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Abstract—This paper addresses the problem of updating road
digital maps in dense urban areas by extracting the main
road network from very high resolution (VHR) satellite images.
Building on the work of Rochery et al. (2005), we represent
the road region as a ‘phase field’. In order to overcome the
difficulties due to the complexity of the information observed
in VHR images, we first propose a multi-scale statistical data
model. It enables the integration of segmentation results from
coarse resolution, which furnishes a simplified representation of
the data, and fine resolution, which provides accurate details.
Moreover, an outdated GIS digital map is introduced into the
model, serving as the specific prior knowledge of the road
network. This new penalty term balances the effect of the generic
prior knowledge describing the geometric shape of road networks
(i.e. elongated and of low-curvature) and carried by a ‘phase
field HOAC’ term. Promising results on QuickBird panchromatic
images and comparisons with several other methods demonstrate
the effectiveness of our approach.

Index Terms—Dense urban areas, Geographical Information
Systems (GIS), multi-scale analysis, road network extraction,
variational models, Very High Resolution (VHR) image.

I. INTRODUCTION

KEEPING the road network information contained in
Geographical Information Systems (GIS) up to date is

crucial for many applications, for example urban planning,
vehicle navigation, and environmental monitoring. The high
rate of urban growth, especially in many developing countries,
means that this has become an increasingly important research
topic in remote sensing. Fig. 1 shows two pairs of QuickBird
panchromatic images of Beijing, retrieved respectively in the
year 2002 and the year 2006, showing the great changes in the
past few years. Very high resolution (VHR) optical satellite
images (e.g. QuickBird and Ikonos, and Pléiades in the near
future), with sub-metric resolutions, provide new opportunities
for the extraction of information from remote sensing data:
qualitatively new categories of information are available, and
the accuracy of previously extracted categories of information
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Fig. 1. Two pairs of QuickBird panchromatic images 0.61 m/pixel (both size:
1000 × 1000) of Beijing, showing the great changes in the past few years.
Top: year 2002; bottom: year 2006.

can be quantitatively improved. Higher resolution brings with
it new challenges however. Details invisible in lower resolution
images, e.g. cars, road markings, shadows, and other linear but
non-road features, can easily disrupt the recognition process,
and demand more sophisticated modelling, both of the image
and of the road network. For the former, the existence of
phenomena at multiple scales suggests a multi-scale approach,
while for the latter, the incorporation into the models of our
prior knowledge of the geometry of the road network becomes
critical.

In this paper, we address the issue of road network up-
dating from VHR panchromatic images in dense urban areas.
Specifically, we will show how to make use of an outdated
GIS digital map and a recently acquired QuickBird image to
generate an up-to-date road network of the observed region.
We model the region corresponding to the road network
using a ‘phase field’ [1], which offers a number of important
advantages over other region modelling frameworks. Building
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upon [1], our contribution is twofold: first, we propose a multi-
scale framework for road extraction; it is based on a wavelet
decomposition of the image and enables an accurate extraction
of the road region; second, we introduce a specific prior term
into the energy functional; we will show how this specific prior
term can be derived from an existing GIS digital map.

An exhaustive review of the work on road extraction, multi-
scale approaches, and active contour models is out of the scope
of this paper. Here we briefly review those we believe to be
the most relevant. In [2], Mayer et al. first extract lines at
coarse resolution, which in turn are used to initialize ribbon
snakes at fine resolution. Péteri and Ranchin [3] take advantage
of a topologically correct graph of the network in order to
extract roads and junctions using two different types of active
contours. Fortier et al. [4] initialize an active contour model
from an existing GIS map and junctions previously detected
from the image. Agouris et al. [5] compute uncertainty factors
(positional uncertainty at each contour point and global shape
uncertainty) to control the active contour. However, all these
methods are mostly restricted to applications on rural or semi-
urban areas and using aerial images. They are not robust
enough to be applied to dense urban areas.

The rest of the paper is organised as follows. In section II,
we introduce the essentials of the basic phase field model,
and then describe our multi-scale data model. In section III,
we introduce a new GIS prior energy. In section IV, we
detail the optimization algorithm. In section V, we illustrate
experimental results on QuickBird panchromatic images and
perform validation and comparison with other techniques. We
conclude in section VI.

II. THE MODEL: PRIOR AND DATA ENERGIES

In this section, we first recall the general Bayesian formu-
lation for image segmentation and show how to convert the
maximization of a posterior probability into the minimization
of the corresponding energy. We will then detail the terms of
the energy function of our model.

Given an image I : Ω → R, and given the prior knowledge
K we may have, our goal is to find the region R in the image
domain Ω that corresponds to the main road network. Using
Bayesian decomposition, the problem of segmenting the image
I can then be tackled by maximizing the posterior probability

P(R|I,K) =
P(I|R,K)P(R|K)

P(I|K)
, (1)

with respect to the estimated region R. The denominator in
(1) is independent on R and thus does not intervene during
the maximization process. Equivalently, one can minimize a
total energy functional defined by

E(R; I) = θEP (R) + ED(I,R) , (2)

where θ is a constant that balances the contribution of the prior
energy EP and the data energy ED.

To model the region of interest R, we use a phase field
function φ, much used in physics and first introduced to image
processing by [1]. Later we will use the symbol φ to denote
the region R.

A. Prior Energy

We use the same prior energy EP as [1]. It is composed of
two terms: a basic phase field energy EP,0 and a higher-order
active contour phase field energy EP,NL.

Conventional active contours [2], [6]–[9] are defined by
linear functionals, so they can incorporate only weak prior
knowledge of region geometry. In contrast, HOACs [10] are
defined by polynomial functionals. Via long-range interactions
between points in the region boundary ∂R, HOACs allow the
inclusion of complex prior geometrical constraints. For this
reason, HOACs are more robust to noise than conventional
active contours, and permit a generic initialization that renders
them more automatic.

Phase fields [1] model the region R using a level set
function φ defined over the entire image. They have several
advantages over parametric active contours or standard level
sets: a linear representation space; ease of implementation;
and a neutral initialization. In addition, they allow greater
topological freedom, which is critical when the topology of the
region is not known a priori. In the present application of road
network extraction, dealing with the topological complexity of
roads is arguably one of the most difficult aspects; phase fields
handle it ‘naturally’. Phase field HOACs are phase field models
that also include the long-range interactions characteristic of
HOACs.

To model R with the phase field function, the basic phase
field energy EP,0 is given by

EP,0(φ) =
∫

Ω

dx

{
1
2
∇φ(x) · ∇φ(x) + W (φ(x))

}
. (3)

∇φ(x) is gradient vector at pixel x. The potential W is

W (z) = λ(
1
4
z4 − 1

2
z2) + α(z − 1

3
z3) , (4)

where λ and α are constants. For λ > α > 0, W has two
minima, at z = −1 and z = 1, and a maximum at z = α/λ.

By definition, R = {x ∈ Ω : φ(x) > α/λ}, but in
addition the potential W effectively constrains φ(x) ' 1 for
x ∈ R and φ(x) ' −1 for x ∈ R̄ = Ω \ R. As a result,
the quantities φ± = (1 ± φ)/2 are approximately equal to
the characteristic functions of R and R̄. The local derivative
product ∇φ(x) · ∇φ(x) penalizes large gradients and ensures
that φ makes a smooth transition from −1 to 1 across the
boundary ∂R. [1] has shown that EP,0 is equivalent to a linear
active contour model with an energy λCL(∂R) + αCA(R),
where L is region boundary length and A region area, and
λC and αC are constants. Therefore, EP,0 ensures stability,
boundary smoothness, and the properties of the functions φ±.

We introduce sophisticated geometric constraints into the
model via a higher-order energy term EP,NL. EP,NL describes
long-range interactions between the gradient vectors of φ at
pairs of points separated by many pixels. It is defined as

EP,NL(φ) = −β

2

∫∫
Ω2

dx dx′ ∇φ(x) · ∇φ(x′)Ψ
( |x− x′|

d

)
,

(5)
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where d controls the range of the interaction. The interaction
function Ψ, is given by

Ψ(x) =

{
1
2

(
2− |x|+ 1

π sin(π|x|)
)

if |x| < 2 ,

0 else .
(6)

EP,NL has two effects: it prevents pairs of points with anti-
parallel normal vectors from coming too close; and it encour-
ages pairs of points with parallel normal vectors to attract each
other, and thus the growth of armlike structures. Consequently,
the effect is to assign low energy to (and hence favour) regions
composed of long arms of a certain width and with roughly
parallel sides that join together at junctions.

B. Data Energy

The data energy ED takes into account the following radio-
metric properties of the dense urban areas, which discriminate
roads from the background:

• Roads are mainly built from the same materials (concrete,
asphalt) and thus tend to have somewhat homogeneous
spectral properties. In contrast, the background (i.e. non-
road regions) has no single photometric characteristic.

• The surfaces of main roads are not entirely uniform due
to the presence of noise, such as zebra crossings, over-
bridges, vehicles, shadows, etc. Nevertheless, they still
show much less variability than the background.

ED is the negative logarithm of P(I|R,K) in (1). We
assume that this factorizes as P(IR|R,K)P(IR̄|R,K), where
subscripts indicate ‘restricted to’. We use the same parameter-
ized model for IR and IR̄, the choice of model being based on
a study of the image statistics. We model both the one point
statistics of the image intensity, i.e. the histogram, and the two-
point statistics, which we characterize by the variance V (x)
of the image in a small window around each pixel. Because
of the factorization, the data energy is the sum of two pieces,
one referring to IR and one to IR̄:

ED,SIG(I, φ) =−
∫

Ω

{[
lnP+(I(x)) + θv lnQ+(V (x))

]
φ+(x)

+
[
lnP−(I(x)) + θv lnQ−(V (x))

]
φ−(x)

}
,

(7)

where θv is the weight of the two-point statistics. P+ and P−
are two-component Gaussian mixture models, modelling the
image intensities, while Q+ and Q− are Gamma distributions,
modelling the variances:

P±(I) = a±N(I;µ1±, σ2
1±) + (1− a±)N(I;µ2±, σ2

2±) ,

(8a)

Q±(V ) =
V b±

d±
e
− V

c± , (8b)

where + denotes the road and − denotes the background,
a± ∈ [0, 1], and N is the normal distribution.

The complexity of VHR images in dense urban areas,
however, compels us to introduce a multi-resolution approach.
The motivations are as follows. First, as noted in section I,
VHR images contain objects, e.g. roads, buildings, at many

different scales. In order to capture this complicated behaviour,
it makes sense to analyse an image at several resolutions
simultaneously. Second, the same object observed at high or
low resolutions presents different characteristics. In particular,
at low resolutions, the background can be viewed as noise,
while the larger roads are still clearly distinguished as ho-
mogeneous areas. Road segmentation is thereby facilitated,
but is also less precise. In contrast, higher resolutions can
provide a more precise location and width for the road. The
use of several resolutions thus allows the combination of
coarse data, in which details in the image that can disrupt
the recognition process have been eliminated, with fine data
to increase precision.

The multi-scale framework we use was first introduced
in [11]. The Haar wavelet scaling coefficients at different
scales (levels) [12] provide us with a multi-scale representation
of the original data. Our multi-resolution data energy is a sum
of energies computed at four different levels:

ED,MUL(I, φ) =
∑

s

ED,SIG,s(Is, φ) , (9)

where Is, s ∈ {0, 1, 2, 3}, are the scaling coefficients at level
s of a wavelet transform and ED,SIG,s is the data energy at a
single level s. In practice, since the size of the image varies
with a factor 2 from level s to level s + 1, we up-sample all
Is to the finest resolution.

III. GIS PRIOR ENERGY

The prior energy EP proposed in section II.1 is generic:
it incorporates constraints on the form of the road network
region that are true of any road network. To improve further
the results at the original resolution, we introduced a specific
prior energy [13]. It says that the region sought must be ‘close’
to an exemplar region, e.g. a GIS map of the road network R0

at an earlier date, which can also be described by its minimum
energy phase field function φR0 . φR0± = (1 ± φR0)/2 thus
denote the characteristic functions of R0 and R̄0. EP,GIS takes
the form

EP,GIS(φ, φR0) =∫
Ω

dx
[
ω+φR0+(x) + ω−φR0−(x)

][
φ(x)− φR0(x)

]2
.

(10)

The two terms correspond to the two components of the
symmetric area difference between R and R0: x ∈ R ∩ R̄0

and x ∈ R̄∩R0 respectively. These are separated so that they
can be weighted differently by the parameters ω+ and ω−.
Since this term takes into account the exterior of R0 (i.e. R̄0),
it counteracts the background ‘noise’ appearing in the data.

IV. IMPLEMENTATION

The parameters of the Gaussian mixture and Gamma dis-
tributions in ED are learned with supervised learning. The
known region R0 is used to create samples of road and non-
road in the image. Note that the samples may contain errors,
since R0 does not correspond exactly to the current road
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Fig. 2. Left: histograms of the pixel intensity I on-road (top) and off-road
(bottom); right: histograms of the variances V on-road (green/light grey) and
off-road (blue/dark grey), and of the models fitted to them (solid lines).

network (see Fig. 3). Examples of histograms and the models
fitted to them are shown in Fig. 2.

To minimize the total energy E, we performed a gradient
descent with the neutral initialization [1]: the initial value of φ
is set equal to α/λ everywhere in Ω, which corresponds to the
local maximum of the potential W . During the algorithm, no
re-initialization or ad hoc regularization is required. Parameter
values and weights are for the moment set by hand, but they
are constrained by Turing stability of the model [1], and further
by a condition that ensures that a long bar of the desired road
width is a stable configuration of the energy. In the case of the
single-scale model energy E1 = θ(EP,0 + EP,NL) + ED,SIG,
the evolution equation is

∂φ

∂t
= θ

{
∇2φ− λ(φ3 − φ)− α(1− φ2)− β∇2Ψ ∗ φ

}
+

1
2

{[
lnP+ + θv lnQ+

]
−

[
lnP− + θv lnQ−

]}
, (11)

where ∗ indicates convolution. The equation for multiple
scales involves adding a copy of the last line for each
scale. When the GIS prior is taken into account, the term
−2(φ− φR0)

[
ωφR0+ + ω̄φR0−

]
should be added to (11).

V. EXPERIMENTAL RESULTS

The input data I was a QuickBird panchromatic image
(see Fig. 3a). The associated GIS map was obtained a few
years earlier than the satellite image, and thus represents a
slightly different road network. For the purpose of testing the
robustness of our model, we introduced artificial errors that
increase the difficulty of the problem, as shown in Fig. 3b.
Note that R0 has some roads added, some roads narrowed
and some roads missing. We will first present the results of
applying the single-scale model to the images at different
resolutions and of applying the multi-scale model to the
original image. Then, we will show that the GIS prior energy
can significantly increase the robustness of the method. More
results and comparisons with several other approaches are
presented at the end.

A. Results Using the Single-Scale Model without GIS Prior

First we apply the single-scale model E1 to the scaling
coefficients of the original image (Fig. 3a) at different levels
of the wavelet decomposition.

(a) (b)

Fig. 3. A QuickBird image (size: 2560× 2560) and deliberately ‘damaged’
ground truth, to simulate an earlier GIS map.

(a) (b)

(c) (d)

Fig. 4. Experiments at level 3 (size: 320× 320, road width ' 12 pixels). 4a:
zoom to illustrate the complexity remaining even at level 3; 4b-4d: the
thresholded phase field function at iterations 1 and 400, and at the final
iteration 20000, using the single-scale model E1.

We start from level 3 (equivalent to a compression factor of
23). Fig. 4a shows a zoom on part of the input image at this
level, illustrating that even after three levels of smoothing and
down-sampling, the data is still rather complex. Figs. 4b-4d
show the thresholded phase field function at iterations 1 and
400 of gradient descent, and at the final iteration 20000, using
the model E1. The segmentation is very successful: the main
road networks are retrieved nearly completely.

The level 3 image is already quite complex, and we observe
experimentally that if we try to use the same model at finer
resolutions, using the images at levels 2, 1, or 0, the details of
the scene in the image make road extraction more difficult (see
Fig. 5). The erroneous detections in the background result, on
the one hand, from regions of poor contrast between the main
roads and the buildings or areas of vegetation, and on the other
hand, from the smaller roads, which have statistical properties
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(a)

(b) (c)

Fig. 5. Experiments at finer resolutions using the single-scale model E1. 5a:
result at level 2 (size: 640×640, road width ' 24 pixels); 5b: result at level
1 (size: 1280× 1280, road width ' 48 pixels); 5c: result at full resolution,
level 0 (size: 2560× 2560, road width ' 96 pixels).

similar to the main roads. The shadows of high buildings,
cars, road markings and bridges lead to jagged borders or
gaps along the roads. The former indicates a lack in the single
level image model, while the latter seems more likely to be
due to a weakness in the prior model, which therefore needs
to be improved in order to enforce the road geometry more
effectively.

B. Results Using the Multi-Scale Model without GIS Prior

In an attempt to overcome the above problems at finer
resolutions, we apply the multi-scale model E2 = θ(EP,0 +
EP,NL) + ED,MUL. The result is shown in Fig. 6. The result
is not perfect, but the use of a multi-scale model improves
the result obtained from the original image at a single level
(see Fig. 5c). However, there are still some false detections
in the background and the road borders are rather inaccurate
due to geometric noise along the boundaries of the road. The
result indicates that a simple sum of data energies at several
different scales, while helpful, is not sufficient to solve the
problem completely. It suggests that the model should include
stronger prior knowledge. We show, in the next subsection,
the great improvement at full resolution resulting from the
incorporation of the GIS prior.

C. Results Using the Single-Scale GIS Model

In this subsection we apply a model making use of the single
scale data term and the GIS prior term E3 = θ(EP,0+EP,NL+
EP,GIS)+ED,SIG at full resolution. The result is illustrated in
Fig. 7a. The addition of EP,GIS greatly improves the result,
when compared to Figs. 5c and 6. Its main effect is to eliminate

Fig. 6. Experiment at full resolution (size: 2560 × 2560, road width ' 96
pixels) using the multi-scale model E2.

(a) (b)

Fig. 7. Experiments at full resolution (size: 2560 × 2560, road width ' 96
pixels) using the single-scale GIS model E3. Left: result obtained with
‘damaged’ ground truth (Fig. 3b); right: result obtained using the result
obtained with E1 at level 3 (Fig. 4d) as a replacement for the GIS information.

false positives in the background, while preserving the correct
segmentation of the roads themselves. To obtain this result,
ω+ must be small, since the mistakes that may exist in the
old map, should not affect the process, while ω− is somewhat
bigger, because a strong constraint is needed to overcome the
‘noise’ in the background.

Fig. 7b shows the result we obtain when we use as R0, not
the GIS map, but the result obtained at reduced resolution, i.e.
level 3 (see Fig. 4d). This shows that, in principle, we can free
ourselves from the need to have a GIS map available.

In Fig. 8, the top row shows the real outdated GIS maps of
main road networks before the year 2002 covering the same
zones as images in Fig. 1. We can see that significant changes
exist between these maps and the QuickBird images in the
year 2006 (Fig. 1). The results obtained with the single-scale
GIS model E3 from images in the year 2006 are shown in
the bottom row of Fig. 8. All these experiments prove that for
the main roads, at full resolution, the single-scale GIS model
is able to keep the unchanged roads, to correct the mistakes,
and to extract new roads. However, it is still not capable of
retrieving the smaller roads very accurately (see the rightmost
vertical road in Fig. 8d).

D. Evaluation and Comparison

To evaluate the performance of our models, we compare our
results with four other methods: a simple maximum likelihood
estimation (MLE); a level set approach with global shape
constraint by Bailloeul [14]; a classification, tracking, and
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Fig. 8. More experiments on the two pairs of images in Fig. 1 at full resolution
using the single-scale GIS model E3. Top: the real GIS maps of main road
networks before the year 2002; bottom: the updated main road networks from
QuickBird images in the year 2006.

morphology algorithm by Wang [15]; and a fast but rough
segmentation technique based on “straight line density” by
Yu [16]. Except for those involving the multi-scale model, all
results are obtained from full resolution images.

Fig. 9a shows the ground truth used to calculate quantitative
criteria. Figs. 9c-9f illustrate the results obtained using the
four methods mentioned above. MLE is obviously insufficient
to distinguish the roads from the background. The ‘flexible
active contour’ method of Bailloeul (initially dedicated to
building extraction) fails because it is not able to eliminate
road sections that exist in the map but not in the image. On
the other hand, the methods of Yu and Wang are able to detect
the main road network and smaller roads, but, for both, the
accuracy obtained in the delineation of the road boundary is
poor, and the results show a great deal of noise. In addition,
in order to illustrate the importance of the generic prior term
of our model, Fig. 9b shows the result obtained if EP,NL

is omitted, leaving a model equivalent to a standard (i.e. not
higher-order) active contour θEP,0 + ED,SIG. The importance
of the geometric prior knowledge carried by the prior term is
clear.

Some quantitative evaluation measures [17] are shown in
Table I. The completeness is the percentage of ground truth
road network that is extracted; the correctness is the percentage
of extracted road network that is correct; and the quality
is the most important measure of the “goodness” of the
result, because it takes into account the completeness and
the correctness. Note that for each method and each measure,
the average value of three experimental images (Figs. 1c, 1d
and 3a) is calculated.

TABLE I
QUALITY MEASURES OF THE DIFFERENT METHODS TESTED AT FULL
RESOLUTION (T = TRUE, F = FALSE, P = POSITIVE, N = NEGATIVE)

`````````Method
Measure Completeness Correctness Quality

TP/(TP+FN) TP/(TP+FP) TP/(TP+FP+FN)

Our model E1 0.8159 0.6758 0.5893
Our model E2 0.7859 0.7301 0.6141
Our model E3 0.7920 0.8914 0.7198

θEP,0 + ED,SIG 0.6358 0.8743 0.5810
MLE 0.7567 0.2775 0.2545

Bailloeul 0.5529 0.8318 0.4990
Wang 0.8918 0.6180 0.5717

Yu 0.7743 0.7196 0.5893

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Ground truth and comparison with methods taken from the literature, at
full resolution. 9a: ground truth used to calculate the quantitative measures; 9b:
result obtained when the higher-order term EP,NL is dropped, leaving
a model equivalent to a standard active contour; 9c-9f: results obtained
respectively using MLE, the approaches of Bailloeul [14], Wang [15], and
Yu [16].

VI. CONCLUSION

We have presented two models for the updating of road
maps in dense urban areas by extracting the main road network
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from VHR QuickBird panchromatic images. To adapt the
original phase field HOAC model [1], which was developed
for road extraction from medium resolution images, to VHR
images, we first proposed a new multi-resolution data energy.
Although the result at full resolution is better than that
obtained with the single-scale model, the multi-scale approach
needed further improvements in order to eliminate false de-
tections and improve the accuracy of road border delineation.
Consequently, we introduced specific prior knowledge in the
form of an outdate GIS map, to complement the generic
prior knowledge encoded by HOACs. Our results indicate that,
when working at full resolution, the combination of generic
and specific prior knowledge is essential, due to the great
complexity of VHR images. Our model gives better results
than several other methods in the literature, and our on-going
work focuses on the extraction of the smaller roads.
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