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ABSTRACT

The field of content-based image retrieval is an important one for
two reasons. Practically speaking, the oft-cited growth of image
archives in many fields, and the rapid expansion of the Web, mean
that successful image retrieval systems are fast becoming a neces-
sity. In addition, database retrieval provides a framework within
which the important questions of machine vision are brought into
focus. This is firstly because successful retrieval is likely to require
true image understanding, and secondly because database retrieval
provides a potentially objective testbed for image understanding
systems. In view of these points, the development of methods for
the evaluation of retrieval systems becomes a matter of priority.
There is already a substantial literature evaluating various systems,
but little high-level discussion of the evaluation methodologies them-
selves seems to have taken place. This essay proposes a framework
within which such issues can be addressed, analyses possible eval-
uation methodologies, indicating where they are appropriate and
where they are not, and critiques some evaluation methodologies
used in the literature.

1. INTRODUCTION

It is a commonplace that the growth of the Web and the ever-
growing collections of electronic images in many fields ren-
ders pressing the need for genuinely content-based image re-
trieval systems. In addition to this practical necessity how-
ever, image retrieval provides a framework within which to
view the important problems of machine vision. Successful
image retrieval will require genuine image understanding; in-
deed retrieval is essentially just pullback by the image under-
standing arrow. As with any field however, progress depends
on the ability to evaluate the results of image retrieval (or im-
age understanding) methods in a way that does not depend
on the opinion of the evaluator. For collections of images for
which there is no well-defined semantics, and hence noth-
ing to which to compare the results of retrieval (a situation
that occurs frequently), evaluation methodology becomes a
murky area, and little high-level discussion of methodolog-
ical issues seems to have taken place. This essay tries to
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shed light on the evaluation of retrieval systems by propos-
ing a framework within which the issues can be described.
We perform an analysis of possible evaluation methodolo-
gies in scenarios with different degrees of structure, indicat-
ing where they are appropriate and where they are not, and
critique query by example and techniques associated with it.
The analysis is put into practice in [1].
There is already a substantial literature evaluating various re-
trieval systems. In some ways the closest work in spirit to
our analysis is the recent paper by Martinet al. [2], although
it is not concerned with retrieval as such. They too treat a
situation with ill-defined semantics by turning to human sub-
jects, although in a slightly different manner than that ad-
vocated here (and used in [1]). Much of the other work in
evaluation uses query by example and “relevance” classes of
images (see, among many others, [3, 4, 5, 6, 7, 8, 9] and the
many references in the reviews [10, 11, 12, 13]). One of the
main arguments of this paper is that both these techniques
are flawed conceptually, and that used together they give the
appearance of objectivity without the substance.
Retrieval systems cover a very broad range of application
areas. Some work with very limited ‘scenes’,1 and hence
with narrowly defined sets of images with precise semantics,
while others work with generic scenes whose semantic con-
tent seems unbounded. We will bear two examples in mind as
we proceed. These examples will serve to make the discus-
sion concrete; they represent two extremes of database usage
and evaluation.
L’Institut G éographique National: The first dataset we con-
sider is a collection of aerial images of the Ile-de-France re-
gion around Paris created by the Institut Géographique Na-
tional (IGN), the French Mapping Institute. An example is
shown in figure 1. (Each image is 500 by 500 pixels, with
a resolution of about 9m/pixel.) There are many classes of
statement that one could consider making about such images,
but the most important consists of statements about land use.
Such statements essentially involve a map from the image
domain into a finite set of classes: ‘forest’, ‘urban area’,
‘agricultural field’ and so on. These maps are available: they

1We use the word ‘scene’ to denote whatever is of interest in the image:
this can range from the position and identity of objects in a real (or imagined)
3D scene, to abstract, precisely defined symbols or even camera parameters.
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Figure 1: Left: an example of the IGN aerial imagesc© IGN.
Right: land use map for part of this imagec© IAURIF.

Figure 2: Examples of the BAL imagesc© BAL

have been compiled by the Institut d’Aménagement et d’Urb-
anisme de la Ŕegion d’Ile-de-France (IAURIF). The land use
map for part of the image in figure 1 is shown beside it.
Bridgeman Art Library : The second dataset is a collection
of scanned images of paintings from the Bridgeman Art Li-
brary (BAL). Based in the United Kingdom, BAL is a com-
mercial art library supplying images to magazines, newspa-
pers, designers and others. The images are realistic in intent,
but in many cases the colours and forms do not correspond
to ‘photographic realism’. It is very hard to characterize
the queries faced by the staff at BAL. The queries are of-
ten phrased at a very high semantic level, and the process of
answering queries is complex, involving prolonged interac-
tion with clients. Two example images are shown in figure 2.

2. IMAGE RETRIEVAL SYSTEMS

Database systems are intended for a particular situation. Par-
ticular individuals will access the database and try to retrieve
images for a particular purpose. The database will either give
the individuals what they want with ease and grace, or it
will not. This implies that the fullest way to evaluate such
systems is to study the performance of the systemin situ,
through the reactions of users, surveys, work rates, and so

on, and to come to a conclusion from this data. Whether
there is any consistency in the evaluation of different systems
across different applications and datasets, or even across dif-
ferent work environments and personnel for the same appli-
cation and dataset, is an empirical question, to be answered
by experiments and not by assumption. If little consistency
between the evaluations across different environments were
to be found, there would be no well-defined environment-
independent sense in which one system could be said to be
better than another.
This situation is not very satisfactory. It implies that we can
say very little about the performance of image retrieval sys-
tems without conducting enormous and often impossible ex-
periments. If we wish to go further in the absence of such
experiments, we mustassumethat we can abstract the idea of
performance away from the environment in which the soft-
ware will be used without seriously affecting the evaluations
themselves. To make this abstraction, we must find some
way to duplicate the evaluation of the ‘average relevant user’.
By doing so, we are effectively ‘integrating out’ the variables
in which we are not interested, leaving a marginalised perfor-
mance measure averaged over those variables, in this case the
application environment and the diversity of users.

Database Schema

Figure 3 shows a representation of a retrieval system. The
figure shows a series of spaces and a number of arrows be-
tween them. The arrows can be interpreted either as maps
between the spaces themselves, or as maps between the prob-
ability measure spaces on those spaces, as we will discuss
shortly. We will introduce the components of this diagram
one by one.
The ‘image space’,I, is the space of images. It contains a
finite subset: the set of images in the database. (We will not
distinguish carefully betweenI and this subset. This creates
no confusion.) Subject to a query, the output of the retrieval
system will be a subset of this subset.
The ‘semantic space’,S, can be thought of as the space of
atomic statements we might like to make about the scene
for a particular application: statements about a real world
scene; the objects represented in a blueprint; the 3D scene
represented in a painting; the properties of the painting it-
self; camera parameters; and so on.
The maph from I toS represents the interpretation of the im-
ages by the ‘average relevant user’. In general, for each user,
their interpretation will take the form of a map between the
spaces of probability measures onI andS. In other words,
given an image inI, the user’s interpretation will map it to a
probability distribution overS that represents the uncertainty
of the interpretation of that user. To obtain the ‘average rel-
evant user’, we should then combine the distributions from
different users to obtain a distribution over the space of in-
terpretations of many users, and then marginalise over the
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Figure 3: Database schema

different users to obtain a distribution over interpretations.
If the entropy of this marginalised conditional distribution
is not much higher than the entropy of the distributions for
each user individually (there is ‘consensus’), then the no-
tion of an ‘average relevant user’ is useful. Otherwise we
are faced with the task of performing large experiments, as
discussed at the beginning of this section. If in addition to
consensus, the resulting marginalised distribution is narrowly
peaked about one value, then the map between probability
spaces can usefully be replaced by a map between the spaces
themselves. We will talk as though this is the case, although
little is changed in the subsequent arguments by relaxing this
restriction.
OnceI, S and h are defined, we can talk about the ideal
output of the retrieval system as follows. A query specifies a
point or a set of points inS.2 Given such a query, the maph
can be used to pullback3 the subset toI, thus specifying a set
of retrieved images.4

The other space indicated in the figure is the ‘index space’,
J . This, and its associated mapsπ andσ, constitute a fac-
torization of the machine, as opposed to human, image un-
derstanding chain. The mapπ represents the processing ap-
plied to the images in the database to generate indices for
retrieval. Usually the high-dimensional image space is pro-
jected to a much lower-dimensional space that it is hoped

2In practice, this subset may be specified in several ways; we suppose
that the query is specified directly. Consequently we do not examine such
techniques as ‘relevance feedback’, which can be viewed as methods for
perfecting the query. This then excludes the discussion of such performance
characteristics as how fast a user may reach their final query, and of what
limits the feedback process may put on the trajectories possible in the se-
mantic space.

3For an arrowf : A → B, we use the notationf∗ : 2B → 2A to
indicate pullback:∀Y ⊂ B : f∗(Y ) = {a ∈ A : f(a) ∈ Y }, and the
notationf∗ : 2A → 2B to indicate push forward:∀X ⊂ A : f∗(X) =
{f(a) ∈ B : a ∈ X}.

4Many methods introduce a metric onS. We consider the use of a metric
either as specifying a less restrictive query or as a probabilistic version of the
current discussion. Nothing is altered.

nevertheless still captures the relevant information about the
images. The latter phrase means that there exists a mapτ
such thath = τπ. This cannot happen in particular, if two
images map to the same point inJ underπ that are mapped
to different points inS underh. In other words, the index
space and the image processing map must be ‘fine enough’.
The semantics map,σ, represents further processing that maps
the index space to statements about the image. The ideal sit-
uation is thatσπ = h. If this were the case, then machine re-
trieval would follow the same lines as ideal human retrieval:
pullback from a query using the arrow(σπ)∗ = π∗σ∗. One
may wonder why we need to factorize the mapσπ and cre-
ate the spaceJ . The answer is that construction of a com-
plete mapσπ that approximatesh is often impossible at the
present state of development. The spaceJ thus represents as
far as we can presently go along the line between images and
semantics;J does not equalS except in a limited number of
cases.

Knowledge Scenarios

Problems arise in building and evaluating retrieval systems
because one or the other of the above quantities is difficult, if
not impossible, to characterize algorithmically. These prob-
lems have a well-defined order, in the sense that the inabil-
ity to solve a problem earlier in the list renders the subse-
quent problems moot. Each stage in this list will be called a
‘knowledge scenario’ or ‘KS’.
KS 1: In this KS, we cannot characterizeS explicitly. Con-
sequently, neitherh nor σ are characterizable explicitly. It
is usually only possible to constructS if a limited number
of anti-atoms can be found in terms of which to express the
statements as conjunctions. In the case of the IGN images,
for example, conjunctions of statements of the form: “such-
and-such region in the image domain corresponds to land
use of such-and-such type” are enough to express all rele-
vant queries. No such simple characterization exists for the
images from the BAL dataset, and indeed the semantic space
seems unbounded. The BAL dataset and the queries typically
made of it are a good example of this first KS.
KS 2: In this KS, we know how to characterizeS, but we do
not know how to characterizeh. Difficulties with character-
izing h fall into two classes. There may be consensus among
users about the semantics in a probabilistic sense, while still
being a great deal of uncertainty about the interpretations. In
this case,h must be described using conditional probabili-
ties. It may be difficult to obtain the information necessary
to describe this distribution. In addition,I and S may be
too large to allow explicit construction of the map, requiring
prohibitive resources of money or time. In the IGN case, ex-
haustive enumeration is possible. There is one image giving
the value ofh for every image in the database; these were
created by human operatives. It is however easy to imagine
increasing the complexity of the semantics or the number of
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images in such a way that exhaustive enumeration would be-
come impossible. We might then know the statements that
we wish to make, but be unable to ascertain whether or not
they are true of a given image.
KS 3: In this KS, we know how to characterizeS andh,
but we cannot construct a version of the arrowσπ that ap-
proximatesh. This KS is a little different from the previous
two. There, we could not characterize what we wanted to
retrieve. Here, we can characterize it, but we cannot hope
to duplicate it. Our attempts at retrieval are then doomed
to failure. An example is the following. Assume we have
a set of images and that we wish to make statements of the
form “In the scene that generated this image, a human being
occupied a volume that projected to regionR in the image
domain”. The semantics is very clear, and we can construct
h simply by inspection, or through prior knowledge of the
scenes from which the images were generated. It is however
a difficult task to do this automatically for general classes of
images.
KS 4: In this KS, we can characterize bothS andh, and
we can construct reasonably successful mapsσπ. The IGN
dataset, coupled with queries about land use, form a good
example of this KS. We have a well-defined semantic space,
mentioned in KS1, a well-defined arrowh, given by the IAU-
RIF images, and segmentation algorithms that do a reason-
able job of partitioning the image domains into the correct
subsets.
Query by Example: It is unfortunately all too often the case
that we find ourselves in KS1. One common response to this
is to attempt to circumvent the need for a semantics as fol-
lows. In the absence of any well-defined maps, one instead
assumes that the user interprets images via an unknown map
h to an unknownS, and that he has in mind an unknown
queryq ⊂ S. One then allows the user to select a small sub-
set i ⊂ I of images from the database that ‘represent’ the
unknown queryq, which means in principle thati ⊂ h∗(q).
Now that one has a set of images to work with rather than
a query, one can apply the arrowπ∗π∗ to generate a set of
retrieved images inI. This is known as ‘query by example’
(‘QBE’). QBE removes the need for the unknown quantities
S andh, and henceσ, by employing the user himself to trans-
late from the unknown query to a set of ‘example’ images.
Note that if there exists an arrowσ such thath = σπ, then

h = σπ ⇒ h∗ = π∗σ∗ ⇒ σ∗ = π∗h
∗ ⇒ h∗ = π∗π∗h

∗.
(1)

It then follows thati ⊂ π∗π∗(i) ⊂ h∗(q), so that ifσ exists,
the retrieval process will return more images with the same
semantics. In fact, the existence of aσ such thath = σπ
means thatπ divides I into equivalence classes that are a
refinement of those generated by the unknownh: imagesi
andi′ such thatπ(i) = π(i′) necessarily satisfyh(i) = h(i′).
QBE raises a number of difficulties. Note that a similar pro-

cedure does not work as soon as we move to KS2. Once we
know the semantic space, the user’s undisclosed interpreta-
tion of the images is open to question. A second problem
concerns the unknown query. The subset of images selected,
i, will be a subset ofh∗(q) for a great many queriesq and ar-
rowsh. How does the retrieval system know which of these
is intended by the user? Clearly it cannot. What then do
the images it retrieves represent? A third difficulty concerns
the existence of the arrowσ. In most cases, it is obvious
that such an arrow doesnot exist, in which case equation 1
will be incorrect: the method cannot produce the correct re-
sults. What then are we to make of the claims of successful
retrieval reported in the literature? We leave further consid-
eration of these issues until we discuss the evaluation of QBE
in section 3.1.

3. EVALUATION CONTEXTS

We move from the structure of a retrieval system and the dif-
ficulties involved in its construction, to consider its evalua-
tion. Evaluation always takes the form of a comparison be-
tween two arrows with common domainD and co-domain
C: a ‘reference arrow’, which describes the ideal behaviour,
and a ‘test arrow’. We will call the co-domainC the ‘evalua-
tion context’ or ‘EC’. We introduce a probability measureµ
onD and a ‘utility/loss function’ρ onC (or 2C). Both these
quantities are to be decided by the evaluator. In our case,
the measure onD might correspond to the frequency with
which certain queries are put to the system. The comparison
between two arrowsa andb then takes the form

Υ(a, b) = µ(ρ(a× b)∆) (2)

where:a is the reference arrow, which will always involveh;
b is the test arrow, which should not involveh; ∆ is the diag-
onal mapD → D ×D : d 7→ (d, d); andµ integrates its ar-
gument. The value ofΥ is thus a measure of how well/badly
we are doing by usingb instead ofa. A score of0 would
indicate perfection: the arrowsa andb are the same for the
purposes in which we are interested. (This may not imply
a = b.)
To specify an evaluation method it is necessary to specifyC,
D, a andb, but in the case of figure 3,a andb are specified
onceC andD are given, and in fact there is always an ob-
vious choice ofD also. We can therefore concentrate on the
EC’s. There are three of them: the ‘image context’ (which
we will also call the ‘retrieval context’), the ‘indexing con-
text’ and the ‘semantic context’. Whether a given EC can be
used depends on which of the arrows in figure 3 are available,
since computation ofΥ(a, b) is clearly impossible if we can-
not computea andb. We will thus see that different EC’s are
appropriate in different KS’s. We now define the three EC’s
in more detail.
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Semantic ContextC = S: The natural choice forD is I.
The arrows being compared areh andσπ. Equation 2 then
becomes:

Υ =
∑
i∈I

ρS(h(i), σπ(i))µI(i) (3)

Retrieval Context C = I: This is the EC most often evoked
in the literature, presumably because it seems to offer the
most direct connection to the ‘average relevant user’ and to
retrieval performance. It is rarely used in the complete form
presented here; more often, a version appropriate to the as-
sumptions of QBE is used. We will discuss this further in
section 3.1. The natural choice ofD is S, and the arrows
being compared areh∗ andπ∗σ∗. These map points ofS to
subsets ofI, so that we must define a utility/loss function on
2I . Using a typical choice of utility/loss, equation 2 becomes

Υ =
∑
q∈S

|h∗(q) ∩ σπ∗(q)|
|h∗(q)|

µS(q) (4)

This utility/loss function is known as “recall”. It normalises
the number of ‘successful’ images found by the number in
the database. Based on another obvious normalisation, one
can also define the “precision”, given by

Υ =
∑
q∈S

|h∗(q) ∩ σπ∗(q)|
|σπ∗(q)|

µS(q) (5)

Indexing Context C = J : The natural choice ofD is I,
while the arrows areπ andσ∗h. The form of the score in this
case is

Υ =
∫

i∈I

ρJ(σ∗h(i), π(i))µI(i) (6)

The domain of thisΥ is 2J × J . Note that we do not need
separate characterizations ofh andσ, since only the combi-
nationσ∗h appears in equation 6. We must however make an
assumption. In order to compare the performance of different
methods, we need a commonJ . This limits the range of ap-
plicability of this EC to the comparison of systems that share,
at least to some degree, the sameJ . Often we can generate a
commonJ by removing structure. Suppose for example that
the index spaces of various systems consist of partitions of
the image domain labelled by the values of different features.
A direct comparison is impossible, but by keeping only the
common structure (the image domain partitions), a compari-
son is enabled. The effect of this is to ‘coarsen’ the semantics
we can hope to capture, since it will group each index space
into equivalence classes.

3.1. Use of Different EC’s

Having defined the EC’s, we can now look more closely at
when they can be applied, and in particular, in which KS’s

they are relevant. It will turn out that lack of explicit knowl-
edge of certain maps need not hinder us if we can define them
implicitly. We look at the KS’s one by one, and at QBE sepa-
rately, since it has properties peculiar to the assumptions used
in its definition.
KS 4: In this case, the natural EC to use is the semantic
context. All the arrows are defined, and we need only de-
fine a utility/loss function onS. Since by assumption we can
construct arrowsσπ that come close toh, we can expect rea-
sonably high scores in our evaluations. In addition, the other
EC’s are guaranteed to give good results if we have an image
processing methodσπ that duplicatesh. Thus the retrieval
context, although apparently well-adapted to this situation,
is not really needed, and indeed is harder to use: it is more
difficult to define meaningful utility/loss functions onI than
onS.
KS 3: In this case, we cannot use the semantic context, or
rather use of it is meaningless. The arrowsσπ that we know
how to build come nowhere near duplicatingh, so that claim-
ing victory for one method over another is really beside the
point. The same consideration applies to the retrieval con-
text. In the case of the indexing context, one might hope
that we could define an arrowσ∗h without explicitly defin-
ing σ, but the fact that we already knowh does not allow
us the freedom to do so. Thus KS3 turns out to be impossi-
ble to evaluate. This highlights the somewhat dubious nature
of evaluation in the KS’s to come, in which we have even
less knowledge. The lack of constraint allows us to make
progress by making simplifying assumptions, but KS3 makes
it clear that we should be wary of drawing hasty conclusions
from any apparent success such evaluations may produce.
KS 2: We cannot use the semantic and retrieval contexts
since these rely on knowledge ofh, which we lack. Simi-
larly to KS3, we cannot make assumptions aboutσ∗h, since
although we do not knowh, we do knowS. Again evaluation
is not possible.
KS 1: As in the previous KS, the semantic and retrieval con-
texts are eliminated. The indexing context however is not
eliminated so easily. In the indexing context we do not need
the semantic space explicitly, nor do we need separate char-
acterizations ofh andσ; we need only the combinationσ∗h.
Since there are now no constraints on the individual arrows
making up the combination, we are freer to try to character-
ize this arrow in another way. The natural way to do this is
through the use of human subjects. This is a subtle point:
we are saying that although it is not possible to characterize
the semantics of images directly, nevertheless we can gain
access to some knowledge about those semantics by looking
instead at the results inJ that might generate those semantics
correctly.
How should we set about using human subjects to character-
ize this arrow? Clearly human image understanding does not
generate points inJ . We cannot therefore ask human sub-
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jects to tell us their interpretations and use these as a char-
acterization ofh, as we might do if we had a well-defined
semantic space. We can however ask human subjects to eval-
uate directly the points inJ that are generated by the arrow
π, thus characterizingh implicitly. Absolute scoring of indi-
vidual arrows will not do, since the meaning of the absolute
scores will be very unclear, but a comparison of the outputs
of the differentπ arrows stemming from different methods
is nevertheless possible. The subject can be asked which of
the two representations generated by two different methods
is more meaningful. The most interesting result of such an
evaluation is the existence or not of consensus among sub-
jects. Its existence indicates that there may be an underlying
‘fundamental’ image semantics to which we can gain access
via such experiments. We discuss this methodology further
when we discuss the BAL dataset in section 4.

QBE: We note first that there is only one arrow so far in QBE,
π∗π∗, and that consequently there is nothing to evaluate. In
order to proceed further, a second, reference arrow is needed.
To this end, an arroŵh is introduced, that notionally mapsI
to some semanticŝS. (Neitherĥ nor Ŝ area priori the same
as the quantitiesh andσ that are supposed to generate the
‘example’ images in the retrieval process itself.) The arrow
ĥ is not described directly, since to do so would require a
definition of Ŝ. Only the combination̂h∗ĥ∗ is described,
by giving the partition ofI into equivalence classes sharing
equal values of̂h. The equivalence class of images to which a
given image belongs is known as the set of images “relevant”
to the given image.

The introduction of̂h enables the comparison of the arrows
ĥ∗ĥ∗ andπ∗π∗, the arrow defining retrieval in QBE, since
both map2I to itself. One can use appropriately adapted
versions of equations 4 and 5 to compare the number of “rel-
evant” images retrieved to the number of “relevant” images
in the database or to the number of retrieved images. The
way this is done in practice is the following. The database of
images is divided into groups, supposed to represent the ar-
row ĥ∗ĥ∗. These groups are typically based on the ‘generic
name’ of the ‘most prominent object’ in the image. To test
the retrieval abilities of the system, an image or set of images
i is pulled back by the arrowπ∗π∗, giving a set of retrieved
images, which are then compared to the set of images “rel-
evant” to i. The results of these tests are sometimes quite
remarkable. Recall and precision values above90% are not
at all unusual. Are we really this good at content-based im-
age retrieval?

What does it mean that the images retrieved and the rele-
vance classes into whichI is divided agree so closely? In
its raw form, it means that the arrowπ has managed to du-
plicate the grouping ofI into equivalence classes. In itself,
this is not that impressive of course. Given enough parame-
ters, any classification can be duplicated. The inference from
the results, given the grouping ofI, is however closer to the

following: “An image of a horse was used as a query, and
the retrieved images consisted of almost all the horses in the
database and very little else. Thus the method captures the
image semantics.”. Let us analyse this statement.
The first point to note is thath andĥ are not necessarily the
same. If they are not the same, then we would not expect re-
trieval based onπ∗π∗ to agree with retrieval based on̂h∗ĥ∗.
Thus, while we may choose to imagine that the user was actu-
ally looking for horses, he may have been looking for images
with any of a number of other interpretations. The user can
change his mind about his interpretation at will, while still
using the same set of ‘example’ images. Thus the fact that
the retrieved set of images consists of horses may or may not
be a success, depending on whetherh andĥ are equal. Call-
ing “obvious” the interpretation that renders the retrieval a
success, does not solve this problem.
The second point concerns the existence of an arrowσ such
thath = σπ. (We now assume that̂h = h.) If such an arrow
exists then, as shown above, we will have thath∗ = π∗π∗h

∗.
This means that precision will be100%. If further, we have
that σ is a bijection, then recall will be100% also. The
values of recall and precision reported in the literature sug-
gest that this situation is close to being reached. This means
thatπ divides the space of images into the same equivalence
classes ash. Sinceh is never specified, it is of course unclear
what this actually means. The clear implication however is
thatπ is actually classifying images into the ‘generic classes’
of the ‘most prominent object’ in the image, that is, horses,
cars,. . . . This is remarkable in methods that contain no mod-
els of these objects, and which sometimes use the crudest of
global features. In fact, it is apparent thatπ is achieving no
such thing. What then to make of the success of the retrieval
experiments? Clearly,I must possess a remarkable structure.
Firstly, the ‘generic name’ of the ‘most prominent object’
is closely correlated with the low-level features typically in-
volved in π, and secondly, the images are well-clustered in
J . Since neither is true in general, we are forced to conclude
that theI being used to test the methods is very special, and
that little can be made of the results reported.

4. SPECIFIC APPLICATION DOMAINS

We turn now to a consideration of the application domains
that we described in section 1: the IGN and BAL datasets,
and how they fit into the above analysis. The evaluations
discussed in this section are in progress. The results of the
BAL study are reported in [1]. The results of the IGN study
will be published at a later date.
IGN Datasest: For the IGN dataset, the semantic spaceS
is given by the conjunction of statements such as those men-
tioned in KS1. In addition, the actual land use is known,
having been compiled from existing maps and field studies.
Thush is characterisable in the form of a ground truth land
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use image for each image in the database. In addition, the
semantic space is such that we can construct reasonably ac-
curate versions ofσπ. The nature of the images in the IGN
dataset creates this possibility: at the resolution of the im-
ages, the scene is more or less a flat two-dimensional surface,
with texture ‘painted’ onto it, and in addition the different
types of land use seem characterisable in terms of texture de-
scriptors and other low-level image features. We are thus in
KS4.
The way forward now depends on exactly what we want to
test. If we want to test the performance of the image pro-
cessing methods with respect to retrieval, then, according to
the above analysis, the ideal EC is the semantic context. Each
method will produce a partition of the image domain labelled
with various land uses, and we can then compare, based on a
metric such as the percentage of land area misclassified, the
performance of the methods.
Another possibility is that we wish to test segmentation meth-
ods in a way that is independent of classification. In this case,
we are interested only in the partitions and not in the labels
attached to them, so that we can simplifyS by ‘forgetting’
the labels, and compare partitions directly. We are still in the
semantic context, but with a reduced semantics. This would
enable the evaluation of unsupervised as well as supervised
segmentation methods.
BAL Dataset: For the BAL dataset, the semantic space seems
unbounded. The Bridgeman Art Library has to deal with
queries of a very abstract nature, whose relation to image
properties is extremely complicated, involving a great deal
of cultural knowledge. In addition, individuals may not be
clear about their own interpretation, and it is almost certain
that there will not be consensus over some of the statements
one might like to make about the images.
We can however simplify this situation somewhat. What-
ever the nature of the statements we wish to make about the
images, it seems clear that they will require as a necessary,
although by no means sufficient input, the identification of
the ‘principle objects’ in the image. We can therefore reduce
our semantics somewhat by restricting ourselves to disjunc-
tions and conjunctions of statements of a form rather similar
to those used for the IGN images: “Such-and-such region of
the image contains such-and-such (named) object”. Unfor-
tunately, this is still too broad. Statements about the BAL
images contain a far larger set of objects than the IGN im-
ages, so many in fact that it is not feasible to list them all.
We could give a fixed list of objects and define a semantics
in those terms, but this is too restrictive. The absence of any
well-defined semantic space means we are in KS1. The se-
mantic and retrieval contexts are thus ruled out.
At this point, we could try to invoke the assumptions of QBE,
and at the same time classify the images in the BAL dataset
into “relevance” classes as described above. The drastic na-
ture of the QBE assumptions is exposed once we think about

applying them to image and semantic spaces as complex as
those of the BAL dataset. Most images from the BAL dataset
do not clearly specify any query, and any attempt to catego-
rize the images into “relevance” classes for the purpose of
evaluation seems completely arbitrary.
Instead, we turn to the indexing context, which, free as it is
from the need to characterizeS andh, has not yet been ruled
out. We assume a working hypothesis: that there does exist
human consensus about what might be called ‘fundamental’
image segmentations. (As recent work has shown [2], con-
sensus may well exist at least for limited classes of images.)
We then proceed as follows. In order to compare a number of
segmentation procedures, they must share a commonJ . This
we ensure by definingJ as a space of (unlabelled) partitions
of the image domain. The above assumption amounts to as-
suming that for each image, there is human consensus about
a semantic interpretation that includes as part of its defini-
tion an image domain partition. We can thus ask individuals
to ‘score’ the output of various segmentation algorithms by
comparison with the original image and, in practice, to avoid
the arbitrariness involved in an absolute scoring system, by
comparison with each other.
Note that what is being tested is not simply the performance
of different methods, but the very existence of a consensus
about the interpretation of the images involved. The exis-
tence of such a consensus is far from obvious, and is arguably
a more interesting question than the results of the evaluations
themselves.

5. CONCLUSION

The ease of application of QBE, coupled with the notion that
there is something ‘special’ about image data, seems to have
created the impression that for image retrieval it may in prin-
ciple be preferable to query by text. It is undeniable that
there is something special about image data, at least when
compared to text or speech retrieval. The segmentation of
sound into words leaves one with text, which is composed of
atoms that exist already at the semantic level: one does not
need to ‘name’ words. The number of atoms is limited and
they are knowna priori. In image understanding, the num-
ber of semantic atoms is vastly greater, and the correspon-
dence of segmented regions (for example) with semantics is
not clear. Coupled with higher dimensionality, which allows
geometry to intrude, and the projective nature of image for-
mation, we see that image understanding is vastly harder than
speech processing. We reject the notion however that these
differences require a qualitatively different approach to im-
age retrieval. This is because semantics seems to us inher-
ently linguistic. This is supported by the psychophysical ex-
periments performed using thePicHuntersystem [14]. QBE
in which the meaning of the example is not clarified both to
the user and to the system by linguistic cues that specify a
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query in a well-defined semantic space, results in confusion,
as the above analysis shows. We believe that it cannot be
a substitute for the characterization of a semantic space, an
interpretation arrowh, and a genuine image processing ar-
row σπ from I to S. Our current inability to construct such
arrows in many cases of interest should not be disguised by
lack of methodological clarity.
The evaluation method that combines “relevance” classes with
QBE suffers from a number of serious drawbacks, not the
least of which is the appearance of objective evaluation with-
out the substance. ‘Success’ in such evaluations is less an
expression of the ability of the image processing system in-
volved, and more a statement about the distribution of the
images in the database. Image retrieval systemscanbe eval-
uated within the semantic and retrieval contexts, but only if
we have a characterization ofS andh. In the absence of such
characterizations, we are forced to move to the indexing con-
text, and to perform psychological experiments with human
subjects in order to evaluate systems.
Many of the above considerations apply directly to the evalu-
ation of image processing methods in general. The reason for
this is clear: image retrieval is in essence pullback by the im-
age interpretation arrowσπ. The accuracy of the retrieval is
entirely dependent on the accuracy of this interpretation. In
cases where no well-defined semantics is available, the only
available evaluation method for image processing systems in
general is the psychovisual one proposed above for the BAL
dataset. The process involved in such experiments is similar
to that used in the ‘eye of the beholder’ method of evaluation
that is all too common in image processing. The difference is
that properly designed experiments take into account a large
number of different images and a range of different users in
order to test the idea of a consensus and produce an evalua-
tion if such a consensus exists.
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