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ABSTRACT

Two main issues arise when working in the area of texture
segmentation: the need to describe the texture accurately by
capturing its underlying structure, and the need to perform
analyses on the boundaries of textures. Herein, we tackle
these problems within a consistent probabilistic framework.
Starting from a probability distribution on the space of in-
finite images, we generate a distribution on arbitrary finite
regions by marginalization. For a Gaussian distribution, the
computational requirement of diagonalization and the mod-
elling requirement of adaptivity together lead naturally to
adaptive wavelet packet models that capture the ‘significant
amplitude features’ in the Fourier domain. Undecimated
versions of the wavelet packet transform are used to diag-
onalize the Gaussian distribution efficiently, albeit approxi-
mately. We describe the implementation and application of
this approach and present results obtained on several Bro-
datz texture mosaics.

1. INTRODUCTION

Texture plays an important role in the analysis of images.
The need to describe it accurately forms an integral part of
many classification, segmentation, and retrieval methods in
various application areas [1]. Over the years, many different
approaches have been developed to analyse texture, includ-
ing statistical, geometrical, model and spectral based meth-
ods. For a full overview, see [1] and [2].

One research area which has been extremely active in
recent years is the application of wavelets to texture analy-
sis [3, 4]. By providing a multiresolution view of the im-
age, wavelets are the perfect tool for examining texture at
different scales. An example is the Hidden Markov Tree
technique developed by [5], which describes the interscale
dependencies of a standard wavelet decomposition. Oth-
ers have investigated the use of wavelet packets as a texture
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analysis tool. In [6], packets were used in a classification
experiment on natural textures. Since [7], many attempts
have been made to adapt the wavelet (or wavelet packet)
decomposition to the underlying structure of the texture, for
example [8] and [9], but these methods have not been devel-
oped within a coherent probabilistic framework.

We address the issue of texture description within a prob-
abilistic framework. Starting from probability distributions
for infinite textures, in this paper assumed Gaussian, we de-
rive the distribution for the texture on a finite region. This
leads naturally to a class of adaptive wavelet packet mod-
els that capture the structure of a given texture, for exam-
ple its principle periodicities, in a manner analogous to the
Wold decomposition [10]. A simple classification rule en-
ables pixelwise classification of the image while retaining
the advantages of more complicated prior models.

The paper is organized as follows. Section 2 details the
development of our models. In section 3, we describe how
we learn the model parameters. Section 4 describes the ap-
plication of our models to the segmentation of textured im-
ages. In section 5, we show results of the segmentation pro-
cedure on Brodatz [11] texture mosaics. Finally, in section
6, we conclude and discuss future work.

2. MODELLING PLANAR PARALLEL TEXTURE

One of the characteristics of planar texture, perhaps its defin-
ing characteristic, is that it is infinitely extendable, so that
images are functions on an infinite (or at least very large)
domainD∞. Thus in order to model such textures accu-
rately, one needs a distribution over the space of such im-
ages. We denote such a distribution by:

Pr(I|µ ≡ m,Km) (1)

whereI is the infinite image;Km is the set of parameters
of the model of texturem ∈ M , the set of textures; and
µ : D∞ → M is the class map, which here takes every
pixel to texturem.



For practical applications such as image segmentation,
one needs to be able to analyse and segment images that
contain many different arbitrarily shaped finite textured re-
gions, which means that one needs, not the distribution on
infinite images, but that on finite, arbitrarily shaped images.
We thus need to marginalize equation (1) over the values of
the pixels outside the desired region.

Let Φ be the space of infinite images andR ⊂ D∞ a
region. There exist two projections,PR andPR̄, and two
injections,iR andiR̄, which generate an orthogonal decom-
position ofΦ:
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Φ ∼↔PR(Φ)⊗ PR̄(Φ) = ΦR ⊗ ΦR̄ (3)

If we now marginalise Pr(I|µ ≡ m,Km) overΦR̄, we will
end up with the probability measure for the image on the
finite regionR:

Pr(IR|·) =
∫

ΦR̄

Pr(I|·) (4)

which, in principle at least, solves the boundary problem for
texture.

2.1. Gaussian Distribution

In this paper, as mentioned in section 1, we choose to model
texture using a Gaussian distribution, developing this model
as outlined above. In abstract notation, a Gaussian distribu-
tion can be expressed as:

P (I|·) = |F |1/2e−〈I|F |I〉 (5)

where〈I|J〉 is the inner product of the functions|I〉 and
|J〉 in the space of images, and|F | is the determinant of the
operatorF . In the position basis, this distribution takes the
form:

P (I|·) = |F |1/2e−
∑

(x,x′)∈D∞ I(x)F (x,x′)I(x′) (6)

whereF (x, x′), the inverse covariance matrix, captures spa-
tial correlations in the imageI. It is diagonal in the position
basis only if the values of the pixels in the image are inde-
pendent of each other.

Corresponding to the orthogonal decomposition of the
space of infinite images by the mapsPR andPR̄, the opera-
tor F can be split up as follows:

F =
(

FRR FRR̄

FR̄R FR̄R̄

)
(7)

whereFRR relates the pixels inR to each other,FRR̄ relates
pixels in R̄ to those inR, FR̄R relates pixels inR to those
in R̄, andFR̄R̄ relates pixels in̄R to each other.

Partitioning the operatorF in this manner and marginal-
ising overΦR̄, as in equation (4), gives us the following
probability measure for the imageIR on the finite regionR:

Pr(IR|·) = Z−1e−〈IR|GR|IR〉 (8)

whereGR ≡ FRR − FRR̄ (FR̄R̄)−1
FR̄R.

Although in principle we can evaluate this operator and
the exponent of equation (8), in practice computational com-
plexity requires that we diagonalizeGR.

2.2. Diagonalization of the operatorGR

If we can find a setB = {|a〉 ∈ ΦR : a ∈ A} of functions
on the regionR such that:

1. The set{iR|a〉 : a ∈ A} of infinite images are eigen-
functions of the operatorF (with eigenvaluesfa);

2. The setB forms an orthonormal basis forΦR;

then we can diagonalize the operatorGR. The first condi-
tion implies that the support ofFiR|a〉 lies in the region
R. Thus the second term inGR is zero, and the first term
becomesfa|a〉. Hence:

〈a|GR|a〉 = fa〈a|a〉 (9)

The second condition then means thatGR is diagonalized
by B, allowing us to write our distribution as:

Pr(IR|·) = Z−1e−
∑

a∈A fa〈IR|a〉〈a|IR〉 (10)

How do we find such a setB?

2.3. Using Wavelet Packets

One of the characteristics we demand from our distribution
is that of translational invariance. This condition makes
our operatorF diagonal in the Fourier basis,F (k, k′) =
f(k)δ(k, k′), which means that our distribution is now char-
acterized by a functionf on the Fourier domain:

Pr(I|·) = |F |1/2e−
∑

k f(k)I∗(k)I(k) (11)

For an arbitrary functionf(k), it is very hard to find a setB
that satisfies the conditions in Section 2.2. We thus want to
choose a set of functionsf that is varied enough to capture
the structure present in the texture, but limited enough that
we can satisfy the conditions. To this end, consider the set
T of dyadic partitions of the Fourier domain. We define a
set of functionsF by:

F =
⋃

T∈T
FT (12)



whereFT = {f : f is piecewise constant onT}. Given an
element ofT ∈ T , and a mother wavelet, we can define
a wavelet packet basisBT . Each element of this basis has
frequency support that lies approximately in one of the ele-
ments of the partitionT . The basis elements are thus ap-
proximate eigenfunctions of the operators defined by the
functions inFT . Those basis elements whose support lies
in R thereby satisfy condition 1.

Our next task is to complete the set of wavelets inside
the regionR in order to make a basis for the region and in
doing so satisfy condition 2. How we do this depends on
the shape ofR. We consider two possibilities: dyadic and
arbitrarily shaped regions.

3. PARAMETER ESTIMATION

For the first case, we can use a decimated wavelet packet
decomposition to obtain a basis forR. Given a partitionT
and a functionf ∈ FT , the distribution for a dyadic region
R takes on the form:

Pr(IR|f, T ) =
∏
α

[(
fα

π

)Nα/2

e−fα

∑
i∈α w2

α,i

]
(13)

whereα is the index for the subbands ofT ; fα is the value
of f on subbandα; i is an index for the individual wavelets
within each subband;wα,i is the〈α, i〉wavelet coefficient of
the image; andNα is the number of coefficients in subband
α.

When estimating the parameters of a texture, we can
choose to use dyadic sample images. In our experiments,
for each texture, we used64 patches, each of size256×256.
To find the optimal parameters for a given texture we exam-
ine the probability

Pr(f, T |d) ∝ Pr(d|f, T )Pr(f |T )Pr(T ) (14)

whered is the training data used for a given texture.
We assume Pr(f |T ) to be uniform, and choose the prior,

Pr(T ), to penalize large decompositions:

Pr(T ) = Z−1(β)e−β|T | (15)

where|T | is the number of elements in the partition. The
probability Pr(d|f, T ) is given by equation (13). Differenti-
ating with respect tofα gives us the maximum a posteriori
(MAP) estimate off for fixedT :

f̂α =
Nα

2
∑

i∈α w2
α,i

(16)

We use a depth-first search through the spaceT to find the
exact MAP estimates for bothT and f . Figure 1 shows
two examples of texture models that were trained using this
algorithm.

a) b)

c) d)

Fig. 1. a) Texture D101 and b) its optimal decomposition;
c) Texture Raffia and d) its optimal decomposition.

4. CLASSIFICATION

For arbitrarily shaped regionsR, dyadic wavelet packets no
longer form a basis. There are two problems. First, the
basis elements may not be aligned with the boundary and so
include information from outsideR. Second, a shifting of
R with respect to the basis elements will produce a different
representation of the same texture.

To ameliorate this situation, we complete the basis in
R using the following approximate scheme. For each sub-
band, we take the geometric mean, over all translations, of
the probabilities of the parts of the translated versions of the
subband that lie withinR, and then recombine these proba-
bilities to give a probability for the image inR. The effect is
to create an undecimated wavelet decomposition ofR. The
distribution takes on the following form:

Pr(IR|f, T ) =
∏
α

∏
x∈R

[(
fα

π

) 1
2Mα

e−
fα
Mα

w2
α,x

]
(17)

whereMα is the redundancy factor for subbandα: the num-
ber of pixels between wavelets in the subband. Note that this
distribution is not the same as that found by assuming that
the coefficients in the undecimated wavelet decomposition
are independently distributed.

Given the probability of a region of each texture, we
assume that the probability of a finite composite imageID,
with domainD and class mapµ : D → M , is:

Pr(ID|µ, {Km}) =
∏

m∈M

Pr(IRm
|µRm

≡ m,Km) (18)

whereRm ⊂ D = µ−1(m), the region with classm. The
probability of a class map is then given by:

Pr(µ|ID, {Km}) ∝ Pr(ID|µ, {Km})Pr(µ) (19)



With a trivial prior, due to the form of equation (17), we
could perform a pixelwise maximum likelihood classifica-
tion of the image. In practice, we know thatµ is likely to
be somewhat regular. We could define a Potts prior and use
simulated annealing to make a MAP estimate ofµ. This of
course is very slow, and it turns out that another approach
produces results that are as good, if not better, while remain-
ing extremely quick. We use the following classification
rule:

µ̂(x) = arg max
m∈M

∏
x′∈V (x)

Pr(ID(x)|µ(x′) = m) (20)

whereV (x) is the set of neighbours of pixelx. This rule has
a similar effect to the Potts prior, but it still allows a pixel-
wise classification because it uses the data at the neighbours
of a pixel but not their unknown classes. In consequence,
one can use larger neighbourhoods with little extra penalty.

5. RESULTS

a) b) c)

d) e) f)

g) h)

Fig. 2. a) Circular mosaic of Calf and Fabric0004 and d),
its segmentation; b) Rectangular mosaic of Calf, D101, and
Hexholes152 and e), its segmentation; c) Freehand mosaic
of Bark and Wool and f), its segmentation; g) Freehand mo-
saic of Herring and Raffia and h) its segmentation.

Figure 2 shows segmentation results on four512× 512
Brodatz texture mosaics. The misclassification percentages
were2.3%, 5.5%, 2.4%, and2.5% respectively.

6. CONCLUSIONS

We have described a new adaptive probabilistic model for
texture description and segmentation. Wavelet packet bases,
which arise naturally within our probabilistic framework,
allow the model to adapt to an individual texture and in
doing so capture its underlying structure. Our model was
tested on several Brodatz texture mosaics.

We are currently applying these models, and others de-
veloped within the same framework, to remote sensing ap-
plications such as detection and verification of land usage
and retrieval applications where the database contains highly
textured images. Results will be reported at a later date.
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