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ABSTRACT. A frequent and well-founded criticism of the maximunposteriori(MAP)

and minimum mean squared error (MMSE) estimates of a continuous parayrtaténg
values in a differentiable manifoldis that they are not invariant to arbitrary ‘reparametriza-
tions’ of I". This paper clarifies the issues surrounding this problem, by pointing out the
difference between coordinate invariance, which &ree qua norfor a mathematically
well-defined problem, and diffeomorphism invariance, which is a substantial issue, and
then provides a solution. We first show that the presence of a metric structiream

be used to define coordinate-invariant MAP and MMSE estimates, and we argue that this
is the natural way to proceed. We then discuss the choice of a metric structiireByn
imposing an invariance criterion natural within a Bayesian framework, we show that this
choice is essentially unique. It does not necessarily correspond to a choice of coordinates.
In cases of complete prior ignorance, when Jeffreys’ prior is used, the invariant MAP esti-
mate reduces to the maximum likelihood estimate. The invariant MAP estimate coincides
with the minimum message length (MML) estimate, but no discretization or approximation
is used in its derivation.

1. INTRODUCTION

Statistical estimation is a very old field but despite that, many questions remain unan-
swered and debates about the best way to proceed are plentiful. From a probabilistic point
of view, all the information about a quantity of interest taking values in a spaseon-
tained in a probability measure dnh If it is deemed necessary to single out a particular
pointy € T for some purpose, a loss functidn: T' x I' — R : (v,7') ~ L(v,7') is
defined describing the cost inherent in taking the true value of the quantitytevben it
is in facty’. The mean value of the loss as a functionyafan be computed using the prob-
ability measure, whereupon one can, for example, choose thatairit that minimizes
the mean loss as ones estimate of the true value of

In some cases, especially those closely linked to a specific application, the loss function
will be fully dictated by circumstance. In this case, the invariance issues discussed in this
paper do not arise. However, in many other cases, and for the purposes of theoretical
analysis, estimates are needed in the absence of any clear knowledge of what the real
loss is. Indeed, there may not be a ‘real loss’. In these cases, generic loss functions are
required, and indeed are currently widely used, both in theory and practice. These generic
loss functions should satisfy two criteria: they must be well-defined, and they must not
introduce implicit bias that is not present in the models. The latter is best expressed by
saying that in the absence of prior knowledge about the loss function, the loss function
should not introduce prior knowledge about the parameters to be estimated. This is an
application of the principle that if two people have the same knowledge, then they should
make the same inferences.

Key words and phrasesstimation, invariance, parameterization, manifold, metric, Bayesian, MAP, MMSE,
mean, continuous.
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In the case thal' is a differentiable manifold, difficulties arise. Two popular choices
of generic loss function are the negative of a delta function and the squared difference of
coordinates, leading to maximuanposteriori(MAP) and minimum mean squared error
(MMSE) estimates respectively. In order for these quantities to be well-defined, two things
are necessary: an underlying measure in order to define the delta function loss, and a
distance function in order to define the squared error. The existence of these quantities
is normally ignored, or equivalently they are assumed to take on particular forms. The
resulting loss functions are not coordinate invariant, and hence are ill-defined in general
coordinate systems, thus violating the first criterion. This lack of coordinate invariance
leads to the paradox that two people with the same knowledge can make different estimates
simply by choosing to use different coordinate systems, for example, polar rather than
rectangular. Even if the definitions are made coordinate invariant, and hence well-defined,
the resulting loss functions still violate the second criterion in general. The estimates are
not invariant to diffeomorphisms, which ‘mix up’ the points bf(‘reparametrizations’),
and therefore necessarily introduce extra information about these points.

The purpose of this paper is to correct the above situation. We define compatible,
coordinate-invariant MAP and MMSE estimates by introducing a Riemannian metric on
I', and argue that this is the natural way to achieve such invariance. This satisfies the first
criterion. The introduction of a metric raises the question of how to choose this extra struc-
ture, and we argue that in the case of Bayesian estimation, imposing the second criterion
renders the choice of metric unique.

The main results of the paper as regards Bayesian estimation are the following:

e The metric orl” should be the pullback by the model function of the natural metric
on every measure space.

e Invariant MAP estimates should be defined using the density of the posterior mea-
sure with respect to the measure derived from this metric.

e Invariant MMSE estimates should be defined by using, in place of the squared
error, the squared geodesic distance based on this metric.

¢ In conditions of ‘complete ignorance.e. conditions in which the prior probability
measure is Jeffreys’ prior, MAP estimates always reduce to maximum likelihood
(ML) estimates, in contrast to much Bayesian argument and practice.

e The invariant MAP estimate coincides with the MML estimate described by Wal-
lace and Freeman (1987), except that no discretization isf required and no
approximations are made.

The rest of the paper is structured thus. In section 2, we discuss the failure of invariance
for MAP estimation on manifolds and its causes. In section 3, we describe how both
this problem, and the related failure of invariance for MMSE estimates, can be solved by
endowing the manifold with a metric structure, and we argue that this is the natural solution
to the problem. In section 4, we discuss the choice of metric structure, and use a simple
invariance argument to render this choice unique. In section 5, we discuss the conclusions
of the report and related work.

The material on the differential geometry of measure spaces and its connection to Jef-
freys’ prior may be known to geometrically-minded statisticians. We include it here for
completeness, and to emphasize its coordinate-invariant nature.

2. THE PROBLEM

To illustrate the problem, we examine the maximization of a probability density function
(pdf) on a manifold of dimensiom. Let the manifold bd", a point inI" being denoted.
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We are given a probability measu@eon I', which we may view as the posterior in a MAP
estimation task, although this is not important at this stage. We are also given two systems
of coordinates o', 6 : I' — R™ and¢ : I' — R™. (We ignore questions of topology

that might require us to use more than one coordinate patch: the issue is not central to the
discussion here.)

Expressed in terms of the first set of coordinadesand the corresponding measure
d™0(v) onT, we findQ = Qq(0(~))d™0(v), whereQq(6(7)) is a function. We now
separate the functioy from the measure and find the argument of its maximum value
Omax € R™, giving an estimate of, 9 = 0~ (Onax)-

We may choose to expres€} in another coordinate system,: I' — R™. Using the
measure defined by this coordinate system, we find@hat Q,(¢(v))d™¢(y). If we
now follow the same procedure as before, and find the argument of the maximum value of
Q> max, We find another estimatéy, = ¢~ (¢max)-

The problem is the following. Suppose that the two coordinate systems are related by
a functiona : R™ — R™, so thatd(vy) = a(¢(y)). In this case, the measures with
respect to the two coordinate systems are relatet'tsy(~) = J[a](¢(7y))d™é(7y), where
J[a](¢()) is the Jacobian of the coordinate transformation. This in turn means that the
functionsQy and@ 4 are related by) s (¢ (7)) = Qo (6(7))J[a](a 1 (8(7))).

The consequence is that the estimates obtained by maxintirmdQ) 4 are different,
due to the presence of the Jacobian factor. Apparently our estimatdegfends upon the
choice of coordinates, or in effect upon the whim of the person making the estimate. This
may seem surprising: one thinks of the question ‘What is the most probable padift in
and, by analogy with the discrete case, one expects an invariant answer.

The difference between the continuous and the discrete cases means however that the
qguestion being asked in the continuous case is not the previously cited one at all, but a
slightly more complicated version. Given a coordinate systgithe question being asked
is ‘What is the infinitesimal volume elemefit!(dz) in T (wheredz is an infinitesimal
coordinate volume ifR") that is most likely to contain the true pointit?’. (We use the
notationf ! both for the inverse ofamap: A — B, f~' : B — A, and for the pullback
728 524: BoY ~ {a€ A: f(a) € Y}. Context serves to distinguish the two
usages.) Using a different coordinate systeénon the other hand, the question is ‘What
is the infinitesimal volume elemerit~!(dz) that is most likely to contain the true point
inT?". In generalf~1(dz)) # ¢~1(dz). Itis then clear that different answers are to be
expected using different coordinate systems, because the question being asked is different
in each case.

A simple example of the above is provided by a Gaussian measure in two dimensions
with zero mean and covariance the identity. This measure can be expressed in rectangular
or in polar coordinates:

PZ) =dody Z ' e @) —drdg Z  re "

In the first case, the maximum density procedure leads=tog = 0, while in the second
it leads to? = 1/+/2 and an indeterminate value fér In this simple case, one can see the
error clearly, but in more complex or less intuitive cases the same phenomenon arises and
passes unnoticed.

From a measure-theoretic point of view, what is happening is clear. The fun@ions
and@ are probability density functions. Any pdf is defined with respect to an underlying
measure. The Radon-Nikodym derivative of the probability measure with respect to the
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underlying measure then gives the pdf. In the scenario just described, two different under-
lying measures are being used™f(y) andd™¢(+). To expect them to yield the same
results is unreasonable.

If one concentrates on the underlying measure, then there is no problem. In terms of
6, the underlying measure é&"6(v), while in terms ofp, the same underlying measure is
J[a](o(y))d™¢ (). Integration of either of these over a fixed subset @fill produce the
same result: they are the same measure. Using this fixed measure, the problem disappears:
in terms of¢, the pdf with respect to the underlying measur@iga(4(v))) = Qo (0(7)).

The maxima ofQy (a(¢p(7y))) with respect tap agree completely with those 6fy(0(7))

with respect tdd, in the sense that,., = a(dmax), Which implies that) ! (0,.x) =

¢~ (¢max). The points inl" that we find are the same. The problem is that, given an
arbitrary coordinate system, we do not know which choice of coordinate is ‘correct’, and
hence what the estimate should be. By effectively focusing on measui®’s dime coor-
dinate space, rather than on underlying measurds, ¢ime problem is created. How then

to define, in a coordinate-invariant way, an underlying measure with respect to which to
take the Radon-Nikodym derivative?

A similar situation arises with respect to MMSE estimates, which are also lack invari-
ance under general changes of coordinates. It is equally true that the mean itself has no
coordinate-invariant meaning, and for the same reasons. In calculating both the error and
the mean, one is faced with adding or subtracting certain values. If these operations are
performed on the coordinate values in a particular coordinate system, they will change
with a change of coordinates. Equally, one cannot add or subtract poihtslioéctly:
such operations are not defined unlEgsossesses an algebraic structure of some kind, for
example, is a vector space.

In practice, what is crucial to the MMSE estimate is the notion of a distance between
two points inI'. If a global Euclidean coordinate system exists, this is given by the squared
error, but in general this is not the case. If we wish to consider MMSE estimates in general
coordinate systems, we must be able to define distances in a coordinate-invariant manner.

3. COORDINATE-INVARIANT ESTIMATES

If one wishes to discuss measures and distances using an arbitrary set of coordinates,
one must express the mathematics in a way that allows for this eventuality. Not to do
so means that symbols such @86 are not defined. The natural way to express both
geometric and measure-theoretic information about manifolds in a way that is manifestly
free of coordinates, but that nevertheless allows the derivation of an expression in terms of
an arbitrary coordinate system with the greatest of ease, is the language of forms. Readers
not familiar with this language may wish to look at appendix A, where we provide a brief
introduction to forms and their uses, or at the book by Choquet-Bruhat et al. (1996).

We are interested in probability measures. These can be integratethesteins, for
example the whole manifold, and as such are-forms. In addition, they must be positive
and normalized, so that they are probabilityforms. The answer to the first of the ques-
tions at the end of the last section is then: definenaform, since these are, by definition,
coordinate-invariant. The answer to the second question would seem to be: define a dis-
tance function. In practice, the following considerations push us strongly in one direction:
the introduction of a Riemannian metric on the manifbld

First, the introduction of a metric allows us simultaneously to answer both the questions
posed at the end of the last section. Starting from the metric, we can derivi®an and
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use this as the underlying measure. We can also define a distance function, as the geodesic
distance between two points.

Second, if we are to introduce notions both of ‘volume’ (via an underlying measure),
and of ‘length’ (via a distance function), it is sensible that these notions be compatible.
Otherwise there is no reason to believe that the resulting estimates will bear any relation
to one another. The use of a metric to define both the underlying measure and the distance
function ensures that maps that preserve lengths preserve volumes also, or, even more
intuitively, that the volume of a small cube is given by the product of the lengths of its
sides.

The final consideration is intuition in practice. Manifolds with a measure but no metric
are strange objects. They do not correspond to our intuition of a surface or volume at
all. The space of volume-preserving diffeomorphisms is much larger than the space of
isometries, and allows severe distortions. An example is the mixing of two incompressible
immiscible fluids. The initial ‘drop of oil in water’ may end up smoothly distorted into
dramatically different shapes. The parameter spaces that we consider intuitively possess
‘metric-like’ properties, even if these are not well-defined. For a one-dimensigrfat
example, the numbers that represent different parameter values indicate something more
than the topological, although a precise interpretation may not be available. If we wish
to be able to describe these geometric properties of the manifold as well as its measure-
theoretic properties, a metric is necessary. In addition, it is quite hard to write down an
expression for a measure on a manifold without implicitly assuming a metric. In practice,
this means that metrics appear, albeit disguised, in the expressions for many probability
measures. Gaussian measures are one example, where an inner product is used to define
the exponent. An inner product on a vector space is equivalent to a constant metric, which
allows identification of each tangent space with the vector space itself. In many other
cases, the assumption of an Euclidean metric is made manifest by the appearance of an
orthogonal inner product.

What then is a Riemannian metric and how does it define a measure? A inétric
the assignment, to each pomtof I', of an inner product on the tangent spdcd’ at .

This is detailed in appendix A, where it is further explained how the existence of a metric
allows us to map functions ta-forms using the Hodge star. Given a functipoonI’, we

can thus create am-form, i.e. a measureky, f. The choice of functiory is dictated by
compatibility between the measure-theoretic and geometric aspects of the manifold. By
choosingf to bel, the function identically equal td, the resultingn-form is preserved

by isometries: in other words, maps that preserve length preserve volume also.

Being a form, the quantityJ;,, = 1 is invariantly defined. This is clear first because
no coordinate system was used in its construction, but it can also be verified in detail. As
described in appendix A, the expression for this form in the coordinate basis of coordinates
0 is

Uy = »nl = [h]/%d™6

where|h|y is the determinant of the metric components in@lwordinate basis, andi"0

is the coordinate basis element for the spacedbrms. To see the invariance of this mea-
sure explicitly, note that a change of coordinatdstroduces a factor of [«](¢(y)) from

d™0, while the transformation of the determinant of the metric matrix elements from one
basis to another introduces a factor.tif](4(v))~!. Thus, expressed in any coordinate

system, the form of the measure is identiqhﬂ:éﬂd’”e = |h|clb/2d’mqb. To stress the point
once again: the measui®& 6() has no coordinate-invariant meaning. If we try to express
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a measure in a general coordinate system in this way, we literally do not know what we are
talking about.

3.1. Maximum Density Estimates. Given a probabilityn-form Q, and another positive
m-form U, one defines the pdf &) with respect tdU by division:

Q
(3.1) Q= T
This is the equivalent of the Radon-Nikodym derivative in the language of forms. What
now becomes of maximum density estimation? We simply have t®&Jyse equation 3.1.

If we choose a particular coordinate systénso thatQ = Qyd™0, andUy, = \h\;”dme

then we have

3.2) Q= hl; Qs .

The left-hand side of this equation is invariant to changes in coordinates. These will pro-
duce equal Jacobian factors in both the numerator and the denominator of equation 3.2,
which will thus cancel out. Note also that this pdf does not result simply from a choice
of coordinates. Although it may be possible to find a system of coordinates in which the
determinant of the metric is constant, this is misleading in two ways. First, what is really
happening is that a metric is being chosen. The naive approach really means choosing a
metric whose determinant is constant in the coordinate system you already have, which is
not a coordinate-invariant procedure. Second, in more than one dimension, although the
determinant of the metric may be constant, it may not be possible to find a system of coor-
dinates in which the metric itself is constant. This would imply that the manifold was flat,

a statement that is coordinate-invariant and may not be true.

3.1.1. Expression in Terms of a Delta Function Loddsually the maximum density esti-
mate is regarded as derived from the use of a particular loss funéfiy,), 6(«')) onT.
Given a probabilityn-form expressed in terms éf Qy(0)d™8, this leads to the familiar
recipeds = 0~ '(argmaxy Qg(6)), in apparent contradiction to the previous discussion.
From this point of view, there is no need to define a pdf at all, since we were merely
integrating with respect to the probability measure. What is going on?

The answer of course involves the same concepts as above. The qaigttity 0(7'))
is not invariantly defined, since the measure against which to integrate it has not been given.
In our context, the delta function (in fact there are effectivelpf them) is best viewed as
the identity map from\PT", the space op-forms onT’, to itself. As such, it is a-form at
its first argument (a point iff) and an(m — p)-form at its second argument (another point
in T'). It can thus be integrated againgt-form to produce another-form. Whenp = 0,
we recover the usual delta function that evaluates a function at its first argument. In our
case however, we wish to integrate the delta function against-éorm, and thug = m.

The delta function is thus am-form at its first argument and @&form, or function, at

its second argument. The result of integrating it against the posterior measure is thus an
m-form, and to create a function that we can maximize, we need to use the Hodge star.
This again introduces the factor bﬂgw that we see in equation 3.2 and that is implicit

in equation 3.1.

An alternative point of view is to consider the delta function as a map A& to
Am=P)T, making it an(m — p)-form at its first argument and a-form at its second
argument. In order to integrate this againgt#rm, we can use the inner product aA
described in equation A.2 of appendix A. In our case, this point of view makes the delta
function a0-form (function) at its first argument and am-form at its second. The result
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of the integration is thus a function as required for maximization, but now we find that the
use of the inner product has already introduced the factth@il/z, thus giving the same
result as in the other two methods.

There is thus no conflict between these different ways of speaking.

3.2. MMSE Estimates. Suppose we are given a distance function. That is, we are given a
symmetric mapl : I'xI" — R, obeying the triangle inequality and such ttiéf, v) = 0.
Given a pointy’, we define the function

dy(y') = d(v,7) .

We can now define the coordinate-invariant form of the mean squared error, which we will
call themean squared distancas

(33) Liy) = /F (d,)°Q .

whereQ is as usual a probability.-form. In terms of a particular coordinate systéran
I, one has

L(o) = / a0 Qa(0/)d3(6,6') |
0(I')CR™

wheredy is the expression for the length in terms of the given coordinates.

Having defined the mean squared distafi¢cave can now define the minimum mean
squared distance (MMSD) estimate as the set of minimizefs of.

All that remains is to use the metric to define a distance function that we can use in
equation 3.3. Below we recap this material from differential geometry, phrasing it in a
manifestly coordinate-invariant way, and emphasizing the difference between coordinate
invariance and invariance to diffeomorphisms, which is a coordinate-invariant and there-
fore content-full concept. We first define the notion of the length of a path, and then define
the distance between two points as the length of a minimum length path between them.

Let I be an interval of the real line, considered as a manifold (that is, without the
structure of a field). Lepy, andp; be the elements of its boundary. let: I — T be
an embedding of in T such thatr(py) = v andr(p;) = +'. To define the length of the
path {.e. its volume), we need &form on I, or in other words a measure, which we will
then integrate ovef. Now however we have an invariance criterion: we must ensure that
the length we calculate depends only on the imageiofl’, and not on the precise mapping
of points of I to points of". This amounts to saying that replacingoy we, wheree is
an arbitrary boundary-preserving diffeomorphism, should not change the resulting length.
Note that unlike coordinate invariance dywhich follows as soon as we integrate over the
coordinates, this condition is a substantive one. As argued in appendix A, the only way to
ensure this is to construct a metric 6y pulling back a metric froni’, and then using
this metric in the normal way to construct orm. We thus pull back the metric on T’
to give a metrict*h on I. We then use the Hodge star of this metric to map a1-form
that can be integrated dn In notation,

(3.4) I(r) = /I rep] |

To illustrate the ability to derive an expression in an arbitrary coordinate system from
the coordinate-invariant expression 3.4, we introduce a coordinate systém R on I,
with a corresponding coordinate basis givenggyp), and a coordinate systefonI’, with
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a corresponding coordinate basis givenaéy(y). In these bases, the (single) component
of the pulled back metric can be found to be

(5B (00 350) ) =y ()5 (7). 05 )
dn' dm?

= hﬂ(p),ijE(P)E(P) )

whereh;; are the components of the mettién thed coordinate system. Thus the result is
simply the length of the tangent vector to the path the metrich. Rewriting equation 3.4
in terms of this expression, we find that

b ; ; 1/2
dr® ,  dml
i) = [ (e 0% 0)

where we have abused notation by using the same symmfloolthe map fronV to I" and its
expression in terms of coordinates. The points R andb € R are the coordinate values
of pg andp; respectively.

Given the length of a path, we can now define the distance between two points as

/ / :
dy(v') = d(v,7") ﬂerﬁ}%ql(ﬂ) :

wherell(y,~’) is the space of paths with endpointand~’. This distance is coordinate-
invariant, and can be used in equation 3.3. For a general metric it is of course hard to derive
an analytic expression fat.

In the case that the metric is Euclidedmeduces to the mean squared error, as it should.
The resulting MMSD estimate is then the meaa, the MMSE estimate, and is unique.
In other cases, the MMSD estimate provides a generalized mean, known as the ‘Karcher
mean’, first introduced by Karcher (1977) as the centre of mass on a Riemannian manifold.
Itis a set of points if", each of which minimizes the mean squared distance to every other
point of I". Note that the set of minimizers may contain more than one poiit dfhis
does not present a problem as such. It simply means that from the point of view of the
mean squared distance loss function, these points are equivalent.

4. BAYESIAN ESTIMATION AND THE CHOICE OF METRIC

We have argued that in order to define coordinate-invariant and consistent maximum
density and MMSE estimates, one should use a metric on the mahnifaMe now turn to
the question that we have been conspicuously avoiding. How is one to choose a metric on
r?

Thus far, we have been dealing solely with a manifbldnd a probability measui@
on this manifold. In this abstract situation, it seems that the above question has no good
answer, which is unsurprising. We turn now however to the case that is usually of interest:
whenQ is a posterior probability measure derived from a model function and a prior using
Bayes’ theorem.

We introduce the data spac¥, We assume that this has sufficient structure to allow
the following constructions, and in practice it can be supposed to be either a countable
set or a manifold. OnX, one can define the space of measupd$,X). The space of
probability measures§(X), is a proper subset of the cone of positive measures. This
set has a complicated boundary even in the case wkei® countable; wherX is not
countable, there are also measures with singular components, which complicate things still
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further. We avoid these difficulties by assuming that all measures with which we will deal
lie in the interior ofM(X) and, where appropriate, are non-singular.

We are free to choose coordinatesdditX') as on any manifold. One choice is to de-
scribe measures asforms, in which case the spa8eX ) becomes the space of probability
n-forms. A model function is a map : I' — M(X) associating to each pointe " a
(probability) measure oX. We will assume that this map is a regular embedding, so that
the image of” with the differentiable structure induced Byis a submanifold 08 (X).

4.1. An Invariance Criterion. We now use this extra structure, which is present in any
real estimation problem, to argue for a unique choice of metrit.ofhe argument rests
on one simple idea: that all information about the parameters not contained in the data be
contained in the prior measure, or in other words, that all information that distinguishes one
point of I" from another should come either from their correspondences with probability
measures oX (condition1) or from the prior measure dn(condition2). It is the proba-
bility measures orX alone that determine the relationship between the poiritsaind the
observations represented by pointsiin and the way that these measures are parameter-
ized serves to determine the meaning of the pointsamd not the other way around. Any
other information in addition to the data we have at hand should be described by the prior.
Any metric that we choose dn should respect this principle, and not introduce any extra
information about points ifr. This is the second criterion.

The fact that it is not the identity of individual points Ihthat is important, but merely
their correspondence with probability measuresXgnmeans that it is only the image of
I in M(X) that counts. This image is invariant under the replacementtof Ae, where
e : I' — I is a diffeomorphism. A model function is thus an equivalence class of maps
{Ac}. The conclusion from conditiohis thus that inference should be invariant under the
replacement ol by Ae, where invariant means that the image of the estimate by the model
function is preserved. This diffeomorphism invariance, although superficially similar to a
change of coordinates, is defined independently of any change of coordinates, and as such
is a substantive restriction.

There are only two ways to achieve this aim. One is to pick a particular representative
of the equivalence class of mapac} and to define a metric on the corresponding copy
of I". This metric can then be pulled back to other members of the equivalence class using
the maps. Although this will satisfy conditiori, the selection of a particular member of
the equivalence class to be endowed with a particular metric implies that we already know
something about the points in independently of their correspondence with probability
measures orX . Otherwise, how could we know to which points Bfto assign which
values of the metric? This is exactly the type of information that should be included in the
prior, and thus the procedure described in this paragraph violates coritlition

The second approach is to pull back a metric ftdf(X) to each equivalent copy of
I" usingAe. (Since an embedding is a full rank immersion, the pulled back metric will be
a proper Riemannian structure drif M(X) is a proper Riemannian manifold.) Such a
metric automatically satisfies the consistency conditions introduced by thecrhapseen
members of the equivalence clags*g = ¢*A*g, whereg is a metric onM(X), and
thus our results will depend solely on the imageloin M(X). In addition, we were
not required to pick a particular member of the clagsriori, since each member of the
equivalence class gets its own consistent metric induced by its own model function. Thus
both conditionl and conditior2 are satisfied.
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We are thus in a position to define a metric and underlyinfprm onI" that satisfies
the invariance criterion stated at the beginning of this section by pulling back a metric from
M(X). We lack only one thing: a metric dwl(X) to pull back.

4.2. Metrics on M(X). The first thing we must do is to define what we mean by the
tangent space td((X). Since we are using-forms as coordinates dw((X'), and since
the space of signed measures is linear, it is easy to see that a tangent va¢{df Y@an

be identified with am-form. If we restrict attention t&(X), this n-form must integrate

to zero to preserve normalization. Then, at a p@int M(X), an inner product between
two tangent vectors; andvs is given by

1V2
viva)— [ pYiYv2
g1, v2) /X TT’

where we have identified the abstract tangent vectossth their expression as-forms.
Note that the divisions are well-defined becalsés positive. The justifications for this
choice as the only reasonable metricXi{X ) are many, and we do not re-iterate them
here. Interested readers can consult, for example, the book by Amari (1985).

4.3. Pullback to I". Using the embedding. of I" in M(X), we can pull the metric on
M(X) back toI'. The definition of the pullback of the metric acting on two tangent vectors
uandv in T,I' is as before

ha(u,v) = (A78)5 (1, v) = 8a(y) (A (u)Au(v))

where A, : T, I' — Ty M(X) is the tangent (derivative) map. This expression is
coordinate-invariant. If we wish to know the matrix elementshgf = A*g in the ba-
sis determined by a system of coordinat%,, onI', we must evaluath, on these basis
elements. The resultis

o 0 B 1 0Ap 1 9Ag

where we denote by, the value of the model function at the pointvith coordinated.
We thus find the known result that the components of the induced metric form the Fisher
information matrix.

As described in section 3, the coordinate-invariant measuieisthen given by

Uy = #n, I = |hal)/?d™0 .

4.4. MAP Estimates. MAP estimation is now simply a question of using equation 3.1
with Q equal to the posterior measure from Bayes’ theorem lamrdjual toU , .

Note that the introduction of a prior probability prevents the estimate from being invari-
ant under replacement dfby Ae. The solution to this problem is the following. The prior
probability is assigned to one member of the equivalence ¢lass based on knowledge
of the parameters that is independent of current data. It can then be pushed forward to
other copies of usinge~*. Note that this violates conditidhas it should, but that it does
not violate conditiorl.

In cases of ‘complete ignorance’ of the valueygfleffreys’ prior is often used as the
prior probability measure. In this case, the prior measure and the underlying measure can-
cel in the invariant MAP estimate, leaving only the model function. In cases of ‘complete
ignorance’ then, MAP estimation reduces to maximum likelihood estimaégardless
of the nature of Jeffreys’ prior. (Note that the posterior probability measure still contains
Jeffrey’s prior: it is in the MAP estimate itself that it disappears.)
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Thus while traditional MAP estimates of the variance of a Gaussian measure, for exam-
ple, vary with the parameterization, the invariant MAP estimate will produce the maximum
likelihood result in every case. The data spac¥ iss R”, corresponding ta independent
experiments, and the model function is a Gaussian family of product measurgsan
the sake of argument with zero mean. The parameter dpacisomorphic tdR*: we use
coordinates € R on this space, where is the standard deviation. The model functibn
is then given by

Ay = d"z (2102) 7"/ ? exp —(;C%;) ,
where(+, -) denotes the Euclidean inner product®®. Derivation of the Fisher informa-
tion then shows that the inner product between tangent vectanslv in 7, T, where the
point~ has coordinate, is
4.2) ha(u,v) = ;ugv" ,
where the superscript denotes the component with respect to the coordinate %%sis
The induced measure is thus proportionad#d' o, the well-known Jeffreys’ prior. Let us
now consider the parameterization= o, for o € N. Jeffreys’ prior is equal tdv /v for
all « # 0. The traditional MAP estimates derived from these different parameterizations
are

@2/0& _ (33737)
n+ o

where we have raised the estimatevdb the power of2/« to make it equivalent to an
estimate o&2. The problem of lack of invariance comes sharply into focus in this example.

Which estimate of is to be used?
On the other hand, the invariant MAP estimate is

,02/04 — (.’,U, ’I)
n

)

for all a.

4.5. MMSD Estimates. In section 3.2, we defined a coordinate-invariant version of the
mean squared error estimate, which we called the MMSD estimate. Having defined a
metric onI" above, we can now use it to calculate distanceF,imnd hence to define

the MMSD estimate. In general, this is a difficult task that is not tractable analytically,
although approximations may be available. In simple examples however, one can compute
the distance functiori(v,v’) analytically. We give an example in the subsection below.

4.5.1. MMSD estimate of varianceConsider the same example as above, of the estima-
tion of the variance of a zero mean Gaussian measure.

From equation 4.1, the infinitesimal distanéebetween the points with coordinates
ando + do is given by

2
ds® = U—de2 .

This is easily integrated to give the distance between two points with coordimgtes
ando; (assumer; > oy):

d(Uo,O'l) = \/%ln(%) .

0
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The MMSD estimate ob is therefore given by considering the following mean loss
under the posterior measuggfor o:

L(o) =V2n do'Q(o")(Ino —Ino’)? .
0
Differentiation with respect te then shows that the minimum squared distance estimate
of o, G, is given by
6 =exp Eq[lno],

whereEq[-] indicates expectation using the meas@eNote thatEg[ln o] # In Eqo]
in general and that therefore the estimate is not simply the mearasfwould have been
obtained by assuming a Euclidean metric.

The mean ofn o can be calculated in the case that the priorastaken to be Jeffreys’
prior. Itis given in terms of coordinates by

Bl = i (3ne) v (30)]

wherey is the function

b(z) = dilnmz)

andT is the Gamma functiofi(z) = [ dtt*~'e~t. Thus

—39(n/2)

For largez, ¢(z) = In(z), so that the estimate becomes

Gl = 111(71/2) (.%‘,.I’) ,
n

the classical result. To the next ordﬁl(z) =~ In(z) — 5. This introduces corrections to
the classical result:

. 1,
G =e2nq, .

This formula is valid within about0% down ton = 1, at which point the invariant result
is bigger than the classical result by a facton ¢f.

4.5.2. General case in one dimensioithe form of the above estimate is quite general in
the one-dimensional case. Consider that we have derived the mefridomhe distance
between two pointsy andy; is then given according to the general discussion in section 3.
In a general coordinate systefh this can be written

)= [ d <h<w<t>> (Z<t>)2> v / 6 40 1/2(6)

wheren(to1) = 70,1, 00,1 = 0(y0,1) and h is the (single) component of the metric

h in the § coordinate system. Note that there is no need for a minimization in one di-
mension. All paths with the same endpoints belong to the same equivalence class under
the action of (boundary- and orientation-preserving) diffeomorphisms dfiow let H

be the inverse derivative df'/2. The (signed) distance between the two points is now
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d(01,00) = H(61) — H(0o). Including this in equation 3.3, differentiatifgand equating
to zero then gives the result that

H(0) = Eq[H]
and thus that
0= H 'Eq[H] .

In more than one dimension of course the problem is a great deal more complicated,
since there is an infinity of equivalence classes, and the minimization means solving a
partial differential equation for the geodesics.

5. DISCUSSION ANDRELATED WORK

There is a significant amount of work on the geometry of probability measure spaces
from the point of view of classical statistics: Murray and Rice (1993) and Kass and Vos
(1997) provide recent treatments. As interesting as this work is, it has focused on asymp-
totics and other issues of importance to classical statistics, while the Bayesian approach
using prior and posterior probabilities and loss functions has largely been ignored. As a
consequence, it is not directly relevant to the problem posed in this paper. For example,
Murray and Rice (1993) assert that the Riemannian distance is not of statistical signifi-
cance, although they give no arguments, and that the mean in a manifold cannot be calcu-
lated; all that is possible is an analysis of the way in which the value of the mean, calculated
in coordinates, changes with the coordinates. As we have seen however, the Riemannian
metric precisely allows the definition of a natural, coordinate-invariant generalization of
the mean.

The pulled back metric defined in section 4.3 was first introduced by Rao (1945), but it
was the work of Amari (1985) that brought these ideas to prominence. Amari (1985) intro-
duced, in addition to the metric, a family of connectiondpmne of which was the metric
connection compatible with the metric. The non-metric connections, however, cannot be
used to define the structures necessary for invariant Bayesian estimation as described here.
Efron and Hinkley (1978) and Barndorff-Nielsen (1987) introduce ‘observed’ geometric
structures, but again these do not enable the definition of invariant estimates satisfying the
two criteria in this paper. For example, the observed Fisher information metric of Efron
and Hinkley (1978) is not a tensor, and thus violates the first criterion. In addition, it
requires the definition of an underlying measure on the data sfaastimation is not
invariant to this choice. Critchley et al. (1994) develop ‘preferred point geometry’ to try to
ameliorate the lack of naturality they perceive in previous geometric approaches to statis-
tics. The ‘preferred point metric’ they define is, however, not invariant to diffeomorphisms,
precisely because there is a preferred point. It thus violates the second criterion.

There is, from a Bayesian point of view, a more general objection to the asymmetric
or preferred point structures (many of which also violate the triangle inequality) used in
much of the above work. This objection is essentially the same as the original motivation
for introducing them, which is the notion that there is a ‘true distribution’ that must be
treated differently, and related problengsg.the worry that this distribution might not
lie in the image ofl". This notion does not exist, and indeed does not make sense, in a
Bayesian approach. This can be seen by using, for example, a preferred point metric in the
formula for the posterior density, equation 3.1. The preferred point is undefined, yet if it
is taken to be the argument to the posterior density, seemingly the only reasonable choice,
then the ‘preferred point’ vanishes and we are back to the Riemannian metric described
herein. Thus theaison d&tre of these more complex structures disappears.
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From another direction, Pennec (1999) develops some basic statistical tools for Rie-
mannian manifolds, and applies these ideas in various ways to problems in computer vi-
sion. The approach is not Bayesian however, and in particular the choice of a metric and
the relation with estimation problems, including the use of the metric measure as an under-
lying measure for MAP estimation, are not considered.

MML inference was developed by Wallace and Boulton (1968, 1975) and Wallace and
Freeman (1987). A discussion of its relationship with the standard Bayesian approach and
of its invariance properties can be found in the above papers and in the paper by Oliver and
Baxter (1995). The literature on MML inference frequently cites the invariance of MML
estimates as one reason to prefer them to MAP estimates. The above analysis shows that
this is not a special property of MML estimates, or a deep problem with MAP estimates.
Indeed, the issue is not one of MAP estimatpar se Lack of invariance is a consequence
of not describing the quantities of interestlirin a coordinate-invariant, and hence mean-
ingful, way. To do this, one must recognize that a metric is lurking in the definition of both
MAP and MMSE estimates, and indeed in any useful discussidh ahd that making it
explicit is a necessary condition for meaningful definitions in arbitrary coordinate systems.
Once done, the definition of coordinate-invariant estimates is an immediate consequence
of the geometry. Although equation 3.1 with the pulled-back metric as underlying measure
is formally the same as that for MML estimates, unlike MML methods, no discretization of
I' is needed, and no approximations are made. In fact, the above derivation throws light on
the procedure used in deriving MML estimates, which from this point of view appears to
be a roundabout way of defining an underlying measure by first discretizing the manifold
and then considering the volume of each cell.

The fact that we are discussing the geometry @ind not a particular form of estimate
means that the analysis presented here is more general than MML however. By recognizing
the necessity of an explicit metric dnfor inference, the way is open for the definition
of coordinate-invariant loss functions of many different types. Here we have given the
example of a coordinate-invariant MMSE estimate, the MMSD estimate, but whenever
defining a loss function on a parameter space, the issues described here must be taken into
account.

5.1. Discussion of choice of metric.In section 4, we came to the conclusion that the only
choice of metric that satisfied the two conditions mentioned at the beginning of that section,
was the metric induced by pullback froM(X). To recap: the metric and its associated
underlying measure should not introduce information alibuSuch information should

be contained in one of two sources: the correspondence between polh&ndf points

of M(X), and the prior measure. The first leads to the idea that the metric on diffeomor-
phically related copies df should be related by pullback, while the second eliminates the
possibility of choosing a metric on one fixed copyloénd then pulling it back to the other
copies, since this implies that we must be able to assign a value of the metric to particular
points inI" a priori, which in turn implies that we must know something about the identity
of these points beyond the information contained in the prior. Hence the result given.

Note that this argument is somewhat different to that normally used for Jeffreys’ prior,
or rather is a clarification and a refinement of that argument, which essentially boils down
to proving that this prior is invariant under ‘reparametrizations’. First, the emphasis is on
the metric as providing' with geometry, and not on the measure, which is a derived quan-
tity. Second, coordinate invariance is not an issue: the abstract way in which the geometry
is described does not rely on a particular choice of coordinate system. Equation 3.1, for



INVARIANT BAYESIAN ESTIMATION 15

example, is coordinate-invariant for any choice of metric. Instead the emphasis is on dif-
feomorphism invariance: our results should not depend on which copywef use, since

this merely ‘shuffles’ the points df without changing their correspondence with points of
M(X).

The use of the underlying measure of the pulled-back metric does not commit us to
using Jeffreys’ prior as an non-informative prior. Thus the large amount of previous
work (Bernardo, 1979; Kass and Wasserman, 1996) on the choice of such priors, fasci-
nating though it is, is not directly relevant to our discussion here. Note in particular that
the problems associated with Jeffreys’ prior do not appear when we are talking about an
underlying measure. Normalization is not necessary since the underlying measure is not a
probability measure. Second, the procedure advocated here suggests that we should first
eliminate nuisance parameters using whatever prior information we possess, to obtain a
likelihood on the parameter of interest, and only then derive the metric by pullback. Thus
the various ‘paradoxes’ associated with the non-commutativity of the derivation of Jef-
freys’ prior and marginalization do not arise.

Our argument for the metric and underlying measurd atoes not depend on group-
theoretic considerations. Nevertheless, the metric is compatible with these considerations,
as is Jeffreys’ prior, because of the following simple argument. XL & a manifold with
metric h, andY be embedded inX by f. Suppose we have two group actiofig :

Gx f(Y)— f(Y)andsy : G x Y — Y. Note that the group action ok need only be
defined for the image df: it may for example be induced by the group actiontoitself.
If we have

y 1> f(v)

By (Q)T Tﬁx(g)

Y?f(y)

then, if G acts by isometries oiX, endowingY” with the metricf*h ensures thaf is an
isometry also. Thereforé; must act by isometries oni. If Y is G itself, this ensures that
the underlying measure induced by the meftit is a Haar measure.

Finally, an information-theoretic intuition is interesting. In computing the MAP esti-
mate, it is equivalent to maximize the logarithm of equation 3.2. Naturally the logarithm
consists of the difference of two terms: the logarithm of the posterior density and the log-
arithm of the underlying density. The role of the underlying density is the following. The
information that we possess should presumably be that amount of information that we pos-
sess beyond ‘ignorance’. If our expression for ‘ignorance’ does not possess the value ‘zero’
(i.e. the identity) in the algebra in which we add and subtract information, then the infor-
mation that we possess beyond ‘ignorance’ should be the difference between the algebraic
element representing our knowledge, and the algebraic element representing ‘ignorance’.
In view of the ‘non-informative’ nature of the underlying measure that we are using, the
MAP estimate can thus consistently be thought of as finding that poihtiitth maximum
information.

This intuition, and the invariant nature of the underlying measure, suggest that this
measure should be the reference measure for the maximum entropy approach to generating
prior measures on manifolds. This is a subject for further research.

AcknowledgementsThe author would like to thank both referees for their valuable com-
ments on the paper.
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APPENDIXA. FORMS

We provide a short introduction to the language of forms. A good reference is the book
by Choquet-Bruhat et al. (1996). Briefly, differential forms are antisymmetric, multilinear
functionals on products of vector spaces. For manifolds they are defined pointwise on
the tangent space at each point and then required to satisfy smoothness properties. They
also allow a beautiful theory of integration on manifolds, and in this capacity they are
thought of asco-chaing linear functionals on the vector space of chains in a manifold.
Their advantages are great concision and uniformity of notation; independence of basis
or coordinates; manifest invariance to diffeomorphisms and other transformations; and
generality. In bringing together integration and geometry in one notation, they are ideal for
our discussion.

We are given a manifoldf. From here, we can define the tangent space at each point,
T,I' using a number of approaches. The result is intuitively clear however, so we will not
go into detail. We can bring all the tangent spaces together itatigent bundIgl'T'. This
is another manifold, each point of which can be thought of as a pair: a pami* and
a vector inT,I". There is a canonical projection froffi" to I supplied by forgetting the
tangent vector. At each point the tangent spacg,I" has a dual spacé&;’T', the space of
linear maps froni’,I" to R. These can be combined to form the co-tangent buritié,

A vector fieldis asectionof the tangent bundle: a map fraito 7T" whose left inverse is
the canonical projection.

We can also form product bundles, in which the ‘extra space’ at each pdamthe
product of copies of the tangent space: thus each poifit’in can be thought of as a
point~ and an element 0?7, I". Now at each point, we can define higher dual spaces:
T5PT = @PTIT is the space of multilinear functions o?T,T'. In particular, we can
restrict attention to the antisymmetric linear functions: those that change sign under the
interchange of any two arguments. These are antisymmetric tensor products of the co-
tangent space, denoted7T". Their combination into a bundle is denoted7"T". A
section of \APT*I" defines, for each point, an element of\?77T". Sections ofAPT*I"
are known agorms andp is the degreeof the form. We denote the space pforms
APT'. Forms of degre@ andq can be multiplied to give forms of degrget ¢q. Because
the product of co-tangent spaces is antisymmetric, all forms of degree highenthhe
dimensionality of the manifold, are zer@-forms are functions on.

In order to express vectors and forms more easily, it is convenient to introduce bases for
the various spaces. This is easily done using a coordinate systém- R™. A basis for
T.,I' is then the set og%(y). The dual basis fof*T is then the set of¢’ (), which acts
on the basis of’,I" as

9
067

Taking the collection of these bases all o¥erwe have bases for the spaces of vector
fields andl-forms. Now we can form bases for the various power bundles. For example,
a basis for the space @fforms is given by the seif‘(y) A d6?(v), whereA denotes

the antisymmetric product. We will denote the basis eleradhty) A ... A d0™(y) of

the space ofn-forms (there is only one - if the indices are not different, antisymmetry

of the product means the result is zero)dy9(y). The sign of this basis element (or in
other words, the order of the factors @f that it contains) defines asrientationon the
manifold, in the sense that a basis for the tangent spaces, when acted upon by the form, will
give either a positive or negative result depending on its orientation in the traditional sense

A" (7)(5-(7) = 05 -
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of right- and left-handed coordinate systems. Given an orientation in this sense, a basis for
the tangent spaces is eithmientedor not. Not all manifolds admit a global orientation.
We consider only orientable manifolds.

Given another manifold”, and a mapA : Y — I', we define thgangent mapor
derivative magat a pointy € Y, A, : T,,Y — Ty, T as follows. A point(y,u) € TY is
taken to(A(y), A,u) € TT, where, in terms of coordinatééonT and¢> onY’, in which
u = u® 5%, we have

; 0 LOA" O
A= () 5 =" 55w ogt -

whereA? = 0(A). We also introduce the convention that repeated indices, one up, one
down, are summed over.

Using this map, we can define thallback A* A of a form A € APT (or in fact of any
member of a power of a co-tangent space, whether antisymmetric or not) as

A*Ay(’Lh v, .. ) = AA(y) (A*’U,7 A*’U7 .. ) .

Thus the action of a pulled back form on tangent vectors is defined by the action of the
original form on the tangent vectors pushed forward by the tangent map.

As well as antisymmetric products of co-tangent spaces, we can form symmetric prod-
ucts. If at each point, we form the space of symmetric, bilinear functionsion” x 7', I,
which we will denotel;T" v T5T', we can again form a product bundl&T" v T*T'. A
metrich onT" is a positive (semi-)definite section of this bundle: to each puyiittassigns
a positive (semi-)definite element @[T v 7T, or in other words, an inner product on
T.T.

In a particular coordinate basg% (7), the metric has components, given by

0 0
hyi; = hv(@@% w@)) .

The matrix elements of the metric at each pojrppossess a determinant, which we will
write |h|g(0(7)).

Using the metrich, we can define a canonical isomorphism, ltteglge stak,, between
APT andA™~PT". We show here its action for = 0 andp = m only, since that is all we
will need. We choose coordinatéé (nothing will depend on this choice). Legtbe a
0-form, andA = Ad™#0 be anm-form (A is a function—the component & in the basis
d™0). Then we have

(A1) *nf = |n['/?fd"0
*nA = |h|71/24
where we have suppressed arguments and reference to the coordinate system in the defini-
tion of the determinant for clarity.
The Hodge star can be used to define an inner product on/dchSincex, A is an

(m — p)-form if A is ap-form, the quantityA *;, B for two p-forms is am-form, and can
be integrated of':

(A.2) <AB>:/AWB.
I

We can defingositivem-forms as those whose action on oriented bases produces a
positive result. It is equivalent to say that their dual under the action of the Hodge star is
a positive function. Aprobability m-form is a positivem-form whose integral over is
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equal tol. We can dividen-forms by positiven-forms. For an-form A and a positive
m-form B, the value of% is that unique functiorf such thatA = fB. This division is
the analogue of the Radon-Nikodym derivative for forms.

On anm-dimensional manifoldy:-forms can be integrated in the way that the notation
suggests. For m-form A = Ad™6, we have that

A= A(0)d™0 ,
Qcr 0(Q)
where we have used the same symHalor the function and its expression in terms of
coordinates. A
To integrate g-form A over ap-dimensional submanifold embeddedliny ~— T,
one first pulls the form back to the embedded manifold and then integrates:

/ A:/A*A.
A(Y) Y

These definitions highlight the second way of interpreting formscaashains A p-
chain inT" is (roughly speaking) a linear combinationgflimensional rectangles embed-
ded in the manifold. The space of linear functions on the spapecbhins (the co-chains)
can be identified wittAPT".

. . . . . . A
We will have cause to integrate a functigrover ap-dimensional submanifoltt’ — T"
of I. This is slightly different from the case of integratingpdorm. One first pulls the
function back taY” and then uses a metric @nto convert the function into a-form that

can be integrated ovéf:
|or= [ s
A(Y) Y

where by definitionA* f)(y) = f(A(y)), andh is a metric orY".

However, since we are interested in the submanifold and notY” itself, we are really
considering an equivalence class of embeddifiss, wheree : Y — Y is a diffeomor-
phism, with the same image. The result of our integration should be independent of the
representative in this equivalence class, and this means that the metriararst vary
with the representative. If no representative is distinguished, the only way to achieve this
invariance is to pull back a metrig onT" to Y/, and use this metric to define the Hodge

star:
/ f = / *A*gA*f .
A(Y) Y
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