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Looking for Shapes in Two-Dimensional,
Cluttered Point Clouds

Anuj Srivastava and Ian H. Jermyn, Member, IEEE,

Abstract —We study the problem of identifying shape classes in point clouds. These clouds contain sampled contours and are
corrupted by clutter and observation noise. Taking an analysis-by-synthesis approach, we simulate high-probability configurations of
sampled contours using models learnt from training data to evaluate the given test data. To facilitate simulations, we develop statistical
models for sources of (nuisance) variability: (i) shape variations within classes, (ii) variability in sampling continuous curves, (iii) pose
and scale variability, (iv) observation noise, and (v) points introduced by clutter. The variability in sampling closed curves into finite
points is represented by positive diffeomorphisms of a unit circle. We derive probability models on these functions using their square-
root forms and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations from a joint prior on the shape-sample
space and compare them to the data using a likelihood function. Average likelihoods of simulated configurations lead to estimates of
posterior probabilities of different classes and, hence, Bayesian classification.

Index Terms —Shape classification, clutter model, Fisher-Rao metric, planar shape model, diffeomorphism

✦

1 INTRODUCTION

THE classification and recognition of objects in images
is an important problem in machine vision, biometrics,

medical image analysis, and many other branches of science.
A common approach is to represent the objects of interest
with certain discriminant features, and then use some sta-
tistical models on these feature spaces for classification.An
important feature of many objects is theirshape and, as a
consequence, shape analysis has become an integral part of
object classification [1], [2]. One way to use shape analysis is
to estimate the boundaries of the objects (in images) and to
analyze the shapes of those boundaries in order to characterize
the original objects. Towards that end, there have been several
papers in the literature on analyzing the shapes of continuous,
closed, planar curves (see for example [3], [4] and others
referenced therein). While such continuous formulations are
fundamental in understanding shapes and their variability,
practical situations mostly involve heavily under-sampled,
noisy, and cluttered discrete data, often because the process
of estimating boundaries uses low-level techniques that extract
a set of primitives (points, edges, arcs, etc.) in the image
plane. (We will restrict attention to points in this paper—
some examples of point sets derived from real images are
shown in Figures17, 21 and22—but the method generalizes
to more complex primitives.) Therefore, an important problem
in object recognition is to relate (probabilistically) a given set
of primitives to pre-determined (continuous) shape classes and
to classify this set using afully statistical framework.
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(a) Data (b) No Clutter (c) Ordering (d) Classification

Fig. 1. Problem Challenges: The point cloud in (a) con-
tains clutter as well as the shape of interest. The removal
of clutter leads to the points in (b), which when ordered
result in a polygon (c). Subsequently, this polygon can be
used for shape classification, as in (d).

1.1 Problem Challenges

The biggest challenge is to select and organize a large subset
of the given primitives into shapes that resemble the shapesof
interest. The number of permutations for organizing primitives
into shapes is huge. For example, if we take the primitives to
be points, the number of possible polygons using40 distinct
points is of the order of1047. If we select only20 points out
of the given40 and form a polygonal shape, the number of
possibilities is still approximately1029. To form and evaluate
all these shape permutations is impossible. Similar to [5], our
solution is to analyze these configurations through synthesis,
i.e. to synthesize high-probability configurations from known
shape classes and then to measure their similarities with the
data. Although this approach has far smaller complexity than
the bottom-up combinatoric approach, the joint variability of
all the unknowns is still enormous. To go further, one must use
the structure of the problem to break down the variability into
components, and then probabilistically model the components
individually. Through an example presented in Figure1, we
will try to explain these components.
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Fig. 2. Examples of ordered point sets to be classified
into given shape classes. The cardinality of these point
sets decreases from left to right making the classification
more challenging.

1. Clutter Rejection: It is not just the object boundary
that will generate primitives: the background and the object
interior will too. From the perspective of the shape analysis
of object boundaries, these background and interior pointsare
clutter. Perhaps the most difficult issue is to determine which
primitives belong to the object boundary and which are clutter.
Discarding clutter takes us from (a) to (b) in Figure1.
2. Ordering : Even if the primitives belonging to the object
boundary are known, their ordering along the boundary is most
probably not. Ifn point primitives are used to form a polygonal
shape, there aren! orderings. Having a specific ordering moves
us from (b) to (c) in Figure1.
3. Classification: Even for an ordered set of primitives,
all of them belonging to the boundary, the task of shape
(class) determination, that is going from (c) to (d), is still
challenging, although not as difficult as going from (a) to
(d). Depending upon where the primitives are placed on the
curve, the resulting polygons can have very different shapes.
To reach a statistical framework for this classification, we
have to develop models for the variabilities associated with
shapes, the generation of primitives (i.e. sampling in the case
of points), and the observation noise.

Given these challenges, we will address the general problem
in two steps. First, we will study the classification problemin
the absence of clutter and assuming a known ordering. Then,
we will extend that solution to the more general case with
clutter and an unknown ordering.
Problem I—Baseline Problem: We assume that all the ob-
served points belong to the boundary of interest and that an
ordering of these points is known. Thus, the goal is to develop
a statistical framework to classifyan ordered set of primitives
into pre-determined shape classes. Some examples of ordered
point sets are shown in Figure2. Given shape classes, such
as crown, glass, bottle, carriage, etc., we seek to classifythe
observed points, or polygons, into these classes. In the figure,
the number of points is high on the left and decreases towards
the right. For any observer it will be relatively easier to classify
the polygons on the left than those on the right.
Problem II: Extension to General Problem: In this more
general case, not only do we not know the ordering of the
points generated by the object boundary, but clutter points
generated by the background and the object interior are also
present. We do not know how many or which of the data points
fall on the boundary.

For the experiments described in this paper, we will utilize

one of the Kimia databases (see for example [6]) consisting
of 16 classes of shapes: bone, bird, bottle, brick, cat, carriage,
car, chopper, crown, fountain, man, rat, fork, tool, fish, and
glass, with approximately 400 total training shapes. Figure 9
shows the mean shapes from these 16 shape classes.

In the past literature, the search for parametric shape models
(lines, circles, cylinders, etc) in cluttered data has beenper-
formed using the RANSAC algorithm [7], [8]. However, the
multiplicity of shape classes and the non-parametric nature
of shape variability makes it difficult to apply RANSAC in
our context. Also, note that the goal here is different from
the reconstruction of curves from point cloud data. A related
problem is the shape analysis of objects, most commonly 3D,
using discrete representations of their surfaces, for instance
using point clouds as in Memoli and Shapiro [9]. Similarly,
Glaunes et al. [10] represent curves and surfaces as measures
in Rn and compare shapes by comparing their associated
measures. Although such solutions, proposed for comparing
point clouds to point clouds, can also be applied to the current
problem, the presence of clutter is a problem. Peter and Ran-
garajan [11] impose a very different structure, originating from
a mixture of Gaussians, to analyze the shape of point clouds.
Felzenszwalb and Schwartz [12] propose a hierarchical, tree-
like representation of curves using a triplet of points at each
node and compare the trees by comparing the shapes of
the triangles formed by the triplets. The specific problem of
classifying the shapes of 2D contours using cluttered points
provides additional structure, coming from variability inthe
shapes and their samplings into finite points, that is not
exploited by some of these general methods.

1.2 Problem Formulation and Overview
The classification problem is described by the probability
P(C|y), whereC ∈ C is the class of the object represented by
the data set, andy ⊂ Y is the data,i.e.a finite set of primitives.
(Because we are restricting attention to primitives that are
simply points inR

2, we haveY = R
2m for m primitives.)

We fix an arbitrary enumeration of these points for conve-
nience. Classification can then be performed by maximizing
the probability:Ĉ = argmaxC P(C|y). The construction of
P(C|y) is most easily performed by first rewriting it using
Bayes’ theorem:P(C|y) ∝ P(y|C)P(C).

We will take the prior probability over classes to be uniform,
but including a non-uniform prior is trivial. The difficulty
of the problem is contained inP(y|C), which describes the
formation of the data starting from the object class. To make
any further progress, this probability must be broken down
into components corresponding to simpler stages in the data
formation process. Here we will provide a schematic overview
of these stages, and the algorithm to which they give rise. The
various quantities used below will be defined precisely in the
following sections. First, we introduce some variables:

• Let g ∈ G, whereG ≡ (SO(2)⋉R2)×R+, be a similarity
transformation that includes rotation, translation, and
scale. The symbol⋉ denotes the semi-direct product.

• Let q ∈ Q be a shape,i.e. an object boundary modulo
similarity transformations and reparameterizations. Thus,
a specific boundary is given bygq.
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• Let s ∈ S representn point-primitives on the shape
boundary; among other variabless containsn. We will
call this a “sampling”. Thenqs will be a set ofn point
primitives modulo a similarity transformation, while a
specific set of point primitives is given byx = gqs.

• Let I ∋ ι : [0, . . . n] → [0, . . .m] be a one-to-one map,
i.e. an injection, relating each element ofx to a unique
element ofy.

Then we can write (making certain independence assumptions,
to be discussed later)

P(y|C) =
∑

ι∈I

∫∫∫

g∈G
s∈S
q∈Q

P(y|ι, gqs) P(ι|s) P(g|q, C) ×

P(s|q, C) P(q|C)dg ds dq . (1)

We will takeP(ι|s) andP(g|q, C) to be uniform, a point we
discuss in Section3.3. With these assumptions,g andι appear
solely in the first factor in the integrand,P(y|ι, gqs).

The difficulties of the problem can now be seen in math-
ematical terms. In order to compute the posterior probability
of a class, one must in some way (at least approximately)
sum over all possible injectionsι, corresponding to the first
and second challenges; and integrate over all possible trans-
formationsg, samplingss, and shapesq, corresponding to the
third challenge. The simplified baseline problem, Problem I,
corresponds to knowingι (P(ι) = δ(ι, ι0)), so that the sum
over it trivializes. Note, however, thatP(y|ι0, gqs) still must
model observation noise.

Our algorithmic strategy for dealing with this complexity
is based on two approximate methods for evaluating the
integrals and sums: Monte Carlo integration and the saddle
point approximation (also called Laplace’s method). We use
the first for the integrals overq ands, generating realizations
from their probability distributions and then summing the
values of the integrand evaluated at these realizations. We
use the second for the integral overg and the sum overι.
For Problem I, the latter is trivial, and so the maximization
problem reduces to a Procrustes alignment of two 2D point sets
under the likelihoodP(y|ι0, gqs) describing the observation
noise, which we take to be white and Gaussian. For Problem
II, we must also find the best injectionι in addition to the
best transformationg. Using a combination of the Hungar-
ian algorithm and Procrustes alignment, we solve the joint
registration-transformation problem. The cost function for this
optimization is the likelihoodP(y|ι, gqs), which must now
include a stochastic model of the clutter points. The resultof
these procedures is an approximation toP(y|C) for each value
of C, i.e. each class, and thus, after a trivial normalization, to
the value ofP(C|y). Classification is then immediate.

To construct a fully statistical framework, then, we have
to develop probability models and computational methods for
the variability in shape(P(q|C)), sampling(P(s|q, C)), and
observation noiseand clutter(P(y|ι, gqs)). We now discuss
each of these in more detail, beginning with sampling, since
our approach here is novel.

Fig. 3. Illustration of sampling variability for a curve.

2 MODELING SAMPLING VARIABILITY

By a sampling of a continuous curve, we mean selecting an
ordered finite number of points on that curve. (We underline
the distinction between our use of “sampling a continuous
curve” and the phrase “sampling from a probability”. To avoid
this confusion, we will use “simulating from a probability”for
the latter.) The sampling step results in a significant loss of
information about the original shape. Figure3 shows some
examples of samplings of a single shape. Since the sampled
points are ordered, we can draw a polygon to improve the
visualization of the sampled points.

A sampling is intended to represent the generation of
primitives by particular types of sensor, or, more commonly,
by simple image processing techniques such as edge detection.
As such, it is heavily dependent on the procedure used to
generate the primitives. To avoid presumptions about the
image processing technique, we must treat the generation of
these primitives in a generic probabilistic way. Before we
can go on to describe the probability distributionP(s|q, C),
however, we have to specify on what space it will be defined.

2.1 Representation

How can we mathematically represent a sampling? The pro-
cess of sampling, by itself, is seldom studied in the literature,
although the related problem of matching sampled shapes
has received a lot of attention, seee.g. [6]. A sampling
involves two elements: a certain number of points,n, and
their placement on the curve. The latter can be expressed by
parameterizing the curve in terms of its arc length, and then
selectingn values in the interval[0, L], whereL is the length
of the curve. Since we will be sampling the points from shapes,
we can assume thatL = 1. Note that this assumes that the
probability of a sampling does not depend on the position,
orientation, and scale of a curve, which is implicit in Eqn.1.

If we known, then sampling a curve amounts to partitioning
a circle inton subintervals. This process simplifies if we place
the origin on the curve at the position of the first sample, and
thereby consider the sampling problem as that of partitioning
the unit interval [0, 1] into n subintervals. The position of
the origin now becomes an element of the representation:
we will denote it byτ . Any partition of [0, 1] by n points
can be identified with a probability mass function withn
elements. Therefore, ifn is fixed, one can represent a sampling
as a point in the(n − 1)-simplex ∆(n−1). However, for
unknownn, one would like to allow all possibilities in a model
and this motivates a broader representation. In particular,
one would like there to be some consistency between the
probabilities of samplings with different numbers of points,



IEEE TRANSACTION PAMI 4

which suggests separating the choices of number of points
and their placement. This can be achieved as follows.

Let Γ be the set of increasing, differentiable functions from
[0, 1] to itself, such that for allγ ∈ Γ, γ(0) = 0 andγ(1) = 1,
or, in other words, the groupΓ of positive diffeomorphisms
of the unit interval. Now letU = [0 . . . n]/n be a uniform
partition of the interval[0, 1] into n sub-intervals. Then any
element of∆(n−1) can be represented byγ(U), for someγ ∈
Γ. In fact, there are an infinity of elementsγ all of which
give rise to the same point in∆(n−1). A samplings will thus
be represented by an equivalence class of triples〈n, τ, γ〉 ∈
N × S

1 × Γ. The advantage of this representation is that we
can changen without changingγ, and vice-versa.

We still have to decide, however, how to representγ. The
functions in Γ can be thought of as cumulative distribution
functions for nowhere-zero probability densities on[0, 1], with
which they are in bijective correspondence, and this gives rise
to a number of possibilities for representing such functions:
Diffeomorphism: An element ofΓ is represented as itself,
i.e. as an increasing function from[0, 1] to itself, such that
γ(0) = 0 andγ(1) = 1. The advantage of this representation
is that the action of the group of diffeomorphisms on itself is
particularly simple, by composition.
Probability density: An element ofΓ is represented by its
derivative, denotedP ∋ p = γ̇, which is an everywhere
positive probability density on[0, 1], i.e. a positive function
that integrates to1.
Log probability : An element ofΓ is represented by the loga-
rithm of a probability density,N ∋ ν = ln(p). It is an arbitrary
function whose exponential integrates to1. The advantage of
this representation is that the values of the functionν are
unconstrained, apart from the overall normalization.
Square-Root Form: An element ofΓ is represented by the
square root of a probability density,Ψ ∋ ψ = p

1
2 . This is a

positive function whose square integrates to1, i.e. its L2 norm
is 1. The set of these functions thus forms the positive orthant
of the unit sphere in the spaceL2([0, 1]). The advantage of
this representation is that it greatly simplifies the form ofthe
most natural Riemannian metric one can place onΓ, as we
will now discuss.

2.2 Riemannian Structure on Γ

We wish to construct probability distributions onΓ, perform
inferences, compute statistics, and so on. The difficulty is
in performing calculus on this space while maintaining the
underlying nonlinear constraints on the functions involved. A
natural solution is to work on the nonlinear manifold formed
by these functions and to utilize the intrinsic geometry of
this manifold to perform statistics. This requires computing
geodesic paths between points on the manifold, which in turn
requires a Riemannian structure. We must thus make a choice
of Riemannian metric, as well as a choice of one of the above
representations in which to express it.

Fortunately, while there are clearly a large number of Rie-
mannian metrics one could place onΓ, one is selected uniquely
by invariance requirements, as follows. It is a remarkable
fact, proved byČencov [13], that on spaces of probability

distributions on finite sets, there is a unique Riemannian
metric on the space of probability distributions that is invariant
to “Markov mappings”. This Riemannian metric is the so
called Fisher-Rao(F-R) metric. (In finite dimensions, it has
been used previously in computer vision [11], [14].) The F-R
metric extends naturally to the space of probability measures
on continuous spaces such as[0, 1], where it is invariant to
the (reparameterization) action of the diffeomorphism group.
SinceΓ is isomorphic toP , we can view the F-R metric as
a metric onΓ too. Because of its invariance properties, this
is the metric we choose to use. In terms of the probability
density representation, it takes the following form: the inner
product between tangent vectorsδp and δ′p to the space
of probability distributions on[0, 1] (here tangent vectors
are functions that integrate to zero) at the pointp ∈ P is
〈δp, δ′p〉p =

∫ 1

0
δp(s)δ′p(s) 1

p(s) ds. It turns out, however, that
the F-R metric simplifies greatly under the half-density repre-
sentation. Indeed, it becomesL2, becauseψ2 = p means that
2ψδψ = δp, and thus that〈δψ, δ′ψ〉ψ =

∫ 1

0
δψ(s) δ′ψ(s) ds.

We have already seen thatΨ is the positive orthant of the
unit sphere inL2([0, 1]), and now we see that the F-R metric
is simply theL2 Riemannian metric onL2([0, 1]) restricted
to Ψ. The spaceΨ endowed with the F-R metric is thus
the positive orthant of the unit sphere inL2([0, 1]) with the
induced Riemannian metric.

As a result of this analysis, geodesics under the F-R metric
are nothing but great circles on this sphere, while geodesic
lengths are simply the lengths of shortest arcs on the sphere.
Arc-length distance on a unit sphere has been used to mea-
sure divergences between probability density functions for a
long time [15]. This metric also plays an important role in
information geometry as developed by Amari [16].

We now prove the invariance of the F-R metric. This is
important because using this metric, the probability model
that we construct on the space of sampling functions will be
invariant to reparameterizations of curves in a shape class.

Theorem. The Fisher-Rao metric is invariant to the action of
Γ.

Proof: We show this using the square-root form but the
proof is similar for the other representations. The action of Γ
on Ψ is easily deduced from its action onΓ by composition:
(γ∗ψ)(s) = γ̇

1
2 (s)ψ(γ(s)). This is linear, and so the action

on tangent vectors is analogous:(γ∗δψ)(s) = γ̇
1
2 (s)δψ(γ(s)).

Therefore, the inner product〈γ∗δψ, γ∗δ′ψ〉γ∗ψ becomes
∫ 1

0

(γ∗δψ)(s) (γ∗δ′ψ)(s) ds =

∫ 1

0

γ̇(s)δψ(γ(s)) δ′ψ(γ(s)) ds

=

∫ 1

0

δψ(t) δ′ψ(t) dt = 〈δψ, δ′ψ〉ψ .�

2.2.1 Geodesic, exponential maps, etc.
In this section we list some analytical expressions that are
useful for statistical analysis onΨ and thus onΓ. As Ψ
is an infinite-dimensional sphere insideL2([0, 1]) (see e.g.
Lang [17]), the length of the geodesic inΓ between any
two functionsγ1 and γ2 under the F-R metric is given by
d(γ1, γ2) = cos−1(

〈

γ̇
1
2
1 , γ̇

1
2
2

〉

), where the inner product is
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L2. The geodesic between two pointsγ1 and γ2 of Γ is

similarly derived. Forψi = γ̇
1
2

i , the corresponding geodesic
in Ψ is given byψ(t) = 1

sin(θ)

[

sin((1 − t)θ)ψ1 + sin(tθ)ψ2

]

,
wherecos(θ) = 〈ψ1, ψ2〉. The desired geodesic inΓ is then
given by γ(t), whereγ(t)(s) =

∫ s

0 ψ(t)(τ)2 dτ . Due to this
additional integration step, it is sometimes easier to perform
the Riemannian analysis inΨ and to map the final result back
to Γ. This is especially true for computing means and variances
of sampling functions, for constructing probability densities on
Γ, and for simulating from these probability densities.

In Ψ, the geodesic starting from a pointψ, in the direction
v ∈ Tψ(Ψ), can be written as:cos(t)ψ+sin(t) v

‖v‖ (with theL2

norm). As a result, the exponential map,exp : Tψ(Ψ) → Ψ,
has a very simple expression:expψ(v) = cos(‖v‖)ψ +
sin(‖v‖) v

‖v‖ . The exponential map is a bijection between a
tangent space and the unit sphere if we restrict‖v‖ so that
‖v‖ ∈ [0, π), but for large enough‖v‖, expψ(v) will lie
outsideΨ, i.e.ψ may take on negative values. We will discuss
this further when we define prior probabilities onΓ. For
any ψ1, ψ2 ∈ Ψ, we definev ∈ Tψ1(Ψ) to be the inverse
exponential ofψ2 if expψ1

(v) = ψ2; we will use the notation
exp−1

ψ1
(ψ2) = v. This can be computed using the following

steps:u = ψ2−〈ψ2, ψ1〉ψ1, v = u cos−1(〈ψ1, ψ2〉)/〈u, u〉
1
2 .

2.3 Statistics on Γ

Consider the task of computing the statistical mean of
a set of sampling functions{γ1, γ2, . . . , γk} intrinsically
in Γ. As mentioned earlier, we will use the square-root
forms of these functions to perform such calculations. Let
the corresponding set of square-root forms be given by
{ψ1, ψ2, . . . , ψk}, ψi = γ̇

1
2
i . We define their Karcher mean

as:µ = argminψ∈Ψ

∑k
i=1 d(ψ, ψi)

2, whered is the geodesic
distance onΨ. The minimum value

∑k
i=1 d(µ, ψi)

2 is called
the Karcher variance of that set. The search forµ is performed
using a gradient approach where an estimate is iteratively up-
dated according to:µ → expµ(ǫv), v = 1

k

∑k
i=1 exp−1

µ (ψi).
Here,exp andexp−1 are as given in the previous section, and
ǫ > 0 is a small number. The gradient process is initialized to

ψ̄/
√

〈

ψ̄, ψ̄
〉

, whereψ̄ = 1
k

∑

i ψi.
In Figure4, we show two examples of computing Karcher

means. Column (a) shows examples of sampling functions
γ1, γ2, . . . , γ10, and column (b) shows their Karcher means
µγ (the sampling function obtained by squared integration of
µ ∈ Ψ). We remark that one can extend this framework to
define a full covariance structure on the tangent spaceTµ(Ψ)
(or equivalentlyTµγ

(Γ)) by mapping the observed sampling
functions to that tangent space [18].

2.4 Probability Distributions and Simulations

Having established a representation and a Riemannian metric
on the spaceΓ of sampling functions, we now turn to the
question of constructing a probability distribution. Recall that
a samplings is a triple〈n, τ, γ〉 ∈ N × S1 × Γ. We can write
the probability for s as P(s|C) = P(n)P(τ |C)P(γ|τ, C).
Note that we do not exploit the possibility that the probability
depends on the particular shapeq (as opposed to, for instance,
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Fig. 4. Examples of Karcher means in Γ: In each case,
(a) shows ten γi, (b) shows their Karcher mean µγ , and
(c) shows the cost functions vs. iterations.

the mean shape of a class), and thatP(n) does not depend
on the class: we will use a geometric distribution forn. The
most interesting part of the distribution is the factorP(γ|C, τ).
Clearly the possibilities here are enormous. We will restrict
ourselves to “Gaussian” distributions of the form

P(γ|τ, C) = Z−1e
− 1

2σ2
s
d2(γ̇

1
2 ,ψ0)

, (2)

whered is the geodesic distance under our chosen Riemannian
metric, and whereψ0 = γ̇

1
2
0 is, in consequence, the mode of

the distribution. We discuss two possibilities forγ0 andσs.
The simplest possibility is to emphasize the samplings

of a curve that are uniform with respect to its arc-length
parameterization, independently ofC, by choosingγ0(s) = s,
or equivalentlyψ0 ≡ 1. Alternatively,γ0 may depend on local
geometrical properties,e.g. sampling density may increase
with increasing curvature of the underlying curve. Define
E(s) =

∫ s

0 exp(|κ(s)|/ρ)ds′, whereκ(s) is the curvature ofq
at arc-length parameter points′ andρ ∈ R

+ is a constant. The
ratio γI(s) = E(s)/E(1) is a diffeomorphism, from[0, 1] to
itself, and the desired sampling for that curve isγq = τ+γ−1

I .
The inverse ofγI can be numerically estimated using a spline
interpolation. To define a singleγ0 for each class, we use
training curves from that class, as follows. First we compute
γq for each training curve, and then, using the techniques
presented in Section2.3, we compute their Karcher mean,
which we use asγ0, using the Karcher variance asσ2

s . For this
computation, the training curves are aligned, something which
is done automatically when geodesics are computed between
the shapes of the curves (this shape analysis is summarized
in the next section). We now illustrate these ideas with some
examples.

Shown in Figure5, column (a), are two shapesq. We smooth
these curves using Gaussian filters: their smoothed versions are
shown in column (b). For these smoothed curves, we compute
κ and thene(s). This function is displayed as a normal vector
field on the smoothed curve in (b). Finally,γq is computed;
it is shown in column (c). Figure6 shows some examples of
class-specific means of theγq for two classes. By using these
means asγ0 for each class, we can form class-specific priors
of the form given in Eqn.2.
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Fig. 5. Curvature-driven sampling: (a) a curve; (b) a
smoothed version, with exp(|κ(s)|/ρ) displayed as a nor-
mal vector field; (c) γq.
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Fig. 6. Each row shows two examples of training curves in
a class, the sampling functions γκ for that class, and their
Karcher means.

To simulate from probability densities of the form in Eqn.2,
we first randomly generate a functionf ∈ Tψ0(Ψ) such that

|f | = 1, where, as before,ψ0 = γ̇
1
2
0 . Then, we generate a

normal random variablex ∼ N(0, σ2
s), and compute a point

ψ = cos(x)ψ0 +sin(x)f/‖f‖. The random sampling function
is then given byγ(s) =

∫ s

0 ψ(s′)2 ds′. Figure7 shows some
examples of random simulations from such a class-specific
prior density for increasing values ofσ2

s . If σs is too large,
then many of the sampled points will lie outsideΨ, i.e.ψ will
take on negative values. Including such samples still defines a
probability density onΓ, but its interpretation is complex due
to the “folding back” effect of taking the square ofψ. Such
points may, however, simply be rejected from the samples, thus
preserving the form of the density given above. For efficiency’s
sake, though, the proportion of such points should not be too
large, and this implies a constraint onσs.

3 SHAPE AND SHAPE VARIABILITY

We now turn to the construction of the shape model,P(q|C).
While objects of a given class are similar in their shapes,
there is naturally also variability within each class. It is
this commonality and variability thatP(q|C) must describe.
Figure 8 illustrates shape variability for three classes in the
Kimia database.

There have been several recent papers that develop tools
for analyzing the shapes of planar closed curves,e.g. [3], [4].
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Fig. 7. Random samples from P(γ|C) with σ2
s increasing

from left to right.

. . .

. . .

. . .

Fig. 8. Each row shows examples of the training shapes,
with their Karcher means shown in the rightmost panels.

The main differences amongst these articles lie in the choice
of representation for the curves and of the metric used to
compare shapes. An emerging choice of metric for comparing
the shapes of curves is theelastic metric[19], under which
curves are allowed to stretch, compress, and bend in order
to reach an optimal matching. Although this metric has been
studied in several forms, two recent papers [20], [21] present
an efficient representation under which the elastic metric
becomes a simpleL2 metric, with the result that shape analysis
simplifies considerably. This has been called the square-root
elastic framework, and we describe it in the next section.

3.1 Representation

Consider a closed, parameterized curve: a differentiable map-
ping β from S

1 to R
2, whose shape we wish to analyze.

There are two invariances we have to include in our analysis.
One is that the notion of “shape” is independent of the size,
orientation, and position of the curve. Secondly, it is invariant
to reparameterizations of the curve. The variability generated
by changing these variables can be written as the actions of
appropriate groups on the space of closed curves and, thus,
can be “removed” from the representation using quotients.

Before we present shape analysis in more detail, we con-
sider an important question: Why do we use parameterized
curves to represent boundaries or regions? It is possible to
analyze the shapes of regions using representations that do
not involve explicit parameterizations. For instance, onecan
use a level set of a function to represent a region [22],
[23], or one can view a region as a subset ofR2 and use
set-theoretic metrics,e.g. the Hausdorff metric, to compare
shapes [24]. Since there is no parameterization involved in
these representations, one does not have to “remove” it in
shape analysis. However, this becomes a disadvantage when
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the goal is to associate arbitrarily sampled points to given
shape classes: it is simply more difficult to associate sampled
points to these representations than it is using an explicit
parameterization. On the other hand, approaches that represent
shapes by a small subset of points on the boundary selecteda
priori , e.g.active shape models [1], cannot introduce arbitrary
samplings. Hence, the choice of parameterized curves for
shape analysis of boundaries is important.

As described in [20], [21], we will represent a curveβ
by its square-root velocity function:q : S

1 → R
2, where

q(t) = β̇(t)

|β̇(t)|
1
2

, | · | is the Euclidean norm inR2, and

t is an arbitrary coordinate onS1. Note that the use of
the derivative already eliminates translations. To eliminate
scalings, we restrict ourselves to the space of unit length
closed curves. The resulting space is a unit sphereB =
{q|
∫

S1(q(t) · q(t)) dt = 1}, where(·) is the Euclidean inner
product inR2. The transformations that remain are rotations
SO(2) and reparameterizationsDiff(S1). Since the actions of
these two groups onB are isometric, with respect to theL2

metric, we can define the shape space to be the quotient space
Q = B/(SO(2) × Diff(S1)) and inherit theL2 metric from
B. In other words, for a pointq ∈ Q the Riemannian metric
takes the form〈δq1, δq2〉q =

∫

S1 δq1(t) · δq2(t)dt. To perform
statistical analysis inQ, however, which is our goal, one
needs to construct geodesics inQ. Joshiet al. [21] describe a
gradient-based technique for computing geodesics inQ. The
technique uses path-straightening flows: a given pair of shapes
is first connected by an initial, arbitrary path that is then
iteratively “straightened” so as to minimize its length [20].
The length of the resulting path is then the geodesic distance
between the shapes. Since one of the effects ofDiff(S1) is
different placements of the origin on closed curves, its removal
results in an alignment of shapes in that regard.

3.2 Statistics and Probabilities on Q

One can define and compute the mean of a collection of shapes
using the Karcher mean, now based on the geodesic distance
defined in the previous section [18]. Three sets of examples
of shapes and their Karcher means are shown in Figure8,
while the Karcher means for all the 16 classes used in this
paper are displayed in Figure9. Figure10shows a dendrogram
clustering of these mean shapes using the geodesic distance.
We make two observations from this clustering. Firstly, this
clustering agrees with our human inference in that similar
shapes have been clustered together. Secondly, later on when
we study classification of shapes, we anticipate that the algo-
rithms will have more difficulty separating similar classes. For
example, classes 1 and 15—bones and tools—will be harder
to distinguish than say bones and glasses.

The next step is to impose a probability model onQ.
Perhaps the simplest model is the one used forΓ, Eqn.2. As
suggested in [18], it is much easier to express this distribution
using the tangent spaceTq0Q to Q at the mean shapeq0
than usingQ itself, because the former is a vector space.
In that space, one can use principal component analysis
(PCA) and impose a standard Gaussian distribution on the
PCA coefficients, then use the exponential map to “push

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 16

Fig. 9. Karcher means of the 16 shape classes used.
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Fig. 10. A dendrogram plot of the Karcher means in
Figure 9 using geodesic distances.

forward” these tangent vectors toQ itself. Empirical study
shows, however, that the histograms of these tangent principal
coefficients are often far from Gaussian. We therefore use
kernel estimates of the underlying densities to capture this
more complex behavior. This is illustrated in Figure11. The
essential methodology is unaltered, and indeed applies to
any distribution onQ that we can simulate. For simulation
purposes, we treat the tangent principal coefficients as inde-
pendent random variables. In practice we use approximately
10 tangent principal coefficients per shape class.

To simulate fromP (q|C) described above, we first simulate
from the estimated density of the tangent principal coeffi-
cients, and then use the exponential map to generate the
corresponding elements ofQ. Figure12shows some examples
of simulations from one such non-parametric model.

3.3 Probability Distribution for G

We have described a representation for shapesq ∈ Q, and
some possible modelsP(q|C). In order to describe a set
of points with a particular position, orientation, and scale,
however, we have to transform theq using a similarity
transformationg ∈ G and then sample it.P(g|q, C) is the
corresponding probability distribution. In this paper, wewill
assume a uniform prior onG, suitably truncated for large
enough scales or translations to allow normalization.

4 OBSERVATION MODEL

Depending upon the technique used to extract primitives from
the image data, the actual observations will often differ from
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coefficients in shape class 1.

Fig. 12. Some randomly generated shapes from a TPCA
model on a shape class.

the corresponding points on the curves. This may be due to
low quality, coarse resolution, and quantization of images.
A standard way to treat this variability is to introduce an
independent observation noise that perturbs the sampled points
according to some probability model. In this paper, we take
this noise to be additive, white, and Gaussian, but the use of
Gaussian noise is purely for convenience; more sophisticated
noise models can similarly be included in the solution. The
deterioration of the data due to occlusions is not included in
the observation noise, although the fact that the number of
points sampled is arbitrary may help if occlusions are present.

In addition to the perturbation of the primitives generated
by the object boundary, we expect to have primitives from
the background and the object interior, creating “clutter”. Our
likelihood term needs to model these points as well. So, given
n unperturbed pointsx = gqs generated by the curve, what
is the probability of a given dataset ofm pointsy (m ≥ n)?
If we know the injectionι relating x to n unique elements
of y, then we can dividey in two sets: a set ofn points,
namedys, related tox and the remainingm − n points,
namedyc, attributed to clutter. The first set is modeled using
additive, white-Gaussian noise and the second is modeled
using a homogeneous Poisson process with intensityλb. The
likelihood function for the complete data is given by:

P(y|ι, gqs) = P(ys|gqs) P(yc)

=
1

Z
e

−1

2σ2
y

Pn
k=1 ‖yι(k)−xk‖

2 λm−n
b

(m− n)!
. (3)

The probabilityP(yc) thus depends solely on(m− n). Note
this likelihood also applies Problem I, except therey = ys

and the likelihood consists only of the first termP(ys|gqs).

5 PROBLEM I SOLUTION

For Problem I,n is fixed to be the number of points iny, and
s is reduced to the pair(τ, γ). In terms of Figure1, our task is
to go from (c) to (d). So we take up the problem of evaluating
the posteriorP (Ci|y) and note that the Bayes’ integral in
Eqn.1 is too complicated to solve analytically. It is therefore
approximated using numerical techniques. There are several
ways of approximating such an integral.

One possibility is to use the Laplace’s
approximation by maximizing the integrand
over the variables of integration: P (Ci|y) ≈
P0(Ci)
P (y) P (y|ι0, g∗i q

∗
i s

∗
i )P (q∗i |Ci)P (g∗i |Ci)P (s∗i |Ci),

where (g∗i , q
∗
i , s

∗
i ) are the maximizers of the function

P (y|ι0, gqs)P (q|Ci)P (g|Ci)P (s|Ci). Such an approximation
is reasonable when the integrand has a single mode with a
support that remains similar from class to class.

Another approximation is the Monte Carlo approach where
one independently simulates values from the prior proba-
bilities, evaluates the likelihood function and averages the
likelihoods to estimate the required posterior. That is, generate
qj ∼ P (q|Ci), gj ∼ P (g|Ci) and sj ∼ P (s|Ci), for
j = 1, 2, . . . , J independently and form the Monte Carlo

estimate:P (Ci|y) ≈
P0(Ci)

P

J
j=1 P (y|ι0,gjqjsj)

P

i
P0(Ci)(

P

J
j=1 P (y|ι0,gjqjsj))

.

Sometimes it is more efficient to use a combination of
these two ideas. For instance, since the use of white Gaussian
observation noise leads to a quadratic likelihood energy, the
optimal value ofg for matching ay to an x = gqs can be
found easily using standard point registration. Similarly, of the
two variables making ups, τ and γ, one can also optimize
over τ while randomly simulatingγ from the priorP (γ|Ci).
Since τ decides which element of the circular setx is the
starting point, there are onlyn possibilities and they can be
searched exhaustively. Thus, it is easier to removeg and τ
from the integration using optimization. Letqj andγj be the
simulated values fromP (q|Ci) andP (γ|Ci), and let

(g∗j , τ
∗
j ) = argmax

g,τ
P (y|ι0, gqjsj), sj = (τ, γj) . (4)

Define a point setx∗
j,i to be the one resulting from taking

the shapeqj , sampling functionγj , registrationτ∗j , and the
alignmentg∗j , all generated from models for classCi. Then,
an estimate of the posterior is given by

P (Ci|y) ≈
P0(Ci)

∑J
j=1 P (y|x∗

j,i)
∑

i P0(Ci)(
∑J

j=1 P (y|x∗
j,i))

. (5)

Here, the likelihood is given by the first term in Eqn.3.

5.1 Joint Registration and Alignment

The subproblem we address here is given in Eqn.4: Given
two sets of ordered points inR2, call themx, y ∈ Rn×2, we
want to rotate, scale, translate, and circularly shiftx so as to
minimize its Euclidean distance squared fromy. Define x

τ

to be a circular shift of the elements ofx such that theτ th

element becomes the first element,τ ∈ {1, 2, . . . , n}.

If τ is fixed, then the two sets of points can be completely
registered, and their alignment performed, using the Procrustes
method, as follows. Compute the2 × 2 matrix A = (y −
ȳ)T (xτ − x̄

τ )T , where ȳ and x̄
τ are means ofy and x

τ ,
respectively. LetA = UΣV T , the SVD ofA. The optimal
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Fig. 13. Examples of several x∗ (broken line), correspond-
ing to different shape classes, for the same y (solid line).

rotation, scaling, and translation ofx
τ are given by:

O∗ =











UV T if det(A) > 0

U

[

1 0

0 −1

]

V T otherwise.
(6a)

ρ∗ =
Tr((y − ȳ)T (xτ − x̄

τ ))

Tr((xτ − x̄τ )T (xτ − x̄τ ))
, T ∗ = ȳ − x̄

τ . (6b)

The search for the optimalτ is exhaustive. For each of then
possible shifts, we compute the best alignment of the resulting
x to y, and keep the closest one. This is the optimalx

∗ for the
given pair(x,y). Some examples of this registration/alignment
process are displayed in Figure13.

Here is a summary of the steps needed to approximate the
posteriorP (Ci|y) for a giveny.

Algorithm 1. For j = 1, 2, . . . , J :

1) Randomly generate a shape classCi and simulate a
shapeqj ∼ P (q|Ci).

2) Generate a sampling functionγj ∼ P (γ|Ci).
3) Solve for g∗j , τ∗j , and thenx

∗
j using the Procrustes

method.
4) Evaluate the likelihood functionP (y|x∗

j,i) using Eqn.3.

Approximate the posteriorP (Ci|y) using Eqn.5.

The noise varianceσ2
y is a free parameter here. Its value

affects the shape of the posterior histogram but not the
posterior mode.

5.2 Experimental Results

We now describe some experimental results on estimating
P (Ci|y). In this experiment, we simulate the datay according
to the data model and apply Algorithm1. Figure14 presents
six examples of computing the posterior using simulated data
under Problem I. In each block, the left panel shows the true
underlying curve and the points sampled on it to formy
(elements ofy are joined to form a polygon). The middle
panel shows a bar chart of the estimated posterior probability
P (Ci|y) for each of the 16 classes. The last panel shows
the simulated configurationx∗ (dotted line) that results in
the maximum likelihood, along with the hypothesized curveq

and the datay (solid lines). As these examples demonstrate,
the algorithm is quite successful in generating high-likelihood
candidates from the correct shape classes, even wheny is
generated for a relatively small value ofn. Of these nine cases,
only the top row has the highest posterior for an incorrect
class:n = 3 is clearly too small to distinguish shape classes.

Once the posteriorP (Ci|y) is approximated, it can be used
for classifying y into a shape class, by ranking the classes
according to their posteriors and picking the highest. Since
the datay here has been simulated with known shape classes,
we can evaluate the algorithm’s performance by comparing the
estimated class with the true class. To estimate the posterior
for eachy, we usedJ = 300 realizations from the posterior,
and to estimate the probability of correct classification, we
used 150 runs (simulations ofy) for each value ofn andσy.
For these simulations, the underlying shape class is picked
randomly with equal probability. The results are shown in
the left panel of Figure15, where the probability of correct
classification is plotted versusn, for three different observation
noise levels. The noise levels are:σy = 0.01, σy = 0.025,
andσy = 0.05, expressed in terms of the arc-lengths of the
curve. For example,σy = 0.01 implies thaty was simulated
by adding noise at standard deviation0.01 times the length of
the true curve to each component ofy. This plot suggests
that, in the case of low noise, the sampling of shapes by
n = 6 points results in approximately 50% classification rate.
To reach over 90%, one will need more than20 points in
this setting. Even at a very high noise levelσy = 0.05, the
algorithm can classify more than 45% of observations with
only 15 points. If we use ak-highest rank (k-HR) classifier,
i.e. the estimated class is in thek highest ranked classes, we
get the result shown in the middle panel of Figure15. The
right panel shows the classification performance for each class
individually, for the casen = 12 andσy = 0.01. In this plot
the classification performance was estimated by averaging over
100 simulations ofy generated from only one class at a time.
As the dendrogram in Figure10 shows, shapes in classes 1, 3,
and 15, and 4, 16, and 7 are quite similar, respectively, and this
naturally affects the classification rate for these classes. Their
classification rates increase drastically when we go from 1-HR
to 3-HR classifier. For example, the classification rate for class
3 jumps from 0.64 to 0.97 and for class 15 from 0.62 to 1.0.
This supports the argument that the classification is closely
tied to the distinctiveness of shapes across classes. Another
interesting point is the low classification rate of classes in
which shapes are more complicated—cat (6) and mouse (13).
We believe this is because the shape variability within these
classes is more complex and the shape model used here does
not completely capture this variability.

In terms of the computational cost, the time taken to
estimateP (Ci|y) for eachy using Algorithm 1 is approx-
imately 20 seconds in Matlab whenJ = 300. Since we
estimate the probability of correct classification using 150 such
evaluations of the classifier, for each value ofσy and n, it
takes approximately 50 minutes to estimate each point on the
performance curves shown in Figure15.
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Fig. 14. Each block shows—Left panel: the data y (solid polygon) superimposed on the underlying true curve (broken
line); Middle panel: the posterior P (Ci|y); Right panel: highest likelihood sample x

∗ (broken polygon) drawn over the
hypothesized curve β (solid line). Data polygon y is drawn in solid lines for comparison here. The top row has n = 3,
the middle n = 5, and the bottom row n = 20. The numbering of classes in the bar chart is same as the order in Figure
9 and the correct classes (from top left to bottom right) are 8, 1, 14, 5, 11, and 3.
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Fig. 15. Classification performance versus n. Left: Shape classification performance of highest-rank classifier for three
different noise levels. Middle: Classification performances of one-, two-, and three-HR classifiers, versus n, when
σy = 0. Right: Classification performance by class for n = 12 and σy = 0.

6 PROBLEM II SOLUTION

Now we return to the more general problem of finding shape
classes in given point clouds, where the given points are: (i)
unordered and (ii) may or may not lie on the object boundary.
In terms of the problem description in Figure1, our goal in
this section is to go from the data (a) to the inference (d). Two
sets of results are presented: one from simulated data and one
from primitives extracted from real images.

We start by describing the formation of the simulated data.
As shown in Figure16, we start by picking a classCi,
generating a shapeq ∼ P (q|Ci) and sampling it according to
a randomly generated sampling functions = 〈n, τ, γ〉. Here
n ∼ Geometric(n0), τ is uniform in [0, 1], andγ ∼ P (γ|Ci).
Next, we introduce additive, Gaussian noise to these sampled
points. So far, the data formation is similar to the baseline
problem studied earlier. Then we introduce background clutter
by simulating from a homogeneous Poisson process with mean
λb. The result is shown in panel (b) of this figure. Finally, we
take all the points: sampled with noise fromq and simulated
from Poisson, and randomly permute them to result in the set
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Fig. 16. Simulated data. (a) The original curve β and its
sampling gqs, (b) with Poisson clutter, (c) the resulting y.

y of observed data points, as shown in panel (c).
The second set of experiments in this section involves primi-
tives derived from image data using a simple processing step
demonstrated in Figure17. For an imageI (left panel), we
have usedIw ≡ | ∂I

∂x
|+ | ∂I

∂y
| to isolate (vertical and horizontal)
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Fig. 17. Examples of pre-processing of images: (a) I, (b)
Iw, (c) a random selection from binary image (d) thinning
step to result in y drawn over I.

edges inI (second panel). Then, we thresholdIw using three
standard deviations from the mean value inIw , to obtain
a binary edge map (third panel). To obtain point primitives
from the binary map, we randomly select a predetermined
number, saym0, of the points with value 1 (also shown
in the third panel). Finally, we use a thinning procedure to
discard(m0−m) points to results in a sety of m points (last
panel). This thinning basically computes all pairwise distances
between points and iteratively discards those points that are
associated with the smallest distances. In the experimental
results presented here we usedm0 = 70 andm = 40.

6.1 Registration Problem

The key step in handling Problem II is to solve aregistration
problem: given two sets of pointsx ∈ Rn×2 andy ∈ Rm×2,
n ≤ m, associate to each element ofx a unique element
of y so as to minimize a certain cost function. Using an
injection ι : {1 . . . n} 7→ {1 . . .m} each hypothesis point
xk has to be associated with a data pointyι(k). This results
in a subsetys of points that are assigned to the shape and
a subsetyc of remaining points assigned to the background
clutter. The likelihood energy function for this model is given
by: − log(P (y|ι, gqs)), whereP (y|ι, gqs) is given in Eqn.3.
Similar to the hybrid approach taken in Problem I, we would
like to solve for the pair(g, ι) explicitly using:

(g∗, ι∗) = argmin
g∈G,ι∈I

(

n
∑

k=1

‖yι(k) − xk‖
2

)

, for x = gqs .

(7)
The minimization problem overι, for a fixedg, is one version
of the famous optimal assignment problem. The solution is
given by the Kuhn-Munkres or the Hungarian algorithm and
their Matlab implementations are readily available. Hence, we
do not reproduce that algorithm here but directly present our
experimental results. Once the optimal mappingι∗ is found,
it solves the two original issues: background rejection and
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Fig. 18. Association Problem: For the data set y shown in
top left, we show four examples of: x (thicker points), the
selected ys, and an estimated ordering of ys (solid lines)
inherited from the corresponding ordering in x (broken
lines).

point ordering. Note that the ordering of points inx = gqs is
known and this ordering, in turn, imposes an ordering on the
corresponding elements ofy. Shown in Figure18 are some
examples of registering a giveny, top-left panel, with several
hypotheses forx, shown in the remaining panels. For each
hypothesis, we use the Hungarian algorithm to find the optimal
ι∗ (for m = 40, n = 20) and an ordering onautomatically
selectedelements ofy (solid polygon) inherited from the
corresponding elements ofx (broken line polygon).

6.2 Joint Registration and Alignment

In addition to the injectionι∗, we need to solve for the optimal
transformationg∗ in Eqn. 7, which, as in Problem I, consists
of a rotationO ∈ SO(2), scaleρ ∈ R+ and a translation
T ∈ R2. For a fixedι, we only need to register the elements
of x andys; we can solve for the optimal transformationg∗

directly using Eqns.6 in Section5.1.
Now we have a familiar situation: for a given injection

ι, we can solve for the optimal transformation and for a
given transformationg we can solve for the optimal injection.
However, we need a joint solution. This we accomplish by
initializing a transformation ofg and iterating between the
two conditional optimizations. The result is a local solution to
the joint optimization problem; we will label the final values
of g andι asg∗ andι∗, respectively. The initial value ofT is
taken to beȳ − x̄ while the initial rotations ofy and x are
obtained using the SVD of matrices

∑

k(yk−ȳ)(yk−ȳ)T and
∑

k(xk− x̄)(xk− x̄)T . The scaleρ is initialized by scalingx
andy in such a way that the Frobenius norm ofy is

√

m/n
times the Frobenius norm ofx. The logic for this choice is
that a subset of sizen from y, although we don’t yet know
which particular subset, has to be matched tox. Two examples
in Figure 19 illustrate this iterative optimization. Once the
optimal association and transformation ofx are found, we
have the optimal version of the hypothesized configuration
x
∗. Using a large number of simulated hypotheses, we can

estimate the posterior using Eqn.5.
Here is a summary of the steps for approximating the

posterior distribution in Problem II for a giveny.



IEEE TRANSACTION PAMI 12

0 2 4 6 8 10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 2 4 6 8 10
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Fig. 19. Left panels show y (points) , x before (broken
line) and x after (solid line) the joint registration and
alignment. Right panels show the cost function in Eqn. 7.

Algorithm 2. Same as Algorithm1 except these two steps:

2) Generate a sampling functionγj ∼ P (γ|Ci) and a
sample sizen ∼ min(Geometric(n0),m).

3) Solve forg∗j , and ι∗j using Section6.2. This gives rise
to an optimal version of the hypothesis,x

∗
j,i.

The parametersλb, σy andn0 are free parameters here.

6.3 Experimental Results

We present two sets of results, corresponding to simulated data
and real image-based data.

Shown in the top three rows of Figure20 are experimental
results on simulated data withm = 40 and n0 = 20. In
each case, the left panel shows the true underlying curve,
which was sampled to generate the data sety, which are
also shown there. The next panel displays a bar chart of
the estimatedP (Ci|y) for this y, i = 1, 2, . . . , 16 using
J = 300 samples. The last figure shows a high probability
polygon formed using the subsetsys using Algorithm2. In
each of the three cases, the amount of clutter is quite high—
the number of points on the curve equals the number of clutter
points. Still, the algorithm puts the highest probability on the
correct class in all cases. The bottom left chart is the estimated
average performance of Algorithm2 plotted against the ratio

ν, whereν =
number of points on curve
total number of points iny . Low values ofν

denote a larger amount of clutter and the related classification
performance is expectedly low. It is interesting to note that
the performance of the HR classifier is more than 50% even
whenν < .5. As these experiments suggest, the algorithm is
able to put high probability on the correct shape class despite
the presence of clutter.

As a comparison, we have studied the performance of
classification using the Hausdorff metric and the Iterated
Closest Point (ICP) algorithm. In both cases, hypothesized
x’s are generated as earlier, but the likelihood is computed
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Fig. 20. Top three rows—The original curve and the
simulated dataset y (left), the estimated posterior P (Ci|y)
(middle), and a high-probability configuration (right). The
correct classes in these examples are: 16, 9, and 5. The
bottom left plot shows the average classification perfor-
mance versus ν for the Bayesian approach, while the
bottom right compares this approach with classifications
using the Hausdorff metric and an ICP algorithm.

differently. In the case of the Hausdorff metric it is com-
puted usinge−dh(y,x̂)2 , wheredh is the classical Hausdorff
distance, dh(y,x) = maxi(minj ‖xi − yj‖) and x̂ =
argminOx|O∈SO(2) dh(y, Ox). The scale and the translation of
x is initialized as previously and kept fixed. The classification
performance for this metric, for different levels of clutter, is
shown in the right panel of Figure20. The ICP algorithm is
another commonly used procedure for registering and aligning
arbitrary point clouds. The basic idea is to iterate between
Procrustes alignment and nearest-neighbor registration until
convergence. We have used ICP to register elements ofx

to the elements ofy, resulting in x̃, and use the resulting
squared distancedicp =

∑

i(minj ‖x̃i − yj‖)2) to compute
the likelihoode−d

2
icp . The results for recognition based on this

likelihood are also shown in the right panel. These general-
purpose methods do not account for clutter and do not ensure
that a unique element ofy is assigned to each element ofx.
Consequently, their recognition performance is lower thanthe
structured approach proposed in this paper.

Figures21-22show several examples of inferences on shape
classes in real images. In each row, the left panel shows
the original image and the datay. The next panel shows
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Fig. 21. (a) Original image and detected primitives, (b) es-
timated P (Ci|y) for 16 shape classes, (c)–(d) two exam-
ples of high-probability x and optimal correspondences
with y. The correct classes are 3, 3, 5, and 15.

the posterior probability estimated using Algorithm2, and
the remaining two panels show examples of high probability
ys superimposed on the image. In this experiment, we used
m = 40 and n0 = 20. The examples ofys can viewed as
the most likely polygons that can be constructed using the
primitives present in the correspondingy. Several observations
can be made from these results. Firstly, the algorithm finds
it easy to detect distinct, elongated objects (bottle, tools,
bone, etc), but not so easy to distinguish between them.
The first and the last examples in Figure21 all show high
posterior probability on these three related classes (1,3 and
15). Secondly, the algorithm is sensitive to differences between
training shapes and test shapes. The test glass in Figure21
is quite different in height from the glasses used in training
shape priors for class 5. Similarly, the helicopter in Figure 22
is different from the training helicopters in class 9. This
adversely affects Algorithm 2’s ability to discriminate between
classes. Lastly, the clutter present in this data is much more
structured that in the simulated data (where clutter came from
the Poisson model). Therefore, the algorithm is not as immune
to clutter as it was in the simulated case. In the third example
of Figure22, the algorithm tries to fit shapes using points from
both the fishes. In the last panel of this row, the algorithm does
succeed in ignoring clutter and finding the fish contour.

The time taken to estimateP (Ci|y) for each y (Algo-
rithm 2) is approximately 60 seconds in Matlab whenJ = 300.
The time to estimateP (Ci|y) in Problem I was 20 seconds.

This increase in computational cost is due to the need to solve
a more general registration problem in Problem II.

7 CONCLUSION

We have presented a Bayesian approach for finding shape
classes in a given configuration of points, in the presence of
under-sampling of object boundaries, observation noise, and
background clutter. Rather than trying all possible permuta-
tions of points, we take a synthesis approach and simulate
configurations using prior models on shape and sampling. The
class posterior is estimated using a Monte Carlo approach. The
strengths and limitations of this framework depend squarely
on the strengths and the limitations of the models used, espe-
cially P (q|Ci) andP (γ|Ci). In this paper, we have restricted
attention to points, but additional primitives, includinglines
(first order) and arcs (second order) can also be used.
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