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Abstract. We consider the problem of recognizing an object from its
silhouette. We focus on the case in which the camera translates, and
rotates about a known axis parallel to the image, such as when a mo-
bile robot explores an environment. In this case we present an algorithm
for determining whether a new silhouette could come from the same ob-
ject that produced two previously seen silhouettes. In a basic case, when
cross-sections of each silhouette are single line segments, we can check
for consistency between three silhouettes using linear programming. This
provides the basis for methods that handle more complex cases. We show
many experiments that demonstrate the performance of these methods
when there is noise, some deviation from the assumptions of the algo-
rithms, and partial occlusion. Previous work has addressed the problem
of precisely reconstructing an object using many silhouettes taken under
controlled conditions. Our work shows that recognition can be performed
without complete reconstruction, so that a small number of images can
be used, with viewpoints that are only partly constrained.

1 Introduction

This paper shows how to tell whether a new silhouette could come from the
same object as previously seen ones. We consider the case in which an object
rotates about a single, known axis parallel to the viewing plane, and is viewed
with scaled orthographic projection. This is an interesting subcase of general
viewing conditions. It is what happens when a person or robot stands upright
as it explores a scene, so that the eye or camera is directed parallel to the floor.
It is also the case when an object rests on a rotating turntable, with the camera
axis parallel to the turntable.

It is easy to show that given any two silhouettes, and any two viewpoints,
there is always an object that could have produced both silhouettes. So we sup-
pose that two silhouettes of an object have been obtained to model it, and ask
whether a third silhouette is consistent with these two images. We first charac-
terize the constraint that two silhouettes place on an object’s shape, and show
that even when the amount of rotation between the silhouettes is unknown, this
constraint can be determined up to an affine transformation. Next we show that
for silhouettes in which every horizontal cross-section is one line segment, the
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question of whether a new silhouette is consistent with these two can be reduced
to a linear program. Linear programming can also be used to test a necessary,
but not sufficient condition for arbitrary silhouettes. We provide additional al-
gorithms for silhouettes with cross-sections consisting of multiple line segments.
We describe a number of experiments with these algorithms.

Much prior work has focused on using silhouettes to determine the 3D struc-
ture of an object. Some work uses a single silhouette. Strong prior assumptions
are needed to make reconstruction possible in this case (eg., [10/1/419]). A second
approach is to collect a large number of silhouettes, from known viewpoints, and
use them to reconstruct a 3D object using differential methods (eg., [5], [3], [12],
[11]]) or volume intersection (eg., [8], [2]). These methods can produce accurate
approximations to 3D shape, although interestingly, Laurentini[7] shows that
exact reconstruction of even very simple polyhedra may require an unbounded
number of images. Our current work makes quite different assumptions. We con-
sider using a small number of silhouettes obtained from unknown viewpoints
and ask whether the set of prior images and the new image are consistent with
a single 3D shape without reconstructing a specific shape.

2 Constraints from Two Silhouettes

Let p,q,r denote the boundaries of three silhouettes. Let P, @, R denote the
filled regions of the silhouettes. When rotation is about the y axis, there will
be two 3D points that appear in every silhouette, the points with highest and
lowest y values. Denote the image of these points on the three silhouettes as:
P1,P2,q1,q2,71,72. Let M denote the actual 3D object.
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Fig. 1. Left: Two silhouettes with bottom points aligned. Middle: The y = i plane.
Right: Rectangular constraints project to a new image.

Given two silhouettes, p and ¢, we can always construct an object that can
produce p and ¢, with a method based on volume intersection (eg., [8]). We
may assume, without loss of generality (WLOG), that rotation is about the
y-axis (when we consider three silhouettes this assumption results in a loss of
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generality). Also, WLOG assume that the silhouettes are transformed in the
plane so that p; = g1 = (0,0) (see Figure [I], left), and the tangent to p and ¢ at
that point is the x axis. Assume the silhouettes are scaled so that ps and go have
the same y value. Assume also WLOG that M is positioned so that the point on
M that projects to p; is placed at (0,0,0). Moreover, we can assume that M is
projected without scaling or translation. That is, in this setup, we can assume
the object is projected orthographically to produce p, then rotated about the y
axis, and projected orthographically to produce gq.

If we cut through P and () with a single horizontal line, y = i, we get two line
segments, called P; and @Q;. Denote the end points of P; by (P; min, ), (Pi,maz)-
These line segments are projections of a slice through M, where it intersects the
plane y = i. Call this slice M;. The segment P; constrains M;. In particular, in
addition to lying in the y = ¢ plane, all points in M; must have P ;i < z <
P smaz, and there must be points on M; for which F; ,,;, = = and for which
x = P; mas (and there must be points on M, that take on every intermediate
value of x). We get constraints of this form for every ¢. Any model that meets
these constraints will produce a silhouette p.

Now, suppose that @ has been produced after rotating M by some angle, 6
(see Figure[ll, middle). The constraints that @ places on M have the same form.
In particular, P; and ); provide the only information that constrains M;. Howe-
ver, the constraints (Q; places are rotated by an angle 6 relative to the constraints
of P;. Therefore, together, they constrain M; to lie inside a parallelogram, and
to touch all of its sides. Therefore, we can create an object that produces both
silhouettes simply by constructing these parallelograms, then constructing an
object that satisfies the constraints they produce.

We denote the entire set of constraints that we get from these two images
by Cy. We now prove that it is not important to know 6, because the set of
constraints that we derive by assuming different values of 6 are closely related.
Let C'z denote the constraints we get by assuming that 6 = 7. Then

1 00
Lemma 1. TyCy = C% where: Ty = 0 1 0
—cosf 0sind

That is, Cy consists of a set of parallelograms, and applying Ty to these produces
the set of rectangles that make up C'z.

We omit the proof of this lemma for lack of space. This shows that Cy and
Cz are related by an affine transformation. Since the affine transformations form
a group, this implies that without knowing 6 we determine the constraints up
to an affine transformation. This is related to prior results showing that affine
structure of point sets can be determined from two images ([6]). However, our
results are quite different, since they refer to silhouettes in which different sets
of points generate the silhouette in each image, and our proof is quite different.
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3 Comparing Three Silhouettes

3.1 Silhouettes with Simple Cross-Sections

Now we assume that the third silhouette r is generated by again rotating M
about the same axis. This problem is easier than the case of general rotations,
because each of the parallelograms constraining M project to a line segment. For
any other direction of rotation, they project to parallelograms. To simplify nota-
tion we refer to C'z as C. These constraints are directly determined by assuming
that p constrains the x coordinates of M, and ¢ constrains the z coordinates.
The true constraints, Cy, depend on the true angle of rotation between the first
two images, which is not known.

We can translate and scale r so that the y coordinates of the tops and bottoms
of the silhouettes are aligned. This accounts for all scaling, and all translation
in y. We may then write the transformation that generates r in the form:

cos¢ 0sing
T¢M—<(1)(1)8> 0 1 0 M+<é>
—sing 0 cos ¢

which expresses x translation of the object, rotation about the y axis by ¢,
and then orthographic projection. We now examine how this transformation
projects the vertices of the constraining parallelograms into the image. As we
will see, the locations of these projected vertices constrain the new silhouette
r. Since C' = TypCy, we have Te_lO = Cy. Therefore, the projection of the true
constraints, T4Cy = T¢,T9_1C, or:

sin ¢ cos 6 sin ¢
— COS(j)— sin 0 0 sin 0 t
T¢09_( 0 1 0)C+<0

. . . [ a 0b t . _ sin ¢ cos 6 _
We will abbreviate this as: (0 1 O) C+ (0) with a = cos ¢ — =—7—,b =
sin ¢

>3- a,b and t are unknowns, while the constraints, C' and the new silhouette r
are known. Our goal is to see if a,b and ¢ exist that match the constraints and
silhouette consistently.

Constraints on transformation parameters. We will be assisted by the
fact that the projection of the constraints can be described by equations that
are linear in a, b and t. However, because a and b are derived from trigonometric
functions they cannot assume arbitrary values. So we first formulate constraints
on these possible values.

We can show (derivation omitted) that a and b are constrained by:

—1<la[ =<1 —(Ja| +[b)] <1 < |af + [0

and that any a and b that meet these constraints lead to valid values for 6 and
¢. For any of the four possible choices of sign for a and b, these constraints are
linear on a and b.
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Constraints from new silhouette. Now consider again a cross-section
of the constraints, C;, and of the filled silhouette, R; (see Figure [). C;
is a rectangle, with known vertices d;i,d;2,d;3,d;4. Specifically: d;1 =
(Pi,minv iv Qz,min) di,2 = (R,mam 1’; Qi,min) di,B = (Pi,min; ia Qi,mam) di,4 =
(Pi,maza ia Qi,maz)~

Under projection, these vertices map to a horizontal line with y = ¢ . We
will consider constraints from just one y = 4 plane, and drop i to simplify
notation. Call the x coordinates of these projected points d}, db, df, d;. That is,
d; = (a,0,b) - dj + t. Notice that the sign of a and b determine which of these
points have extremal values. For example, a,b > 0 = d} < dj,d) < ds. We
continue with this example; the other three cases can be treated similarly.

R; is a line segment, with end points whose = values we’ll denote by ey, es,
with e; < es. Since M is constrained to lie inside C; in the y = ¢ plane, we
know that e; and es; must lie in between the two extremal points. That is:
dy < ey, eg <dj. Furthermore, we know that M touches every side of C;. This
means that the projection of each side must include at least one point that is in
R. This will be true if and only if: e; < dfy, e; < dj, dyp <eq, dj <es.

These are necessary and sufficient constraints for r to be a possible silhouette
of the shape that produced p and g. Finally, since dj = (a,0,b) - d; + ¢ these
constraints are linear in a,b, and t. As noted above, for a,b > 0 we also have
linear constraints on a and b that express necessary and sufficient conditions for
them to be derived from rotations. So we can check whether a new silhouette is
consistent with two previous ones using linear programming.

Because of noise, the constraints might become slightly infeasible. It is the-
refore useful to specify a linear objective function that allows us to check how
close we can come to meeting the constraints. We can write the constraints as,
for example, (a,0,b)d; 1+t < R min—A. Then we run a linear program to satisfy
these while maximizing A. The constraints we have derived are all met if these
constraints are met with A > 0. If A < 0 then A provides a measure of the degree
to which the constraints are violated.

3.2 Silhouettes with Complex Cross-Sections

Up to now, we have assumed that a horizontal cross-section of a silhouette con-
sists of a single line segment. This will not generally be true for objects with
multiple parts, holes, or even just concavities. These multi-line silhouettes com-
plicate the relatively simple picture we have derived above. We wish to make
several points about multi-line silhouettes. First, if we fill in all gaps between
line segments we can derive the same straightforward constraints as above; these
will be necessary, but not sufficient conditions for a new silhouette to match two
previous ones. Second, if we merely require that the new silhouette have a num-
ber of lines that is consistent with the first two silhouettes, this constraint can
be applied efficiently, although we omit details of this process for lack of space.
Third, to exactly determine whether a new silhouette is consistent with previous
ones becomes computationally more demanding, requiring consideration of eit-
her a huge number of possibilities, or an explicit search of the space of rotations.
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But if we make a simple genericity assumption, the complexity can be reduced
to a small size again.
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Fig. 2. Here we show two silhouettes, P and @, that have cross-sections that consist
of two line segments. On the right we show how the i cross-section leads to four par-
allelograms that must contain the object. Either the dark grey pair (01,1, 02,2) or the
patterned pair (01,2, 02,1) must contain parts of the object. A third viewing angle, labe-
led “feasible angle” is shown for which this object may appear as a single line segment.
An infeasible angle is also shown; from this viewpoint the object must produce two line
segments in the image. Our system uses this constraint, though we omit details of how
this is done. In some cases we make a continuity assumption across cross-sections. On
the left, this means that, for example, if P;; matches Qi1 (01,1 contains part of the
object) then P;y1,1 matches Qiy1,1.

In the example shown in Figure[2, we can suppose either that 011 and og 2 are
occupied, or that 01 2 and o0g1 are occupied (there are other possibilities, which
we can handle, but that we omit here for lack of space). When we assume, for
example, that o1,; contains part of the object we can say that P; ; is matched to
Q;,1. Each of the two possible ways of matching (P; 1, P; 2) to (Qi,1, Q;,2) must be
separately pursued, and gives rise to separate constraints that are more precise
than the coarse ones we get by filling in the gaps in multi-line cross-sections.
Suppose that for k consecutive cross-sections, the first two silhouettes each have
two line segments. If we consider all possible combinations of correspondences
across these cross-sections, we would have 2% possibilities, a prohibitive number.
But we can avoid this with a simple genericity assumption. We assume that in 3-
D, it does not happen that one part of an object ends exactly at the same height
that another part begins. This means that given a correspondence between line
segments at one cross-section, we can typically infer the correspondence at the
next cross-section.

3.3 Occlusion

The methods described above can also be applied to partially occluded silhouet-
tes. To do this, something must be known about the location of the occlusion. For
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Fig. 3. Seven objects used in experiments.

example, if a cross-section is known to be occluded in one silhouette, that cross-
section can be discarded. If a cross-section is known to be partially occluded in
the third silhouette, the visible portion can be required to lie inside the projec-
tion of the constraining parallelogram derived from the other two. Occlusion may
not only make it impossible to derive constraints from occluded cross-sections,
it may also create uncertainty in determining which cross-sections correspond to
each other. For example, if the bottom of an object is blocked in a third view,
we will not know how many cross-sections are occluded. We can solve this by
searching through different scalings of the silhouette, which imply different pos-
sible ways of matching its cross-section to the first two silhouettes. We can then
select the scale or scales that allow the resulting constraints to be met.

3.4 Experiments

We test these ideas using the objects shown in Figure Bl Our experimental system
varies in which approach we use to handle multi-lines.

Experiment 1: First, we experiment with coarse constraints that fill in
any gaps present in a silhouette cross-section. Also, we heuristically throw away
some constraints that may be sensitive to small misalignments between different
silhouettes. In this experiment we use five silhouettes taken from a figure of Snow
White (Figure H) photographed after rotations of 20°. First, all ten triplets
of these silhouettes are compared to each other. In all cases they are judged
consistent (A > 0). Next, we compared each pair to 95 silhouettes, taken from
the objects shown in Figure[3. About 6% of these other objects are also judged
consistent with two Snow Whites (see Figure ).

Percent False Positive
= Noow B a o ~ ® © S

1 1 1 t t 182 183 184 1&5 283 284 285 384 35 485

Snow White Pairs

Fig. 4. Silhouettes of Snow White, numbers one to five from left to right. On the right,
experimental results.
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Fig. 5. On the left, silhouettes of Hermes. On the right, experiments comparing pairs
of these to either a third silhouette of Hermes (first ten data points, shown as circles) or
to silhouettes of other objects (shown as crosses). A horizontal line at A = —5 separates
correct answers with one false positive.

Experiment 2: Next, we performed a similar experiment using the silhou-
ettes of Hermes in Figure Bl The axis of rotation was tilted slightly, so that the
images do not exactly lie on a great circle on the viewing sphere. We heuristically
compensate for this by searching for good in-plane rotations. For all 10 triples of
silhouettes of Hermes, we obtain values of A ranging from -4.4 to 1.7. However,
when we compare randomly chosen pairs of Hermes silhouettes to randomly cho-
sen silhouettes of the other five objects, we obtain only one case in twenty-five
with X larger than -4.4; other values are much smaller (see Figure []).

Wil

Fig. 6. The two figures on the left show the first and second silhouettes of the object
used in experiment 4. The third silhouette shows this object from a new view. The
fourth silhouette shows the same view with the object scaled so that its cross-sections
are 1.8 times as big. This silhouette cannot be matched to the first two without greatly
violating the constraints (A < —12).

Experiment 3: We now show an experiment in which we search through pos-
sible correspondences between different object parts. We use a synthetic shape,
vaguely like a human torso (Figure ). Given three silhouettes, there are four
possible correspondences between the “hands”. We consider all four, then use the
continuity constraint to determine correspondences at subsequent cross-sections.
We compare two silhouettes to a third in which the shape has been “fattened”,
so that the cross-section of each part is scaled by a constant factor. When scale is
1, therefore, the third silhouette comes from the same object that produced the
first two. In Figure [ we show how A varies with scale. We also show what hap-
pens if we do not hypothesize correspondences between the parts of the figure,
but just fill in gaps in multiline cross-sections to derive a simple, conservative
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Fig. 7. On the left, we show how X varies as the third silhouette scales. A scale of 1
means the third silhouette comes from the same object as the first two. On the right,
we show this when individual parts are not matched, and only coarser constraints are
derived by filling in all gaps in each cross-section of each silhouette. Note that the
horizontal scale is approximately ten times larger on the right.

set of constraints. For an object like this, with small parts widely separated, this
approach is much too conservative.

4 4 494 A4 A

Fig. 8. On the left, the third Snow White silhouette, half occluded. The next two
images show one hypothesized occlusion of the first two silhouettes that match this;
the last two images show a second (false) match.

Experiment 4: Finally, we experiment with a case in which the first two
Snow White silhouettes are matched to the third, but the bottom half of the
third is occluded. In this case we try matching this half-silhouette to some top
portion of the other two silhouettes, considering all possible top portions. We
find two regions in the set of possible scales in which the third silhouette matches
portions of the first two within one pixel of error; either when the first two are
supposed about half occluded (the correct choice) or when they are supposed
about 70% occluded (incorrect). Both are shown in Figure

4 Conclusions

We have analyzed the problem of object recognition using silhouettes. We es-
pecially focus on the problem in which our knowledge of an object comes from
seeing it from only a few viewpoints, under relatively unstructured viewing con-
ditions, and in which we do not have a priori knowledge that restricts the model
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to belong to a special class of objects. This situation has not been much ad-
dressed, presumably because in this case it is not possible to derive a definite
3D model. However, we show that even though we may have considerable un-
certainty about the 3D object’s shape, there is still a lot of information that we
can use to recognize the object from new viewpoints. This fits our general view
that recognition can be done by comparing images, if our comparison method is
based upon the knowledge that images are the 2D projections of the 3D world.

Our analysis has been restricted to the case where the objects or camera
rotate about an axis that is parallel to the image plane. This is a significant
restriction, but we feel that this case is worth analyzing for several reasons.
First, it occurs in practical situations such as when a mobile robot navigates in
the world, or in images generated to study human vision. Second, this analysis
gives us insight into the more general problem, and provides a starting point for
its analysis.
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