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Looking for Shapes in Two-Dimensional,
Cluttered Point Clouds
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Abstract —We study the problem of identifying shape classes in point clouds. These clouds contain sampled contours and are
corrupted by clutter and observation noise. Taking an analysis-by-synthesis approach, we simulate high-probability configurations of
sampled contours using models learnt from training data to evaluate the given test data. To facilitate simulations, we develop statistical
models for sources of (nuisance) variability: (i) shape variations within classes, (ii) variability in sampling continuous curves, (iii) pose
and scale variability, (iv) observation noise, and (v) points introduced by clutter. The variability in sampling closed curves into finite
points is represented by positive diffeomorphisms of a unit circle. We derive probability models on these functions using their square-
root forms and the Fisher-Rao metric. Using a Monte Carlo approach, we simulate configurations from a joint prior on the shape-sample
space and compare them to the data using a likelihood function. Average likelihoods of simulated configurations lead to estimates of
posterior probabilities of different classes and, hence, Bayesian classification.

Index Terms —Shape classification, clutter model, Fisher-Rao metric, planar shape model, diffeomorphism
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1 INTRODUCTION T oo

THE classification and recognition of objects in image:.' .. . . .
is an important problem in machine vision, biometrics,| " . *° . T

medical image analysis, and many other branches of scien,, T

A common approach is to represent the objects of intere L, " .l L7 ST ) B>

with certain discriminant features, and then use some sta- (a) Data (b) No Clutter (c) Ordering (d) Classification

tistical models on these feature spaces for classificafion.

important feature of many objects is theihape and, as a Fig. 1. Problem Challenges: The point cloud in (a) con-

consequence, shape analysis has become an integral pattiof clutter as well as the shape of interest. The removal

object classification1], [2]. One way to use shape analysis i®f clutter leads to the points in (b), which when ordered

to estimate the boundaries of the objects (in images) andrasult in a polygon (c). Subsequently, this polygon can be

analyze the shapes of those boundaries in order to chédractensed for shape classification, as in (d).

the original objects. Towards that end, there have beenaeve

papers in the literature on analyzing the shapes of contisuo

closed, planar curves (see for examptg, [4] and others 1.1 Problem Challenges

referenced therein). While such continuous formulatiores a

fundamental in understanding shapes and their variabilifjhe biggest challenge is to select and organize a large subse

practical situations mostly involve heavily under-sandple of the given primitives into shapes that resemble the shapes

noisy, and cluttered discrete data, often because the ggodaterest. The number of permutations for organizing piirag

of estimating boundaries uses low-level techniques thiaaetx into shapes is huge. For example, if we take the primitives to

a set of primitives (points, edges, arcs, etc.) in the ima§é€ points, the number of possible polygons usifgdistinct

plane. (We will restrict attention to points in this paper—points is of the order of0*". If we select only20 points out

some examples of point sets derived from real images dfthe given40 and form a polygonal shape, the number of

shown in Figuresi7, 21 and 22—but the method generalizespossibilities is still approximately0>?. To form and evaluate

to more complex primitives.) Therefore, an important peshl all these shape permutations is impossible. Similasipdur

in object recognition is to relate (probabilistically) avgn set Solution is to analyze these configurations through syighes

of primitives to pre-determined (continuous) shape ckssel i.€. to synthesize high-probability configurations fromowm

to classify this set using fully statistical framework shape classes and then to measure their similarities wigh th

data Although this approach has far smaller complexity than

the bottom-up combinatoric approach, the joint variapitf

e A. Srivastava is with the Department of Statistics, Flor&tate University, all the unknowns is still enormous. To go further, one must us

Tallahassee, FL 32306. the structure of the problem to break down the variability in
e I. H. Jermyn is with the Ariana project-team, Project ARIANNRIA, COmponents, and then probabilistically model the comptnen
Sophia Antipolis, France. individually. Through an example presented in Figlreve
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one of the Kimia databases (see for exampglp €onsisting
of 16 classes of shapes: bone, bird, bottle, brick, catjager
car, chopper, crown, fountain, man, rat, fork, tool, fishd an
glass, with approximately 400 total training shapes. Fedur
shows the mean shapes from these 16 shape classes.

In the past literature, the search for parametric shape lmode
(lines, circles, cylinders, etc) in cluttered data has bpen
Fig. 2. Examples of ordered point sets to be classified formed using the RANSAC algorithnv], [8]. However, the
into given shape classes. The cardinality of these point multiplicity of shape classes and the non-parametric eatur
sets decreases from left to right making the classification of shape variability makes it difficult to apply RANSAC in
more challenging. our context. Also, note that the goal here is different from

the reconstruction of curves from point cloud data. A ralate
problem is the shape analysis of objects, most commonly 3D,

1. Clutter Rejection: It is not just the object boundaryusing discrete representations of their surfaces, forants
that will generate primitives: the background and the dbjeasing point clouds as in Memoli and Shapird.[Similarly,
interior will too. From the perspective of the shape analysGlaunes et al. (] represent curves and surfaces as measures
of object boundaries, these background and interior p@irgs in R™ and compare shapes by comparing their associated
clutter. Perhaps the most difficult issue is to determinectvhi measures. Although such solutions, proposed for comparing
primitives belong to the object boundary and which are efutt point clouds to point clouds, can also be applied to the otirre
Discarding clutter takes us from (a) to (b) in Figure problem, the presence of clutter is a problem. Peter and Ran-
2. Ordering: Even if the primitives belonging to the objectgarajan [ 1] impose a very different structure, originating from
boundary are known, their ordering along the boundary issmas mixture of Gaussians, to analyze the shape of point clouds.
probably not. Ifn point primitives are used to form a polygonakFelzenszwalb and Schwartz7] propose a hierarchical, tree-
shape, there ane! orderings. Having a specific ordering movesike representation of curves using a triplet of points athea
us from (b) to (c) in Figurel. node and compare the trees by comparing the shapes of
3. Classification Even for an ordered set of primitives,the triangles formed by the triplets. The specific problem of
all of them belonging to the boundary, the task of shamgassifying the shapes of 2D contours using cluttered point
(class) determination, that is going from (c) to (d), islstilprovides additional structure, coming from variability time
challenging, although not as difficult as going from (a) tehapes and their samplings into finite points, that is not
(d). Depending upon where the primitives are placed on tleeploited by some of these general methods.
curve, the resulting polygons can have very different shape
To reach a statistical framework for this classification, w&2 Problem Formulation and Overview
have to develop models for the variabilities associatedh wiThe classification problem is described by the probability
shapes, the generation of primitiveése(sampling in the case P(C|y), whereC' € C is the class of the object represented by
of points), and the observation noise. the data set, ang C ) is the datai.e. a finite set of primitives.

Given these challenges, we will address the general probléBecause we are restricting attention to primitives that ar
in two steps. First, we will study the classification problem simply points inR?, we have) = R?*™ for m primitives.)
the absence of clutter and assuming a known ordering. Th&e fix an arbitrary enumeration of these points for conve-
we will extend that solution to the more general case withience. Classification can then be performed by maximizing
clutter and an unknown ordering. the probability:C' = argmax P(C|y). The construction of
Problem |—Baseline Problem We assume that all the ob-P(C|y) is most easily performed by first rewriting it using
served points belong to the boundary of interest and that Bayes’ theoremP(Cy) «x P(y|C)P(C).
ordering of these points is known. Thus, the goal is to dgevelo We will take the prior probability over classes to be uniform
a statistical framework to classifgn ordered set of primitives but including a non-uniform prior is trivial. The difficulty
into pre-determined shape classes. Some examples of drderfethe problem is contained i(y|C'), which describes the
point sets are shown in Figurz Given shape classes, sucHormation of the data starting from the object class. To make
as crown, glass, bottle, carriage, etc., we seek to clatisify any further progress, this probability must be broken down
observed points, or polygons, into these classes. In thesfigunto components corresponding to simpler stages in the data
the number of points is high on the left and decreases towafdsmation process. Here we will provide a schematic ovevvie
the right. For any observer it will be relatively easier tasdify of these stages, and the algorithm to which they give rise. Th
the polygons on the left than those on the right. various quantities used below will be defined precisely i th
Problem Il: Extension to General Problem: In this more following sections. First, we introduce some variables:
general case, not only do we not know the ordering of thee Letg € G, whereG = (SO(2) x R?) xR, be a similarity
points generated by the object boundary, but clutter points transformation that includes rotation, translation, and
generated by the background and the object interior are also scale. The symbok denotes the semi-direct product.
present. We do not know how many or which of the data pointse Let ¢ € Q be a shapei.e. an object boundary modulo
fall on the boundary. similarity transformations and reparameterizations.sfhu

For the experiments described in this paper, we will utilize a specific boundary is given hy.
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o Let s € S representn point-primitives on the shape
boundary; among other variablescontainsn. We will
call this a “sampling”. Therys will be a set ofn point
primitives modulo a similarity transformation, while a
specific set of point primitives is given by = ggs.

o LetZ 5. :[0,...n] — [0,...m] be a one-to-one map, Fig. 3. lllustration of sampling variability for a curve.
i.e. an injection, relating each element »fto a unique

element ofy.
Then we can write (making certain independence assumptioBs MODELING SAMPLING VARIABILITY
to be discussed later) By a sampling of a continuous curve, we mean selecting an
ordered finite number of points on that curve. (We underline
P(y|C) = Z/// P(y|i, gqs) P(1|s) Plglq,C) x the d,|,st|nct|on betwee“n our use of “sampling a f:ontlnuolus
ez g curve” and the phrase “sampling from a probability”. To aloi

93 this confusion, we will use “simulating from a probabilit§gr

9€Q the latter.) The sampling step results in a significant ldss o

P(slq,C) P(q|C)dg dsdg . (1) information about the original shape. Figueshows some
examples of samplings of a single shape. Since the sampled
We will take P(¢|s) and P(g|q, C) to be uniform, a point we points are ordered, we can draw a polygon to improve the
discuss in Sectiof3.3. With these assumptiong,and. appear visualization of the sampled points.
solely in the first factor in the integrand(y|:, ggs). A sampling is intended to represent the generation of

The difficulties of the problem can now be seen in mattprimitives by particular types of sensor, or, more commpnly
ematical terms. In order to compute the posterior prokghbiliby simple image processing techniques such as edge detectio
of a class, one must in some way (at least approximateK$ such, it is heavily dependent on the procedure used to
sum over all possible injections corresponding to the first generate the primitives. To avoid presumptions about the
and second challenges; and integrate over all possibls-traimage processing technique, we must treat the generation of
formationsg, samplingss, and shapes, corresponding to the these primitives in a generic probabilistic way. Before we
third challenge. The simplified baseline problem, Problem ¢an go on to describe the probability distributiétis|q, C'),
corresponds to knowing (P(:) = d(¢,0)), SO that the sum however, we have to specify on what space it will be defined.
over it trivializes. Note, however, thd®(y|.o, ggs) still must
model observation noise.

Our algorithmic strategy for dealing with this complexit
is based on two approximate methods for evaluating ti#ow can we mathematically represent a sampling? The pro-
integrals and sums: Monte Carlo integration and the saddless of sampling, by itself, is seldom studied in the litemt
point approximation (also called Laplace’s method). We usggthough the related problem of matching sampled shapes
the first for the integrals over ands, generating realizations has received a lot of attention, seeg. [6]. A sampling
from their probability distributions and then summing thénvolves two elements: a certain number of points,and
values of the integrand evaluated at these realizations. WMeir placement on the curve. The latter can be expressed by
use the second for the integral ovgrand the sum over. parameterizing the curve in terms of its arc length, and then
For Problem |, the latter is trivial, and so the maximizatiogelectingn values in the interval, L], whereL is the length
problem reduces to a Procrustes alignment of two 2D poist sef the curve. Since we will be sampling the points from shapes
under the likelihoodP(y|.0, ggs) describing the observationwe can assume thdt = 1. Note that this assumes that the
noise, which we take to be white and Gaussian. For Problgobability of a sampling does not depend on the position,
II, we must also find the best injectionin addition to the orientation, and scale of a curve, which is implicit in Edn.
best transformatioy. Using a combination of the Hungar- |f we known, then sampling a curve amounts to partitioning
ian algorithm and Procrustes alignment, we solve the joiatcircle inton subintervals. This process simplifies if we place
registration-transformation problem. The cost functionthis the origin on the curve at the position of the first sample, and
optimization is the likelihoodP(y/|, ggs), which must now thereby consider the sampling problem as that of partitigni
include a stochastic model of the clutter points. The restilt the unit interval[0, 1] into n subintervals. The position of
these procedures is an approximatioi{y|C) for each value the origin now becomes an element of the representation:
of C, i.e. each class, and thus, after a trivial normalization, t@e will denote it by 7. Any partition of [0, 1] by n points
the value of P(Cly). Classification is then immediate. can be identified with a probability mass function with

To construct a fully statistical framework, then, we havelements. Therefore, if is fixed, one can represent a sampling
to develop probability models and computational methods fas a point in the(n — 1)-simplex A™~1. However, for
the variability in shapdgP(¢|C)), sampling(P(s|q,C)), and unknownn, one would like to allow all possibilities in a model
observation noisend clutter(P(y|¢, ggs)). We now discuss and this motivates a broader representation. In particular
each of these in more detail, beginning with sampling, sincme would like there to be some consistency between the
our approach here is novel. probabilities of samplings with different numbers of psint

y2.1 Representation
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which suggests separating the choices of number of poiuiistributions on finite sets, there is a unique Riemannian
and their placement. This can be achieved as follows. metric on the space of probability distributions that isargnt
LetT" be the set of increasing, differentiable functions frorto “Markov mappings”. This Riemannian metric is the so
[0,1] to itself, such that for ally € T, v(0) = 0 and~(1) = 1, called Fisher-Rao(F-R) metric. (In finite dimensions, it has
or, in other words, the group of positive diffeomorphisms been used previously in computer visionl], [14].) The F-R
of the unit interval. Now letU = [0...n]/n be a uniform metric extends naturally to the space of probability messur
partition of the intervall0, 1] into n sub-intervals. Then any on continuous spaces such [@s1], where it is invariant to
element ofA("~1) can be represented by(U/), for somey € the (reparameterization) action of the diffeomorphismugro
T'. In fact, there are an infinity of elementsall of which Sincel is isomorphic toP, we can view the F-R metric as
give rise to the same point iA(»~1). A samplings will thus a metric onI’ too. Because of its invariance properties, this
be represented by an equivalence class of trigles,v) € is the metric we choose to use. In terms of the probability
N x S' x I'. The advantage of this representation is that wdensity representation, it takes the following form: thaen
can change: without changingy, and vice-versa. product between tangent vectofg and §’p to the space
We still have to decide, however, how to represenThe of probability distributions on[0, 1] (here tangent vectors
functions inI" can be thought of as cumulative distributiorare functions that integrate to zero) at the pgint P is
functions for nowhere-zero probability densities(onl], with  (5p, d'p),, = fol dp(s)d'p(s) ﬁds. It turns out, however, that
which they are in bijective correspondence, and this giiges rthe F-R metric simplifies greatly under the half-densityreep
to a number of possibilities for representing such funation sentation. Indeed, it becom&$, because)? = p means that
Diffeomorphism: An element ofl" is represented as itself, 216y = dp, and thus tha(51/),5’w>w = fol p(s) 0'1(s) ds.
i.e. as an increasing function fron®, 1] to itself, such that We have already seen that is the positive orthant of the
v(0) = 0 and~(1) = 1. The advantage of this representationnit sphere inL?([0,1]), and now we see that the F-R metric
is that the action of the group of diffeomorphisms on itsslf iis simply theL? Riemannian metric ofi.?([0, 1]) restricted
particularly simple, by composition. to U. The space¥ endowed with the F-R metric is thus
Probability density: An element ofl" is represented by its the positive orthant of the unit sphere ¥ ([0, 1]) with the
derivative, denoted® > p = 4, which is an everywhere induced Riemannian metric.
positive probability density orf0, 1], i.e. a positive function  As a result of this analysis, geodesics under the F-R metric
that integrates td. are nothing but great circles on this sphere, while geodesic
Log probability : An element ofl" is represented by the loga-lengths are simply the lengths of shortest arcs on the sphere
rithm of a probability densityN" > v = In(p). Itis an arbitrary Arc-length distance on a unit sphere has been used to mea-
function whose exponential integratesitoThe advantage of sure divergences between probability density functiomsafo
this representation is that the values of the functiomre long time [L5]. This metric also plays an important role in
unconstrained, apart from the overall normalization. information geometry as developed by Amart].
Square-Root Form An element ofl" is represented by the We now prove the invariance of the F-R metric. This is
square root of a probability density; > ¢ = pz. This is a important because using this metric, the probability model
positive function whose square integrated fae. its L2 norm that we construct on the space of sampling functions will be
is 1. The set of these functions thus forms the positive orthaifivariant to reparameterizations of curves in a shape class
of the unit sphere in the spade’([0, 1]). The advantage of thegrem, The Fisher-Rao metric is invariant to the action of
this representation is that it greatly simplifies the formtfeé |

most natural Riemannian metric one can placelpras we _ .
will now discuss. Proof: We show this using the square-root form but the

proof is similar for the other representations. The actibd' o

. ) on ¥ is easily deduced from its action dhby composition:
2.2 Riemannian Structure on I (v*1)(s) = 52 (s)¥(y(s)). This is linear, and so the action
We wish to construct probability distributions dh perform on tangent vectors is analogous*6v)(s) = 5 (s)d(7(s)).
inferences, compute statistics, and so on. The difficulty ®herefore, the inner produgt vy, v*6'¢) ., becomes
in performing calculus on this space while maintaining the 1
underlying nonlinear constraints on the functions invdlva d/ (Y"0u)(s) (Y"0"¢)(s) ds = / V()3 (v(5)) 6" (v(s)) ds
natural solution is to work on the nonlinear manifold formed'o 0
by these functions and to utilize the intrinsic geometry of 16 D 5O dt = (5.8 =
this manifold to perform statistics. This requires compgti _/0 V(t) S(t) dt = (50, 5°9),, -
geodesic paths between points on the manifold, which in tu&n2

. . . .1 Geodesic, exponential maps, etc.
requires a Riemannian structure. We must thus make a choice P P

of Riemannian metric, as well as a choice of one of the abolft IS section we list some analytical expressions that are
representations in which to express it. _useful _fo_r _statl_sncal _analy3|s oW _angl thus onI'. As ¥
Fortunately, while there are clearly a large number of Ri&2 @ infinite-dimensional sphere '”S"ﬁ([@v 1]) (seee.q.
mannian metrics one could place Bnone is selected uniquelyLang [1n,)' the length of the geodesic il F’Et,""ee_” any
by invariance requirements, as follows. It is a remarkab{@© functionsy; and 2 upder the F-R metric is given by
fact, proved byCencov [, that on spaces of probability d(71,72) = 00871(<7127722>), where the inner product is
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L2. The geodesic between 1two poittg and v, of T' is

similarly derived. Fory; = 42, the corresponding geodesic
in U is given byy(t) = gy [sin((1 — 6)8)¢1 + sin(t0)y], .
wherecos(0) = (¢1,12). The desired geodesic i is then ] Zi
given by ~(t), wherev(t)(s) = fos ¥(t)(7)? dr. Due to this N T T T o
additional integration step, it is sometimes easier to grerf
the Riemannian analysis # and to map the final result back
toT'. This is especially true for computing means and variances - .
of sampling functions, for constructing probability deies on ™ . -
T", and for simulating from these probability densities. e T
In W, the geodesic starting from a point in the direction (@) (b) (©
v € Ty (W), can be written astos(t)-+sin(t) oy (with theL?
norm). As a result, the exponential mapp : T7,,(¥) — T,
has a very simple expressiorxp,,(v) = cos(|[v]))y +
sin(HvH)ﬁ. The exponential map is a bijection between
tangent space and the unit sphere if we restfidt so that

vl € [0,7), but for large enougHh|v||, exp,(v) will lie
outsideV, i.e. ) may take on negative values. We will discusghe mean shape of a class), and tifén) does not depend

this further when we define prior probabilities dh For on the class: we will use a geometric distribution forThe
any ¢, € U, we definev € T, (V) to be the inverse most interesting part of the distribution is the factt{ry|C, 7).
I 1 1

- . ] . .~ Clearly the possibilities here are enormous. We will restri
exponential oy, if exp,, (v) = 12; we will use the notation o o
1 . ! . . ourselves to “Gaussian” distributions of the form

exp,, (¥2) = v. This can be computed using the following

stepsiu = ¥z — (tho, 1)1, v =ucos ({1, ¥a))/ (u,u)3. P(|7,C) = Zflefﬁdz(*%ﬂpﬂ) @)

)

Fig. 4. Examples of Karcher means in I': In each case,
(a) shows ten ~;, (b) shows their Karcher mean ., and
gc) shows the cost functions vs. iterations.

2.3 Statisticson T’ whered is the geodesic dilstance under our chosen Riemannian

Consider the task of computing the statistical mean afetric, and where)y, = ¢ is, in consequence, the mode of
a set of sampling functiong~;,72,...,7} intrinsically the distribution. We discuss two possibilities fay ando,.

in T. As mentioned earlier, we will use the square-root The simplest possibility is to emphasize the samplings
forms of these functions to perform such calculations. Lef a curve that are uniform with respect to its arc-length
the corresponding set (1)f square-root forms be given Imarameterization, independently @f by choosingy,(s) = s,
{1,%, ..., x}, i = 47. We define their Karcher meanor equivalentlyy, = 1. Alternatively,v, may depend on local
as: i = argmin,,cy Zle d(1,1;)?, whered is the geodesic ggometrical .propertiese.g. sampling densiFy may increas_e
distance on¥. The minimum valuezled(u,wi)Q is called With Tcrsasmg curvature/ of the und_erlylng curve. Define
the Karcher variance of that set. The search/fas performed E(s) = [y exp(|r(s)|/p)ds ' wherex(s) is .the curvature of
using a gradient approach where an estimate is iteratiyely (¢t arc-length parameter poistand € R is a constant. The
dated according toy — exp, (cv), v = %Zle exp;, L (1). ratio v;(s) = E(s)/E(1) is a diffeomorphism, fronfo, 1] to

. . . . _ 71
Here,exp andexp~ are as given in the previous section, anf§Self, and the desired sampling for that curveys= 7+, .

e > 0 is a small number. The gradient process is initialized tI)he INVErse ofy; can .be num_encally estimated using a spline
interpolation. To define a single, for each class, we use

NIRRT ) — 1 )
v/ <1W>’ wherey = 3, vi. ) training curves from that class, as follows. First we coreput
In Figure4, we show two examples of computing Karcheg for each training curve, and then, using the techniques

means. Column (&) shows examples of _sampling funCtioB%‘esented in SectioR?.3, we compute their Karcher mean,
71,725+, 710, @nd column (b) shows their Karcher meangich e yse asp, using the Karcher variance a$. For this

1 (the sampling function obtained by squared integration f ) tation, the training curves are aligned, somethinighvh

p € ). We remark that one can extend this framework tQ jone automatically when geodesics are computed between
define a full covariance structure on the tangent Spad®)  he shapes of the curves (this shape analysis is summarized

(or e_quivalentIyTM (I')) by mapping the observed samplinqn the next section). We now illustrate these ideas with some
functions to that tangent spacéd]. examples

o ) ) Shown in Figures, column (a), are two shapesWe smooth
2.4 Probability Distributions and Simulations these curves using Gaussian filters: their smoothed vesrsian
Having established a representation and a Riemannianamestiown in column (b). For these smoothed curves, we compute
on the spacd” of sampling functions, we now turn to thex and there(s). This function is displayed as a normal vector
question of constructing a probability distribution. Riéthat field on the smoothed curve in (b). Finally, is computed;
a samplings is a triple (n, 7,7) € N x St x I'. We can write it is shown in column (c). Figuré shows some examples of
the probability fors as P(s|C) = P(n)P(r|C)P(v|r,C). class-specific means of thg for two classes. By using these
Note that we do not exploit the possibility that the probi&bil means agy, for each class, we can form class-specific priors
depends on the particular shapéas opposed to, for instance,of the form given in Eqn2.
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* Fig. 7. Random samples from P(v|C)) with o2 increasing
Y from left to right.
(@) (b) (©
Fig. 5. Curvature-driven sampling: (a) a curve; (b) a

smoothed version, with exp(|x(s)|/p) displayed as a nor-

mal vector field; (c) ~,. 5 i[ ?[ ?SE[ ?
f f : : RADRA S (R

Fig. 8. Each row shows examples of the training shapes,

N . with their Karcher means shown in the rightmost panels.
@r\\\;\\% s | /| The main differences amongst these articles lie in the ehoic
of representation for the curves and of the metric used to

Fig. 6. Each row shows two examples of training curves in  compare shapes. An emerging choice of metric for comparing

a class, the sampling functions ~,. for that class, and their  the shapes of curves is tiedastic metric[19], under which
Karcher means. curves are allowed to stretch, compress, and bend in order

to reach an optimal matching. Although this metric has been
studied in several forms, two recent papei§][[21] present
To simulate from probability densities of the form in EQ). an efficient representation under which the elastic metric
we first randomly generate a functighe T, (V) such that pecomes a simple? metric, with the result that shape analysis
|f| = 1, where, as beforeyy, = 7. Then, we generate asimplifies considerably. This has been called the square-ro
normal random variable ~ N(0,02), and compute a point elastic framework, and we describe it in the next section.
¥ = cos(x)g +sin(z) f/|| f|I. The random sampling function
is then given byy(s) = fos Y(s')? ds'. Figure7 shows some 3.1 Representation
examples of random simulations from such a class-speci
prior density for increasing values of2. If o, is too large,
then many of the sampled points will lie outsidgi.e. > will
take on negative values. Including such samples still define

probability density o, but its interpretation is complex dueorientation, and position of the curve. Secondly, it is i

to the *folding back” effect of taking the square ot Such to reparameterizations of the curve. The variability gatest

points may,tEO\:cvever, fs,:er(ij be{eje_cted frl';)m thE san;fplc_as, trby changing these variables can be written as the actions of
preserving the form of the density given above. For efficénc a§propriate groups on the space of closed curves and, thus,

sake, though, the proportion of such points should not be tg n be “removed” from the representation using quotients.

large, and this implies a constraint eg. Before we present shape analysis in more detail, we con-
sider an important question: Why do we use parameterized
3 SHAPE AND SHAPE VARIABILITY curves to represent boundaries or regions? It is possible to
We now turn to the construction of the shape mod&hL|C'). analyze the shapes of regions using representations that do
While objects of a given class are similar in their shapespt involve explicit parameterizations. For instance, cae
there is naturally also variability within each class. It ismse a level set of a function to represent a regiaf],[
this commonality and variability thaP(q|C) must describe. [23], or one can view a region as a subset®f and use
Figure 8 illustrates shape variability for three classes in thget-theoretic metricsg.g. the Hausdorff metric, to compare
Kimia database. shapes {4]. Since there is no parameterization involved in
There have been several recent papers that develop tdbisse representations, one does not have to “remove” it in
for analyzing the shapes of planar closed cureeg,[3], [4]. shape analysis. However, this becomes a disadvantage when

&%nsider a closed, parameterized curve: a differentialale-m
ping 8 from S' to R?, whose shape we wish to analyze.
There are two invariances we have to include in our analysis.
One is that the notion of “shape” is independent of the size,
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the goal is to associate arbitrarily sampled points to given
shape classes: it is simply more difficult to associate sachpl - Q
points to these representations than it is using an explicit 1 2 3 4 5
parameterization. On the other hand, approaches thatseagre
shapes by a small subset of points on the boundary selacted Mﬁm&@
priori, e.g.active shape models], cannot introduce arbitrary

6 10

samplings. Hence, the choice of parameterized curves for

7 8 9
shape analysis of boundaries is important.
As described in 4], [21], we will represent a curves & % é:g/ %G
by its square-root velocity functiony : S* — R?, where % —
q(t) = ﬁ | - | is the Euclidean norm irR2, and 11 12 13 14 15 16

the derivative already eliminates translations. To elaign

scalings, we restrict ourselves to the space of unit length 05
closed curves. The resulting space is a unit sphére= 09
{al Jsi(q(t) - q(t)) dt = 1}, where(:) is the Euclidean inner o
product inR2. The transformations that remain are rotations ors
SO(2) and reparameterizationsiff (S'). Since the actions of 07
these two groups oi8 are isometric, with respect to tHe? o
metric, we can define the shape space to be the quotient space 055
Q = B/(SQ(2) x Diff(S')) and inherit thelL> metric from 0s
B. In other words, for a poing € Q the Riemannian metric o

115 3 5 212 416 711 9 1014 6 8 13

takes the formdq, 6q2)q = fS1 0q1(t) - dqa(t) dt. To perform

statistical analysis inQ, however, which is our goal, OneFig. 10. A dendrogram plot of the Karcher means in
needs to construct geodesics@ Joshiet al. [21] describe a Figure 9 using geodesic distances.

gradient-based technique for computing geodesicg.imThe

technique uses path-straightening flows: a given pair giastia

is first connected by an initial, arbitrary path that is thepyward” these tangent vectors @ itself. Empirical study
iteratively “straightened” so as to minimize its lengthll.  shows, however, that the histograms of these tangent pahci
The length of the resulting path is then the geodesic distangefficients are often far from Gaussian. We therefore use
between the shapes. Since one of the effect®ifi(S') is kernel estimates of the underlying densities to capturs thi
different placements of the origin on closed curves, itsaegh 1,ore complex behavior. This is illustrated in Figuré The

results in an alignment of shapes in that regard. essential methodology is unaltered, and indeed applies to
any distribution onQ that we can simulate. For simulation
3.2 Statistics and Probabiliteson  Q purposes, we treat the tangent principal coefficients as-ind

One can define and compute the mean of a collection of shapggdent random variables. In practice we use approximately
using the Karcher mean, now based on the geodesic distah€dangent principal coefficients per shape class.

defined in the previous sectiori]. Three sets of examples 1o simulate fromP(¢|C) described above, we first simulate
of shapes and their Karcher means are shown in Figurefrom the estimated density of the tangent principal coeffi-
while the Karcher means for all the 16 classes used in ti§i€nts, and then use the exponential map to generate the
paper are displayed in Figuge Figure10 shows a dendrogram €orresponding elements gf. Figure12 shows some examples
clustering of these mean shapes using the geodesic distafésimulations from one such non-parametric model.

We make two observations from this clustering. Firstlysthi

clustering agrees with our human inference in that simil&3 Probability Distribution for G

shapes have been clustered together. Secondly, later am W\W‘e have described a representation for shapes Q, and
we study classification of shapes, we anticipate that the'algsome possible model®(¢q|C). In order to describe a set

rithms will have more difficulty separating similar classEsr f points with a particular position, orientation, and scal

example, classes 1 and 15—bones and tools—will be har‘ﬁ%'{/vever we have to transform the using a similarity
to distinguish than say bones and glasses. '

transformationg € G and then sample itP(g|q,C) is the
The next step is to impose a probability model gh 9 €9 P (9]a, C)

: : corresponding probability distribution. In this paper, wél
Perhaps the simplest model is the one used dEqn. 2. As assume a uniform prior o, suitably truncated for large

5“9963“30' inl[€], it is much easier to express this diStribUtiorlf:nough scales or translations to allow normalization.

using the tangent spack, Q to Q at the mean shape

than usingQ itself, because the former is a vector space.

In that space, one can use principal component analyés OBSERVATION MODEL

(PCA) and impose a standard Gaussian distribution on tBepending upon the technique used to extract primitives fro
PCA coefficients, then use the exponential map to “pushe image data, the actual observations will often differrfr
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Fig. 11. Empirical distributions (solid lines) and kernel es-
timates (broken lines) of densities of four tangent principal
coefficients in shape class 1.

A S

Fig. 12. Some randomly generated shapes from a TPCA
model on a shape class.

the corresponding points on the curves. This may be due

low quality, coarse resolution, and quantization of image
A standard way to treat this variability is to introduce ap
independent observation noise that perturbs the sampladspot
according to some probability model. In this paper, we taI%e{/

this noise to be additive, white, and Gaussian, but the use

Gaussian noise is purely for convenience; more sophieticag
noise models can similarly be included in the solution. Thg
deterioration of the data due to occlusions is not included {

the observation noise, although the fact that the number

points sampled is arbitrary may help if occlusions are prese

One possibilty is to use the Laplace’s
approximation by maximizing the integrand
over the variables of integration: P(C;ly) ~
B Pyluo, g ar s Pa;|Ci) Pg;|Ci) P(s7]C),

*

where (g7, qf,s;) are the maximizers of the function
P(y|wo, 9qs)P(q|C;)P(g|C:)P(s|C;). Such an approximation

is reasonable when the integrand has a single mode with a
support that remains similar from class to class.

Another approximation is the Monte Carlo approach where
one independently simulates values from the prior proba-
bilities, evaluates the likelihood function and averages t
likelihoods to estimate the required posterior. That isegate
q; ~ P(q|Cl), g; ~ P(g|CZ) and S5~ P(S|Cl), for
j = 1,2,...,J independently and form the Monte Carlo

. . . Po(Ci) i, P(yleo,959455)
estimate:P(Cily) & 5 o557 Poylogs 40))

Sometimes it is more efficient to use a combination of
these two ideas. For instance, since the use of white Gawussia
0t85ervation noise leads to a quadratic likelihood enetyy, t
8ptimal value ofg for matching ay to anx = gqs can be
ound easily using standard point registration. Similaofthe
wo variables making up, = and~, one can also optimize

r~ while randomly simulatingy from the prior P(v|C;).
fceT decides which element of the circular setis the
arting point, there are only possibilities and they can be
earched exhaustively. Thus, it is easier to remgwend 7
rom the integration using optimization. Lef and~; be the
scf?nulated values fronP(¢|C;) and P(v|C;), and let

t

In addition to the perturbation of the primitives generated

by the object boundary, we expect to have primitives from

the background and the object interior, creating “clutt@ur
likelihood term needs to model these points as well. So,giv

n unperturbed pointk = ggs generated by the curve, what

is the probability of a given dataset of pointsy (m > n)?

If we know the injection. relating x to n unique elements
of y, then we can dividey in two sets: a set of. points,
namedy,, related tox and the remainingn — n points,
namedy., attributed to clutter. The first set is modeled usin
additive, white-Gaussian noise and the second is mode
using a homogeneous Poisson process with intensgityThe
likelihood function for the complete data is given by:

P(yslggs) Pye)

;12 73,:1 k) — Xk 2 Amfn
%e%y S Iyem ==kl A Q)
The probability P(y.) thus depends solely ofin — n). Note

this likelihood also applies Problem I, except thgre= y,
and the likelihood consists only of the first tetRiys|ggs).

P(y|t, gqs)

(m —n)!

5 PROBLEM | SOLUTION

For Problem I is fixed to be the number of points y and
s is reduced to the paitr, ). In terms of Figurel, our task is

(97,7;) = argmax P(y|wo, 9q;5;), s5=(7,7) . (4)

9,7

e . . .
Define a point set;; to be the one resulting from taking
the shapeg;, sampling functiony;, registration7;, and the
alignmentg;, all generated from models for clags. Then,

an estimate of the posterior is given by

Py(Ci) Y1, P(ylx,)
S Po(C (X, Plylxt,)

g
led

P(Cily) = (®)

Here, the likelihood is given by the first term in Edh.

5.1 Joint Registration and Alignment

The subproblem we address here is given in EgnGiven
two sets of ordered points iR?, call themx, y € R"*2, we
want to rotate, scale, translate, and circularly skifto as to
minimize its Euclidean distance squared frgm Define x™

to be a circular shift of the elements &fsuch that ther?

element becomes the first elements {1,2,...,n}.

to go from (c) to (d). So we take up the problem of evaluating If 7 is fixed, then the two sets of points can be completely
the posteriorP(C;|ly) and note that the Bayes’ integral inregistered, and their alignment performed, using the Pstes
Eqn.1 is too complicated to solve analytically. It is thereforenethod, as follows. Compute thex 2 matrix A = (y —
approximated using numerical techniques. There are dever® (x™ — x7)T, wherey and x” are means ofy and x7,

ways of approximating such an integral.

respectively. Letd = UXVT, the SVD of A. The optimal
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and the datay (solid lines). As these examples demonstrate,
the algorithm is quite successful in generating high-likebd
candidates from the correct shape classes, even whéen
generated for a relatively small value:of Of these nine cases,
only the top row has the highest posterior for an incorrect
class:n = 3 is clearly too small to distinguish shape classes.

Once the posterioP(C;|y) is approximated, it can be used
for classifyingy into a shape class, by ranking the classes
according to their posteriors and picking the highest. &inc
the datay here has been simulated with known shape classes,
we can evaluate the algorithm’s performance by compariaeg th
estimated class with the true class. To estimate the posteri

Fig. 13. Examples of several x* (broken line), correspond- ~ for eachy, we used/ = 300 realizations from the posterior,
used 150 runs (simulations ¢f for each value o anda,,.

For these simulations, the underlying shape class is picked

rotation, scaling, and translation &f are given by: randomly with equal probability. The results are shown in
. the left panel of Figurel5, where the probability of correct
uv?r if det(A4) >0 classification is plotted versus for three different observation
oO* = 1 0 (6a) noise levels. The noise levels arg; = 0.01, o, = 0.025,

U VT  otherwise.

and o, = 0.05, expressed in terms of the arc-lengths of the
\Trr o curve. For exampleg, = 0.01 implies thaty was simulated
Pt = Tr((y — 2’) (x” — xf)) ,T*=y—x". (6b) byadding noise at standard deviati®1 times the length of
Tr((x™ —x7)"(x™ —x7)) the true curve to each component pf This plot suggests
The search for the optimal is exhaustive. For each of the that, in the case of low noise, the sampling of shapes by
possible shifts, we compute the best alignment of the riegult » = 6 points results in approximately 50% classification rate.
x to y, and keep the closest one. This is the optisiafor the To reach over 90%, one will need more thaa points in
given pair(x,y). Some examples of this registration/alignmerthis setting. Even at a very high noise levg) = 0.05, the

0 -1

process are displayed in Figui&. algorithm can classify more than 45% of observations with
Here is a summary of the steps needed to approximate thdy 15 points. If we use @-highest rank (k-HR) classifier,
posteriorP(C;|y) for a giveny. i.e. the estimated class is in tiiehighest ranked classes, we

Alorithm 1. For 7 — 1.2 - get the result shown in the middle panel of Figurge The
gonthm 1. Forj=1,2,....,J: ) right panel shows the classification performance for eaabscl
1) Randomly generate a shape class and simulate a ingividually, for the caser = 12 ando, = 0.01. In this plot

shapeg; ~ P(q|C;). . the classification performance was estimated by averagieg o
2) Generate a sampling functiop; ~ P(|C}). 100 simulations ofy generated from only one class at a time.
3) Solve forgj, 77, and thenxj using the Procrustes g the dendrogram in Figured shows, shapes in classes 1, 3,
method. o _ _ and 15, and 4, 16, and 7 are quite similar, respectively, lisd t
4) Evaluate the likelihood functio(y[x] ;) using Eqn3.  naturally affects the classification rate for these clasEbsir
Approximate the posterioP(C;|y) using Eqn.5. classification rates increase drastically when we go froR1-

do 3-HR classifier. For example, the classification rate fas

umps from 0.64 to 0.97 and for class 15 from 0.62 to 1.0.

is supports the argument that the classification is cjosel
tied to the distinctiveness of shapes across classes. Anoth

) interesting point is the low classification rate of classes i

5.2 Experimental Results which shapes are more complicated—cat (6) and mouse (13).

We now describe some experimental results on estimatiiig believe this is because the shape variability within éhes

P(C;ly). In this experiment, we simulate the dataccording classes is more complex and the shape model used here does

to the data model and apply Algorithfn Figure14 presents not completely capture this variability.

six examples of computing the posterior using simulated dat

under Problem I. In each block, the left panel shows the trueln terms of the computational cost, the time taken to

underlying curve and the points sampled on it to fogm estimate P(C;|y) for eachy using Algorithm1 is approx-

(elements ofy are joined to form a polygon). The middleimately 20 seconds in Matlab whei = 300. Since we

panel shows a bar chart of the estimated posterior probabikestimate the probability of correct classification usin@ $&ch

P(C;ly) for each of the 16 classes. The last panel showsaluations of the classifier, for each value qf and n, it

the simulated configuratios* (dotted line) that results in takes approximately 50 minutes to estimate each point on the

the maximum likelihood, along with the hypothesized cugve performance curves shown in Figuté.

The noise variancerg is a free parameter here. Its valu

affects the shape of the posterior histogram but not tiﬂ
posterior mode.
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Fig. 14. Each block shows—Left panel: the data y (solid polygon) superimposed on the underlying true curve (broken
line); Middle panel: the posterior P(C;|y); Right panel: highest likelihood sample x* (broken polygon) drawn over the
hypothesized curve g (solid line). Data polygon y is drawn in solid lines for comparison here. The top row has n = 3,
the middle n = 5, and the bottom row n = 20. The numbering of classes in the bar chart is same as the order in Figure
9 and the correct classes (from top left to bottom right) are 8, 1, 14, 5, 11, and 3.
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Fig. 15. Classification performance versus n. Left: Shape classification performance of highest-rank classifier for three
different noise levels. Middle: Classification performances of one-, two-, and three-HR classifiers, versus n, when
oy = 0. Right: Classification performance by class for n = 12 and ¢, = 0.

6 PROBLEM |l SOLUTION

Now we return to the more general problem of finding shape |

classes in given point clouds, where the given points aye: (i .,

unordered and (ii) may or may not lie on the object boundary.

In terms of the problem description in Figute our goal in =

this section is to go from the data (a) to the inference (dp Tw e

sets of results are presented: one from simulated data and or";

from primitives extracted from real images.
We start by describing the formation of the simulated data. = T

As shown in Figurel6, we start by picking a class);, (@) (b) (c)

generating a shapg~ P(q|C;) and sampling it according to . o )

a randomly generated sampling functien= (n, 7,~). Here Fig. 16. Simulated Qata. .(a) The original curve a}nd its

n ~ Geometriéng), 7 is uniform in [0, 1], andv ~ P(~|C;). Sampling ggs, (b) with Poisson clutter, (c) the resulting y.

Next, we introduce additive, Gaussian noise to these sample

points. So far, the data formation is similar to the baseline

problem studied earlier. Then we introduce backgrounderuty of observed data points, as shown in panel (c).

by simulating from a homogeneous Poisson process with mele second set of experiments in this section involves primi

. The result is shown in panel (b) of this figure. Finally, wéives derived from image data using a simple processing step

take all the points: sampled with noise frarand simulated demonstrated in Figur&7. For an imagel (left panel), we

from Poisson, and randomly permute them to result in the setve used,, = [45]+ |g—£| to isolate (vertical and horizontal)
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Fig. 18. Association Problem: For the data set y shown in
top left, we show four examples of: x (thicker points), the
selected y,, and an estimated ordering of y, (solid lines)
inherited from the corresponding ordering in x (broken
lines).

Fig. 17. Examples of pre-processing of images: (a) 1, (b)

1., (€) arandom selection from binary image (d) thinning  qint ordering. Note that the ordering of pointssin= ggs is
step to resultin y drawn over I. known and this ordering, in turn, imposes an ordering on the
corresponding elements gf. Shown in Figurel8 are some
) ) examples of registering a given top-left panel, with several
edges inf (second panel). Then, we threshdld using three hypotheses fot, shown in the remaining panels. For each

stapdard deviations fro_m the mean valugfm, to OPta?f.‘ hypothesis, we use the Hungarian algorithm to find the optima
a binary edge map (third panel). To obtain point primitives: (for m — 40, n = 20) and an ordering omutomatically

from the binary map, we r_andorr_ﬂy select a predemrmm"i*glectedelements ofy (solid polygon) inherited from the
number, saymg, of the points with value 1 (also Showncorresponding elements af (broken line polygon).
in the third panel). Finally, we use a thinning procedure to

discard(m —m) points to results in a set of m points (last . . ) )

panel). This thinning basically computes all pairwiseafises 6-2 Joint Registration and Alignment

between points and iteratively discards those points that dn addition to the injection*, we need to solve for the optimal
associated with the smallest distances. In the experiterttansformatiory® in Egn. 7, which, as in Problem I, consists
results presented here we used = 70 andm = 40. of a rotationO € SO(2), scalep € R, and a translation
T € R2. For a fixed:, we only need to register the elements
of x andy; we can solve for the optimal transformatigh
directly using Eqns6 in Section5.1

The key step in handling Problem Il is to solveegistration  Now we have a familiar situation: for a given injection
problem given two sets of points < R andy € R™*2, ", we can solve for the optimal transformation and for a
n < m, associate to each element xfa unique element giyen transformatiory we can solve for the optimal injection.
of y so as to minimize a certain cost function. Using apowever, we need a joint solution. This we accomplish by
injection » : {1...n} — {1...m} each hypothesis pointjnitializing a transformation ofy and iterating between the
x); has to be associated with a data payny). This results o conditional optimizations. The result is a local sauatio

in a subsety. of points that are assigned to the shape ande joint optimization problem; we will label the final vakie
a subsety. of remaining points assigned to the backgroungk g and. asg* and.*, respectively. The initial value df is
clutter. The likelihood energy function for this model is@n  5ken to bey — x while the initial rotations ofy andx are
by: —log(P(y|t, gqs)), whereP(y|t, ggs) is given in EQn3.  gptained using the SVD of matricgs, (yx —¥) (yx—y)7 and
Similar to the hybrid approach taken in Problem I, we WOUIi:k(Xk —%)(x), — %)7. The scale is initialized by scalingk

6.1 Registration Problem

like to solve for the paifg, ) explicitly using: andy in such a way that the Frobenius normyofis \/m/n
n times the Frobenius norm of. The logic for this choice is
(g%, ¢") = argmin <Z Y.y — xk||2> , forx=gqs. that a subset of size from y, although we don’t yet know
9€G e\ which particular subset, has to be matchest tdwo examples

U ) ) (,7) in Figure 19 illustrate this iterative optimization. Once the
The minimization problem over, for a fixedg, is one version nima| association and transformation efare found, we

of the famous optimal assignment problem. The solution 3,6 the optimal version of the hypothesized configuration
given by the Kuhn-Munkres or the Hungarian algorithm ang- Using a large number of simulated hypotheses, we can
their Matlab implementations are readily available. Hewee  otimate the posterior using Edf.

do not reproduce that algorithm here but directly presemt ou yare is a summary of the steps for approximating the

experimental results. Once the optimal mappiiidgs found, posterior distribution in Problem 11 for a given.
it solves the two original issues: background rejection and
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Fig. 19. Left panels show y (points) , x before (broken e o
line) and x after (solid line) the joint registration and
alignment. Right panels show the cost function in Eqgn. 7.

0.9)

Algorithm 2. Same as Algorithmi except these two steps:

— Hausdorff
——icP ]
——Bayesian

2) Generate a sampling function; ~ P(vy|C;) and a 03

Samp|e sizey ~ min(Geometric(ng), m) %84 05 06 07 08 09 1%s o5 06 o7 o8 08 1
3) Solve forg;, and; using Sectior6.2 This gives rise -

to an optimal version of the hypothesis; ;. Fig. 20. Top three rows—The original curve and the

simulated dataset y (left), the estimated posterior P(C;|y)
The parameters,, o, andn, are free parameters here. mjqgdle), and a high-probability configuration (right). The
correct classes in these examples are: 16, 9, and 5. The
bottom left plot shows the average classification perfor-
) _ mance versus v for the Bayesian approach, while the
We present two sets of results, corresponding to simulaéal dytt0m right compares this approach with classifications

and real image-based data. _ _ using the Hausdorff metric and an ICP algorithm.
Shown in the top three rows of Figul® are experimental

results on simulated data witm = 40 and ny = 20. In
each case, the left panel shows the true underlying cur¢ferently. In the case of the Hausdorff metric it is com-
which was sampled to generate the data ypetwhich are puted usinge—dh(y,&)Q, whered,, is the classical Hausdorff
also shown there. The next panel displays a bar chart (Qf;tance,dh(y,x) = max;(min; [|x; — y;]) and x =
the estimatedP(Cily) for this y, i = 1,2,...,16 USING argmin, g0 ) di(y, Ox). The scale and the translation of
J = 300 samples. The last figure shows a high probability is jnjtialized as previously and kept fixed. The classificati
polygon formed using the subsegs using Algorithm2. In  performance for this metric, for different levels of cluttés
each of the three cases, the amount of clutter is quite highstrown in the right panel of Figur20. The ICP algorithm is
the number of points on the curve equals the number of clutigother commonly used procedure for registering and algni
points. Still, the algorithm puts the highest probability the  arpitrary point clouds. The basic idea is to iterate between
correct class in all cases. The bottom left chart is the egéth prgcrystes alignment and nearest-neighbor registratigit u
average performankt):e offAIg_orithmplotted against the ratio convergence. We have used ICP to register elements of
v, Whererv = ?outg; nedﬁbgfgqtzgﬂtglfrve Low values ofr to the elements ofy, resulting inx, and use the resulting
denote a larger amount of clutter and %e related classdfitatsquared distancé;., = >,(min, [|x; — y;|/)?) to compute
performance is expectedly low. It is interesting to notet théhe likelihoode ~%<». The results for recognition based on this
the performance of the HR classifier is more than 50% evékelihood are also shown in the right panel. These general-
whenv < .5. As these experiments suggest, the algorithm mirpose methods do not account for clutter and do not ensure
able to put high probability on the correct shape class tespihat a unique element of is assigned to each elementof
the presence of clutter. Consequently, their recognition performance is lower tten

As a comparison, we have studied the performance sffuctured approach proposed in this paper.
classification using the Hausdorff metric and the Iterated Figures21-22 show several examples of inferences on shape
Closest Point (ICP) algorithm. In both cases, hypothesizethsses in real images. In each row, the left panel shows
x's are generated as earlier, but the likelihood is computéte original image and the data. The next panel shows

6.3 Experimental Results
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This increase in computational cost is due to the need t@solv
a more general registration problem in Problem II.

CONCLUSION

We have presented a Bayesian approach for finding shape
classes in a given configuration of points, in the presence of
under-sampling of object boundaries, observation noisd, a
background clutter. Rather than trying all possible peanut
tions of points, we take a synthesis approach and simulate
configurations using prior models on shape and sampling. The
class posterior is estimated using a Monte Carlo approdoh. T
strengths and limitations of this framework depend sqyarel
on the strengths and the limitations of the models used,-espe
cially P(q|C;) and P(v|C;). In this paper, we have restricted
attention to points, but additional primitives, includifiges
(first order) and arcs (second order) can also be used.
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Fig. 21. (a) Original image and detected primitives, (b) es-
timated P(C;|y) for 16 shape classes, (c)—(d) two exam-
ples of high-probability x and optimal correspondences
with y. The correct classes are 3, 3, 5, and 15.

(1]

(2]

the posterior probability estimated using Algorithtn and
the remaining two panels show examples of high probabili@l
ys superimposed on the image. In this experiment, we used
m = 40 andng = 20. The examples of can viewed as [4]
the most likely polygons that can be constructed using the
primitives present in the correspondingSeveral observations s
can be made from these results. Firstly, the algorithm finds
it easy to detect distinct, elongated objects (bottle, st,ool[s]
bone, etc), but not so easy to distinguish between them.
The first and the last examples in Figu2é all show high
posterior probability on these three related classes (B d!
15). Secondly, the algorithm is sensitive to differencdsveen
training shapes and test shapes. The test glass in Fitfure

is quite different in height from the glasses used in trajnirIS]
shape priors for class 5. Similarly, the helicopter in FegRP

is different from the training helicopters in class 9. Thif]
adversely affects Algorithm 2's ability to discriminatettveen
classes. Lastly, the clutter present in this data is muchemgig
structured that in the simulated data (where clutter camm fr
the Poisson model). Therefore, the algorithm is not as imemu
to clutter as it was in the simulated case. In the third exam
of Figure22, the algorithm tries to fit shapes using points frorfi2]
both the fishes. In the last panel of this row, the algorithrasdo[13]
succeed in ignoring clutter and finding the fish contour.

The time taken to estimat®(C;|y) for eachy (Algo-
rithm 2) is approximately 60 seconds in Matlab wheénr= 300.
The time to estimaté®(C;|y) in Problem | was 20 seconds.

1]

[14]
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