +
∫

R
F. Since we can always

find a B such that dB = F, we can rewrite this expression as
∫

∂R
(A + B),

which is in the form of the numerator of equation III.3.
It is obvious from this discussion that even if the energy were not a density,

and consisted solely of the numerator, the above argument would still apply.
What is remarkable about the new model is that even with all this generality,
the functional can still be globally optimized by a single algorithm.

It is interesting to consider the region and boundary information in the
following way. Boundary information, expressed as a one-form, necessarily
has many similarities to a gradient, to a change in some quantity. This
fits well with the idea of the boundary as the interface between the region
and the rest of the image domain. The boundary information describes the
differences between the region and its surroundings. In contrast, the interior
of the region has no contact with the rest of the image domain. The types
of properties that can be expressed here are essentially functional (in two
dimensions there is a bijection between functions and two-forms given by the
Hodge star), and as such describe ‘absolute’ properties of the region rather
than properties relative to the environment.

3.2. Gauge Invariance

Equation III.3 has an interesting invariance. If we add any closed one-
form to A, then when we transform to a region integral by taking the exterior
derivative, this term will disappear, meaning that the energy functional is
unchanged. This type of invariance to local transformations is known as
gauge invariance.

Taking the simplest example: suppose that the one-form A = ∗di, as
in the example in section 1.2. Suppose we add ∆i to the image function.
Then the numerator of equation III.3 is changed to

∫
∂R

(∗di+ ∗d∆i). Now
if d ∗ d∆i = 0, the new numerator will equal the old. But d ∗ d∆i = 0
is simply Laplace’s equation for ∆i. The conclusion is that if we add any
harmonic function to the image function, the energies of the boundaries will
be unchanged.13 The reverse is not necessarily true. If we add a closed one-
form B to ∗di, we can interpret this as adding a function ∆i to i if d∗B = 0.
If this is true, ∗B is closed, and hence exact, and so there exists ∆i such that
∗B = d∆i. If this is the case, then because dB = 0 (B is closed), we have
that d ∗ d∆i = 0: ∆i is harmonic.

13We assume the denominator independent of i. We could for example take φ = I, so that
the denominator measures the length of the boundary.
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All linear functions are harmonic of course, and so adding a linear func-
tion to the image function will not change our results. This can be interpreted
as a limited form of illumination invariance if i is the image function. Some-
thing similar is discussed in an early paper of Blake [Bla85], which in turn
derives from the Retinex model of Land and McCann [LM71, Lan83].

3.3. Examples of one- and two-forms

To clarify these abstract ideas, we give some examples of one-forms and
functions that can be built from the image function and used in equation III.3.

First we consider the case where we generate a two-form by convolving
a filter with the image function i. This includes a large number of familiar
cases. Indeed the action of any linear operator on the image function can
be thus described. The convolution creates a two-form F = i �G, where �
denotes convolution, and G is a two-form (the filter). It is easy to see that, if
dB = F, and dC = G, then B = i � C. This means that to convert the
integral

∫
R
F to a boundary integral

∫
∂R

B, we need only find the one-form C
for which dC = G. We do not need to filter each image and then integrate
it; we can just filter the image with an integrated filter. This simplifies the
transition from region to boundary in the most important cases.

We now give a list of specific possibilities for the terms in equation III.3.

F = ∗i: In this case the model is looking for globally maximum image
function regions. It will find bright spots such as specular reflections,
as well as large regions of high image function.

F = d ∗ di, A = ∗di: This possibility has already been discussed. Viewed
as a region integral, this function finds the region with the largest
absolute value of the integrated Laplacian of the image function.
Such regions correspond to ‘lumps’ or ‘dips’ in the image function,
since regions with undulations in the image function will make both
positive and negative contributions to the region integral, reducing
its absolute value. Viewed as a boundary integral, this term measures
how much image function gradient flow there is into or out of the
region enclosed.

F = ∗|d ∗ di|: The previous function does not deal well with the case
of contrast-reversing boundaries, which introduce both positive and
negative contributions to the region integral. We can deal with
the case of general boundaries (including contrast-reversing) using
the absolute value of the Laplacian, at the expense of not having an
analytical expression for the boundary integral. This region function
is a better way to deal with contrast-reversing boundaries than the
normal process of taking the magnitude of the gradient, since it
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preserves the notion that image function change should be normal
to the boundary.

F = ∗e−|di|: This is a positive monotonically-decreasing function of
the magnitude of the image function gradient. The integral of such
a term over a region will be large if the gradient has small magnitude
everywhere. It will thus seek out the region with globally most
homogeneous image function.

F = i ∗T.: A two-form filter T (or linear combination of filters) that
responds strongly to a particular class of textures can be used to
segment globally optimal regions of that texture.

An obvious choice for the denominator in equation III.3 is the single
function, φ ≡ I. This means that the denominator measures the Euclidean
length of the boundary. A linear combination, for example, of the second
and last choices in the list above in the numerator, and this choice for φ in the
denominator means that the model is searching for a region with high image
function gradient flow in or out, and that is filled with a particular texture.

3.4. Regularization

If the numerator has a term that grows as the area, then the scale invariance
is spoiled. The denominator continues to restrain the scaling behaviour of
course, but it also acquires a regularizing function as a consequence of the
failed invariance. For a fixed area, the shape with the largest area to length
ratio is of course the circle. Similarly, since the energy functional prefers
shorter boundaries if the image data is the same, it will tend to behave like
a soap bubble and contract around the supporting data thus smoothing the
boundary. This is confirmed by the relation to extensive energies mentioned
earlier. In those energies the denominator appears as an explicit length term.

4. ALGORITHMICS

Having defined the energy functionals with which we are concerned, we
now need to describe how we will solve the MAP estimation problem associ-
ated with the corresponding probability distributions, or in other words, how
we will minimize the energy. In this section we present two algorithms that
can be used to solve the minimization problem. Neither algorithm requires
initialization, and both find the global optimum for their problem instances
in polynomial time. The first applies in a restricted set of instances, but has
the advantage of being extremely parallelizable. The second is completely
general, applying to any energy functional of the form of equation III.3,
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and on serial machines is much faster than the first algorithm.14 Neither of
these algorithms is new to this thesis as will be clear from the citations, but
their application to the solution of the continuous problem described here,
and hence their use in computer vision, is new. We describe them here for
completeness.

In section 4.1, we set out a discrete problem with obvious similarities to
the continuous problem we are considering. Then, in sections 4.2 and 4.3,
we describe the two algorithms that solve this problem and compare them.
In section 4.5 we describe how we can reduce the continuous problem to the
discrete one, and hence solve the continuous problem.

4.1. Problem

Given a graph G = 〈V,E〉 (we denote card(V ) by n, and card(E) by

m), and two maps E λ→ Z and E τ→ Z+, we define the ratio weight W (C) of
a set of edges C ⊂ E as

W (C) =

∑
e∈C λ(e)∑
e∈C τ(e)

(III.4)

Note that the weights are integral: this represents almost no restriction in
practice. Note also that the co-domain of τ is the positive integers. This
corresponds to the form of the integrand in D[∂R] in equation III.3, which
is positive by construction. When τ is constant, we call W the mean weight.

Let C be the set of cycles in G. The problem is then to find W ∗ =
minC∈CW (C) and C∗ = arg minC∈CW (C). Call this problem A. Note
that the corresponding extensive problem, problem B, where we wish to
find the minimum total weight cycle with weight given by the numerator of
equation III.4, is not clearly defined if the graph contains negative cycles.
Remarkably, attempts to alleviate this problem by restricting attention to
simple cycles renders the problem NP-hard, since solution of it would allow
the solution of Hamiltonian Cycle as described in footnote 7. The case of
minimum ratio weights is different. Here, no special effort is needed to
restrict attention to simple cycles. No path will wrap multiple times around a
negative cycle, since this will not change the ratio weight. In addition, cycles
that cross themselves will only occur if both simply connected pieces have
exactly the same ratio weight. Not only does this not occur very often, but if
it does the cycle can simply be split into two parts once it is found.

14There is also a linear programming approach to the problem, described by Dantzig, Blatner
and Rao [DBR66], but no bounds can be given on the time to solution in this case, and we
do not describe it here.
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4.2. Minimum Mean Weight Cycle Algorithm

The first algorithm that we describe does not solve the general instance
of problem A. The restriction is that the denominator weights τ should all
be equal, or in other words that we are solving the minimum mean weight cycle
problem rather than the more general minimum ratio weight cycle problem. Up
to an irrelevant factor, the denominator is simply counting the edges in the set
C. This discrete problem does not have a continuous counterpart, dependent
as it is on the discretization, but it is useful because the corresponding algo-
rithm is extremely parallelizable. Each vertex only needs to read from, and
never write to, its neighbours at each stage of the algorithm. The algorithm
is due to Richard Karp, and we refer the reader to the original paper [Kar78]
for proofs.

We begin with a weighted directed graph G, as described in section 4.1.
We have a numerator function λ, and a trivial denominator function τ ≡ I.
We wish to find the minimum mean weight cycle, where the mean weight of
an edge progression is defined by equation III.4.

First, define the function Fk taking each vertex v ∈ V to the weight of the
minimum total weight path consisting of k ≥ 0 edges to v from an arbitrary
start vertex s, and define it to be ∞ if no path exists of k edges. Then it can
be shown that the weight W ∗ of the minimum mean weight cycle is given by

W ∗ = min
v∈V

max
k∈[0..(n−1)]

{
Fn(v)− Fk(v)

n− k

}
.(III.5)

Intuition about this equation is hard to come by. The original paper contains
the proof but it is not particularly illuminating. Fk(v) can be computed using
the recurrence

Fk(v) = min
(u,v)∈E

Fk−1(u) + λ(u, v))

F0(s) = 0

F0(v) = ∞ , ∀v 6= s.(III.6)

The computation of F for all k ∈ [0..(n− 1)] can be performed in time
O(nm). The minimum weight paths can be computed simultaneously. Using
a further O(n2) time we can compute W ∗ from Fk(v), leading to an overall
computation time of O(nm). The cycle itself can be extracted by selecting
the minimizing v and k in equation III.5, and finding a cycle of length n− k
in the minimum weight path from s to v.

The algorithm is extremely parallelizable, since Fk(v) only depends on
Fk−1(u) for u in the neighbourhood of v. Thus a network arranged in levels
of constant k could compute the values of Fk in parallel from the values of
Fk−1 in O(1) time. To fill the whole table containing Fk(v) for all k and
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FIGURE 9. The table used to compute the minimum mean
weight cycle. This table is easily filled in parallel using one
processor for each vertex. The processing is trivial, and it seems
likely that purpose-built hardware could perform boundary
optimization using this algorithm at very high speed.

v would thus take O(n) time. The minimization would take the same time,
and is also easily implementable as part of the network. It is easy to envisage
columns of this sort being arranged behind a detector and producing at the
‘top’ of the table the extracted region. This would be very fast. In addition,
manipulation of the network connectivity would allow attention effects to be
included. Figure 9 shows the situation graphically.

4.3. Minimum Ratio Weight Cycle Algorithm

The minimum mean weight cycle algorithm described above has the
drawback that it cannot deal with edge weights τ other than the trivial case
in which τ ≡ I. This has the consequence that it cannot deal with arbitrary
functions and one-forms gα in D[∂R] in equation III.3. Indeed, it cannot
deal even with the case of a single function g = I, since this corresponds to
τ(e) = Euclidean length of e. Instead it uses a discrete measure: the number
of edges in the discretized version of the boundary. This lack of generality and
dependence on the discretization, coupled with the unfortunate properties
of an edge count as a measure of distance, illustrated in figure 10, render
the algorithm unsatisfactory for many purposes. The minimum ratio weight
cycle algorithm described in this subsection works for arbitrary E τ→ Z+,
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FIGURE 10. The horizontal path and the triangular path have
the same number of edges.

and hence deals with arbitrary functions and one-forms gα in D[∂R]. It also
requires considerably less memory resources than the minimum mean weight
cycle algorithm. The main consequence of this parsimony with memory is
increased speed. Instead of the execution times of a few minutes found for
Karp’s algorithm, we find execution times on single images of a few seconds
(typically less than five seconds on a 256× 256 image) for the minimum ratio
weight cycle algorithm.The algorithm has the added advantage that degenerate
minima of the energy III.3 can be identified simultaneously.

The algorithm was first described by Lawler [Law66], and since then
has been much generalized by Nimrod Meggido [Meg79]. It relies on the
following, interesting observation. Define a new, parameterized edge weight
E

wt→ Q : e ∈ E  wt(e) = λ(e) − tτ(e), where t ∈ Q. We use the same
symbol w for the weight of a set of edges (defined by summation). Then the
solution, t∗, of wt(C

∗
t ) = 0, where C∗t is the solution to problem B with

weights wt, is equal to the minimum ratio weight W ∗ in problem A, and the
minimizing cycle C∗t∗ of problem B is equal to C∗ for problem A. The simple
proof of this fact is given in appendix B.

The problem is now reduced to finding an efficient search strategy for t∗.
Although there are a number of approaches, including binary search [Law66],
and a more sophisticated approach using parametric edge weights [Meg79],
we find in practice that the fastest process is simply linear search. To see how
this works, note that if t > t∗, the graph G using the weights wt will have
a negative cycle. We start with a known upper bound t0 on t∗. Such a t0

is easy to find. We can just choose the edge with the maximum ratio of its
two weights. We then apply a negative cycle detection algorithm with edge
weights wt0 . If we do not find a negative cycle, and the algorithm terminates,
there will be a zero weight cycle, and we are done: t0 = t∗ = W ∗, and the
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zero weight cycle C∗t0 is a solution C∗ to problem A (as are any other zero
weight cycles—hence we can detect degenerate minima). If a negative cycle C
is detected, t0 is too large. Since wt0(C) < 0, we have that t0 > W (C) ≥ t∗.
We therefore replace t0 by t1 = W (C). The search continues in this fashion
until t∗ is found. When t∗ is found, we have thatW ∗ = t∗ and thatC∗ = C∗t∗ .
Because the weights λ and τ are integral, a pseudo-polynomial bound can be
placed on the search time. Ignoring the precision factors, this bound is
O(mn), coming from theO(mn) time bound on the negative cycle detection
algorithm. In practice, since we can terminate the negative cycle algorithm as
soon as the first negative cycle is found, it never executes to completion until
very near the completion of the whole algorithm, rendering the time much
shorter than the bound suggests. Further details of the time bound and the
implementation are given in appendix B.

4.4. A Related Extensive Problem

The algorithm illustrates in the discrete domain the fact that the solution
to the optimization problem using equation III.3 is the same as the solution to
a related extensive optimization problem Ê[∂R] = N [∂R] − βD[∂R], with
β chosen in a specific way. The parameter β is not a constant, but rather is a
function of the problem instance. In fact, it is a very particular function: the
value of β is the minimum of equation III.3, making it a functional of the
whole image. It is easy to see (as is proved for the discrete case in appendix B),
that the minimizing boundary for Ê is the same as the minimizing boundary
for equation III.3 if β is chosen in this way. This is the choice of β that gives
the minimum energy state of Ê zero energy, and therefore renders it a positive
functional on the space B. For each image, β is effectively chosen in this way
and then the minimizing cycle of Ê is found.

4.5. Application

In order to solve the continuous problem of finding the minimum of
equation III.3, we must show how it can be approximated by the discrete
problem described in section 4.1.

To do this, we embed a graph G in the image domain D. This has the
effect of inducing an injection from the spaces of vertices and edges in G
to the zero- and one-chains in D, and in particular the space of cycles in G,
C is injected into the space of one-boundaries in M , B. This means that
we can define two weights, λ(e) and τ(e), for each edge e as the integrals
of the numerator and denominator in equation III.3 along the image of e
under the injection. The discrete energy, equation III.4, will be equal to the
continuous energy for those boundaries that are the image of some cycle in
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FIGURE 11. A cycle in the embedded graph becomes a con-
tinuous piecewise smooth embedding of a circle.

G. We thus have an instance of problem A, whose solution is equal to the
solution of the continuous problem over a smaller discrete set of boundaries.
The solution to the discrete problem can then be injected back into D to give
a one-boundary in the manifold. This will be a continuous piecewise smooth
embedding of S1 in D as advertised. Since the injection from the set of cycles
in G is not onto, this solution may not be exact. However, by making the
graph dense enough in D, the error can be reduced to an arbitrarily small
value. Of course, this increases the computational complexity of the discrete
problem, but fortunately, in image applications, the pixel scale gives an upper
bound on the accuracy we can expect, and hence on the complexity of the
problem.

5. DEMONSTRATIONS

Figures 14 and 15 show the results of running the algorithms on some real
images. Figure14 uses the minimum ratio weight algorithm, while figure 15
uses the minimum mean weight algorithm. In these demonstrations, the
graph that we embed in the image plane is a rectangular lattice with vertices
the pixels and a simple bi-directional eight-neighbour structure. This is shown
in figure 12, in part (b). We chose the two-form to be integrated over the
region to be F = d ∗di+ ∗β, where β is a constant function. The first term
is the Laplacian, and gives a boundary term A = ∗di as discussed above.
The second term measures the area, and its purpose is to eliminate very small
regions. In figure 14, the denominator was simply the Euclidean length, and
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FIGURE 12. (a) For each pixel we compute the gradient vector.
(b) The graph has a node for each pixel and eight outgoing
edges for each node (except at the boundary.) (c) The edge
weight is calculated by taking a cross product of the gradient
vector and the edge vector.

β = 10/3. The energy in equation III.3 for figure 14 then becomes

E(∂R) =

∫
∂R
∗di+

∫
R
∗β∫

S1 ∗γI
(III.7)

For figure 15, the denominator was simply an edge count, as required by the
algorithm, and β = 0.

At each vertex/pixel, the discrete version B of the gradient one-form di
was computed by taking a wavelet coefficient on a small scale of the order of
a pixel:

B = i � ψs

ψs(x) = s−1ψ(s−1x),

where � denotes convolution, and ψ = dG is the derivative of a Gaussian.
For an edge going from vertex u to vertex v, corresponding to pixels a and
b respectively, the integral of the numerator of equation III.7 along the edge
was approximated by taking the signed magnitude of the cross product of the
vector b− a with the average of the gradients at a and at b, 1

2
(B(a) + B(b)).

The cross product produces the same effect as the Hodge star in this case,
by effectively rotating the gradient by π/2 and then taking the dot product.
The edge weight for the denominator was taken to be its geometric length,
corresponding to the choice of g = I. This is illustrated in figure 12.

For an image with n pixels, the number of vertices in the graph is simply n,
and the number of edges is O(n) also. The time complexity of the minimum
ratio weight algorithm O(n2). For a 256 × 256 image, this is 109. The
space required by the algorithm is O(E), which in this case is 105. On a
dual processor Pentium III 500 MHz machine with 1 GB of memory, the
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(a) (b) (c)

FIGURE 13. (a) A synthetic contrast-reversing boundary. (b)
The result of applying the region two-form d ∗ di. (c) The
result of applying the region two-form ∗|d ∗ di|. The region
found is shown in grey.

algorithm executes in a few seconds on such images. The minimum mean
weight algorithm has the same time complexity, but its space requirements are
larger: it requires O(n2) space, as well as time. This is a lot of memory, and
it results in slower performance. The algorithm takes some minutes rather
than a few seconds on a 256×256 image. In each case, the algorithm was run
several times on each image, and after each iteration those vertices through
which the previous solution had passed were removed from the graph. In this
way a series of regions of increasing energy was extracted. This can be viewed
as a series of hypotheses about regions in the image of gradually decreasing
probability. The numbers in the figures indicate the order in which the
regions were found.

Two main differences between the two sets of demonstrations should be
noted. The first is that with β = 0, more low energy small regions are found.
In figure 14, the large regions are found second, first and first respectively,
whereas in figure 15 they are found sixth, third and third. The second
difference is also expected but more subtle. As was illustrated in figure 10,
the use of an edge count as a distance measure fails to penalise ‘triangles’.
This results in the boundaries of the regions being jagged. This is clear for
example for region number 1 in the first image of both figures, which is a
diamond in figure 15, but considerably smoother and rounder in figure 14.
The same effect can be noted on the boundaries of the large regions in all
three images. In addition, this demonstrates the regularizing effect of the
denominator in equation III.3.

In order to illustrate that the process can also deal with the case of contrast-
reversing boundaries, figure 13 shows the effect of changing from the integral
of the Laplacian to the integral of its absolute value ∗|d ∗ di|.
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FIGURE 14. The results of running the minimum ratio weight
cycle algorithm on some real images, with β = 10/3. After a
boundary was found, the pixels in that boundary were removed
and the algorithm run again. The numbers indicate the order
in which the regions were found. (a) A 256× 256 pixel image.
(b) A 200 × 134 pixel image. (c) A 124 × 166 pixel image.
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FIGURE 15. Using the same images as in the last example, the
demonstrations shown here use the minimum mean weight
cycle algorithm with the area term set to zero. Two differences
can be noted. The most obvious is that lack of an area term,
as expected, results in the finding of smaller areas earlier in
the iteration process. The second is that the use of an edge
count as a measure of length results in jagged boundaries,
since ‘triangles’ are not penalised.
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6. POSTSCRIPT

The new form of energy functional is not restricted to two dimensions.
In the next chapter, we turn to the use of equation III.3 with multiple images,
resulting in the identification of boundaries and regions of boundaries in
several images simultaneously.
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CHAPTER IV

MULTIPLE IMAGES

The techniques of the previous chapter are applied to the extrac-
tion of boundaries from several images simultaneously, together
with their correspondence. The most important examples of mul-
tiple images in vision are stereo pairs and motion sequences, the
result being ‘attentional’ stereo or motion computation. Two types
of information are available: that obtained from the images sepa-
rately, and that obtained by comparing different images. Both can
be incorporated into the energy density. No dense flow computa-
tion is used or needed, although the results obtained may aid in its
computation.

Throughout the discussion so far, we have tried to be as general as possible
about what we mean by an image. Where we have restricted the discussion
at all it has been to the case of single images. In addition to being the most
important class of images, this also enabled us to take advantage of the special
relation between regions and boundaries in two dimensions. In some cases
however we have more information available than is provided by a single
image. Examples include the cases of stereo pairs and motion sequences, for
which the input to the visual system consists of several single images. The
various image semantics for these new situations contain all the statements
from the single image semantics we have considered so far, but they also
contain other statements only available to us because of the extra images.
These statements are (and can only be) the result of relations between the
images. There is thus an object recognition problem entirely analogous to the
single image case except that we have the extra images both to aid us in the
recognition task and to enable us to make more complex statements about
the objects that we find. We will apply the techniques of the past chapter
to the case of multiple images in this chapter. Our approach to stereo and
motion will be different from that most commonly used in the literature, and
so we will spend some time outlining the standard approach.
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1. STANDARD APPROACH

Stereo and motion differ conceptually, but computationally they have
often been treated as equivalent. In both cases the input to the visual system
is two or more single images, i = {ia : a ∈ N}. The differences between the
two situations concerns the cameras and the times at which the images are
generated. For stereo, the cameras are positioned and oriented differently,
but the images are generated at the same instant. For motion, we deal with
a time-varying image generated by a single camera. In principle this is a
function D× R → R, but we will use a discrete time so that the image is in
fact D× Z → R.1 The time variation can arise from changes in the position
and orientation of the camera, or changes in the remainder of the scene or
both.

Since we are dealing with real images, given such an input, the visual system
should output some statement from the scene semantics. It is clear that among
the statements in the scene semantics for both stereo and motion images is
a set that has the following form: “The same point in the scene generated
the point x in the first image domain, y in the second image domain, . . .
”. The idea is that in two pictures of the same scene, whether taken at
different times or from different positions, the same points will by and large
appear, assuming that the differences of time or space between the viewpoints
of the individual images are small, this being a standard assumption. (The
notion of ‘small’ can be quantified in terms of the scene, for example the
typical size of depth discontinuities, or the typical velocities of objects, but
we do not do that here, treating it instead as a working assumption.) We
can thus establish a correspondence between these points in the different
image domains. It is necessary to use a relation rather than a function to
describe these correspondences because some points occur in only a subset of
the image domains. To formalize this for N images: for a subset A ⊂ N , let
DA = ×a∈ADa, where Da is the domain for image ia. This will be a subset
of R2card(A). Then the statement output by the visual system is a subset
R ⊂ ∪A∈2N DA such that each point in each image domain appears in at
most one element of this subset. The subset R is required to be continuous
except at certain sets of discontinuity points of co-dimension one. Thus a
point in one of the image domains may match no others, or a point in another
image domain, or two points in two other image domains, and so on. In
the case of stereo, or of motion with two images only, we have a subset of

1We assume that successive time samples are separated by the same increment of time. This
avoids invariance issues that would otherwise complicate matters considerably. Note that we
cannot do this in the case of spatial samples, since these will not be uniformly spaced along
the boundary.
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D1∪D2∪D1×D2 such that each point appears in only one element, and in
this case we can view the relation as a partial map from one image domain to
the other. This map can be viewed as a vector field on the first image domain
since we are in Euclidean space.2 In the case of motion, this field is known
as the optical flow, while in the case of stereo, it is known as the disparity.
(In the latter case, further constraints to be discussed will in fact force one
component of the vector field to zero, rendering it a function.) Given the
relation R as above, and certain further information about the cameras, it is
then possible to make further statements about the scene; for example, in the
stereo case, “The distance from the average focal plane of the cameras to the
nearest object in the scene that generated point x in one image and y in the
other is d”. The function so defined is known as the depth.

In the case of stereo, further assumptions are made about the relative posi-
tions and orientations of the cameras and the objects in the image. The most
important is the epipolar constraint. Consider two cameras. Corresponding
to each camera is a projection from R3 to R2. Call these projections π1 and
π2, and consider the map from 2R3

to itself given by π←2 π1→. This map may
have fixed points, or in other words there are subsets of R3 invariant under
projection to one image and back projection from the other. In stereo, it is
assumed that the projections are such that these subsets foliate the volume
of three-space appearing in the images into planes (which may be parallel or
converge to the camera depending on the nature of the projection). These
planes project into parallel lines in each image, and it is assumed that the cor-
respondence between these lines (but not the points within them) is known.
This defines a subset of R4 within which R must lie. It amounts to giving a
map R� R2 that dictates the correspondence between the stacked lines in
each image. Figure 16 shows the situation. This map can then be used to
reduce the dimension of the space R4 in which the subset R would naturally
sit, by inducing a map R3 � R4. The situation now takes the form of a
number of two-dimensional problems ‘stacked’ on top of one another, thus
reducing the disparity from a vector field to a function.

A second constraint known as the ordering constraint arises from assump-
tions about the scene excepting the cameras. It says that the correspondence
within each epipolar line should preserve the ordering of the points in the
line, and should be consistent from epipolar line to epipolar line. Viewing
R as a partial function from one image domain to the other, this constraint
says that the derivative of this function along an epipolar line should take one
sign only. Again, figure 16 illustrates the situation.

2The image domains are related by ‘base’ isomorphisms that result from the fixation of the
cameras. To avoid having to consider these uninteresting isomorphisms directly, we will
assume that the domains are identical.

59



�

D E F�

F�E D

F�E�
D�

\

6�

FIGURE 16. Epipolar constraint: the plane S is preserved by
projection to one image and back projection from the other.
It is a fixed point of the set map created by this process. It
defines a line in each image domain that must correspond.
Similar sets foliate R3 and produce corresponding lines. This
can be represented by a map from R → R2, as shown in
the lower right. Ordering constraint: the three points, a, b
and c in the scene must project to the epipolar lines in an
ordering preserving way as shown in the figure. Three points
in a line directly away from the cameras, if visible from both
sides, would violate this constraint. In this way, the ordering
constraint is a working assumption about the scene.

The situation for motion is not as constrained. In general, even if there is
an epipolar constraint (meaning non-empty invariant subsets) it is not known,
and the dimensional reduction that takes place in the case of stereo does not
happen. We therefore have to deal with the full 2N -dimensional space.

1.1. Previous Work

Previous work in both stereo and motion has concentrated on exactly the
type of statement from the scene semantics that we illustrated above. Almost
all the emphasis has been placed on finding a dense correspondence in which
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R covers the union of the image domains. This is partly because the above
statements are often not viewed as ends in themselves, but as a preliminary
to image partitioning. The idea then is that unmatched parts of the image
(or equivalently, discontinuities in the computed disparity or optical flow)
correspond to discontinuities in the depth or the motion of the scene, and
hence hopefully to object boundaries [Aya91, BZ87, Fau93]. It does indeed
seem likely that if accurate estimates could be made of the positions and
directions of velocity discontinuities in particular, then the partitioning task
would be made very much easier.

The probability of a particular correspondence is typically assessed using
measures of difference between local ‘features’, examples being the image
function or its gradient, or the results of applying a filter to the image func-
tion. Often an energy functional (and hence probability distribution for the
correspondence given the data) is defined on the space of optical flows or
disparities, which is then locally or globally optimized.

Different methods for finding the disparity or optical flow in this way
face similar problems. Some regions in each image may be effectively uni-
form, rendering correspondence ambiguous, and the feature values of points
in each image that come from the same source point in the scene may
differ due to noise, as some of the early work in optical flow discovered
[AB85, FJ90, Hee90, LK81]. Both these problems point to a need for control
of the correspondence in a way that does not depend on the data, or in
other words a prior probability. Typically such probabilities are chosen to
advantage smoother correspondences. Such terms are used in optical flow
computations [Ana89, BA91, HS81, NE86], and in stereo [Aya91, BB81,
Gri81, Jul71, KO90, MP79, MN85, PMF85, RC98]. Although such prior
probabilities work in the sense that they will smooth out noise and propagate
the correspondence into regions where the data is indecisive, they also tend to
smooth out discontinuities, and hence match regions of the image that should
be left unmatched. Since these are often the parts of the correspondence in
which we are most interested, this is a pity. Nevertheless, most of this work
does not explicitly model discontinuities.

Later work in stereo [Bel96, BM92, CHMR92, GLY95, IB94, JM92,
MMP87, Yui89] does model discontinuities, but the difficulties of solving
the optimization problems involved means that the solutions can be found
along epipolar lines only. This reduces the dimensionality of the problem,
and allows the application of dynamic programming techniques. Unfortu-
nately, it does not allow the imposition of constraints connecting different
epipolar lines. For example, we might suspect that the disparity would be
smoothly varying between epipolar lines. The recent maximum-flow methods
[IG98, RC98] allow a fully two-dimensional treatment of the optimization
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problem, and the finding of the global minimum, but the smoothing must
be convex. Discontinuities are modelled by modulating the smoothing term
according to the presence of high image function gradients or corners [IG98].
Another recent approach [BVZ98] finds local optima under large ‘moves’, an
improvement over the standard gradient descent approach. It seems to be nec-
essary to choose between finding the global optimum with convex smoothing,
or using non-convex smoothing to find only local optima.

In motion, a more recent approach to the problem, known as “layers”
[AS95, DP91, DLR77, HAP94, JB93, WA94, WA96], which can also be
applied to stereo, approaches the problem by severely limiting the dimension-
ality of the space of optical flows. The method does this by modelling the
optical flow as a partition of the image domain into regions, with the optical
flow in each region lying in a low-dimensional subspace of the space of vector
fields. Typically (although not always: [Wei97]) this subspace is an affine or
projective subspace. The advantage of the method is that discontinuities are
modelled explicitly. To find the optical flow, the EM algorithm is used itera-
tively to find the regions given the motions and the motions given the regions.
The algorithm does not necessarily find the global optimum however, and in
addition, it requires the choice of an initial partition and the corresponding
models. The same type of ambiguity occurs here as we discussed in the context
of image partitioning methods in chapters I and III. The difficulty is not just
that it is not known how to make this choice, but that the choice itself is not
well-defined. Specific tasks may remove this ambiguity but it is hard to see
how it is possible in a task-independent way.

Using a different approach entirely, Shi and Malik [SM98] apply the
normalized cut model described in chapter III to the problem of motion
sequences by using it to segment the sequence directly into spatio-temporal
volumes. The problems are the same as with the use of normalized cut in single
images: notions such as continuity and smoothness are hard to incorporate
into the model. In addition, no correspondence is set up between the images,
since all that is found is a set of vertices.

In another different approach, Cipolla and Blake [CB97] use active con-
tour methods for motion sequences. They initialize a contour in one image
and then track it over a few images, using the information to compute average
differential invariants of the motion inside the contour. The approach has
three disadvantages. The first is that structurally it is a greedy method, and
hence does not compute a MAP estimate as such (unless very unrealistic inde-
pendence assumptions are made). The second is that the algorithm used is a
form of gradient descent, which therefore does not compute the global optima
even for the separate subproblems of the more limited greedy problem. The
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third, as pointed out by Shi and Malik [SM98], is that the algorithm requires
initialization through a choice of contour.

2. STEREO AND MOTION WITHOUT DENSE CORRESPONDENCES

Although there are tasks for which the kind of dense correspondence
generated by the above work is appropriate,3 it is often the case that a dense
correspondence tells us a great deal too much about aspects of the image that
do not interest us, and rather too little about aspects that do. For example,
in collision avoidance, which applies to many navigation tasks as well as to
avoiding an aggressor, it is not really necessary to know the motion of or
distance to every visible point in the scene, especially if this does not tell us
where the approaching object is or how fast it is moving. It is far more useful
to be able to detect the approaching object’s location, distance and motion
without having to bother with the remainder of the scene.

With this in mind, we will use the form of energy functional of the last
chapter to find boundaries in each of a number of images simultaneously with
their correspondences, thereby combining object recognition with correspon-
dence computation. This might be called ‘object-based’ or ‘attentional’ stereo
or motion computation. No dense correspondence is used or computed.
The method can be thought of as the extension of the human recognition
task that we have been using as our guide to the case of multiple images.
Just as in the last chapter we discussed the first stage of our attack on that
task in the case of single images, that relating to probability distributions on
regions alone, so in this chapter we describe the analogous first stage in the
case of multiple images. The extra structure that we are introducing, which
in this case is boundary correspondences, serves a dual purpose. First, it
encodes extra information about the boundary, either concerning its position
or its motion in the scene. Second, it enables us to narrow the probability
distribution on regions by constructing energy functionals that use this extra
information. We will meet a similar situation in the next chapter, where extra
structure (in that case for parts) is introduced and used in a similar way.

We envisage several uses for the models discussed in this chapter. We
could go on and try to extend the object recognition aspect of the work,
by incorporating part structure and so on in a way analogous to the single
image case. This would be the natural choice if we were bearing in mind
the collision avoidance example. Alternatively, we could use the information
we find to aid other visual processes. In particular, the boundaries and their
correspondences can be used as a constraining input to a normal optical
3Examples are using a stereo algorithm to create a virtual scene, or to map topography from
an aeroplane. Any process that wishes to partition an image by using stereo or motion
sequences also clearly needs a dense correspondence.
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flow algorithm, both to fix the optical flow on the extracted boundaries,
and to weaken any smoothing terms on the boundaries, thus encouraging
discontinuities to occur there. As a special case, stereo algorithms could be
applied to the interior of the boundary only, thereby amplifying the meaning
of ‘attentional stereo’. The information could also be used as part of an
initialization for the “layers” method, or to estimate differential invariants of
the motion as in [CB97]. Just as in chapter III, the method we will describe
requires no initialization, thereby answering the objections of Shi and Malik
to boundary-based methods.

Although some previous work uses indicators of object boundaries to
influence the correspondence computation [BT99, HA89, IG98], all of these
indicators are local features. None of the work uses indicators of depth or mo-
tion discontinuities with large extension in the image domains, even though
object boundaries do have such extension. If available however, this infor-
mation is very valuable, as it introduces correlations between distant parts of
the image domains and, if correspondences are known, between the image
domains, that should be preserved by the correspondence computation. In
addition, in previous work these indicators are computed for each image in-
dependently, a process that does not guarantee that the features correspond,
and which throws away a great deal of useful information about the corre-
spondence. In contrast, in the work described here, the boundaries are not
found in each image domain independently and used separately, nor are they
found and then matched. Instead the boundaries and the correspondence
between them are found simultaneously.

If, instead of viewing the boundaries as features to be discarded once a
dense correspondence is found, one is interested in both a dense correspon-
dence and the boundaries, then the non-local nature of region and boundary
information and the difficulty of modelling discontinuities suggests that it
is better first to find corresponding regions and boundaries and then find
a dense correspondence rather than the reverse procedure that is normally
followed.

3. REPRESENTATION OF BOUNDARIES IN MULTIPLE IMAGES

We will represent boundaries in multiple images i = {ia : a ∈ N} simul-
taneously as a single boundary in the product space of the domains of the
images, or in the stereo case the subset of this space defined by the epipolar
constraint. We refer to both these spaces as DS . We are thus looking at the

64



�

�

�1�GLPHQVLRQDO�

SURGXFW�VSDFH��

%RXQGDU\������

LQ��

�
6J

«�

�� �� 1±�� 1�
,PDJHV�
«�

�
S

�
S

�
S

�1

S
1

�1
�

w5

FIGURE 17. The boundary in the 2N -dimensional space DS

resulting from the product of the image domains is shown
euphemistically, along with the projections to the individual
image domains.

following space of maps:

D DS
π1oo π2 // D

S1

γ2

>>}}}}}}}}γ1

``AAAAAAAA
Γ

OO
.(IV.1)

in the case of two images, with more projections added when there are more
than two. We are interested in boundaries ∂R rather than maps, so that
we have the familiar invariance under replacement of Γ by Γε. Figure 17
shows this structure graphically for the motion case. Figure 18 shows the
analogous structure in the stereo case. Both show a boundary in DS (one
of the boundaries searched by the model), together with its projections into
the two image planes. Figure 18 also shows a pair of epipolar lines that must
correspond to each other.

In the stereo case, we must enforce the ordering constraint as well as the
epipolar constraint. In order to do this, we impose a condition on the tangent
vectors of the boundaries we consider. If we denote the Euclidean coordinates
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FIGURE 18. A boundary in the three-dimensional space DS ⊂
R3 resulting when the epipolar constraint is enforced is shown,
along with its projections to the two individual image domains.
A pair of matching epipolar lines is also shown, as are the
coordinate systems used in the text.

in R3 by xa, where a ∈ {1, 2, 3}, and x1 and x3 run along the epipolar lines
and x2 perpendicular to them, we may define a Cyclopean coordinate system
by σ− = (x1−x3) (the disparity), σ+ = (x1+x3), and τ = x2 (see figure 18).
In the basis derived from the Cyclopean coordinate system, we can express
any vector v as v = v+ ∂

∂σ+ + v− ∂
∂σ−

+ vτ ∂
∂τ

. We restrict attention to those
boundaries whose tangent vectors v = dγ

dt
obey

(v+)2 > (v−)2(IV.2)

When we come to discretize the problem, this will mean that edges that violate
this constraint will drop out of the graph that we construct.

4. ENERGY FUNCTIONALS

Having defined the representations that we will use, we now move on to
the energy functionals. There is a lot of similarity between the cases of stereo
and motion and we will try to keep the discussion unified.
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4.1. Numerator

We will use the numerator of equation III.3 to measure the optimality
of the projected boundaries in each image independently. To do this, we
define a one-form Aa on the image domain Da of each image. Typically
these one-forms will have the same functional form since there is symmetry
under interchange of the images. Each of these one-forms may consist of
the linear combination of several terms that would normally be referred to
as boundary information, and several terms that would normally be referred
to as region information, just as discussed in chapter III. We then define a
one-form A on DS by pulling back the Aa using the πa, and then forming a
linear combination:

A =
∑
a∈N

αaπ
∗
aAa(IV.3)

where αa ∈ R. The αa will typically all be equal because of symmetry under
interchange of the images, and hence they will drop out as an irrelevant
multiplicative constant. The integral of this one-form around ∂R will form
N [∂R] in energy III.3. Note that because of the properties of the pullback,
we have: ∫

∂R

A =
∑
a∈N

αa

∫
∂Ra

Aa(IV.4)

where ∂Ra = πa∂R. Thus this quantity is a measure of how optimal a
boundary/region is ∂R when examined in each image independently. If we
are using region terms, then the fact that the Aa have the same functional
form will tend to lead to the correspondence of regions with similar properties,
even though no direct comparison is being made.

4.2. Denominator

In chapter III a trivial denominator D[∂R] was used in equation III.3.
Here we exploit the freedom allowed by the model, and construct a D[∂R]
that compares the boundaries in the images to each other. There are many
ways to do this, some of which are discussed in this chapter and the next.
Here we focus on what seems the simplest possibility for stereo and motion.
We will write down a denominator term that does two things. First, it com-
pares boundaries using the image function differences between corresponding
points, favouring boundaries in DS for which these differences are small. In
addition, this preference is weighted in a way that favours boundaries that lie
on parts of D where the velocity or disparity changes sharply.

We will achieve this by defining a single function g on S1 and then
defining the denominator of equation III.3 by D[∂R] =� g, g �. This
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function will itself be a ratio gN/gD. The function will compare successive
images pairwise. In the stereo case this restriction makes no difference, but it
is important in the motion case. It does not make sense to compare images
widely separated in time. In effect, we are making a Markov-like assumption
about the dependencies of the probability distribution over the space of
boundaries when viewed as a time-ordered set. The method does not impose
any such restriction however, and we could for example include a term that
penalized large accelerations, a second order effect in time.

Our numerator and denominator functions will accordingly take the form
gN(i) =

∑N−1
a=1 ga,N(ia, ia+1), and gD(i) =

∑N−1
a=1 ga,D(ia, ia+1). For every

a ∈ N , the ga,N and ga,D will take the same functional form because of
symmetry, so it is sufficient for us to define then for the case of two images.

The Numerator gN . We define the following function on DS for a pair of
images ia and ib:

∆a,b = ibπb − iaπa.(IV.5)

Then

ga,N = Γ∗∆a,a+1.(IV.6)

The effect of the above term is clear. The function g will be in the
denominator of equation III.3, so the optimization favours small values of its
integral around the boundary. This in turn means that gN should be small,
while gD should be large. Now gN is small at a point p ∈ DS when the image
function values at the projected points πa(p) for successive pairs of images
are nearly equal. Thus gN encourages good image function matches between
successive boundaries.

The Denominator gD. The denominator gD is defined as a function on S1

using

ga,D = ∗ΓΓ∗ ∗2 d2∆a,a+1.(IV.7)

The definition of d2 is as follows. For two images ia and ib, we can define
a projection from DS to the tangent space of D, the single image domain,
by φ = πb − πa. (Recall that the image domains are identified via isomor-
phisms, here assumed identical, and that D is a Euclidean space, so that the
subtraction here makes sense.) In the stereo case, the range of this map is a
one-dimensional subspace of the tangent space to D, because of the epipolar
constraint. In the case of motion, the range is the whole of the tangent space.
The fibres of this projection are then parallel planes that foliate DS . These
are the planes of constant disparity or constant velocity. We can define an
exterior derivative and a Hodge star within these fibres: these are d2 and ∗2.

The derivative measures how fast the image function difference changes
if the disparity or velocity are kept the same. By taking the Hodge star and
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FIGURE 19. The figure shows a slice through the space DS in
the case of stereo. The constant disparity surface is shown,
along which the derivative in equation IV.7 is taken.

pulling back by Γ, we then project this rate of change perpendicular to the
boundary (but still at constant disparity or velocity). The final Hodge star ∗Γ

is simply to convert to a function on the circle. The function gD is thus large if
the image function difference changes quickly when we take a small step away
from the boundary in a normal direction, but remaining at the same disparity
or velocity value. This is the behaviour one expects at a discontinuity. At the
boundary in DS , the image function difference should be small (gN sees to
that). As we step away from the boundary, the disparity or velocity changes
rapidly, meaning that if we now evaluate the image function difference away
from the boundary at the same disparity or velocity as on the boundary, we
are comparing points that do not correspond. Hence we can expect the image
function difference to be much larger. A large value of gD thus suggests that
we are at a point of high disparity or velocity gradient. Figure 19 illustrates
the geometry involved.
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Now g = gN

gD
as defined above is a function on S1, and its square, incor-

porating the Hodge star as in the denominator of equation III.3, transforms
correctly and has all the required invariances.

The energy thus tends to find moving objects because stationary objects,
while matching well on their boundaries (gN small), also tend to match well
just outside their boundaries, since the background is the same in all images.
Thus the derivatives in gD will be close to zero. Moving objects, on the other
hand, have different regions of background just outside their boundaries in
the different images in the motion sequence or stereo pair. While there is
no guarantee that these will be different, thus rendering the derivative in gD

large (a counter-example would be a uniform background), in general there
is no reason to expect the match to be good either. In that case, gN will be
small and gD will be large, making the denominator in the energy functional
small. Optimization will then favour these boundaries.

Many variations on the above theme are possible. We can compare
image function gradients on the boundaries. We can favour boundaries
having constant disparity (fronto-parallel) or velocity (no deformation): we
use ga = Γ∗d‖φ‖2. We can favour far away or nearby boundaries using an
increasing or decreasing function of φ. We have mentioned looking for low
acceleration motions. Any combination of these is also possible.

5. ALGORITHMICS

Just as in the case of single images, we will solve the above optimization
problems by embedding a graph in the image domain. The images of the
cycles in the graph then constitute a subspace of the space of boundaries
in the image domain over which we wish to optimize. The algorithm will
find the global optimum of the energy functional over this restricted space of
boundaries. If the embedded graph is dense enough in the image domain,
this will be a good approximation to the global optimum over the full space of
boundaries. As usual, the pixel scale provides an upper bound to the useful
density of the embedding.

5.1. Graph Structure

The graphs that we use in the cases of stereo and motion are derived from
the following construction. First, we define a graphGa in each image domain
Da. The graphs in each image are the same as we used in the last chapter:
they have vertex sets the pixels in that image, and directed edge set the eight
neighbours of each pixel. Just as we can form products of the image domains,
we form the product of these graphs over the set of single images to obtain
a 2n-dimensional rectangular lattice embedded in R2n. From this point, the

70



x1 

x3 
x2 

FIGURE 20. Half the neighbourhood structure of the graph
used in the experiments. It is embedded in the three-
dimensional space illustrated in figure 18. The other half
is generated by reversing the signs of these edges (viewed as
vectors in R3.)

cases of stereo and motion diverge slightly, and it is more convenient to treat
them separately.

Stereo. For stereo, n = 2. However, we also have the embedding of R3

in R4 due to the epipolar constraint, and we can pull back the embedding
of G1 × G2 along this embedding. This is equivalent to embedding a three-
dimensional rectangular lattice L3 in R3, where L is a linear graph. The
projections to the image graphs Ga are given by projection on the first and
last two factors of this product. This is entirely analogous to the continuous
case. The edges in the lattice are formed in the normal way, with two
exceptions. First, we remove edges that violate the constraint in equation IV.2,
in order to enforce the ordering constraint. Unfortunately, in the way we have
constructed the graph, this eliminates all edges that could change the disparity.
In order to avoid this discretization effect, we introduce extra edges to second
neighbours, so that the overall out-degree of each vertex is 20. Figure 20 shows
one half of the out-edges for a vertex. The rest of the edges are obtained by
changing the sign (as vectors in R3) of those shown. Note the additional
second neighbour edges.
For computational efficiency and not for reasons of principle, we restrict the
size of the graph in common with many conventional stereo algorithms, by
restricting the magnitude of the disparity. This selects a slice of R3 close to
the diagonal and discards the rest. This eliminates many of the vertices in the
graph, although the edge structure remains the same in the vertices that are
left. Note that this is not a heuristic in the algorithmic sense. The algorithm
will still find the global minimum over the space of cycles in this graph. If
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the maximum disparity we allow is large enough, the output we obtain will
be unaltered.

Motion. In the case of motion we have no epipolar constraint, and so the
above reduction in dimensionality does not occur. In principle, we can then
go ahead with the 2n-dimensional rectangular lattice, applying the algorithm
to this graph. This however is not practical given today’s computational
resources. For a 256× 256 pixel image, the number of vertices in the graph
for three images is approximately 1014, and the number of edges is about
1000 times this. Clearly, to say the least, this is beyond the memory capacities
of present computers, and moving storage offline brings the algorithm to a
standstill. To reduce this graph to a manageable size, we restrict it in two
ways. First, we limit the allowed velocities of points on the boundary. This
says that the boundary does not move too far from frame to frame, which is
true by assumption. Geometrically this is the same type of restriction that
we imposed on the disparity in the stereo case. It means that the boundary
lies in a region of the graph close to the diagonal, which of course represents
no movement at all. Using such a slice we can dramatically reduce the size
of the graph, bringing it to roughly the size of the stereo case with no limits
on the disparity. To further reduce the size, we impose another restriction,
this time on the the magnitude of the ‘time derivative’ of the tangent vector
to the boundary. Since we are dealing with a discrete time, this means that
we impose a restriction on the difference between the tangent vectors to the
boundary at corresponding points in successive frames. Thus if γ′a and γ′a+1

are the projections of the tangent vector Γ′ to the boundary in two successive
frames, we impose that

|γ′i+1−γ′i|
|γ′i|

≤ 1 (the division by |γ′i| is necessary to
render the condition independent of the choice of representative Γ). This
is the statement of the condition in discrete time and continuous space. In
the graph, this condition causes us to eliminate some edges. The constraint,
which as we have said is imposed for reasons of computational efficiency and
is not necessary in principle, does however have a sensible interpretation. It
amounts to constraining the amount by which the shape of the boundary can
change from frame to frame.

6. DEMONSTRATIONS

In the demonstrations, we chose the one-forms Aa = ∗adia, where ∗a is
the Hodge star on image domain Da. The edge weights for the numerator
were computed in the same way as for single images, by taking the cross-
product of the edge, viewed as a tangent vector, with the image function
gradient at the edge as computed using Gaussian derivatives at a scale of a few
pixels. The edge weights for the denominator were computed by taking the
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FIGURE 21. The two left-most images in each row are the
original stereo pair (from top to bottom: 128×144, 148×148,
and 230×260 pixel 8-bit gray-scale images). The two right-
most images are the extracted regions in each image of the
pair. The numbers indicate the order in which the regions and
boundaries were found when following the iteration procedure
outlined in the text.

product of the length of the edge with the square of the function value at the
edge. Note that there are no free parameters in the model. The algorithm
was iterated as in the case of single images, and the boundaries shown in the
figures are numbered in the order in which they were found.

In figure 21, the results of running the algorithm on some stereo pairs are
shown.

In the stereo case, with the disparity limited to say 10 pixels, the number
of vertices in the graph for a 256 × 256 image is approximately 106. The
number of edges is, as discussed, an order of magnitude higher than this,
bringing the complexity of the algorithm to 1013. The storage needed is of
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FIGURE 22. The images show three consecutive frames of a
motion sequence of images. The boundaries are shown in red.

the order of 107. (The constants involved could add an order of magnitude
to these figures.)

In figures 22 and 23 the results of running the algorithm on a motion
sequences are shown. The algorithm was run on successive triples of images
in the motion sequence. In figure 22, one of these triples is found, while in
figure 23 a single frame is shown, along with the largest region found. The
motion was limited to one pixel per time step.

Figure 24 and 25 show three consecutive frames and one frame respectively
of another motion sequence.

Since the algorithm was run on triples of image in the motion case,
the complexity is correspondingly higher. Allowing one pixel of motion
between frames means that the number of vertices is approximately 107,
while the number of edges is an order of magnitude or two greater. The time
complexity is thus approximately 1016. This may seem enormous, but the
asymptotic time complexity is a somewhat meaningless figure in this instance,
since the negative cycle algorithm never runs to completion. Of far more
importance in practice is the storage requirement, which in this example is
approaching one gigabyte. This is more or less the limit that can be handled
with the equipment available. The algorithm took of the order of ten minutes
to complete in the stereo and motion cases.

As we have mentioned, the results of the boundary extraction can be used
to constraint a dense correspondence computation. An example of the full
disparity result with and without using the boundary information obtained
from the model is shown in figure 26. To compute the full disparity, a
maximum-flow type algorithm with a linear smoothing term [IG98] was used.
The boundary information from the model was used to fix the disparity and
to weaken the smoothing on the boundaries. The figure shows a close-up
of part of the last example in figure 21, together with the region found by
the model. In the right half of the figure are shown the results of running
a maximum flow stereo algorithm on the image, first without any further
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FIGURE 23. One frame of the previous three is shown, along
with the largest region extracted.

data, and second with the boundary information used to limit the disparity
and weaken the smoothing. The second building, which is smoothed over
without the boundary data, is discovered when that data is used.

7. POSTSCRIPT

The application of equation III.3 to multiple images is best thought of by
analogy with the object recognition task we have been studying. It is not a
substitute for a dense correspondence when one is needed. Instead it is a way
of using the extra information inherent in having more than one image to
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FIGURE 24. The images show three consecutive frames of a
motion sequence of images. The boundaries are shown in red.

FIGURE 25. One frame of the previous three is shown.

aid in boundary extraction. Although we do not pursue it here, an extension
in the multiple image case analogous to the work in the next two chapters is
likely to be possible. Instead we now return to the main line of argument,
and move to the second stage of the model: part structures.
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FIGURE 26. From left to right: A close up of the left image in
the last example in figure 21; the region found using the model;
the full disparity result found without using the boundary
information; and the full disparity result found using the
boundary information.
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CHAPTER V

ARTICULATED MODELS

We focus on the space P of part structures and regions. After
a review of previous work in shape description, we describe the
self-matching model for part structure. Extending the model to
real images is straightforward theoretically but not algorithmically.
Interpreting self-matchings as boundaries in D × D allows the
application of the energy density approach in a limited instance.
Interpreting them as hyperpaths in a hypergraph embedded in D×
D allows a general treatment for real images, but we must sacrifice
intensive energies. A category of hypergraphs is defined that differs
slightly from common usage. The necessary hypergraph theory is
developed, leading to a general ‘shortest hyperpath’ algorithm.

A S we discussed in chapter II, psychological research suggests that the
fundamental classification of objects into categories is based in large

part on shape. These are the ‘basic’ categories, the categories that people
recognize most speedily. This suggests strongly that the description of object
shape is an important part of object recognition. We have already anticipated
this fact by taking as one of the important features of our model the notion of
a ‘part structure’, and a space of such structures, P, and assuming that they are
important for the recognition of human figures in images. However, to date
we have not clarified what we mean by this exactly, and we have not described
any probability distributions on part structures. The present chapter rectifies
this situation.

To recap: the probability distributions in which we are interested are
of the form Pr(P = p|πP(P ) = πP(p) & I = i), which is the appropriate
factor of equation II.2. As that equation illustrates, such distributions can
be combined with distributions Pr(B = b|I = i) generated by functionals
such as those of chapter III to create distributions Pr(P = p|I = i). As
always, we make the assumption of equation II.4, that Pr(P = p|πP(P ) =
πP(p) & I = i) depends on the image function only through its restriction
to the region πP(p) ∈ B. Furthermore, for the moment anyway, we assume
that Pr(P = p|πP(P ) = πP(p) & I = i) = Pr(P = p|πP(P ) = πP(p)): the
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part structure of a boundary is independent of the image function once we
know the geometry of the region. In terms of energy functionals we are thus
looking for a functional EP(p, b), where it is understood that πP(p) = b.
Before considering such functionals however, we must define their domain
P, and before doing that it is useful to review previous work concerned with
the description of two-dimensional shape to get an idea of the limitations
and advantages of various approaches. In particular, the symmetry axis is of
great interest to us, since it bears a close resemblance to the part structure
description used here.

1. PREVIOUS WORK

Proposals for the description of two-dimensional shape can be classified
along two axes. On the one hand, there is the distinction between processes
that use primitives and those that do not . On the other hand, there are
those processes that concentrate on the boundary of a shape, and those
that utilize the interior, usually called "region-based." The best exemplar of
region-based, primitive-less processes is the symmetry axis. Although closely
related, we do not discuss in this section the work of Liu, Geiger and Kohn
[Liu97, LGK98, LG97], which introduced the notion of self-matchings as a
shape descriptor. Section 2 and the first part of section 3 are a review and
interpretation of their work.

1.1. Symmetry Axis

The medial axis of a curve in the plane is the subset of the plane formed
by the centres of circles tangent to the curve at two or more points. In the case
of closed curves, the symmetry axis is the subset of the medial axis formed by
the circles lying in the interior of the curve. Both axes can also be thought of
as appropriate loci of critical points of the distance function from the curve.
The latter characterization allows an analysis of the possible topologies of
the critical points. It can be shown that the symmetry axis consists of curve
segments that join at triple points, in the case of simply connected regions
forming a tree structure. Higher order points are possible but these are not
transversal, and they split on slight perturbations into a number of triple
points.

The first paper to bring the symmetry set/medial axis to the attention
of biologists and researchers in computer vision was by Blum [Blu73]. He
described the symmetry axis, and its definition via the grassfire transform.
One imagines the interior of the curve filled with grass, and a fire starting
everywhere on the boundary. This fire burns inwards and eventually burns
itself out where it reaches grass that has been burnt already. These burn
out points are the symmetry axis. Blum emphasized that the symmetry axis
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enabled the construction of shape from morphemes, shape primitives such
as disc, worm, and wedge. Siddiqi and Kimia picked up this suggestion in
their paper on the shape triangle, in which they postulated three processes
operating on shape: parts, protrusions, and bends [SK95, SKT96, SKTZ99].
Beginning with ad hoc definitions of parts stemming from the shape triangle,
the same authors and their collaborators developed a beautiful shape theory
based on the singularities created by curve evolution (yet another way to define
the symmetry axis) [KTZ95]. The simplest example is when a curve evolves at
constant speed in the direction of the inward normal at each point. This is the
grassfire transform, and the locus of singularities is therefore the symmetry
axis, except that in the treatments referenced above the extra information
about when the singularities (shocks) are formed becomes extremely important
also. When the order of shock formation is taken into account, a shock
grammar can be developed and used to help speed up the process of shock
extraction by ruling out impossibilities [SK96]. In addition, these papers (in
particular [KTZ95]) introduce a term that changes the speed of the evolution
in proportion to the curvature at each point of the shape boundary. Such
a term smoothes the contour, and does not by itself develop shocks. It can
be used to develop a two-dimensional space of shapes, the reaction-diffusion
space, which consists of the space of shapes generated over time using different
ratios of reaction and diffusion terms. A second space, based on running
the reaction and diffusion processes forwards in time and then the reaction
processes backwards for the same amount of time, in order to re-construct the
parts of the contour not smoothed by the diffusion term, is even more elegant.
Subsequent work has used the resulting tree structures to perform shape
comparison through clever approximation algorithms [SSDZ99, PSZ99], and
current work is focused on extracting symmetry axes from real images [TSK97,
ASZ99b].

The problem with this work is paradoxically to be found in the beauty of
the geometric objects involved. The definition of the symmetry axis seems
so clear and necessary that developing it and adapting it is difficult. A wager
must be made that this geometric structure captures the notion of shape in
its entirety. In a limited sense this is true, in that knowledge of the nature
of the shocks and their times of formation does enable reconstruction of the
shape, but it is not completely clear that geometrical information alone is
enough to capture the notion of shape and part structure. Functionality may
also play a very important role. One example is the ‘prickly pear’ sequence
of images shown in figure 27, taken here from [KTZ95]. The sequence of
pear shapes came originally from [HR85]. Here the prickles on the skin of
the pear are removed by smoothing using curvature evolution, and then the
reaction terms are used to reconstruct the shape without the prickles, thus
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FIGURE 27. The prickles on the skin of the pear are removed
by smoothing using curvature evolution, and then the reaction
terms are used to reconstruct the shape without the prickles,
thus capturing the basic shape at a larger scale. The stalk
however is missing.

capturing the basic shape at a larger scale. This is fine as far as it goes, but
it results also in the removal of the pear stalk. If one is thinking of the
removal of the prickles in terms of the removal of noise of some sort, then
the removal of the stalk is a mistake. The stalk is an important part of the
pear not because of its shape or size but because of the function it performs.
(The same can be said of many parts of other objects.) Capturing this deeper
notion of part identity is very hard. It occupies a similar position to image
semantics. There may be a way, given enough formalized experience with the
world, to define this functional nature of parts in a way that does not depend
on human knowledge and usage (or at least depends in a much subtler way on
theories of information and so on), but at the present time it is hard to rely
on anything other than the fact that we know that pear stalks are important,
and that this fact is in itself an important attribute of a pear. This knowledge
must be catalogued: it is not deductive, but inductive.

An additional problem is that some shapes do not to lend themselves to
description in this way. While it is of course true that the symmetry axis and
shock graph can be computed for any shape whatsoever, there is a problem
with the stability of the representation. Even with articulated objects, it is well
known that the topology of certain parts of the symmetry axis is unstable with
respect to small changes in the shape. These areas may be identified with the
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help of the elegant concept of ligature and semi-ligature developed in [ASZ99a].
Unfortunately, for some shapes, these unstable areas constitute almost all of
the symmetry axis. This demonstrates what perhaps is intuitively obvious,
which is that different types of shapes require different representations.

Even if, as these arguments suggest, the symmetry axis is not enough to
deal completely with shape, it may still be extremely useful. The question is
then how to alter or develop it. Unfortunately this seems to be another hard
question. The self-matching approach described in this chapter on the other
hand is considerably more flexible. It will be defined by an energy functional,
which can be changed and added to in order to incorporate new and differing
criteria. It can also be combined with terms that couple the shape description
to other objects, for example images, as we shall see later. Of course the
greater flexibility and extensibility of the shape description brings with it a
greater arbitrariness; there are parameters to be fixed for example. This can
only be viewed as a drawback however if we make the leap of faith that the
symmetry axis is the shape descriptor par excellence.

1.2. Primitives

An example of a boundary-based, primitive-less model is the work of
Richards, Dawson and Whittington [RDW86], in which they describe shape
using the curvature extrema of the boundary. This is essentially a kind of
‘poor man’s’ symmetry axis. A similar scheme is described in Marr and
Nishihara [MN78].

Of the work that uses primitives to describe regions or volumes, the most
famous is surely that of Biederman [Bie85]. In this work, an attempt is made
to reduce the description of shape to a few (36) components, or geons, that
are then put together in a grammatical fashion to form objects. According
to this point of view, one must first describe parts and only then attempt to
decompose objects into them. One can view mathematical morphology as a
boundary-based system with primitives also, since it develops boundaries by
adding discs and other structuring elements [Ser82]. Another approach, due
to Leyton, develops a grammar for shape [Ley88].

The problem with all primitive-based shape theories is they have to assume
a dictionary of primitive shapes, the justification for which is usually weak.
The geons used by Biederman for example are simple geometric volumes.
There seems no particular reason why these should be selected on either
mathematical or biological grounds. There may be some computational
justification, but this is unclear.
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1.3. Shape Comparison

It is clear that shape comparison is an important aspect of object recogni-
tion. Almost all object recognition schemes have built into them in some way
or other the idea of comparing structures to a library of ‘known’ structures,
and often the library is shape-based. Unfortunately, it is not clear how to
compare shapes. In this section we argue briefly that part structures are essen-
tial for such a comparison, and that comparisons, although perhaps derived
from a metric, are not symmetric or transitive.

Mumford has written a much-cited paper on mathematical theories of
shape [Mum91], in which he provides an overview of methods for shape
description and comparison, including filters (moments, Fourier transform,
wavelets), curvature-based descriptions (including the work just described),
and metrics on the space of shapes. After describing a few of the infinite
number of mathematical possibilities, he points out that similarity is not a
metric anyway, at least not in human or pigeon perception. He goes on to
describe experiments that demonstrate the asymmetry of perceptual similarity
judgments, and their context dependence. For example, in experiments
reported in a paper by Tversky [Tve77], people said that the number 99 was
very similar to 100, but that 100 was not very similar to 99. Similar results
were observed in pigeons. As an example of context dependence, when
people were asked whether Austria was most similar to Sweden, Norway, or
Hungary, 60% chose Hungary. When asked whether Austria was most similar
to Sweden, Poland, or Hungary, 49% chose Sweden. (Other experiments
showed the failure of transitivity.) In these cases, the comparisons seem to
use different attributes of the compared objects in different contexts. The
effect can perhaps be described by using the phrase “when viewed as a . . .
”. For example, 99 is similar to 100 when viewed as a ‘ordinary number’,
but 100 is not similar to 99 when viewed as as ‘round number’. Austria is
more similar to Hungary than Sweden when viewed as a Central European
country as against a Scandinavian country, but when viewed as a Western
European country as opposed to an Eastern European country it is more
similar to Sweden than Hungary or Poland. The categories that are used
for the comparison seem to be created by the objects being compared in an
asymmetric way. If we are comparing 99 to 100, then 100 is the exemplar, and
this is thought of as a ‘round number’ rather than just an integer. When 99
is the exemplar nothing springs to mind except ‘ordinary number’. The same
type of effect can be observed in the country comparison. This suggests that
the comparison of shapes works as follows. When shape A is compared to
shapeB,B is the exemplar. B has certain principal identifying characteristics
that define a subspace of the space of shapes (all shapes that share the principal

84



identifying characteristics of B). The similarity of A to B is then measured
by the distance of A to this subspace. (If A is already in the subspace, then
perhaps secondary characteristics come to the fore.) If A had been picked
as the exemplar, then a different subspace would likely have been defined,
and hence the ‘distance from A to B’ is not the same as the ‘distance from
B to A’. What determines which members of the comparison are used as
exemplars or combinations of exemplars is not clear. Sometimes it seems that
it is simply the word order used to phrase a question. We will discuss this
asymmetry in the shape comparison measure further in chapter VI, where
we will effectively define just such an asymmetric measure of similarity using
exemplars.

One can compare shapes at the level of their boundaries, by defining
a functional on some space of maps between curves, and then minimizing
for a given curve pair. This defines a metric on the space of curves. Some
processes use special points on the curve and define the energy in terms of
these, whereas others define an integral over the whole curve. Of note here
is the work by Basri, Costa, Geiger, and Jacobs [BCGJ95]. They make a
thoroughgoing analysis of what is desirable and undesirable in a curve-based
comparison method, and devise several energy functionals to implement the
principles. They try hard to make a curve-based comparison take into account
the part structure of the shapes but show that this cannot succeed in all cases.
They give several clear examples of why a part-based process would be more
successful. The part structure of an object is part of its identity, and ignoring
this structure can clearly cause problems. For example, using a contour as a
model of a dog and attempting to match it to another such contour can lead
to absurdities such as a piece of the head mapping to a piece of the foreleg,
or a piece of the tail to a piece of the hind leg. Models at several levels of
abstraction are needed to prevent such mistakes being made at all levels, not
just at the lowest.

2. REPRESENTATIONS FOR SHAPE

In this section, we finally define the space P. The model for part structure
will be that of a self-matching, first introduced in [Liu97]. This representation
combines the strengths of the symmetry axis as a shape descriptor with the
flexibility and extensibility of an optimization framework. We will consider
single images only, so that the domain of the image, D, is a subset of the
plane. Although much of what we say can be generalized, this is not as trivial
as it was in chapter III. This is because the use of parallel transport to compare
tangent vectors at different points plays an important role in the rest of the
chapter. In Euclidean space, which is an affine space, this is a simple matter
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since the tangent bundle collapses to a tangent space. We therefore restrict
ourselves to Euclidean space.

2.1. Symmetry

We begin by taking a detour into the notion of symmetry, as we will use
this as the basis for describing shape and part structure.

A mirror-symmetric region in the image domain defines a diffeomorphism
µ from its boundary to itself. This is a representation of the symmetry group
Z2. Every point on the boundary has a partner given by its mirror reflection
through some line, the axis of symmetry. We thus have the following diagram:

D D×D
π1oo π2 // D
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γ
``@@@@@@@@
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>>~~~~~~~~
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The diagram bears some explanation. The map µ between the boundary and
itself can be represented as two embeddings of the circle Γ1 and Γ2 that share
a common image γ, and co-images σ1 and σ2 respectively. These must be
such that µ = σ2σ

−1
1 . The map into the product D×D induced by Γ1 and

Γ2 is denoted Γ.
The sharing of a common image is not enough to make Γ a representation

of a reflection symmetry. To explain the structure a little more and to prepare
for the discussion of invariance in section 3.1, we characterize the space G of
Γ in different ways. Let B̃ be the space B × Diff(S1) of γ. Let Diff(S1) be
the space of continuous piecewise-smooth automorphisms of the circle as in
chapter III. Let M be the space of possible µ. Then we have the following
three projections:

B̃×M×Diff+(S1) // // B̃×M // // G // // G/ ∼

〈γ, µ, ε〉 ///o/o/o/o/o/o/o 〈γ, µ〉 ///o/o/o Γ ///o/o/o Γ/ ∼

(V.2)

Here 〈γ, µ, ε〉 is the representation in terms of σ1 = ε and σ2 = µε. The
equivalence class of the σ projects down to the space M of possible µ. Note
that this projection means that we are dealing with a boundary in D × D,
since it absorbs a change from ε to εε. Given an embedding γ, and a map
µ, there is an equivalence class in the space B̃ × M given by the action of
Diff+(S1): the pair 〈γ, µ〉 is equivalent to the pair 〈γε, ε−1µε〉. Dividing
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out by this equivalence brings us to the space G of Γ. Finally, note that as a
representation of Z2, µ2 = idS1 . This in turn means that∼ Γ = Γ, where the
twist arrow ∼ reverses the order of the factors in a product: Γ is a symmetric
relation. We can thus quotient by the action of the twist arrow (which is
an action of Z2), and project to the quotient space G/ ∼. In section 3.1,
these considerations will translate into invariance requirements for our energy
functionals, since these will be written as functionals of γ, and the σ.

To pin down the space G further, we describe the constraints on µ. The
space M is a subspace of Diff(S1), and it is proper: eachµmust be orientation-
reversing, and it must be an isometry of S1 using the metric induced from
D. This means that µ must have at least two fixed points, whose images lie in
the diagonal of D×D. These are the points in S1 mapping to the points in
D where the axis of symmetry cuts the boundary at its extremes. In addition,
the tangent vectors to the boundary at a point and its image bear a special
relation to one another. This relation can be characterized by saying that
the tangent vectors are co-circular, meaning that there exists a circle passing
through the point and its image such that the tangent vectors to boundary
and circle are equal at each point.1

2.2. Local Approximate Symmetry

Clearly the idea of symmetry captures important aspects of shape, and
may be of use to us in describing the structure of regions. This suggests that we
take the map µ as the starting point, and relax the above constraints in order
to describe more general structures. As soon as the hard (logical) constraints
are relaxed, we will need to replace them with soft (probabilistic) constraints,
and it is from here that the energy functionals arise, as measures of deviation
from the above ideals.

The monotonicity requirement seems too fundamental to relax, at least
locally: it is what characterizes reflections as opposed to rotations for example.
For reflections, µ is self-inverse, but it is not clear what the sense of relaxing
this would be. This leaves the fact that the maps are isometries, that they pair
co-circular points, and the fact that they are continuous.

1We can think the same way about a rotational symmetry, although the nature of the map
from the boundary to itself is slightly different. For rotational symmetry, µ is orientation-
preserving and has no fixed points. It too must be an isometry of the image of γ using
the induced metric. We do not analyse the rotational case further at present since it is not
our central interest. However, the interaction between the two forms of symmetry and their
possible joint use in describing object shape is an extremely interesting subject. It may enable
the construction of a geometric shape descriptor able to cope both with articulated objects
and the blob-like shapes (‘amorphous’) that cause the symmetry axis to fail.
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The relaxation of the isometry and co-circularity requirements is very
natural, since it allows for a little bit of ‘give’ in the symmetry maps. Slight
distortions of the region away from perfectly symmetric should be penalized,
but not ruled out. This is especially true when we are dealing with real data
rather than mathematical abstraction.

It is harder to see how to relax the continuity requirement. The idea
of doing so will be to describe ‘local’ symmetry, with different parts of the
boundary being symmetric with respect to different axes separated by isolated
discontinuities. (This will force us to relax the monotonicity constraint at
isolated points also.)

Luckily our application gives us some information. We are interested
primarily in describing articulated objects. These types of objects typically
consist of elongated parts with an approximate mirror symmetry, but the
different parts do not share a mirror. As we discussed in section 1, there is
already a representation of such shapes, the symmetry axis, that captures this
insight. The symmetry axis results in a tree structure that describes the shape
of the object. This tree structure has vertices of degree at most three, unless a
very high degree of symmetry is present. This suggests that we permit the map
µ to have discontinuities that would allow such behaviour. This is possible as
follows.

The key point is that discontinuities do not occur by themselves, but in
groups of three. Suppose, for example, that there is a discontinuity at point
p on the boundary. Let µ(p) = q and let the limit of µ from the other
side of the discontinuity be point r. Then we insist that µ(q) = r and
µ(r) = p, and that the limits from the other directions to these points are p
and q respectively. There are thus discontinuities at q and r also. By taking
the closure of the graph of µ, we end up with three points all matched to
each other, as opposed to two in the normal case. (Thus what seemed like
a very particular relaxation of the self-inverse requirement becomes instead
a relaxation of the nature of the relation.) An example of a map µ obeying
these restrictions is shown in figure 28, while figure 29 shows how the map
describes a part structure.2. We call such maps self-matchings. The discussion
of equivalence classes summarized in diagram V.2 remains the same, except
that the space M has been enlarged considerably to allow local approximate
symmetries. This in turn enlarges both G and the space of the σ. The space
B̃ of course is unaltered, since that represents the space of boundaries, B.
This in turn means that we are still dealing with the action of Diff(S1) and
not a larger group.

2We will continue to speak of maps, with the completion to the ternary relation understood
where it is necessary
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FIGURE 28. The figure shows the graph in S1×S1 of the map
from S1 to itself that constitutes the self-matching. The top
and bottom, and left and right sides of the square are identified
to form the torus. Open circles signify limit points not in the
map (but in its closure), while closed circles represent limit
points in the map. A single triple of discontinuities is shown.

Thus, for a given boundary ∂R ∈ B, the space of part structures is
M/Diff(S1). This is the fibre of P over πP(p) = ∂R. The space P is thus
the union of these over B, and is equal to G/ ∼.

This completes the definition of P. We now move on to discuss energy
functionals on this space.

3. FUNCTIONALS FOR PARTS

We have defined P as the space G/ ∼ of embeddings S1
Γ
� D × D

whose projections π1Γ and π2Γ share a common image γ, and that satisfy
such additional constraints as are necessary to produce self-matchings µ of
the form described in section 2. As described at the beginning of this chapter,
we will interpret a functional on this space, E(Γ), as the negative logarithm
of a probability distribution Pr(Γ|γ).
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FIGURE 29. A point x is mapped to two points on the bound-
ary. The points and tangent vectors to the boundary are
shown along with an inscribed circle. For perfect symmetry
these points should be co-circular: the sum of the tangent
vectors should be perpendicular to the line joining them, and
their difference should be parallel to it. Also shown is a triple
of discontinuities. The right of the figure shows a representa-
tion in which the paths in D×D are mapped into D by taking
the median point of each pair. The role of the discontinuities
in the description of parts is clear.

3.1. Invariance

From the discussion summarized in diagram V.2 it is clear that if we write
EP as a functional on any of the spaces in that diagram other than G/ ∼, we
will have some invariance requirements to impose. We will require invariance
under the replacement of the σ by σε, corresponding to the first projection.
We will require invariance under the replacement of 〈γ, σ〉 by 〈γε, ε−1σ〉
corresponding to the second projection. Finally, we will require invariance
under the exchange of σ1 and σ2, corresponding to the third projection.

As we mentioned, these invariances already include the replacement of
Γ by Γε. In addition, we will require invariance under the action of isome-
tries, and simple scaling behaviour under global changes of scale, just as in
section 1.1. These actions take the same form on both factors in D × D.
In other words, we are not expecting invariance under the action of different
isometries on each factor.
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3.2. Incorporating Symmetry

We have argued that a relaxed form (approximate, local) of reflection
symmetry would be ideal for describing part structure using the space of maps
M and that the energy functionals that we write down should be measures
of deviation from ideal reflection symmetry. We argued also that the natural
candidates for relaxation were the isometry requirement, the co-circularity
requirement, and the continuity requirement.

We thus want functionals that measure the deviation of the maps µ ∈ M

from isometric, continuous maps taking points to co-circular points. We will
do this by making the functional an integral over S1 of three terms, each
of which measures deviation in one of the above quantities. We want the
measure to be one of total deviation, so that for each orientation we would
like the measure to have a consistent sign. In fact, for algorithmic reasons to
be clarified later we will construct orientation-independent positive energies.
They will thus take the form illustrated in the last of equations III.2:

E(Γ) =

∫
S1

∑
i∈I

gi ∗Γ gi(V.3)

where the gi are functions or one-forms on S1. They might be pullbacks Γ∗φi

by Γ of functions or one-forms φi on D×D. 3

We deal with the three terms in turn.
Co-circularity. Given a point x ∈ S1, we wish to characterize the co-

circularity of the two points γσ1(x) and γσ2(x). The condition is that the
components of the tangent vectors along the line joining the two matched
points should be equal and opposite, and that the components perpendicular
to this line should be equal (recall that µ is orientation-reversing, so that the
tangent vectors will be oriented as shown in the figure).

It is easy to devise a term that measures deviation from this situation. The
line joining the two points is given by the T -valued function on D×D φ =
π2−π1. Pulled back by Γ this becomes g = Γ∗φ = π1Γ−π2Γ = γσ1−γσ2.
The magnitude of this vector measures the distance between the points, and
because of this we will also be penalizing larger distances. This penalty is very
intuitive. Consider a region with more than one reflection symmetry. Which
is the more important? Figure 30 shows an example. It seems right that the
symmetry that divides the region along its ‘long’ direction, and hence which
minimizes the distances between the points, is the ‘stronger’.

3Note that the Hodge star here is defined by the pullback by Γ of the product metric on
D ×D given by the inner product on T . In coordinates such as those used in section 1.2,
this metric is σ′1(t)

2‖γ′(σ1t)‖2 + σ′2(t)
2‖γ′(σ2t)‖2
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FIGURE 30. Of the two reflections, the one in the ‘long’ di-
rection seems the ‘strongest’.

The map Γ defines its own tangent map, Γ′, which maps the tangent
bundle of S1 into T and gives us the tangent vectors at the two points. This
is a linear map and is therefore a T -valued one-form on S1. In fact it is the
exterior derivative of Γ, dΓ. We can therefore define the two T -valued one-
forms A± = dΓ1 ± dΓ2. From this data we form the real-valued one-forms,
B‖ = (A+, g) and B⊥ = (A−, g)× which are the sum of the components
along the vector g and the difference of the components perpendicular to
it respectively. Both these should be zero if the points are co-circular. The
co-circularity energy EC(Γ) now becomes

EC(Γ) =� B⊥, B⊥ � + � B‖, B‖ �(V.4)

Note that the form of the co-circularity energy does not correspond exactly to
the geometric constraint. We could adjust the energy so that we reproduce
exactly this constraint by normalizing the tangent vectors to the curve. This
is inelegant however, particularly since the form of equation V.4 acts also as
a measure of deviation from isometry. We may choose γ so that its tangent
map has magnitude unity everywhere. In that case, the tangent maps of the
σ will be forced to have the same magnitude in order to reduce EC(Γ). This
is precisely the isometry condition. This effectively obviates the need for a
separate isometry term, although we now proceed to describe one.

Isometry. Let the real-valued one-forms {(dΓi, ∗ΓdΓi) : i ∈ {1, 2}} be
denoted Bi. Then the simplest choice for an isometry term that scales like
the co-circularity term is:

EI(Γ) =� B2 −B1, B2 −B1 � .(V.5)

If the map µ were an isometry, B1 and B2 would be equal. By construction
this term is invariant in all the right ways.

Continuity. The discontinuities occur at isolated points of ∂R, as de-
scribed in section 2.2. To characterize them, we define a family of distribu-
tions on S1. Denote the sum of delta functions at the points of discontinuity
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FIGURE 31. Part junctions with shorter discontinuities sepa-
rate parts better and should be preferred.

by ∆. Define S1 J→ T 2 as J(t) = limτ→t+ Γ(τ)− limτ→t− Γ(τ), the T × T -
valued jump that takes place at each point, which is almost everywhere zero
(the exceptions being the discontinuity points). Then the family of distribu-
tions is ∆α = ‖J‖α∆, where α ∈ R+ and ‖ · ‖ is formed using the product
metric on T 2.

We then penalize discontinuities in the following way:

ED,α(Γ) =

∫
S1

∗Γ∆α(V.6)

If α = 0, the integral simply counts the number of discontinuities. As α
becomes positive, we have a measure of the magnitude of the discontinuities.
When α = 1, the integral measures the total geometric distance jumped in
D, whereas for α = 2 it measures the sum of the squares of the distances.
The effect of this can be seen in figure 31. Penalizing larger jumps tends to
make discontinuities occur at ‘pinched off’ parts of the boundary, which is
what one would expect intuitively.

If α = 4, then the scaling of ED,4 under a scaling of γ (we are talking
about the third type of scale invariance illustrated in figure 7) is the same as
the other terms. This means that the energy as a whole scales by a constant
factor when the boundary is scaled. If α 6= 4, the situation is interesting.
Now a change in λD in equation V.10 is equivalent to changing the scale of
the boundary, since ED does not scale in the same way as the other terms,
and so we can investigate the scaling behaviour of these functionals in an
elegant way. This choice of α also means that we have introduced a fixed
length scale, thus violating the invariance we have demanded of previous
functionals. This is only excusable if we know something about the relation
between the image scale and the scene scale. Changing the discontinuity cost
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under these conditions, we would expect different stable regimes in which
the part structure is constant, separated by phase transitions in which the
topology and detailed structure changes. This is exactly what happens. It
may be possible to investigate these transitions analytically, perhaps find some
universal behaviours, and study the relationship with the smoothing that
takes place in reaction-diffusion space.

Area. The terms that we have discussed so far suffer from a trivial solution.
If γ collapses to a line, then the resulting minimum energy will be zero.
In order to disallow this trivial solution, we need a term to force the two
components of Γ away from the diagonal. One way to do this is to use a
measure of the area of the region enclosed by the boundary. Using orientation-
dependent terms, the construction of such a term is a simple matter. As in
chapter III, we can use Stokes’ theorem to convert the area integral to a
boundary integral. Of course we must express this as a functional on Γ, but
this is also simple (and general) as follows.

Given a functional EB on boundaries in D, we can define a functional
ẼB on G by

ẼB(Γ) = EB(π1Γ)± EB(π2Γ)

= EB(γσ1)± EB(γσ2)

= 2EB(γ)(V.7)

where the last step follows from invariance arguments modulo some subtleties
concerning discontinuities. The necessity of using a plus or a minus sign
depends on whether the energyEB is orientation-dependent or not, since the
σ have opposing orientations.

Unfortunately, if we restrict ourselves to orientation-independent energies
we can no longer use this method. Fortunately there is another way, given the
extra information provided by Γ. The map between the boundary and itself,
due to its piecewise monotonicity, ‘slices’ the enclosed region into disjoint and
exhaustive pieces. At a point p on the circle, it can be seen from elementary
geometry that the area of the quadrilateral created by the images of p and
p+ dp under Γ1 and Γ2 is given by

EA(Γ) =

∫
S1

∗Γ|
1

2
(A+, g)×|(V.8)

This is positive and orientation-independent as required. It is not the most
convenient form for our purposes nevertheless. In order to penalise small
areas this term must enter the energy negatively, which then raises the question
of how we shall keep the overall energy positive. It is easier instead to introduce
a repulsive potential on the space D×D. Such a function can be integrated
over Γ easily. In the demonstrations shown later, we use a potential of the
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form

EA(Γ) =� Γ∗‖φ‖−1,Γ∗‖φ‖−1 �(V.9)

where φ = π2 − π1. This tends to push Γ away from the diagonal. The use
of such a potential is not ideal. It is akin to adding a term to favour greater
lengths in a bid to offset the extensive nature of the energy. It may be that
the only principled way to go beyond this is in the use of targets.

3.3. Incorporating the Image

So far we have assumed the independence of the part structure from the
image given the boundary, as we stated at the beginning of the chapter. It
is interesting to consider the possibilities that arise however when we violate
this assumption. Let 〈x, y〉 be a point in D ×D. One possibility is to take
the pullback of a difference between two functions or one-forms involving the
image function, and use this as one of the gi in equation V.3. An example
would be to take g = Γ∗(iπ2 − iπ1), as we did in the multiple image case.
The same could be done with the gradient di of the image function. In this
case we are comparing not just the co-circularity at the two points, but image
data also.

Another very interesting possibility is to use some function of the line
segment between the matched points. For example, the integral of the modu-
lus of the image gradient would provide a measure of the homogeneity of the
image between the points.

More interesting still would be to look for particular attributes of the
region corresponding to particular parts, for example colour. We do not yet
have the machinery in place for this however, since it involves a labelling of
the part structure. As the reader may recall from the second chapter, this is
the eventual goal. We will return to this point in chapter VI.

3.4. Incorporating the Boundary

We now have a functional EP(Γ), given by

EP(Γ) = λCEC(Γ) + λIEI(Γ) + λDED(Γ) (+λAEA(Γ))(V.10)

where the λ ≥ 0. We interpret the normalized negative exponential of this
energy as the probability Pr(P = p|πP(P ) = πP(p)) that the part structure
of and region occupied by the projection of a human being in the image
domain is p = Γ, given that the region itself is πP(p) = γ. We ignore for the
moment the image-dependent terms discussed in section 3.3. This energy is a
measure of the deviation of the map Γ from perfect reflection symmetry, either
because it gives a little in matters of isometry or co-circularity, or because it is
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symmetric but around several different axes. The area term is parenthesized
because it will be included in this way for some algorithms only.

In order to take the next step, we must combine this probability with the
probability of a particular region given the image function, Pr(γ|I = i) to
give the conditional probability of a region and part structure Γ given the
image, Pr(Γ|I = i). There are two ways to do this.

One is to add to equation V.10 a term such as the positive orientation-
independent one suggested in the discussion after equation III.2. This energy
can then be written in terms of Γ itself using equation V.7. Let φ = |di|−1.
Then the term to add is

EB =
2∑

a=1

� Γ∗(φπa),Γ
∗(φπa) �(V.11)

The second way is more in keeping with the spirit of the last two chap-
ters. This is to use EP (minus the area term) as the denominator D[∂R] in
equation III.3. This makes sense since it is always positive and we wish to
favour small values. As the numerator N [∂R] we can then use exactly the
same form as in equations IV.3 and IV.4. Pulling back one-forms from each
image domain and forming a linear combination gives a one-form on D×D

that can be integrated along Γ. (This is the same procedure as that shown
in equation V.7.) The difference in this case is that the images of the two
projected boundaries are the same, so that the contributions to the numera-
tor from the projected boundaries are equal, leading to the factor of two in
equation V.7. Since we are dealing with orientation-dependent functionals
in the numerator, we can easily incorporate an area term in the same way that
we did in chapter III.

4. ALGORITHMICS

We thus have two possible forms of energy functional. One is extensive,
orientation-independent and positive, formed by adding the boundary term to
equation V.10. The second is intensive, orientation-dependent and of varying
sign, formed by dividing an orientation-dependent boundary and area term
by equation V.10. Both these approaches are important. They correspond to
different ways of thinking of the map Γ, and consequently different algorithms
are necessary to optimize them. We discuss their applicability in the next two
subsections.

4.1. Treatment as a Boundary

Continuous Case. In this case we are on firm ground. We can use the
second, intensive form of energy functional, expressing the energy as a ratio

96



of conventional boundary and area terms to the energy EP defined in equa-
tion V.10. We can discretize the space D×D in the same way as we did in the
last chapter. The minimum ratio weight cycle algorithm applies unaltered,
and so no initialization is necessary.

An apparent problem concerns the nature of the constraints that we must
place on the boundaries we consider: the two projections of Γ must share
a common image. This is a non-local constraint, and it is not clear how to
implement it. It seems though that direct enforcement of this constraint is
not be necessary, because the symmetry of the energy functionals and the
coupling of the two projected boundaries through µ means that the same
boundary will be found in each projection.

Since there are no discontinuities, the part structures found using this
model have only one part. This does not render then trivial however. The
energy functional favours mirror-symmetric regions over those without such
symmetry. It is therefore a concrete example of boundary shape being incor-
porated into an energy functional in addition to generic models of boundary
and region properties such as image function gradients and textures. This is
a novel ability.

Discontinuous Case. The problem with this approach occurs when we wish
to expand the space of Γ that we consider to include those with the types
of discontinuities discussed in section 2.2. Consider the discretization of
the problem. The graphs we will use are rectangular lattices embedded in
D×D. Edges connect pairs of pairs of points in D. As long as any relations
we are thinking of can be described in these terms the graphical structure is
appropriate and the minimum ratio weight cycle algorithm will apply. Thus,
for example, discontinuities in themselves are not a problem. Permitting them
corresponds to adding edges to the graph connecting more widely separated
points. The problem we have in mind however is a little more complicated.
The discontinuities we are considering come in threes, meaning that triples of
pairs of points in D are involved. As was mentioned in section 2.2, this takes
us beyond the world of graphical structures and binary relations. Instead we
must look at more general relations, or in other words hypergraphs.

What is needed then is a generalization of the idea of a cycle to the
case of hypergraphs, and the construction of an algorithm that corresponds
to the minimum ratio weight cycle algorithm. We do not describe such a
generalization in this thesis. What then can be done? Fortunately there
is another way to view the map Γ, not as a boundary but as a hyperpath
in a hypergraph that loses none of the information in the map. This then
suggests not a generalization of the minimum ratio weight cycle algorithm,
but a generalization of a shortest path algorithm. In the previous work on
boundary extraction that we discussed in section 2.1, the only methods that
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could find global solutions were those based on dynamic programming. We
pointed out that those models could be solved more efficiently using Dijkstra’s
algorithm. We thus concentrate on generalizing Dijkstra’s algorithm to the
case of ‘hyperpaths’ in hypergraphs. This generalization will suffer from the
same problems as the original. It will require positive energies (which in
our case implies orientation-independence), and hence initialization to avoid
trivial solutions. These are unavoidable problems however in the absence of
a hypercycle algorithm. Because of the demands of the algorithm, we will be
forced to use the first, extensive form of energy, equation V.10 with the area
term, added to equation V.11.

This does not mean abandoning completely the idea of using intensive
energies. The arguments in favour of them over extensive energies still hold of
course. Even if we were dealing with intensive energies though, the analysis
of section 2.2 tells us that in the case of open paths we will still need to
constrain our solution space to avoid trivial solutions, just as we would in the
extensive case. Coupled with the fact that the conversion from a solution for
the extensive case to one for the intensive depends heavily on an algorithm
for the extensive case, this leads us to concentrate on the extensive case for the
remainder of the chapter, leaving discussion of possible intensive algorithms
to future work. We now show how Γ can be regarded as a path in the
continuous case, and as a hyperpath when discontinuities are permitted.

4.2. Treatment as a Path

The fact that Γ1 and Γ2 must share a common image is a constraint.

Another way of stating it is to say that the map S1 Γ/∼→ D × D/ ∼ is not
injective: it is not a subobject of D × D/ ∼. The image of this arrow
however is a subobject by definition, and hence is constraint free. We discuss
this first in the continuous case, and then generalize to the case in which
discontinuities are allowed.

Continuous Case. Recall that the map µ has at least two fixed points, or
alternatively Γ touches the diagonal in D ×D in at least two places. These
fixed points divide the circle into two segments. It is clear that µ maps
one of these segments to the other. Since µ is self-inverse (Γ is a symmetric
relation), this means that given the value of µ on one of these segments, we
can deduce it for the whole circle. It can also be seen that the map from
one of the segments into D ×D/ ∼ will be an injection, with the two ends
of the segment mapping to the images of the fixed points in the diagonal of
D ×D, which is the boundary of D ×D/ ∼. The upshot of this is that in
the continuous case we can view Γ as a map of the interval Υ to D×D/ ∼,
or in other words as a path. All the energy functionals we have defined can

98



be integrated along Υ as well as they can along the circle, and symmetry
means that their value on the circle will simply be twice their value on the
interval. Rather than search for a minimizing boundary then, we can search
for a minimizing path. It is important to be clear about the meaning of this.
The space over which our functionals are defined still represents a space of
boundaries in D and their part structures. All that has happened is that
the symmetry of our representation creates a redundancy; eliminating the
redundancy allows us to represent boundaries in D and their part structures
as paths rather than boundaries in the space D×D/ ∼. The two projections
of such a path will be the two ‘sides’ of the boundary in D, matched to each
other by µ, and separated by the fixed points.

Since we are now dealing with paths, we must constrain our solution space
in order to avoid trivial solutions. If we look at the paths between all pairs of
points on the diagonal in D×D using our extensive orientation-independent
energy, we will find a trivial solution, as predicted by section 2.2. Instead,
in the absence of any other constraint, we must pick the boundary points on
the path. Clearly this is not desirable. The true solution to this problem lies
either in the development of a better approach to finding Γ as a boundary or
in the use of targets. We return to this theme in chapter VI.

Discontinuous Case. If we permit the map µ to have discontinuities of the
type we described in section 2.2, then the situation is similar to that in the
continuous case, except that now the circle is first divided into a number
of parts by the discontinuities. (This is of course the whole point.) Each
of these parts will have at least one fixed point because µ is self-inverse and
continuous on each part. Γ restricted to each of these parts can be viewed as a
path in D×D from the image of the fixed point on the diagonal to the point
of discontinuity. These paths are grouped together at three way junctions
corresponding to the three discontinuities in each triple of discontinuities.

The structure we have described is rather like a tree, but this is a little
misleading. The discontinuities cannot occur singly: they must occur in the
manner we have described to guarantee the type of structures in which we
are interested. The correct structure for describing this situation is that of a
hyperpath, to be defined in the next section. Hyperpaths are to hypergraphs
what paths are to ordinary graphs and they possess all the properties that we
require. Just as in the last section, the use of hyperpaths means that we must
constrain our solution space. We will do this by picking the fixed points.
The only difference is that now there are more of them. Again the solution
to this problem lies either in the development of a ‘minimum ratio weight
hypercycle’ algorithm, or in the use of targets, to be discussed in the next
chapter.
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Following the same organizing principle used in chapter III, we now de-
scribe the discrete structures and algorithm that we will use, before describing
their relation to the continuous formulation. In this case we begin by describ-
ing a category of hypergraphs to fix notation and define useful concepts.

5. HYPERGRAPHS

The category of undirected hypergraphs, Hypergraph, is defined in a
manner analogous to the category of undirected graphs, Graph.

DEFINITION 5.1. An object H of the category is a set of vertices, denoted
VH, a set of hyperedges, denoted HH, and an injection (the edge map) HH

νH
↪→

2VH .4

VH � p

!!D
DD

DD
DD

D
HH
nN

νH||zz
zz

zz
zz

2VH

(V.12)

REMARK 5.2. An element h ∈ HH will be described as containing the
vertices v ∈ VH that are in νH(h). This will often be notated v ∈ h rather
than the more exact v ∈ νH(h).

REMARK 5.3. One can force every vertex to be contained in some edge,
but this seems an unnecessary restriction that, furthermore, does not agree
with the graph case, where vertices not in an edge are indeed possible.

DEFINITION 5.4. Composing νH with the cardinality map from 2VH → N
gives the valency of h ∈ HH.

4Other possibilities suggest themselves. One is to define the vertex set VH to be the set of
singleton edges. It is then helpful to think of the vertices as a distinguished subset of HH

such that its image in 2VH under νH is the same as its canonical injection into 2VH . This
ensures that each hyperedge is a subset of VH. This seems a more natural and attractive way
to proceed, but it is not standard for some reason. Even more attractive is to view HH itself
as having certain structures (for example it is a poset), and then to use these structures to
define the vertex set (the minimal elements of VH for example). This of course converts HH

itself into a category.
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DEFINITION 5.5. A morphism between hypergraphs H
µ→ H′ consists of

a pair of maps VH
µ̂→ VH′ and HH

µ̄→ HH′ such that:5

HH� _

νH

��

µ̄ // H ′� _
νH′

��
2VH

µ̂→
// 2VH′

(V.13)

Note that given VH
µ̂→ VH′ , if a suitable µ̄ exists it is unique, because νH′ is

injective.

DEFINITION 5.6. There is an initial object, ∅, the hypergraph with empty
vertex and hyperedge sets. There are terminal objects, 1, with V1 = {·} and
H1 = {{·}}.

DEFINITION 5.7. An embedding of one hypergraph in another is a monic
arrow in Hypergraph. This is a morphism as above except that µ̂ is an injec-
tion. This means that µ̂→ is an injection and hence that µ̄ is an injection.
The embeddings in a given hypergraph form a poset where, for embeddings

S
i
� H and S

j
� H, i � j if i factors through j, that is ∃k : i = jk.

Two embeddings are equivalent if i � j and j � i. A subhypergraph is an
equivalence class of embeddings, although we will not labour the distinction
between classes and representatives. We will sometimes refer to a subhyper-
graph by its morphism, and sometimes by the domain of the morphism. For
S

π
� H, we will write Vπ for the image of VS.

DEFINITION 5.8. Given U ↪→ VH for some hypergraph H, we can define
the subhypergraph induced by U as the pullback of νH along 2U ↪→ 2VH .
The hyperedge set of this hypergraph consists of those hyperedges in HH all
of whose vertices lie in U .

We also define a hypergraph H − U . There is a projection from 2VH

to 2U ′ , where U ′ = VH \ U , that sends each E ⊂ VH to E \ U ⊂ U ′.
This is in fact an equivalence relation on 2VH , two subsets being equivalent
if they differ by elements in U . This equivalence relation induces a similar
relation on HH, creating a set HH′ and an injection into 2U ′ . The pair U ′,

5This definition corresponds to order-preserving maps between the hyperedge sets considered
as posets. The definition differs from another in common use. This is that a morphism is

a pair of maps VH
µ̂→ VH′ and HH

µ̄→ HH′ , such that µ̂→νH(h) factors through νH′ µ̄,
or in terms of elements, ∀h ∈ HH : µ̂→νH(h) ⊂ νH′ µ̄(h). This is not a very natural
definition. It is not order-preserving for a start, and it means that Graph is no longer a full
subcategory of Hypergraph. It seems to be used to allow a definition of ‘path’ in the context
of a hypergraph. This also is somewhat forced, since hypergraphs are not linear structures.
Paths are replaced here by the more natural concept of hyperpath.
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HH′ , and the induced map HH′
νH′
↪→ 2U ′ define a hypergraph H′. We define

H − U = H′. This is the co-equalizer of two hypergraph morphisms.

DEFINITION 5.9. Given a hypergraph H and a hyperedge h ∈ HH, we
denote the hypergraph produced by the removal of h by H − h. Note that
this does not change the vertex set.

DEFINITION 5.10. Given two subhypergraphs, S
π
� H and T

π′

� H of
a hypergraph H, we can canonically define two new subhypergraphs of H,

the intersection S u T
πuπ′

� H and union S t T
πtπ′

� H of S and T. These are
formed by taking the intersection and union respectively of the vertex and
hyperedge sets of S and T.

DEFINITION 5.11. A connected hypergraph H is one for which there do
not exist subhypergraphs S � H and T � H such that S u T = ∅ and
S t T = H. If it does exist, such a pair of subhypergraphs will be called a
disconnection of H.

DEFINITION 5.12. An n-connected hypergraph is one that is disconnected
by the removal of any n hyperedges. An unconnected graph is therefore
zero-connected.

DEFINITION 5.13. A vertex v in a connected hypergraph H will be called
a pin if H − {v} is not connected.

DEFINITION 5.14. The degree of a vertex v ∈ VH is the cardinality of
{h ∈ HH|v ∈ νH(h)}. Note that if the hyperedge set contains singletons,
these contribute to the degree. Vertices of degree one are called terminal.

DEFINITION 5.15. A connected, one-connected hypergraph in which all
the vertices except the terminals are pins, and in which each hyperedge
contains at most one terminal vertex will be called a hypertree.

5.1. Hyperpaths

DEFINITION 5.16. A hyperpath is a hypertree in which all vertices have
degree at most two.

REMARK 5.17. It is possible to remove all talk of pins, and the restriction
on the number of terminal vertices in each hyperedge, by moving to directed
hypergraphs. The situations we will discuss however are akin to the case of
directed graphs that are symmetric. Such graphs can be viewed as undirected
graphs; we choose to view the symmetric hypergraphs with which we deal
in an analogous way. Because of the more complicated symmetry properties
when edges with valency greater than two are present, this viewpoint requires
the extra constraints mentioned above. Nevertheless, it is less complicated to
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FIGURE 32. In part (a) a hyperpath is shown. The terminal
vertices are not solid. In part (b), a hypergraph is shown. It is
not a hyperpath because 1) the indicated vertices are not pins,
and 2) one hyperedge contains two terminal vertices.

force hyperpaths to have the correct properties at this stage, even at the cost of
a little inelegance, than deal with the consequences of introducing direction.

REMARK 5.18. Hyperpaths are the natural generalization of linear graphs.
They are ‘one-dimensional’, this being the import of conditions on pin and
terminal vertices. They are topologically trivial, this being the import of one-
connectedness. Nevertheless they may still have a tree-like structure courtesy
of the hyperedges with valency greater than two. Hypergraphs allow the ‘local’
interaction of more than two vertices at once, and this should be expressed
in the linear structures. The normal concept of a ‘chain’ in a hypergraph is
really just a graphical concept. Indeed there is a functor from Hypergraph
to Graph that creates a bijection between chains in a hypergraph and paths
in the corresponding graph (excepting certain trivial paths). This is not the
case with hyperpaths, which are not so easily reduced to graphical notions.
This functor F works as follows. For a hypergraph H, the vertex set of F (H)
is VH ∪HH. There are no edges between vertices in VH and none between
vertices in HH. There is an edge between vertices v ∈ VH and h ∈ HH iff

v ∈ νH(h). The image F (H)
F (µ)→ F (H′) of a morphism of hypergraphs

H
µ→ H′ has as vertex map the union of µ̂ and µ̄, and as edge map the

derived map between the power sets. It can be seen that these maps obey
equation V.13. Under this functor, hypertrees will be mapped to trees.
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REMARK 5.19. Note that there are no vertices of degree zero in a hyper-
path, since then the hypergraph would not be connected. Note that singleton
edges do not occur in hyperpaths. If one occurred, either the vertex in it
would have degree one, in which case it is easy to see that the hypergraph
would not be connected (unless it were a terminal object), or it would have
degree two, in which case removal of the singleton edge would not disconnect
the hypergraph, meaning that it would not be one-connected.

LEMMA 5.20. A connected subhypergraph L′
π
� L of a hyperpath L is a

hyperpath.

PROOF. We must show that L′ is connected, one-connected, and that all
its vertices have degree less than or equal to two.

The first is given to us. The last is clear because if a vertex v ∈ VL′ was
contained by more than two hyperedges, then the images of these hyperedges
in HL would contain the image of v ∈ VL. Since L′ is a subhypergraph, the
map between hyperedges is an injection, and thus the image of v would have
degree greater than two, which is a contradiction.

For the second, we wish to show that L being one-connected implies
that L′ is one-connected. Assume the negation of this implication, that L is
one-connected and that L′ is not. Let ‘conn’ be the predicate that is true iff
its argument is a connected hypergraph. Then ¬∃h : conn(L − h) ∧ ∃g :
conn(L′− g). This entails ∃g : ∀h : (¬conn(L− h)∧ conn(L′− g)). In a
moment we will show that ¬conn(L− µ̄(g)) ⇒ ¬conn(L′ − g), and hence
that ∃g : ⊥. This is a contradiction, proving that L′ is one-connected.

To show that ¬conn(L− µ̄(g)) ⇒ ¬conn(L′−g), note that ¬conn(L−
µ̄(g)) means that ∃S,T : (S t T = L − µ̄(g) ∧ S u T = ∅). The
subhypergraphs S and T pullback along π, to give two subhypergraphs
of L′, S′ and T′. From the properties of the pullback, it follows that
S′ t T′ = L′ − g ∧ S′ u T′ = ∅. �

REMARK 5.21. We will often deal with hypergraphs with distinguished
vertices, and in particular with hyperpaths with distinguished terminal ver-
tices. The former will be called pointed, and the latter terminally pointed. We
will abbreviate ‘terminally pointed’ by ‘t.p.’. Morphisms between pointed
hypergraphs must preserve the distinguished vertex.

DEFINITION 5.22. Given a hyperpath L and a vertex v ∈ VL, removal

of a hyperedge h that contains v defines a t.p. subhyperpath Lv,h

ιv,h

� L

of L with distinguished vertex v as follows. ιv,h is the maximal connected
subhypergraph of L− h whose vertex set includes v. This is unique, because
were there another such hypergraph, call it S′, then S′ t Lv,h would be
connected because any disconnection would either define a disconnection
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for S′ or Lv,h, which are assumed connected, or would be S′ and Lv,h. The
latter is not a disconnection however, because S′ u Lv,h has vertex set {v}.
Since S′tLv,h contains Lv,h, this contradicts the maximality assumption. The
subhyperpath(s) produced in this way are called the subhyperpaths induced by
v. For a terminal vertex, there is only one such subhyperpath, the hypergraph
with v as a vertex and no hyperedges. It is convenient to introduce a second
subhyperpath induced by a terminal vertex. This is defined to be L itself.

REMARK 5.23. For a hyperpath L and v ∈ VL, there are two subhyper-
paths induced by v, L1 and L2. Then L1 t L2 = L, and L1 u L2 is the
hypergraph with one vertex (v), and no hyperedges.

DEFINITION 5.24. Given a t.p. hyperpath L with distinguished vertex t,
we denote by Lv

ιv
� L the unique t.p. subhyperpath induced by v ∈ VL

that does not contain t. Its distinguished vertex is v. It may be described as
the subhyperpath less than v relative to t. If v is the distinguished vertex t, we
define this subhyperpath to be L itself.

Since subhypergraphs of a hypergraph have a natural partial ordering, the
map from VL to the subhyperpaths less than a given vertex relative to the
distinguished vertex induce a partial ordering on VL itself. We denote this by
l.

If T is the set of terminal vertices of L excluding the distinguished vertex,
then the colour, κL(v) ⊂ T , of a vertex v, is defined to be the subset of T
contained in Vιv .

DEFINITION 5.25. We define the predecessors of a vertex v in a t.p. hy-
perpath L, to be the set νL(hv) \ {v}, where hv is the unique hyperedge
in Vιv containing v. These vertices are also the greatest lower bounds of v
under the partial ordering l. This means that the subhyperpaths induced by
the predecessors are disjoint (or one-connectedness would be violated) and
exhaustive.

5.2. Hyperpaths in a Hypergraph

DEFINITION 5.26. The set of hyperpaths in a hypergraph H, denoted
Π(H), is the set of subhypergraphs of H that are hyperpaths. We denote the
space of subhyperpaths in a hypergraph whose terminal nodes map onto a
given T ⊂ VH by ΠT (H), and those whose terminal nodes map to a subset
of T by Π⊆T (H).

The set of t.p. hyperpaths in a pointed hypergraph H with distinguished
vertex t ∈ VH whose terminal nodes map onto T ∪ {t} for given T ⊂ VH

will be denoted by ΠT,t(H). Those with terminal vertices a subset of T ∪{t}
will be denoted Π⊆T,t(H). Note that t must always be in the image of the
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terminal vertices because of the definition of morphisms between pointed
hypergraphs.

We will omit the hypergraph argument when the context is clear.

REMARK 5.27. Most of the definitions concerning hyperpaths in the
previous section are easily extended to the case of hyperpaths in a hypergraph.
The vertex set VL is replaced by its image Vπ.

DEFINITION 5.28. We are given a t.p. subhyperpath L
π
� G in ΠT (G) for

a hypergraph G. If necessary G can be regarded as pointed with distinguished
vertex t the image of the distinguished vertex of L. Given a vertex v ∈ Vπ,
with pre-image u ∈ VL, we define the subhyperpath of G less than v relative
to π as πιu, and denote it πv.

The partial ordering on VL induces a partial ordering on Vπ. A vertex
v ∈ Vπ is less than u ∈ Vπ, vlu iff πv factors through πu. We can define the
predecessor relation on Vπ by projection from that on VL also. We denote the
image of the unique hyperedge in HL that contains the distinguished vertex
by hπ ∈ HG. It contains t. We denote the set νG(hπ) \ {t} by Pπ,t. These
are the predecessors of t relative to π.

We define the colour, Vπ
κπ→ 2T of v ∈ Vπ as the unique arrow that makes

the following commute:

VL

π̂
��

π̂→κL

  A
AA

AA
AA

A

Vπ κπ

// 2T

(V.14)

DEFINITION 5.29. Using the above data, we define the coloured set of
vertices in a t.p. hyperpath L

π→ G in ΠT (G), denoted by Kπ,t ⊂ VG × 2T ,
as Kπ,t = 〈π̂, κπ〉→(VL).

DEFINITION 5.30. A weighted hypergraph is a hypergraph H with a func-
tion HH

W→ R. The weight of a subhypergraph H′
µ
� H is then defined as∑

h∈HH′ Wµ̄(h). The weight function on subhypergraphs is denoted by the
same symbol as the weight of a hyperedge.

6. OPTIMAL HYPERPATH ALGORITHM

We look first at an algorithm, called algorithm A, for the following prob-
lem, surprisingly called problem A.

Input: A weighted hypergraph G, hyperedge weight function W , and
a set of vertices T ⊂ VG.

Output: W ∗ = minp∈Π⊆T (G)W (p).

106



There are other problems that we could consider, but they seem to be hard to
solve. We will discuss other possibilities at the end of this section.

The algorithm we will describe is a generalization of Dijkstra’s shortest
path algorithm to the hypergraph setting. If the hypergraph has only edges of
valency two, and if the set T is of cardinality two, then the algorithm will find
the shortest path between the vertices in T . Indeed, in this case the algorithm
reduces to Dijkstra’s shortest path algorithm in its bi-directional form. this
provides an intuition as to the working of the algorithm. In the bi-directional
shortest path algorithm, paths are explored from each of two source vertices
in weight order. When two paths meet at a vertex, the exploration ceases and
a search over the already explored paths finds the optimal path between the
two points. In the hyperpath case the situation is similar. Paths are explored
from each of the vertices in T in weight order. If a path ends on a vertex that
belongs to a hyperedge, all of whose other vertices have been reached except
for one, the explored paths can join together using the hyperedge, and then
continue to explore from the unexplored vertex. Eventually two hyperpaths
will meet at a vertex, and exploration ceases. A search procedure now reveals
the minimum weight hyperpath. This is illustrated schematically in figure 33.

We now proceed with the formal development of the algorithm.

DEFINITION 6.1. The space of coloured vertices is C = VG × 2T .

DEFINITION 6.2. The space of seen vertices is S ⊂ C. Initially, S = ∅.

DEFINITION 6.3. The heap is denoted Ω ⊂ C. Initially, it is equal to C.

DEFINITION 6.4. The projections from C are denoted by pi, i ∈ {1, 2}.
We will denote pi(v) by vi for v ∈ C.

The central object of the algorithm will be a partial injective map π from
C to the space of t.p. subhyperpaths of G. To be more exact, the co-domain
of the map will be ∪v∈VG

Π⊆T,v. The initial value of π is as follows:

π(v) =

{
〈v1, ∅〉 v1 ∈ T & v2 = {v1},
↑ otherwise.

(V.15)

where ↑ means undefined (↓ will mean defined).
The algorithm will iterate. The first action of each iteration will be to

remove from Ω that v with the smallest value of Wπ. This vertex will be
added to S. This will be the only vertex moved, so that S ∪ Ω = C always.
The algorithm will iterate until a vertex v is removed from Ω for which there
exists a vertex u ∈ S with v1 = u1 and v2∩u2 = ∅, or until ∀v ∈ Ω : π(v) ↑.
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FIGURE 33. The top rectangle shows the bi-directional ver-
sion of the shortest path algorithm in action. Paths have been
expanded from each vertex in weight order. When two such
paths meet at a vertex, as shown, the iteration ceases and a
search procedure reveals the optimal path. Similarly, in the
lower part of the figure, paths are shown expanding from the
terminal vertices in the optimal hyperpath algorithm. The dif-
ference is that when two or more (depending on the hyperedge
valencies) paths converge on a hyperedge, as shown by the pale
triangle, they can join and expansion can continue from the
unexplored vertex in the hyperedge. Again, when two paths
meet at a vertex, expansion ceases and a search procedure finds
the optimal hyperpath.
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The algorithm will be such that the following statements are true at the
beginning of each iteration:

∀v ∈ S : π(v) ↓(V.16)

∀v ∈ S :Wπ(v) = min
p∈Πv

W (p)(V.17)

∀v ∈ Ω : π(v) ↓⇒ π(v) ∈ Π̌S,v(V.18)

∀v ∈ Ω : π(v) ↓⇒ Wπ(v) = min
p∈Π̌S,v

W (p)(V.19)

where Πv = Πv2,v1(G), and Π̌S,v = {p ∈ Πv|Kp,v1 \ {v} ⊂ S}. We now
analyse these invariants and show how they lead to an algorithm.

PROPOSITION 6.5. If equations V.17 and V.19 hold at the beginning of one
iteration, then equation V.17 holds at the beginning of the next.

PROOF. At the beginning of the first iteration, equations V.17 and V.19
hold by the definition of π.

At the beginning of an iteration, consider the vertex k ∈ Ω with the least
value of Wπ. (If there is no such vertex because π is undefined for every
vertex in Ω, then the iteration ceases.) We know from equation V.19 that

Wπ(k) = min
p∈Π̌S,k

W (p).

If we can show that
Wπ(k) = min

p∈Πk\Π̌S,k

W (p),

then by conjunction we will have shown that

Wπ(k) = min
p∈Πk

W (p).

Since k is added to S, and equation V.17 already holds for all v ∈ S, it will
be true for all v ∈ S ∪ {k} if we do not alter the value of π for vertices in S

after this point, which we do not.
To show that Wπ(k) = minp∈Πk\Π̌S,k

W (p), consider an arbitrary hyper-

path p ∈ Πk \ Π̌S,k. We claim that ∃u ∈ Kp,k1 \ {k} such that the following
hold:

u 6∈ S(V.20)

pu1 ∈ Π̌S,u(V.21)

If this is true, then we have that W (p) ≥ W (pu1) ≥ Wπ(u) ≥ Wπ(k). The
first inequality is because pu1 � p. The second is because of equation V.19.
The third is true by assumption about the minimality of Wπ(k).

To show that such a u exists, consider a minimal vertex w ∈ Vp such that
〈w, κp(w)〉 6∈ S. (Minimal here means with respect to the ordering l.) We
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claim that pw ∈ Π̌S,〈w,κp(w)〉, and that therefore we can take u = 〈w, κp(w)〉.
If this were not the case, then there would exist a vertex x ∈ Kpw,w\(S∪{w}).
It follows that x1 lw as vertices in Vp, and this contradicts the minimality of
w. �

PROPOSITION 6.6. If equations V.17 and V.19 hold at the beginning of one
iteration, then equation V.19 holds at the beginning of the next.

PROOF. We know that after the removal of k from Ω and its placing in S,
we have that equation V.17 holds for all v ∈ S ∪ {k}. (We will denote the
latter set by S′.)

However at this point, as it stands, equation V.19 does not necessarily
hold. For each u ∈ Ω, the invariant must now hold over the space Π̌S′,u,
where clearly Π̌S,u ⊂ Π̌S′,u. Therefore the values of π for the vertices in Ω
may have to be updated to maintain equation V.19. In this proof we show
which vertices need to be updated, and how this should be done. We will
denote the space Π̌S′,u \ Π̌S,u by Π̌S′,S,u.

Consider u ∈ Ω. Let

φS,k(u) = arg min
p∈Π̌S′,S,u

W (p).

Then if we change the value of π(u) to arg minp∈{π(u),φS,k(u)}W (p), we have

by conjunction thatWπ(u) = minp∈Π̌S′,u
W (p), and thus that equation V.19

remains valid.
We thus need to find φS,k(u). We partition the hyperpaths in Π̌S′,S,u in

the following way. As described above, each p ∈ Π̌S′,S,u defines a hyperedge
hp ∈ HG, the unique hyperedge in p containing u1. This defines an equiv-
alence relation on Πu: p is equivalent to p′ iff hp = hp′ . Also as above, we
can define the predecessors of u1 relative to p, Pp,u1 . First we show that those
hyperpaths p for which k1 6∈ Pp,u1 can be eliminated.

Take an arbitrary hyperpath p ∈ Π̌S′,S,u in the latter class. If we can show
that there is a hyperpath p′ ∈ Π̌S,u such that W (p) ≥ W (p′), then because
W (p′) ≥ Wπ(u) by equation V.19, we will have shown that ∀p ∈ Π̌S′,S,u :
W (p) ≥ Wπ(u), and thus that these hyperpaths need not be considered.

To construct such a hyperpath consider the set Pp,u1 . There is a unique
v ∈ Pp,u1 such that k1 ∈ Vv . This follows from the exhaustiveness and
exclusiveness of the subhyperpaths induced by the elements of Pp,u1 . This
vertex induces a subhyperpath pv ∈ Πκp(v),v. From v we can construct a vertex
〈v, κp(v)〉 ∈ S (because p ∈ Π̌S′,S,u), and hence a hyperpath π(〈v, κp(v)〉) ∈
Πκp(v),v. The latter path is distinct from pv because its vertex set does not
contain k, since it was established in an iteration prior to k being added to
S. In addition, by equation V.17, the path π(〈v, κp(v)〉) has the minimum
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weight of all hyperpaths in Πκp(v),v since 〈v, κp(v)〉 ∈ S, and hence has a
lower weight than pv. Replacement of pv by π(〈v, κp(v)〉) in p therefore
yields a hyperpath p′ in Π̌S,u with W (p′) ≤ W (p). Note that π(〈v, κp(v)〉)
is disjoint from the hyperpaths induced by the other predecessors, for if it
were not, iteration would have ceased earlier when one of the vertices in the
intersection hyperpath was removed from Ω.

This leaves the hyperpaths p ∈ Π̌S′,S,u for which k1 ∈ hp and for which
κp,k1 = k2. We call this space Π̌S′,S,u,k.

We define further equivalence classes finer than those based on the hp.
Two hyperpaths p and p′ will be regarded as equivalent under this second
relation if hp = hp′ and ∀w ∈ Pp,u1 : κp(w) = κp′(w). (Note that Pp,u1 =
Pp′,u1 by assumption.) These equivalence classes partition Πu and hence,
by intersection, Π̌S′,S,u,k. Let us call the set of these equivalence classes
C. Not all the c ∈ C will have a non-empty intersection with Π̌S′,S,u,k.
Necessary and sufficient conditions for the intersection to be non-empty for
an equivalence class c ∈ C are that the set {〈w, κp(w)〉 : w ∈ Pp,u1} ⊂ S and
that ∃w ∈ Pp,u1 : 〈w, κp(w)〉 = k. These conditions are clearly necessary
from the definition of Π̌S′,S,u,k. That they are sufficient can be shown by
constructing a hyperpath in c ∩ Π̌S′,S,u,k. This is done as follows. We have
the hyperpaths {π(〈w, κp(w)〉) : w ∈ Pp,u1}. These do not depend on the
representative p, and hence are determined by the equivalence class c. Each
of these is in the corresponding Πκp(w),w. These hyperpaths are disjoint, for
if they were not, the subhyperpaths induced by a vertex in the intersection
subhyperpath would have terminated the iteration before the current one.
Therefore the hyperpath in Π̌S′,S,u,k formed by the {π(〈w, κp(w)〉)} (which
includes by definition πk), the hyperedge hp and the vertex u1 is a member
of c ∩ Π̌S′,S,u,k, which is therefore non-empty. What is more, this member of
c ∩ Π̌S′,S,u,k is the one with the minimal weight, since each π(〈w, κp(w)〉) is
the minimal hyperpath in Πκp(w),w. We will call this hyperpath πc. We then
have that ΦS,k(u) = arg minc∈C|c∩Π̌S′,S,u,k 6=∅W (πc).

Therefore, consider the sets of vertices Z ⊂ S \ {k} that satisfy the
following restrictions:

∃h ∈ HG : νG(h) = {z1 : z ∈ Z} ∪ {k1 ∪ {u1}}(V.22)

∀z ∈ Z : z2 ∩ k2 = ∅(V.23)

∀z, z′ ∈ Z : z2 ∩ z′2 = ∅(V.24) ⋃
z∈Z

z2 ∪ k2 = u2(V.25)

These are sets of vertices that are colour-disjoint, and colour-disjoint from
k. Together with k, they can be viewed as the in-vertices of the hyperedge h
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that contains them (and so they would be if we were dealing with directed
hypergraphs). The colours of these vertices including k must combine to
produce the colour of u.

Clearly each such set Z defines an equivalence class c ∈ C by h and
the colours of the zi and k. The union of the hyperpaths π(z), π(k), the
hyperedge h and the vertex u1 is the path πc defined in the last paragraph.
The weight of this path is therefore minimal over all paths in c ∩ Π̌S′,S,u,k as
discussed. Similarly each equivalence class in Π̌S′,S,u,k defines a set of vertices
Z ⊂ S satisfying the above conditions. Rather than examine the classes in
C directly then, we can instead examine the sets Z. For each such set we
can compare Wπ(u) with

∑
z∈Z Wπ(z) +Wπ(k) +W (h), and change the

value of π(u) to πc if the latter is smaller than the former. More efficiently,
we can look at all hyperedges containing k1, and find a set Z satisfying the
above restrictions given h, where now u1 and u2 are defined by equations V.22
and V.25. This ensures that we do not needlessly examine vertices u for which
no such set Z exists.

By following this search procedure for all such sets Z for each hyperedge
containing k1, we are guaranteed by the above arguments to set π(u) to the
arg minp∈Π̌S′,u

as required. �

Having proved that equations V.17 and V.19 hold, we now go on to
discuss the final stage of the algorithm and show that it indeed will work as
advertised.

Define a set Z ⊂ S as completable iff it satisfies the following conditions:

∃h ∈ HG : νG(h) = {z1 : z ∈ Z}(V.26)

∀z, z′ ∈ Z : z2 ∩ z′2 = ∅(V.27)

and call h the completion of Z. Let the two elements of S that terminate
the iteration be u and v. Note that the subset of S defined by u and{
〈w, κπ(v),v1(w)〉 : w ∈ Pπ(v),v1

}
form a completable set, the completion

being the hyperedge hπ(v).
For each completable set, we can define a hyperpath in Π⊆T (G) by taking

the union of the π(z) : z ∈ Z and adjoining the hyperedge h. For a
completable set Z, call this hyperpath πZ . Note that this is the minimum
weight hyperpath over those hyperpaths in the equivalence class defined by
the set Z and the hyperedge h. (This is entirely analogous to the argument
concerning the set Z defined in equations V.22 and V.25.) We claim that
when the iteration has finished

arg min
Z∈Z

W (πZ) = arg min
p∈Π⊆T (G)

W (p)(V.28)
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where Z is the set of completable sets of vertices. If this is the case, we need
only search the set of hyperedges to find the solution to the problem as stated
at the beginning of the section. For each h there will be zero or more sets
Z ⊂ S completed by h. We take the minimum weight πZ over these sets, and
then the minimum of these minima over all h ∈ HG to obtain the solution.

PROOF. To see that equation V.28 holds, consider a hyperpath p ∈
Π⊆T (G). By removing a hyperedge h containing vertices νG(h) ⊂ VG from
this hyperpath, we define a set of disjoint hyperpaths {pv : v ∈ νG(h}. Each
hyperpath pv lies in a different set Πκpv (v),v. We divide the set Π⊆T (G) into
those hyperpaths for which there exists a hyperedge h such that⋃

v∈νG(h)

Kpv ,v ⊂ S

(we will call such hyper paths seen), and those for which there does not
exist such an h. The former case clearly defines a completable set Z =
{〈v, κpv(v)〉 : v ∈ νG(h)} such that πZ = p, while in the latter case no
completable set Z exists such that πZ = p. The hyperpath πZ is therefore
seen, and it is easy to see that it is the minimum weight seen hyperpath in the
equivalence class defined by Z.

There is therefore an onto map from Z to the set of equivalence classes of
seen hyperpaths in Π⊆T (G). If we can show that every hyperpath that is not
seen necessarily has a larger weight than some seen hyperpath, then it follows
that

arg min
p∈Π⊆T (G)|seen(p)

W (p) = arg min
p∈Π⊆T (G)

W (p)(V.29)

where the predicate ‘seen’ is self-explanatory. Then, since πZ is the minimum
weight hyperpath in each equivalence class, and the map to equivalence classes
is onto, equation V.28 follows.

To this end, consider a subhyperpath p that is not seen. Call the two
subhyperpaths of G induced by a vertex z ∈ Vp, pz,1 and pz,2. We claim there
exists at least one vertex z in the vertex set of p such that Kpz,1,z 6⊂ S and
Kpz,2,z 6⊂ S. Note that by proposition 5.23, p = pz,1 t pz,2, and pz,1 u pz,2 =
〈{v} , ∅〉, so that W (p) = W (pz,1) + W (pz,2). Consider W (pz,1). By a
similar minimality argument to that used in the proof of the invariance of
equation V.17, there must be a subhyperpath of pz,1, q, in Π̌S,x for some
x ∈ Ω. By equation V.19 this hyperpath must have weight W (q) ≥ Wπ(x).
In turn, Wπ(x) ≥ Wπ(u) (and similarly Wπ(x) ≥ Wπ(v)), where u and v
are the vertices in S that stopped the iteration, because vertices are removed
from Ω in Wπ order. The same argument applies to pz,2, meaning that
W (pz,1) + W (pz,2) ≥ Wπ(u) + Wπ(v). Hence every not seen hyperpath
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has a weight greater than the seen hyperpath formed from u and v, and hence
equation V.29 holds. The only remaining step is to show the existence of a
vertex z with the desired properties.

If no such vertex exists, then for every vertex z, we must have thatKpz,1,z ⊂
S and Kpz,2,z 6⊂ S without loss of generality, since p is not seen. Given such
a vertex z, consider the hyperpath pz,2 for which Kpz,2,z 6⊂ S. We will refer
to it as q for brevity. Each vertex in the set of predecessors, Pq,z induces
a subhyperpath of q. If the coloured vertices for all such subhyperpaths
are subsets of S, then the hyperedge hq that contains z would then be a
completion for the predecessor subhyperpaths and pz,1. This means that p
would be seen, which is a contradiction.

If on the other hand, one or more of the predecessor subhyperpaths of q
does not have its coloured vertices a subset of S, we proceed as follows. Call an
arbitrary such vertex y. We know that the coloured vertices of Kqy ,y 6⊂ S by
assumption. Also, Kpy,2,y ⊂ S, where py,2 is the subhyperpath of p induced
by y that is not qy, since otherwise we could choose y as our vertex for the
proof, violating our assumption that no such vertex exists. Now however we
are in the same situation as we were for z, but with y. Clearly this process can
be repeated, but we can never consider the same vertex or hyperedge twice
since this would violate one-connectedness. Eventually then we must consider
a vertex y in a hyperedge h containing a terminal vertex t. There are now
two possibilities. If h has valency two, we have the following argument. The
coloured vertices of the subhyperpath q induced by y that does not contain t
are, by induction using the above process, members of S. On the other hand,
the coloured vertex of the subhyperpath 〈{t} , ∅〉 is definitely a member of S:
it is the vertex 〈t, {t}〉. The hyperedge h is therefore a completion for q and
〈{t} , ∅〉, and therefore p is seen, which is a contradiction. If the hyperedge h
has valency greater than two, either all the other vertices induce subhyperpaths
whose coloured vertices are in S, in which case again we have a contradiction,
or one or more does not, in which case we continue the process. Since the
hypergraph is finite, we must eventually reach a hyperedge h of valency two
containing a terminal vertex (this proof can easily be adapted to show that
every hyperpath must contain a number of such hyperedges greater than or
equal to the maximum valency of the hyperedges that constitute it), and again
we have a contradiction. �
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7. PRACTICALITIES

7.1. Other Possible Problems

There are other problems we could consider, for example trying to find
minp∈ΠT (G)W (p). Call this latter problem B. Problem B seems hard. Re-
moval of the stopping condition on the iterations of algorithm A would not
help, since the disjointness condition that we used several times in the proof
of correctness would no longer hold. An analogy with two graph problems
also suggests that problem B is NP-hard.

Consider a weighted graph and a subset T of the vertices. Problem C is
to find the least weight tree with leaves a subset of the vertices in T . Clearly
the solution must be a path not just a tree, because given any such tree we can
construct a number of paths of lower weight than the tree between vertices in
T by picking a pair of leaves and taking the unique path in the tree between
them. In fact, problem C can be solved using algorithm A for G a graph.
Note that the triviality of the solutions to this problem in Graph is caused
by the fact that a vertex of degree higher than two in a tree can, by removal
of enough edges, be converted to a vertex of degree two without creating any
more leaves. In Hypergraph this is not true. The ‘vertices of higher degree’
are in fact hyperedges of higher valency, and this valency cannot be changed.
This means that problem A in Hypergraph may have solutions that are not
simply paths, but hyperpaths.

Now consider the problem of trying to find the minimum weight tree with
leaves all the vertices of T . Call this problem D. Problem D is NP-hard by a
reduction of the Steiner tree problem. Given an instance of the Steiner tree
problem, we can attach ‘spurs’ to each vertex in the Steiner set S. This means
that for each s ∈ S, we create a new vertex s′, and an edge of weight zero from
s to s′. Now any tree with the {s′ : s ∈ S} as leaves defines a Steiner tree, and
any Steiner tree defines a tree with the {s′ : s ∈ S} as leaves. The weights
of these trees are the same since the new edges have zero weight. Therefore
an algorithm for problem D would also solve the Steiner tree problem. The
reduction is polynomial time and so problem D is NP-hard.

More explicitly, it can be seen that an analogous algorithm to algorithm
A without the stopping condition could be constructed for problem D, but
that it would fail for the same reason that algorithm A fails for problem B:
the disjointness condition (which amounts to a greedy assumption) would be
violated.

Unlike problems A and C, it is not the case that problem D is a graph-
ical instance of problem B, nor does there seem to be a simple reduction
of problem D to problem B. Nevertheless, the strong analogy between the
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problems we are considering, and the fact that the same failure mode occurs
for algorithms in the two cases, suggests that problem B is hard.

7.2. Complexity

In practice we do not store the map π explicitly. It is sufficient to keep,
for each vertex, the weight of the corresponding hyperpath, and pointers to
its predecessors in that hyperpath. We need to access the set S indexed by
vertex. This can be done using a hash table. The same is true of the heap.
Similarly, we need to access the hyperedge set by vertex. Each vertex could
have pointers to the edges containing it for example. In our application, the
hyperedges are defined using a predicate on the vertex labels, so that the other
vertices in the hyperedge can be found easily.

The algorithmic complexity can be computed as follows. We define
V = card(VG), E = card(HG), d is the maximum valency of the hyperedges
in G, and we use T to mean the cardinality of the set of terminal vertices.

The cardinality of C is O(V.2T ). There may be this many iterations
since on each iteration, we remove a single vertex k from the heap. This
takes time O(log(V.2T )) using a binary heap. We then examine the hy-
peredges containing k. We may examine each hyperedge O(d) times, once
for each vertex in it except the last. Thus the work in the iteration stage is
O(V.2T . log(V.2T ) + d.E.W ), where W is the amount of work we do on
each examination of a hyperedge. For each examination we must check to see
if there is an appropriate set of vertices in S. If we index into S using the ver-
tices in the hyperedge, we will find O(d) sets of at most O(2T ) vertices each,
each set representing the coloured versions of a vertex in the hyperedge. If we
check the possible combinations of these coloured vertices to see if they satisfy
equations V.22 and V.25, we can spend at most 2dT time. If we change the
value of π on each of these occasions (or in other words perform a reduce key
operation on Ω for every combination), we will spend W = 2dT . log(V.2T )
time.

In the final stage of the algorithm, we examine each hyperedge again. The
procedure is much the same as during the iteration stage. If we index into
S using the vertices in the hyperedge, and then examine all combinations of
the coloured versions of these vertices to see if they are completable by the
hyperedge, we spend 2dT time at most per hyperedge.

Putting everything together, we find that the time complexity of the
algorithm is asymptotically O(d.2dT .E. log(V.2T )). The algorithm is thus
mercifully polynomial in the vertex set and the edge set. It is however
exponential in the size of the set of terminal vertices and the maximum
valency of the hyperedges. This is not surprising: 2dT is somehow the natural
measure since we are dealing with the power set of the vertex set. If d = 2, and
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T = 2, this complexity becomes O(E. log(V )) as expected from Dijkstra’s
algorithm.

7.3. Application

In order to apply the algorithm described above to the optimization
problems in which we are interested, we must map the continuous problem
onto the discrete. We do this as follows. We discretize the space D×D using
a rectangular lattice, precisely as we did in the last chapter. This defines the
vertex set and the edges of valency two in the hypergraph. Recall now that
the discontinuities correspond to triples of points in D × D. These triples
always take the form 〈x, y〉, 〈y, z〉, 〈z, x〉 as discussed in section 2.2. These
triples of points define the hyperedges of valency three of the hypergraph for
the solution of the problem. The definition of hyperpath ensures that the
parts of the hyperpath involving edges of valency two are just ordinary paths
in the rectangular lattice. Using the hyperedges of valency three however,
these paths can join in a trivalent tree structure exactly as required by the
discussion in section 2.2.

The set of terminal pointsT required in the problem statement in section 5
is given by the user. A number of points in the image domain are chosen. Let
us call these source vertices. For each source vertex s, there is a terminal vertex
〈s, s〉 ∈ D ×D. Thus the terminal vertices are those vertices that match to
themselves: they lie on a local axis of symmetry.

The weights for the hyperedges of valency two are given by integration of
all terms in the energy functional except ED along the hyperedge embedded
in D × D, again just as in the previous two chapters. The weights of the
hyperedges of valency three are computed as the value of (J, J)α/2 as in
section 3.2.

We have now defined an instance of problem A. Subject to the usual limits
of discretization accuracy, the solution to this problem will be a solution to the
continuous optimization problem in which we are interested. The complexity
of the algorithm in terms of the image size of n pixels is as follows. The
number of vertices V = n2. The number of hyperedges of valency two is k.n2

where k is a constant of the order of 10. The number of hyperedges of degree
three is a.n3, where a is another constant, this time of order 1. The maximal
valency is d = 3. This boils down to a complexity of O(8T .n3. log(n)). The
space resources required are not as large as they might seem. Vertices can
be created on the fly, so that the whole graph does not need to be kept in
memory. Indeed, only a tiny fraction of the graph is explored in most cases
because the algorithm, likes Dijkstra’s algorithm, is as parsimonious with
memory as it is possible to be. Nevertheless, the memory must be at least
the number of iterations, since one vertex is removed from the heap on each
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FIGURE 34. Three examples of optimal hypergraphs. In these
cases the parameters were adjusted to achieve the number of
parts shown. The terminal points were at the top and bottom
of the circle and at the ends of the lobes. They are drawn as
green dots, which are partly concealed by the red curves. The
thinner red lines inside the red curves show the self-matching.

iteration. In practice this is a gross underestimate. For an image of n vertices,
this quantity is n2.2T . For a 256×256 image, this is already 1010. This means
that with present resources, it is only possible to run the algorithm on small
images (50× 50).

Figures 34 to 37 demonstrate the running of the optimal hyperpath
algorithm on some synthetic and real images. The different λ parameters
were adjusted by hand in these images. The space of parameters is large and,
especially on real images, an optimal setting for different images is not to be
expected. One of the benefits of targets, to be discussed in the next chapter,
is the stability they confer, so that results are not so parameter dependent.
The use of the energy density form with a minimum ratio weight hypercycle
algorithm would achieve a similar end in an even cleaner fashion since, as we
saw in section 4.4, it effectively sets the parameters according to the image.
The demonstrations show the disadvantages of an extensive energy. Apart
from the need to initialise, skipping means that the optimal hyperpath may
often have a topology a lot simpler than the number of terminal points.

8. POSTSCRIPT

This chapter has extended the work of [LG97, LGK98, Liu97] to real
images, while also constructing a general theoretical framework using hyper-
graphs for the discretization and optimization of functionals on paths with a
higher than two-point dependence on the points in the path. (One way to say
this is that three-point correlation functions for the probability distributions
involved no longer factor into products of two-point functions.) This new
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FIGURE 35. A difficult real image. Two terminal points were
used. They are shown as green dots.

FIGURE 36. The leaf image on the left shows how the extensive
nature of the energy can force a simplification of the topology.
In addition to the green dots in the image, there were four
more terminal points at the tips of the leaf lobes. Skipping
has allowed the model to find only a one-part region. The
two right hand images show the effect of increasing the area
term. The co-circularity energy itself has a tendency to make
the region found slimmer. The balance between this term, the
extensive nature of the energy and the area term is complicated.

ability is distinct from the fact that we have been examining boundaries in
D × D, which, as we saw in the last chapter and in section 4.1, need only
involve graphical structures if the coupled triples of discontinuities are not
permitted.6 However, the use of path and hyperpath structures in D×D did
6There is almost certainly a beautiful algebraic version of the work described in the last few
sections of this chapter that bears the same relation to hypergraphs and hyperpaths that ‘path
algebras’ (or ‘closed semirings’, ‘semilattice-ordered monoids’ or any of a number of other
terms for the same thing) bear to graphs and paths. The notion of colour introduced for the
purposes of problem A extends this hypothetical unsorted theory to a sorted one, the colours
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FIGURE 37. Again the effect of the area term can be seen,
as can the effect of skipping. Note how the co-circularity
term forces symmetry on the region even when the data does
not support it. This is a form of completion, except now
proceeding with a symmetric model rather than a generic one.

enable us to examine the space of boundaries and not just paths in D itself,
and to incorporate new structural information about the shape and symmetry
of these boundaries.

The disadvantages of using an extensive energy as we have for the greater
part of this chapter are, as always, twofold. First, we have to constrain the
space of solutions to avoid trivialities. In algorithmic terms, this means
initialization by the user. Second, smaller length boundaries are preferred.
This produces a tendency to favour small number of terminal vertices in the
optimal part structure, and to ‘skip’ across sections of the image that do not
strongly support a boundary themselves, but that are short and connect two
sections that do strongly support a boundary. Some examples can be seen in
the demonstrations.

This second difficulty can be addressed in two ways. One would be
to solve problem B, but as we discussed in section 7.1, this is likely to be
impossible to do efficiently. Preferable anyway to this approach would be to
use an intensive energy. This would stop skipping because the average weight
of such a short skip would be much greater than that of a longer but more
strongly supported way round. The paper by Meggido [Meg79] shows how to
convert an algorithm for an extensive energy to one for an analogous intensive
one in rather general circumstances. We have not investigated whether this
approach would work for algorithm A, but it seems likely.

acting as sorts. The same type of relation holds between categories and n-categories, which
are similar to sorted hypergraphs. The relation of n-categories to logical theories raises the
question of the meaning of hyperpaths in that context. They look rather like proofs.
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The problem with this latter approach is that it does not remove the need
for constraints on the space of solutions, as table 2.2 makes clear. When
there are no tripled discontinuities, section 4.1 shows how to do this. When
there are such discontinuities, the most natural way to remove this need in
light of the work in the previous two chapters would be a generalization of the
minimum ratio weight cycle algorithm to hypergraphs. This would involve an
appropriate definition of hypercycle, as we discussed at the end of section 4.1.
The definitions would seem to flow naturally from sections 5 and 5.1. The
algorithm however is another matter. A further (and not exclusive) possibility
is to implement soft constraints on the space of solutions using targets, as we
are about to discuss.

We have completed two stages of the planned visual system, by construct-
ing the probability distributions Pr(P = p|I = i). The final stage of the
process is to incorporate the labelling of the parts, thus giving a probability
distribution Pr(Q = q|I = i), the MAP estimate for which is the output of
the visual system. This again will be accomplished using targets.
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CHAPTER VI

TARGETS

A final layer is added to the model. It takes the form not of further
representations, but of the choice of a target in the already existing
representation space P. A metric on this space then enables us
to guide the solution towards the target, which stands for a class
of possible shapes. The metric usually involves a correspondence
between parts. This can be purely topological, it can be geometric,
and it can even involve image data. It enables a labelling of the
target part structure to be transferred to the object found. An
optimization algorithm for the limited case of a fixed boundary is
described.

So far we have described a model for regions in images in which two
representations are used. The first is the boundary of the region, while the
second is the shape of the region, as encoded in local symmetry information.
As always, the representations serve two purposes. One is to narrow the
probability distribution towards the statements we wish to make about the
image. The other is to encode different types of information about the
region. For example, the minima of the energy functionals we have so far
constructed might be described as ‘articulated objects’. These minima are
not only localised by the functionals. For each minimum we also know the
region and its part structure.

To make the model even more specific, we could introduce further repre-
sentations and functionals based on these extended spaces. Instead we take
a different route. We define a (potentially degenerate) metric on the space
of representations that we are already considering, and then pick an exem-
plar from this space. We can now increase the specificity of the functional
by adding the distance between any configuration and the exemplar to our
energy. We will thus tend to find configurations closer to the exemplar. We
will call such exemplars targets, and will denote them τ ∈ P.

Targets serve the same two purposes as the other structures we have
introduced. Certainly they narrow the probability distribution with which we
are dealing towards themselves, but they can also be used to encode a type of
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information that would be hard to incorporate in another way. Among other
things they can be used to restrict the size of the boundary, and the topology
and geometry of the part structure. Targets can also be labelled; the parts
need no longer be anonymous. If the metric depends on a correspondence
between the part structures and boundaries of the two points in P concerned,
then a labelling of the target is translated into a labelling of the boundary and
its part structure, as we now explain.

1. THE FULL SPACE Q

The full space with which we will deal is constructed as follows. Given
x, y ∈ P, we will define a space of morphisms between the structures repre-
sented by these points, M(x, y). These morphisms will compose and there
will be identities, so that P becomes a category. We will pick a target τ ∈ P.
We then define the space Q as

⋃
p∈PM(p, τ). There is a projection, as we

discussed, from Q to P, that takes µ ∈ Q to its domain domµ.
Each point in Q thus encodes a great deal of information. Via the

projections, first to P and then to B, it encodes a boundary and a part structure
for that boundary. In addition, it encodes a correspondence between this
data, and the similar data encoded in the target. So, for example, as we will
see, with an appropriate choice of space of morphisms, a point q in Q matches
the part structure of πP(q) to that of τ . This is precisely a labelling of the
part structure πP(q).

The reasons for extending P to the space of morphisms are the same as
the reasons for extending the space of boundaries B to P. We discussed
in section 2 how minimizing over the part structure for a fixed boundary
left us with an energy on the space of boundaries alone that was of lower
entropy than EB, but that it was both useful and necessary to leave the part
structure explicit. It was useful because then we had easy access to the extra
information provided by that part structure, and it was necessary because the
above mentioned optimization was impossible to compute ahead of time. The
same is true of the space of morphisms Q. We want to leave the matching
between the structures of the target and the other points explicit so that we
have access to that matching: for example the labelling of the parts. At the
same time, it is also true that it is rather hard to define a metric on P without
minimizing over some space of morphisms. We therefore now discuss such
metrics.

2. ENERGY FUNCTIONALS

We will define a positive energy on each set of morphisms, EQ(µ), where
µ ∈ M(x, y). (Note that x and y are implicit in µ.) We define a positive
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function on P× P by

d(x, y) = min
µ∈M(x,y)

EQ(µ).(VI.1)

We will insist that the energy of the identity morphism is zero, so that
d(x, x) = 0. The triangle inequality is satisfied if there is an injection of

M(x, y) ×M(y, z)
α
� M(x, z) for which EQ(α〈µ, ν〉) ≤ EQ(µ) + EQ(ν)

for all 〈µ, ν〉 ∈M(x, y)×M(y, z). This is a sufficient condition for d to be
a metric. We will not insist or prove this property for any of the energies we
consider since we are always dealing with the distance to a fixed point.

In many cases the sets of morphisms will be the same over subsets of
P × P, so that the distance on these subsets will also be constant. In this
way, the space P × P will be divided into equivalence classes of equidistant
points. Choosing a target then ‘slices’ these equivalence classes, and induces
equivalence classes on P itself. In particular, there will be a subset of P whose
elements are all distance zero from the target. This means that the distance
of any other point to any element of this subset is a constant if the triangle
equality is satisfied. We can therefore view the distance to the target as a
distance to this subset of P, and the combination of the target and the metric
thus defines a class of shapes that we wish to find.

In the space P there is a particularly obvious example of where this type
of behaviour might occur. For each map Γ, we can construct a topology tree as
follows. We create a vertex for each triple of discontinuities, and a vertex for
each fixed point. These vertices are joined by edges if there is a continuous
path between them in the image of Γ. This is the same as first applying
the functor F from Hypergraph to Graph to construct a tree, and then
eliminating all degree two vertices by replacing them by edges between their
neighbours. (In this chapter, we will use ‘hyperpath’ to mean both a member
of the class of piecewise continuous maps of which Γ is a member, and the
corresponding discrete structure.) We will call this map from P to the set of
degree three trees, T. P is thus divided into equivalence classes corresponding
to trees of different topology. An easy type of metric to use is then one based
solely on these isomorphism classes of trees. For example, we could use the
edit distance between the trees. We will call such a metric a topological metric.
We can then add to this metric one based on intra-class differences, or in
other words on the geometry, since the sum of two metrics is also a metric.
We will call this the geometric metric. In practice, we will always take the
topological metric to be an inverse delta function. The distance between two
points corresponding to the same topology will be zero. If the topologies are
different then the distance will be infinite.
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For the intra-class metric there are many possibilities. Even though the
topologies are the same, there may be more than one isomorphism between the
topology trees, corresponding to different matches between (and consequently
different labellings of) the part structures. For each of these isomorphisms,
the corresponding parts may be geometrically more or less similar. Recall that
each part is a continuous path in D × D. Let us call the space of paths in
D ×D, Π. The simplest way (and also the algorithmically tractable way) to
define an energy is thus first to define a distance between such paths and then
add up the distances between the corresponding parts in the isomorphism.1

To be more formal: assume we have Π × Π
ε→ R+. Let M(p, p′) be the

space of isomorphisms between T(p) and T(p′) for p, p′ ∈ P. This set may
be empty. For each point p ∈ P there is a map HT(p)

ρp→ Π giving the
part corresponding to an edge in HT(p). Then, in the case that M(p, p′) is
non-empty, we define the energy of µ ∈M(p, p′) by

EQ(µ) =
∑

e∈HT(p)

ε(ρp(e), ρp′(µ(e)))(VI.2)

The idea is illustrated in figure 38.
There are of course many possibilities for the distance ε. The simplest is

a constant, thus creating a purely topological energy. A simple possibility is
to use squared differences of the lengths of the paths or the areas enclosed
by them, or fractional versions of the same. Another possibility is to first
scale the paths so that they are the same length, and then take the area of the
symmetric difference of the regions enclosed by each path. This allows parts
to be stretched versions of one another. The most complicated possibility is
to match the parts geometrically by a minimization over some space of maps.
This however would add greatly to the time complexity of the algorithm, and
moreover violates the spirit of comparing the part structures at an abstract
level.

Having defined such an energy EQ, we can then complete our definition
of equation II.3:

E(µ, i) = EQ(µ, i) + EP(domµ, i) + EB(πPdomµ, i)(VI.3)

where we have replaced q by domµ
µ→ τ .

We have left the dependence on the image in EQ for good reason. The
distances between parts summarized in ρ may depend on the image data
within those parts. What can including dependence on the image do for us
at this stage? As well as associating labels with the parts of the target, which

1This is a linear energy in the same way as those in equations III.2. By taking products of the
space of parts in the target, we can again define polynomial energies that depend on more
than one part at once, and hence could be used to encode relative articulation for example.
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FIGURE 38. Given a tree isomorphism, the corresponding
parts are matched individually and their energies summed.

are properties of the target alone and hence are simply transferred to the the
part structure we are considering, we can attach other information beyond
the geometric data inherent in the part structure and boundary. As a simple
example, we could label the part with a colour. Given a corresponding part
of a region in the image domain, we can then define ε based on a colour
matching. In the case we have been considering, this seems particularly
valuable, since colour is a useful cue for which part is the head. We can even,
if we are considering a correspondence finer than the purely topological,
attach objects such as eyes to the part, or colours for certain percentages of
the length of a part. In short, we can build up a description of a human being
in an image.

3. MICROCOSM: FIXING THE BOUNDARY

Having reached this stage, we must now consider the question of how
we are to optimize E(µ, i) over the space Q. In order to approach this task
slowly, we will first consider a reduced task, that is of interest in its own right
as a study of shape, as well as as the full problem in little.
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The reduced problem is the minimization of E for a fixed boundary. In
addition, we will effectively banish the image entirely by ignoring the possible
dependence of EQ and EP on i. We are thus dealing with a purely geometric
problem. It might be described like this: “if I view that shape as an instance
of this target shape, what is its part structure and correspondence to my target
shape?” This is by analogy to the full problem, which might be stated as: “if
I view that image as being one of a scene containing an object that projects
to this target shape, where does that object project to in the image domain,
what is its part structure, and how does it correspond to my target shape?”

Since the boundary is fixed we can drop the term EB. The remaining
terms have an interesting interpretation. Given two boundaries, b and b′,
we can pick one of them as the exemplar, let us say, b′. If we now compute
the part structure of b′ by minimizing the term EP, we can use the resulting
point p′ of P as a target. If we now minimize EQ(µ) + EP(p), where p is
constrained to have πP(p) = b, and µ ∈M(p, p′), we end up with a number,
the minimum energy. This number can be viewed as a distance between b
and b′, when b′ is viewed as the exemplar. Repeating the procedure with b
as the exemplar will not in general result in the same energy. The measure
is thus asymmetric. This is the scenario suggested in section 1.3 to explain
the asymmetry of similarity judgements in human (and pigeon) perception.
Picking the exemplar and then computing its part structure without the aid
of a target is saying “this shape defines a part structure on its own”. Its part
structure is one of its properties, just as being a ‘round number’ is one of the
properties of 100. Using the resulting part structure as the target then forces
the second boundary to be similar to the target in its part structure even if,
without such a comparison, its part structure might be rather different. It
is interpreted as an instance of the target. This discussion extends of course
to the use of targets in the full problem, and is one of the most interesting
aspects of their use.

Prior to incorporating the target though, it is useful to consider the
simplification that can be made to algorithm A when we consider a fixed
boundary.

3.1. Computing the Parts of a Boundary

If, instead of searching the full space of boundaries and part structures as
we do in algorithm A, we restrict attention to the different part structures of
a given fixed boundary in D, we find that the notion of colour so important
to algorithm A can be almost (but not quite) entirely dropped, and that we do
not need to choose certain fixed terminal points. We then have an algorithm
for the computation of self-matchings for boundary that is an improvement
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over that of [Liu97, LG97, LGK98], and that is now derived from a much
broader and richer framework.

In the continuous case, if we fix the boundary then we are no longer
dealing with the full space D ×D. We are instead dealing with S1 × S1 ⊂
D×D, the torus produced by the product of the boundary in D with itself,
with metric properties induced from D. More accurately, we are dealing
with S1 × S1/ ∼, which is an unorientable manifold diffeomorphic to a
punctured Klein bottle. The puncture, which is the boundary of S1×S1/ ∼
is isomorphic to S1. This boundary is the diagonal of S1 × S1, the set of
fixed points. The first advantage then is in the size of the hypergraph we will
construct. The number of vertices is now just the square of the number of
points in the boundary when we discretize. Since this number will scale as the
square root of the number of pixels in the image, the total number of vertices
scales as the number of pixels in the image, or the square root of what we had
before. This reduction in complexity was to be expected however, since we
are clearly drastically reducing the size of the search space. There are other
advantages that are less expected though.

A second-rank tensor can be induced on S1 × S1/ ∼. This is not an
orientation: it is symmetric. It is not the induced metric from D either,
which is positive definite. It is rather a pseudometric, with eigenvalues ±1.
As such it defines a lightcone, corresponding to those vectors with negative
length. These will be called time-like. The positive length vectors will be called
space-like. The tensor is simply π∗1ω1 ⊗ π∗2ω2 + π∗2ω2 ⊗ π∗1ω1, where the ω
are orientations on the circles and the π are the projections from S1 × S1.
Notice that the symmetry of the tensor is essential to it being well-defined on
S1 × S1/ ∼ as opposed simply to S1 × S1. The ω can typically be taken to
be dt1 and dt2, where t1 and t2 are coordinates on the circles.

Recall that the two maps σ1 and σ2 that define the self-matching must
have opposite orientations to ensure that µ is orientation-reversing. This
is equivalent to the fact that the map 〈σ1, σ2〉 from S1 into S1 × S1 (or
equivalently the map from Υ into S1 × S1/ ∼) must have tangent vectors
with negative length according to the pseudometric: the hyperpath defined
by this map must be time-like. Simply put: t1 must be increasing while t2 is
decreasing or vice-versa.

Now consider a point 〈p, v〉 in the tangent bundle of S1 × S1/ ∼. The
set of points in the past light cone of this point (which is to say the set of
points a time-like hyperpath from which could end at p with tangent vector
v) must intersect the boundary of S1 × S1/ ∼. The intersection of the
past light cone with the boundary is therefore the set of fixed points from
which a time-like hyperpath with distinguished vertex p and tangent vector v
at p could have originated. It is easy to see that if for two points 〈p, v〉 and
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〈q, u〉, these intersections are disjoint, then any time-like hyperpaths from
the boundary to these points must be disjoint too. This does not depend on
the exact identification of the terminal vertices of these hyperpaths. In other
words, given two points, we can now make a local assessment of disjointness
for a whole class of possible initial fixed points. Figure 39 shows the geometry.
The consequence is that we do not need the full notion of colour that was so
important in algorithm A to ensure disjointness. We only need a weakened
form of it, summarized in the notion of past and future lightcones. Each
vertex can come in one of two colours, corresponding to a choice of future
light cone. This is enough information to ensure disjointness and we need
place no stronger restrictions. The situation is essentially the same as the
bi-directional version of Dijkstra’s algorithm, except that here we are dealing
with hyperpaths in a hypergraph. The stopping condition still asks for two
copies of the same vertex with disjoint colours, except that now there are
only two colours. The first invariant, equation V.17, will now state that the
weight of each vertex in S is the minimum over all hyperpaths whose terminal
vertices are a subset of the intersection of the past light cone of the vertex with
the diagonal. Thus because we have a weaker notion of colour, we have a
stronger invariant. This has a very important consequence. By considering
figure 39 it is clear that the union of the intersections with the diagonal of the
past lightcones corresponding to the same vertex but with different colours
is the whole of the diagonal. This means that after the post-iteration step
in algorithm A, we will have searched all possible combinations of terminal
points for the hyperpath. Every subset of the diagonal has been considered
as a possible set of terminal vertices. Thus we have no need to pick a set of
terminal vertices or indeed to initialize the algorithm at all. All points on the
diagonal are set to zero weight at the beginning of the algorithm, and assigned
consistent future light cones. Consequently all serve as terminal vertices for
hyperpaths.

Figure 40 shows the hyperedges between pairs and triples of points that
constitute the hypergraph. These all respect the time-like nature of the
hyperpaths.

Some examples of self-matchings computed in this way are shown in the
members of the pairs in figures 42 to 46 that do not have connecting lines to
the target.

3.2. Incorporating the Target

Let us call the hypergraph of the previous section H. Its vertex set is then
VH, a discretized version of the product of the boundary with itself. Let the
topology tree of the target be S, with vertex set U and edge set E. We can
form a hypergraph from these as follows. The vertex set will be VH × 2U .
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FIGURE 39. The left hand diagram shows the torus S1 × S1.
In grey are shown boundaries corresponding to the factors.
The solid and dotted black lines are the the diagonal of the
product. Note the light cone formed by the combination
of the product structure and the diagonal. When the torus
is ‘divided’ by the action of the twist arrow, the diagonal
will become a boundary isomorphic to S1. The right hand
side of the figure is the same thing, but now the torus has
been ‘cut open’. The upper and lower sides of the square
are identified, as are the right and left sides. Glueing them
together recreates the torus in the left of the diagram. Two
points are shown, together with their past light cones. This
shows how disjointness of the intersection of the past light
cones with the boundary guarantees disjointness of time-like
hyperpaths to the points. The division by the twist arrow now
folds this diagram along the black diagonal line to create a
‘triangle’, except that the vertices of the triangle are identified,
as are two of the edges. The third edge is the boundary.
This is shown in the lower part of the figure. The two lower
directed boundaries must be identified in such a way that the
orientations match. The thick black circle at the top is the
diagonal.
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FIGURE 40. The two left hand parts of the figure show
the valency two edges containing the vertex 〈x, y〉. These
are extended beyond nearest neighbours to allow for non-
isomorphic self-matchings. Both sides of the self-matching
must advance at least one step (to 〈a, z〉 in the figure) along
the discretized boundary into the future lightcone of 〈x, y〉,
but one side may advance further (to 〈b, z〉 etc.). The right
hand side shows a valency three hyperedge containing 〈x, y〉
It can be thought of as a choice of a third point a in the future
light cone of 〈x, y〉, shown by the block arrow.

The hyperedges of valency two are {〈〈v, c〉, 〈u, c〉〉 : {u, v} ∈ HH}. The
hyperedges of valency three are of the form {〈u, c〉, 〈v, c′〉, 〈w, c′′〉}. The
conditions on them are that

{u, v, w} ∈ HH

c′′ = c ∪ c′ ∪ {s}(VI.4)

where s ∈ U is such that the forest induced by c′′ ⊂ U is a tree. (Further
conditions can be imposed if it is desired to preserve the planar ordering of
the edges around a tree vertex.) The terminal vertices required for algorithm
A are those of the form 〈d, l〉, where d is in the diagonal of VH, and l is
a leaf of S. Thus the terminal vertices of all the hyperpaths considered are
matched to leaves of the target topology tree S. We can now apply the version
of algorithm A described in the last section, with just two colours. The initial
vertices in the heap are the terminal vertices of one colour only. At any
stage, the hyperpath π(x) represented by any vertex x = 〈v, c〉 corresponds
to a rooted subtree of S induced by the vertices in c, with leaves a subset
of the leaves of S. The iteration stage ceases when a vertex x = 〈u, c, κ〉 is
drawn from the heap Ω such that a vertex y = 〈u, c′,¬κ〉 is in the set S,
where ¬κ is the colour opposite to κ, and where c ∪ c′ = U and c ∩ c′ = ∅.
The latter condition ensures that the union of the subtrees represented by c
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FIGURE 41. The figure shows some of the hyperpaths explored
by algorithm A during the iteration stage of matching to the
target. A hyperpath is represented as follows. For a vertex
〈v, c〉, the vertex v ∈ VH is represented by the median point
of its pair of matching boundary points, for example the red
dot on the right. This produces the solid lines within the
boundary on the right. The hyperedges of valency three are
the green triangles. The value of c for a vertex is represented
by the dotted lines from the right hand side to the topology
tree of the target on the left. c is the set of topology tree
vertices that correspond to ancestors of v in the hypergraph
π(v). For example, for the red dot, the value of c is the set of
red tree vertices.

and c′ is the whole of U , and thus that the topology tree of the hyperpath
formed by the union of π(x) and π(y) is isomorphic to S. The post-iteration
stage is the same as before, except that we restrict ourselves to completable
sets Z = {z = 〈v, c〉} whose second members c are disjoint and have union
equal toU . The proof goes through as before with the appropriate restrictions.
Figure 41 shows some of the hyperpaths explored by the algorithm during the
iteration stage, and their correspondence to the target tree on the left.

3.3. Demonstrations

Figures 42 to 46 show examples of part structures computed for bound-
aries with and without the use of targets. The metric we use is the inverse
delta function metric on topology trees mentioned above, supplemented by
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FIGURE 42. An example of an occluded part being restored.
The target is in red. Lines show the correspondence between
the part structures. Some lines are omitted for clarity.

FIGURE 43. An example of a spurious part being removed.

an energy ε on part matchings that simply compares lengths. In the figures,
the target is always shown in red. Its part structure is computed following the
procedure outlined at the beginning of section 3: the boundary is given and
the part structure computed in the absence of a target. The lines show the
correspondence between the part structures of the target and the boundary.

The examples demonstrate the ability of targets to ‘see’ parts where they
are expected even if the data suggests them only weakly, and to ignore parts
where they are not expected even if strongly supported by the data; and thus
complete the part structure of the boundary in the presence of occlusions and
other distortions. In the case where the boundary is allowed to vary, we would
expect this type of behaviour to complete the boundary in areas where it is
not visible in a more intelligent way than could be done without the target.
An arm or a leg could be filled in for example even if it is occluded in the
image, solely because the target suggests it should be present. The results here
are very stable to parameter variation as you might expect, since the topology
of the result is determined by the topology of the target.
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FIGURE 44. Occluded or articulated parts are separated.

4. POSTSCRIPT: THE FULL PROBLEM

In the full problem, we once again allow the boundary to vary. The model
itself for the full problem is clear, and ameliorates some of the problems
associated with the model in the absence of a target. For example, the
correspondence to the target will push up the energy of part structures with
topologies that do not match well that of the target (or perhaps it will eliminate
them entirely as in the case of the delta function metric). Consequently, the
minimum energy self-matching can be made more likely to be one with a
complex topology. The target offsets the tendency, due to the extensive
nature of the energy, to find simple topologies by skipping.

Secondly, if the energy of the correspondence to the target depends on
the geometry, then the target will effectively have a size. The energy of the
correspondence will favour those boundaries of a similar extension to the
target. Again this counteracts the effect of the extensive energy, and may
enable the abandonment of the initialization by moving the energy minimum
from its normal trivial position in P to a point representing a boundary with
a finite extension.

These questions are all moot however without the development of an
algorithm to minimize the full energy, equation VI.3. As the reader will
have guessed from the twin facts that we have already entered the postscript
for this chapter and that the next chapter is entitled “Conclusion”, such
an algorithm must await future research. It seems likely that a variant of
algorithm A can be found that would enable the problem to be solved in the
case of the constrained problem with fixed terminal vertices. In that case the
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FIGURE 45. Parts shortened by articulation are identified.

FIGURE 46. Parts shortened by articulation are identified.
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problem looks rather like that described in section 3.2, except that the need
for disjointness may create problems.

If the terminal vertices are allowed to vary, then we are faced with an ‘all-
pairs shortest path’ problem, except that now it will be an ‘all-tuples shortest
hyperpath’ that we wish to find, but including the target to avoid triviality.
Whether such an algorithm can devised, or be made efficient enough to be
considered is unknown.

Finally, there is still the possibility of a minimum ratio weight hypercycle
algorithm, which would solve all the above problems. It remains to be seen
whether and how a target might be incorporated there.
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CHAPTER VII

CONCLUSION

We show how all the methods can be viewed as functionals on
boundaries of increasing complexity. A summary of contributions is
followed by a discussion of the weaknesses of the methods presented
and of work to come.

The work described in this thesis fits into a unified framework, which
throws light on possible ways forward. Throughout the last four chapters, we
have been dealing in one way or another, with energy functionals defined on
boundaries in various spaces, represented by embeddings of the circle.

In chapter III we dealt with the space of boundaries in the single image
domain D, usually a subset of R2. This enabled us to represent average
properties of the boundary and the region contained within it by defining
appropriate energy functionals on this space. While extremely useful, the
probability distributions constructed from such energy functionals are rather
broad, giving high probability to the boundaries of almost any object in the
image, as well as to many boundaries that do not correspond to objects. As
we argued in chapter II, to perform object recognition successfully, a number
of representations at different levels of specificity are necessary to focus the
distribution on the objects we wish to find.

To create more focussed distributions, we introduced extra structure cor-
responding to more specific representations of objects. In chapter IV this
extra structure was information about the position and motion of the bound-
ary in three-dimensional space, as encoded in a correspondence between
boundaries in several single image domains. In chapter V, the extra structure
was information about the part structure of the boundary, as encoded in a
correspondence between the boundary and itself.

Both these latter structures we represented as boundaries Γ in a space
D×D. Such a boundary can always be viewed as generated by two boundaries
in D, Γ1 and Γ2. The difference between the spaces used in the two chapters
is simply that in chapter V, the Γa shared a common image γ, differing only
in their co-image, where as in chapter IV the images of the Γa were a priori
unrelated.
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In the case of part structures, energy functionals on Γ can be viewed as
functionals not only on boundaries in D×D, but on boundaries in D itself.
The optimization over the part structure itself can be separated from that over
the boundary because of the separation of the Γa into image γ and co-images
σ. In principle anyway, by optimizing over the co-images for an arbitrary γ, we
would obtain a new and complicated functional over the space of boundaries
in D, B. This functional would be focused on those boundaries with ‘good’
articulated part structures. By solving the combined optimization problem
over γ and σ, or equivalently over P, we are optimizing this complicated
functional in one fell swoop rather than in two stages. One can see the whole
process of introducing part structures solely as a method for defining this
more sophisticated functional.

The introduction of targets added another layer to the model. As can
be seen from the algorithm of the last chapter, the space of boundaries, part
structures, and part structure correspondences to the target can be seen as
hyperpaths in a certain space, although we did not formulate this explicitly. It
is to be expected that a hypercycle formulation of the problem would allow the
representation of the full space Q as a space of boundaries also. In addition,
energy functionals on Q can be regarded as defined on boundaries in D also.
Optimizing over part structure and part structure correspondence defines an
even more specific distribution on B.

In chapter IV we dealt also with the case of more than two images, which
allowed us potentially to include even more sophisticated information about
shape by examining information at three or more points at a time. We did not
take advantage of that possibility however, as we used only pairwise energies.

A picture thus emerges of extra structure defining more complex func-
tionals taking into account higher order information about the boundary γ
in the image domain. We will discuss this further in section 1.6.

1. CONTRIBUTIONS

The two main contributions of this thesis are the definition and applica-
tion of a new form of energy functional for the segmentation of regions from
single or multiple images, and the extension of the notion of functionals on
boundaries in real images to include the description of part structure. The
importance of the first lies in the properties of the functional itself, which
solve some long-standing problems in the computer vision literature. The
importance of the second lies rather in the elucidation of a theoretical frame-
work that allows the algorithmic issues to be described cleanly, thus enabling
both future developments, and, as a first consequence, the devising of an
algorithm to solve the problem of finding boundaries together with their part
structures in real images.
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1.1. Energy Functional

The functional is defined on one-dimensional boundaries (closed curves)
in manifolds. The importance of this functional to computer vision consists
in several properties deriving from its form, rather than from a commitment
to any particular choice of data. This has the consequence that very general
types of information can be incorporated into the functional.

The form of the functional enables the following important properties.
First, any functional of the new form can be globally optimized using the
same polynomial-time algorithm. It is remarkable that polynomial-time opti-
mization is possible in a space as large as that of one-boundaries in manifolds.
Previous models in computer vision do not have this property, relying as they
do upon local gradient descent methods. The ability to extract the global
optimum means that the results are guaranteed to represent a property of the
image rather than of the initialization used.

Information concerning a region in an image can be separated into two
types. One type of information concerns the relation of the region to the
rest of the image. This is associated with the boundary of the region. The
other type concerns intrinsic properties of the region itself. This is associated
to the interior of the region.1 The history of computer vision contains many
attempts to combine these two types of information, none of them fully
successful, and none of them globally optimizable. The new functional allows
the incorporation of both types of information on the same footing. It is easy
for example to combine information about region colour with information
about image function gradients on the boundary.

Without prior information indicating that the search should be directed
to large or small regions, the models that we construct should not be biased
towards one or the other. In other words, the models should be scale-invariant.
The new form of energy functional possesses this property. Previous models
are not scale-invariant. If appropriate to the task, a dependence upon scale
can be introduced into the model, thus allowing a principled and controlled
approach to region size. In addition, a scale-independent energy prevents
skipping, in which the boundary pulls away from the data solely because of
the extensive nature of the energy.

The new form of functional is defined on one-boundaries. It therefore by
definition finds closed curves. This overcomes a problem of previous contour

1This classification does not exclude the possibility that information that does not actually
lie on the boundary of the region might be compared with the rest of the image. This
comparison must however be done in a principled way. Information in the interior may be
associated with the boundary at larger scales. This type of information may be used in the
functional described here. Unfortunately this introduces the vexed but extremely important
question of how best to combine information from across scales.
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models in computer vision: the competition between closure and global
optimization. The importance of closure is known. Psychological research
has noted its contribution to contour salience in human vision, and although
occlusion means that the boundaries of objects in images are frequently
broken into open segments, human beings have the ability to complete these
segments into a closed curve. Nevertheless, the satisfactory optimization of
closed contours has remained elusive. Either the attempt has been abandoned
completely, as in the gradient descent approaches, or ad hoc and heuristic
mechanisms have been introduced. In contrast, global optimization over the
space of open curves between two fixed points is relatively simple. Attempts
have been made to generalize these approaches to closed curves, but the global
nature of topological information such as closure has resulted in failure. The
new form of energy functional provides the solution to this problem.

Other Applications. The functional is not restricted to one-boundaries
in two dimensions, although it is here that the region/boundary duality
adds extra power to the model. The model can also be applied to the task
of extracting regions and boundaries from several images simultaneously.
Problems of this type arise in computer vision when the data takes the form
of stereo pairs or motion sequences of images. The typical approach to these
problems is to try to compute a correspondence between the images that is
dense on each image. While this is useful in some contexts (for example,
visualization, graphics), it is not at all clear that it is the correct approach
for all tasks. To find an approaching missile for instance, and to identify its
distance or motion, we are not concerned with the background or indeed
with any other objects in the image. We would like to find the object and
simultaneously know its motion and/or distance. The approach described
here performs this task. In dealing with region segmentation from multiple
images, we are faced with two distinct types of information. The first is
that contained in each image in isolation. The second is the information
contained in comparisons between the images. Clearly both are important,
in the same way that both region and boundary information are important
in the single image case. The functional can incorporate both types of
information naturally.

The resulting information can be utilized in an additional way also. Most
models that compute dense correspondences use a prior probability on the
correspondence map that favours smoothness. Without such a term, the data
will typically be over-fitted. Unfortunately, some of the most important infor-
mation in the correspondence map is contained in points of very high gradient
or discontinuity. The prior models adopted for the correspondence maps tend
to smooth over this information. The introduction of non-linearities to deal
with this issue renders the problems algorithmically intractable, and so an
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alternative approach would be useful. By using the information about bound-
ary correspondences produced by the method described here to fix boundary
conditions and to weaken the smoothing terms in the vicinity of the extracted
boundaries, the performance of dense computations can be improved.

1.2. Hypergraph Framework

The description of part structure introduced in [Liu97, LG97, LGK98]
applied to boundaries in the plane, but no clear theoretical framework was
elucidated to suggest how the notion of part structure might be extended to
real images, or in other words how to optimize a functional on the combined
space of boundaries and part structures, P. The appropriate framework is that
of hyperpaths or hypercycles in a hypergraph, a novel generalization of paths
in graphs. This formulation is based on the representation of part structures
as generalized boundaries in D × D, containing well-defined and limited
types of discontinuity. An optimal hyperpath algorithm was developed as a
generalization of Dijkstra’s algorithm to this new setting.

In the special case in which we are searching for an object that has only
one part, meaning it has a global reflection symmetry, the hypergraph reduces
to a graph. No initialization is necessary and an intensive energy can be used
because the minimum ratio weight cycle algorithm applies. The model thus
possesses all the benefits described in the previous section.

In the case that discontinuities are permitted, the minimum ratio weight
cycle algorithm no longer applies because the hypergraph has hyperedges of
valency greater than two. In this case the new optimal hyperpath algorithm
solves the problem of finding boundaries and part structures simultaneously
in the case that a set of possible terminal vertices is given.

In both cases, the ability to incorporate symmetry information into such
models of boundaries in images is new, and promises many further develop-
ments.

1.3. Targets

The use of targets to further narrow the probability distribution on objects
is in itself not new. The use of templates in general falls under this rubric.
The coupling of targets, defined in terms of their part structures, to other
part structures that are coupled to boundaries that are coupled to image
data, the whole being optimized over the full space of structures to obtain an
exact MAP estimate, is however a novel form of visual system, and another,
somewhat less defined contribution of this thesis. Although this has not been
completed algorithmically, the theoretical picture is filled in and completion
seems possible. The probable effect of targets has been looked at in miniature
in the case of fixed boundaries and found to behave as expected. It remains to
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be seem whether the promise of abandoning the sequential picture of visual
processing will be fulfilled.

1.4. Theoretical Weaknesses

The energy density functional, as was demonstrated in table 2.2, is the
only simple form built from linear functionals on boundaries that makes sense
in isolation, since it is the only form that does not possess trivial solutions.
To improve it means moving to different and more complex structures. The
generalization to hypercycles to be discussed later would not change this, since
this generalization changes the space on which the functional is defined, but
not its form.

In the application to single images that we have described, the functional
cannot incorporate second order information about the boundary. In partic-
ular it cannot depend on the curvature of the boundary. In previous active
contour models, this dependence has taken the form of favouring curves with
small integrated squared curvature, thus favouring straight lines over curves
and smooth curves over jagged ones with the same average curvature. To
some extent, the regularizing effect of the denominator produces the same
effect, but it would be useful to be able to control this more effectively.

In the application to multiple images, the fact that we can only describe
correspondences between boundaries, and not between regions is counter-
intuitive and limits the effectiveness of the model. Finding an optimal (n−1)-
boundary (or equivalently open n-chain) in n dimensions, whether it be
compact or a hyperplane, is soluble in polynomial time using maximum
flow techniques (for the hyperplane case see [Ish00]); this would seem to be
because of duality. In two dimensions these latter cases collapse to the case
of one-boundaries. Unfortunately, in common with most problems beyond
one dimension, it appears that the problem of finding an optimal surface (an
open two-chain) is NP-hard.

In the application to part structures, the problems centre on the use of
hyperpaths (as opposed to hypercycles). Whether we use extensive energies,
or use algorithms for extensive energies to optimize intensive energies, we
still need to constrain the space of solutions to avoid trivialities. This means
initialization by the user or, what is equivalent, by some as yet unspecified
mechanism. Clearly this is unsatisfactory. The only case where this can be
avoided at present is when there is only one part, and hence no discontinu-
ities. In that case the search for the optimal symmetric object can be carried
out using the minimum ratio weight cycle algorithm. In the case where
discontinuities are permitted, initialization is the only choice at the moment.
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1.5. Practical Weaknesses

The practical problem with all the methods, with the exception of the
application of the energy density to single images, is memory resources. As we
have seen in chapter IV and V, both the minimum ratio weight cycle algorithm
and the optimal hyperpath algorithm use large quantities of memory, at the
limit of what is available for desktop machines, when the input is of the size
generated by image data. This is a continual problem in computer vision.
Images require a great deal of space, and any computations performed on
them require even more. At present, without access to more computational
resources, this limits what can be done to images of the order of 50 × 50
pixels. Better implementations could surely improve on this, but not greatly.
The usual caveat applies however: a year and a half ago or less, the the
minimum mean weight cycle algorithm required more memory than was
currently available on desktop machines.

1.6. Future Developments

It would be fascinating to have a hardware device that implemented
a parallel version of the minimum mean weight cycle algorithm. Despite
the algorithm’s theoretical drawbacks, this would sidestep the memory issue
and enable extremely fast extraction of regions from images. Parallelization
remains a possibility for the minimum ratio weight cycle algorithms also, since
negative cycle detection can be cast as matrix multiplication in a path algebra.
This opens the way to neural implementations and interpretations.

The absence of good exact algorithms for the optimal surface problem
need not be the end of the story if there exist good approximation algorithms,
as there are for the minimum quotient cut problem for example. Although
the optimal surface problem can be stated in graphical terms, it is more
correctly stated in terms of a two-polytope that possesses platelets in addition
to edges and vertices. In two dimensions this distinction is academic, but this
is no longer so in higher dimensions. (The difficulty can be envisaged if one
thinks of trying to find an optimal cycle by looking for subsets of vertices in
the line digraph of a given graph.) The development on algorithms on these
structures would be a useful endeavour.

Dependence on the curvature of the boundary can be incorporated by
lifting the boundary to the tangent bundle of the image domain. This can
be done by a choice of frame on the circle, although nothing should depend
on this choice. Having done this, the integrals over the boundary in the
tangent bundle can include curvature terms naturally. There are a number
of hurdles to jump to make such a scheme work. It is necessary to restrict the
optimization to boundaries in the tangent bundle that are lifts of boundaries
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in the image domain. It may not be possible to achieve this entirely, so that
self-intersecting boundaries may become a possibility for example. There is
also the question of how best to discretize the tangent bundle. The line
digraph of the graph embedded in the image domain is the natural candidate,
but this is not a very fine discretization of the tangent space at each point.
Nevertheless, the importance of curvature means that this is a worthy line of
investigation.

The description at the beginning of this chapter of all the models con-
sidered as functionals on boundaries suggests the study of such and related
things in their own right. The pattern formation and analysis community
for example [Gol97] has examined functionals on products of boundaries in

the plane, S1 × S1
γ×γ
� R2 × R2. Such functionals, quadratic on chains

as opposed to linear, can describe self-interacting boundaries, and lead to
remarkably complex shapes with specific properties. There are also of course
higher polynomials also. Another possibility, touched on in a footnote, is
the development of a model for local rotational symmetry along the lines
of the self-matching model for local reflection symmetry. This too would
be a functional on a boundary. It is worthwhile to concentrate on these
one-dimensional structures for two principal reasons. The first is that in
two dimensions there is nothing else, and images are two-dimensional. The
second is that it is well-known, and our comments above exhibit this, that
problems in dimensions above one become extremely hard to solve. This is
not so much the so-called ‘curse of dimensionality’ that plagues numerical
work in partial differential equations for example, as it is the loss of an or-
dering once we move beyond one dimension. One of the great strengths of
moving to hypergraphs is that they enable the use of one-dimensional objects
(only partially ordered in this case) to describe more complex structures.

In view of the progression from locally optimized closed curves and glob-
ally optimized paths (using Dijkstra’s algorithm) to globally optimized regions
and boundaries using the minimum ratio weight cycle algorithm, it would
seem that the most important development to be made is the extension of the
minimum ratio weight cycle algorithm to a minimum ratio weight hypercycle
algorithm. The theory to describe the structures is in place. It is possible that
no such algorithm exists with polynomial time performance, but its existence
would solve the problem of initialization and scale-dependence (and hence
skipping). If it turns out that such an algorithm does not exist, there is still
the possibility of using an intensive version of a hyperpath energy to solve at
least the skipping problem and encourage more complex topologies.

The incorporation of targets promises to alleviate some of these problems
also, and so a natural parallel development would be the incorporation of
targets into the optimal hyperpath algorithm. This seems within reach, since
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it should involve a generalization of the algorithm in chapter VI that is inverse
to the specialization from arbitrary boundaries to a fixed boundary that we
made in the absence of a target. Better still would be a combination of
the two approaches in which a target is incorporated into a minimum ratio
weight hypercycle algorithm. Such a system might actually be able reliably
to identify shapes in images, a possibility that would bring with it a great
many applications as well as the possibility of genuine empirical performance
testing. It would also confirm the approach to visual system structure that
guided the work in this thesis, which in its turn should be of great significance
to other recognition tasks and beyond.

147





APPENDIX A

Differential Forms

We give a very brief description of differential forms and provide a
dictionary to convert formulas to the language of vector calculus.

We provide a short dictionary to translate from the language of differential
forms to vector calculus, with no attempt at definitions. A good reference for
differential geometry using this language is [CBDMDB96].

Briefly, differential forms are linear functionals on antisymmetric prod-
ucts of vector spaces. For manifolds they are defined pointwise on the tangent
space at each point. They also allow a beautiful theory of integration on mani-
folds, and in this capacity they are thought of as co-chains, linear functionals on
the vector space of chains in a manifold. Their advantages are great concision
and uniformity of notation; independence of basis or coordinates; manifest
invariance to diffeomorphisms and other transformations; and generality.

Given a coordinate system xa, a local basis for the space of forms is given
by the set of dxa. These are defined so that they act on the local coordinate
basis for vector fields ∂

∂xa as

dxa(
∂

∂xb
) = δa

b

. Thus a one form can be expressed as Aadx
a (summation understood).

By convention a zero-form is a function. Bases for higher forms are formed
using antisymmetric products of the dxa, usually notated dxa∧dxb. In other
words, forms are antisymmetric covariant tensors. The wedge product ∧ acts
on any two forms and results in a form with degree equal to the sum of
the constituents. We will usually suppress the ∧. The action of a one-form
A = Aadx

a on a vector vb ∂
∂xb is then given byAav

a (summation understood).
On a manifold with metric, every one-form defines a vector field and vice-

versa. An arbitrary one-form therefore means equivalently an arbitrary vector
field. The vector field that corresponds to a one-form A will be denoted vA:
A V vA. The vector field corresponding to a one-form is that whose inner
product with other vector fields mimics the action of the one-form.
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There is a derivative operator that takes p-forms to (p+ 1)-forms. It takes
the form Aadx

a to ∂Aa

∂xb dx
b ∧ dxa. It act similarly on other forms.

The integral of a n-form F = Fa,b,...dx
a ∧ dxb ∧ . . . on an n-dimensional

manifold is ∫
M

F =

∫
M

f dx1dx2 . . . dxn(A.1)

where f = ∗F. An orientation, a nowhere-vanishing n-form, is used to decide
which half of the space of n forms is positive at each point.

In two dimensions, if the metric is Euclidean, the Hodge star works like
this: ∗AV v⊥A, where v⊥ is the rotation of v by π

2
in a direction specified by

the orientation. If the metric is not Euclidean, and if it has determinant g,
then ∗A V √

gv⊥A. In general, the Hodge star converts p-forms to (n − p)-
forms, where n is the dimensionality of the space. Since p-forms are integrated
over p-chains, the form A∗B (∧ suppressed), where both A and B are p-forms
can always be integrated over the space on which they sit. This defines an
inner product on the space of forms. The inner product of two p-forms A
and B is

� A,B � =

∫
A ∗B(A.2)

The pullback of a function f (zero-form) on a manifold N by a map
M

π→ N is given by

π∗f = fπ(A.3)

For a one-form it is slightly more complex. Recall that the derivative of π
pushes forward a vector in the tangent space at y ∈M to one in the tangent
space at x = π(y) ∈ N : π∗va = vi ∂πa

∂yi (y) in some coordinate bases xa on N
and yi on M . Then the pullback of a one-form A on N is

π∗Ay(v) = Aπ(y)(π∗v)(A.4)

The pullback of higher forms is defined similarly. The exterior derivative
commutes with pullback.

As in the main text, we will use γ to indicate an arbitrary element of the
equivalence class of maps that defines a boundary in a manifold. A region is
described in a similar way by an equivalence class of embeddings of the two-
dimensional disc, D2. An arbitrary element of the equivalence class for some
region will be denoted S. Coordinates on the co-domain will be denoted xi.
On S1, it will be denoted t and will be assumed to run from 0 to 1, although
all equations are independent of this choice (all topological niceties will be
ignored). On D2, they will be denoted ya and also assumed to run from 0 to
1.
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The integral of a one-form A on a manifold M over a boundary ∂R in
that manifold is given by∫

∂R=γ(S1)

A =

∫
S1

γastA V
∫ 1

0

dt (γ′(t), vA(γ(t)))(A.5)

where (·, ·) is the inner product onM (we need this to convert from one-form
to vector). This is independent of the choice of representative γ, as can be
seen by substitution of γε for γ.

The integral of a function on M over a boundary requires a metric on
the circle to convert the pullback of the function to a one-form. This must be
defined as the metric pulled back from M for the integral to be invariant to
change of representative.∫

S1

∗γγ
∗f =

∫ 1

0

dt |γ′(t)|f(γ(t))(A.6)

If we take the inner product of g = γ∗φwith itself (φ is a function or one-form
on M ) we find

� g, g � =� γastφ, γ∗φ�=

∫
S1

γ∗φ ∗γ γ
∗φ(A.7)

V

{∫ 1

0
dt |γ′(t)|g2(γ(t)) if g is a function,∫ 1

0
dt 1
|γ′(t)|(γ

′(t), vg(γ(t)))
2 if g is a one-form.

Naturally this is positive.
The integral of a two-form over a region R is given by∫

R=S(D2)

FV(A.8) ∫ 1

y1=0

∫ 1

y2=0

Fij(S
i(y1, y2))

∂Si

∂ya
(y1, y2)

∂Sj

∂yb
(y1, y2) dy1dy2

For the particular case of R2, Stokes’ theorem becomes∫
∂R

B =

∫
R

dBV(A.9)∫ 1

0

dt (γ′(t)⊥, vB(γ(t))⊥) =

∫ 1

y1=0

∫ 1

y2=0

∇ · (v⊥B)(S(ya)) dy1dy2
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APPENDIX B

The Minimum Ratio Weight Cycle Algorithm

Some details of this algorithm are given here, including a proof of
correctness.

The claim in section 4.3 about the relation between the minimum ratio
weight cycle problem and a related minimum weight cycle problem is proved
as follows:

PROOF. Suppose t∗ is the solution to wt(C
∗
t ), where C∗t is the minimum

total weight cycle for the weightwt. Then we have by definition that λ(C∗t∗)−
t∗τ(C∗t∗) = 0, and hence that t∗ =

λ(C∗
t∗ )

τ(C∗
t∗ )

. The claim is that t∗ is the

minimum ratio weight cycle for W (C) = λ(C)
τ(C)

, and that therefore C∗t∗ is
a minimizing cycle. Suppose this were not the case. Then there must
exist a cycle C such that t = λ(C)

τ(C)
< t∗. This however would mean that

wt∗(C) = λ(C) − t∗τ(C) < 0 or in other words that wt∗(C) < wt∗(C
∗
t∗),

contradicting the assumed minimality of C∗t∗ .
For the reverse argument, suppose that t∗ is the minimum ratio weight

for W (C) = λ(C)
τ(C)

and that C∗ is a minimizing cycle. Then by definition,

t∗ = λ(C∗)
τ(C∗)

, or in other words, wt∗(C
∗) = λ(C∗) − t∗τ(C∗) = 0. Now the

claim is that C∗ is a minimum total weight cycle for weight wt∗ , C∗t∗ , and that
its weight is zero: wt∗(C

∗) = 0. Suppose this were not the case. Then there
must exist a cycle C such that wt∗(C) < wt∗(C

∗) = 0. This however would
mean that λ(C) − t∗τ(C) < 0, or in other words that W (C) = λ(C)

τ(C)
< t∗,

contradicting the assumed minimality of t∗. �

Time Bound. The pseudo-polynomial bound on the execution time comes
about as follows. We define λ and τ on sets of edges by summation. Let τ0
be the maximum value of τ over E. Let C1 and C2 be two cycles with distinct
ratios. Then ∣∣∣∣λ(C1)

τ(C1)
− λ(C2)

τ(C2)

∣∣∣∣ 6= 0
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or ∣∣∣∣λ(C1)τ(C2)− λ(C2)τ(C1)

τ(C1)τ(C2)

∣∣∣∣ 6= 0(B.1)

Since the left hand side of equation B.1 is non-zero, and all the data are
integer, the numerator must be at least 1 in absolute value. The denominator
is at most τ 2

0 . Thus on each iteration, the value of t must decrease by at least
1
τ2
0

.
Let λ0 be the maximum absolute value of λ over E. Then again be-

cause the data is integral, the minimum ratio weight must lie in the interval
[−λ0, λ0]. The algorithm therefore cannot iterate more than 2λ0τ

2
0 times.

Since on each iteration, the negative cycle detection algorithm has time bound
O(mn), the pseudo-polynomial bound on the time is O(λ0τ

2
0mn). In our

case, the edge weights do not depend on the size of the graph, since they are
related to the maximum image function value, which is independent of image
size. The pseudo-polynomial bound is therefore polynomial in our case.

Negative Cycle Algorithm and Zero Cycle Detection. The negative cycle de-
tection algorithm used in the algorithm was a dequeue implementation of a
modified label-correcting algorithm for computing the shortest path lengths
from a source vertex s to all v ∈ V . The generic label-correcting algorithm
maintains labels d for each vertex. These are upper bounds on the shortest
path lengths. It selects edges e = 〈u, v〉 one at a time and updates them if
d(v) > d(u) + w(e), where w is the edge weight function. The modified
label-correcting algorithm instead removes vertices u from a list and updates
the vertices v for which 〈u, v〉 ∈ E. If v is not in the list, it is added. Both
these algorithms are pseudo-polynomial [AMO93]. There is an O(mn) im-
plementation of the generic label-correcting algorithm that uses a queue as
the list structure, adding updated vertices to the back. The dequeue imple-
mentation of the modified label-correcting algorithm is pseudo-polynomial
but the fastest in practice, especially on sparse graphs such as lattices. In this
version, the list is maintained as a dequeue. The vertices are always removed
from the front of the queue but may be added to the front or the back. It
is added to the front if it has been in the list earlier. Otherwise it is added
to the back. The idea is that if v has been seen before, it will have updated
some other vertices, its out-neighbours. If it is updated again, it is best to
update these other vertices immediately, rather than first remove them from
the list with old (and probably out of date) values, and update their out-
neighbours, only to have to update those same out-neighbours a second time
when v is eventually removed from the list. The time bound on this imple-
mentation is O(min(nmwmax,m2n)), where wmax is the maximum absolute
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value of w over E. Experiments show that in practice this implementation is
approximately linear time.

There are several ways of detecting negative cycles while running these
algorithms. If the label of a vertex slips below −nwmax, then a negative cycle
exists. One can also check whether the predecessor graph from each vertex
has a cycle. If it does, this cycle must be negative, since no positive cycle can
form part of the predecessor graph. This takes O(n) time, and so does not
slow down the algorithm if it is done every αn distance updates.

Finally, when the algorithm terminates, the way to find the zero length
cycles is simply to adjust the edge weight for each edge e = 〈u, v〉 to
w̃(〈u, v〉) = w(e) + d(v) − d(u), where d are the shortest path lengths
computed by the label-correcting algorithm. Now a new graph G0 is formed
by removing all edges except those with w̃(e) = 0, along with disconnected
vertices. Now cycles in G0 correspond to zero length cycles in G with edge
weights w̃. Finding cycles in G0 is accomplished in the standard depth-first
labelling fashion, looking for a back edge. In this way, it is possible to find
degenerate minima.

There are even more efficient negative cycle detection algorithms based
on a transformation to a matching problem. When wmax is polynomial in n,
these offer a time-bound of O(n1/2m log(nwmax)).

General Ratio Problem. As mentioned in the text, the approach used for
minimum ratio weight cycles works for any problem of the following form.
Given a set X , and two functions f and g, with g positive, find x ∈ X that
minimizes the ratio f(x)/g(x). The principal result is that for combinatorial
problems of size n (the number of variables), the minimum ratio weight prob-
lem can be solved in no more than log(n) ordinary optimization problems.
Define F = f − tg. The bound depends on methods for finding the x with
minimum F when F is positive, and for detecting an x with F (x) < 0 when
it is not. If we can perform only the latter operation efficiently, then the ratio
problem may require a polynomial number of such detection operations.
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