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ABSTRACT. A frequent and well-founded criticism of the maximuma posteriori(MAP)
and minimum mean squared error (MMSE) estimates of a continuous parameterγ taking
values in a differentiable manifoldΓ is that they are not invariant to arbitrary ‘reparametriza-
tions’ of Γ. This paper clarifies the issues surrounding this problem, by pointing out the
difference between coordinate invariance, which is asine qua nonfor a mathematically
well-defined problem, and diffeomorphism invariance, which is a substantial issue, and
then provides a solution. We first show that the presence of a metric structure onΓ can
be used to define coordinate-invariant MAP and MMSE estimates, and we argue that this
is the natural way to proceed. We then discuss the choice of a metric structure onΓ. By
imposing an invariance criterion natural within a Bayesian framework, we show that this
choice is essentially unique. It does not necessarily correspond to a choice of coordinates.
In cases of complete prior ignorance, when Jeffreys’ prior is used, the invariant MAP esti-
mate reduces to the maximum likelihood estimate. The invariant MAP estimate coincides
with the minimum message length (MML) estimate, but no discretization or approximation
is used in its derivation.

1. INTRODUCTION

Statistical estimation is a very old field but despite that, many questions remain unan-
swered and debates about the best way to proceed are plentiful. From a probabilistic point
of view, all the information about a quantity of interest taking values in a spaceΓ is con-
tained in a probability measure onΓ. If it is deemed necessary to single out a particular
point γ ∈ Γ for some purpose, a loss functionL : Γ × Γ → R : (γ, γ′)  L(γ, γ′) is
defined describing the cost inherent in taking the true value of the quantity to beγ when it
is in factγ′. The mean value of the loss as a function ofγ can be computed using the prob-
ability measure, whereupon one can, for example, choose that pointγ̂ ∈ Γ that minimizes
the mean loss as ones estimate of the true value ofγ.

In some cases, especially those closely linked to a specific application, the loss function
will be fully dictated by circumstance. In this case, the invariance issues discussed in this
paper do not arise. However, in many other cases, and for the purposes of theoretical
analysis, estimates are needed in the absence of any clear knowledge of what the real
loss is. Indeed, there may not be a ‘real loss’. In these cases, generic loss functions are
required, and indeed are currently widely used, both in theory and practice. These generic
loss functions should satisfy two criteria: they must be well-defined, and they must not
introduce implicit bias that is not present in the models. The latter is best expressed by
saying that in the absence of prior knowledge about the loss function, the loss function
should not introduce prior knowledge about the parameters to be estimated. This is an
application of the principle that if two people have the same knowledge, then they should
make the same inferences.
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In the case thatΓ is a differentiable manifold, difficulties arise. Two popular choices
of generic loss function are the negative of a delta function and the squared difference of
coordinates, leading to maximuma posteriori(MAP) and minimum mean squared error
(MMSE) estimates respectively. In order for these quantities to be well-defined, two things
are necessary: an underlying measure in order to define the delta function loss, and a
distance function in order to define the squared error. The existence of these quantities
is normally ignored, or equivalently they are assumed to take on particular forms. The
resulting loss functions are not coordinate invariant, and hence are ill-defined in general
coordinate systems, thus violating the first criterion. This lack of coordinate invariance
leads to the paradox that two people with the same knowledge can make different estimates
simply by choosing to use different coordinate systems, for example, polar rather than
rectangular. Even if the definitions are made coordinate invariant, and hence well-defined,
the resulting loss functions still violate the second criterion in general. The estimates are
not invariant to diffeomorphisms, which ‘mix up’ the points ofΓ (‘reparametrizations’),
and therefore necessarily introduce extra information about these points.

The purpose of this paper is to correct the above situation. We define compatible,
coordinate-invariant MAP and MMSE estimates by introducing a Riemannian metric on
Γ, and argue that this is the natural way to achieve such invariance. This satisfies the first
criterion. The introduction of a metric raises the question of how to choose this extra struc-
ture, and we argue that in the case of Bayesian estimation, imposing the second criterion
renders the choice of metric unique.

The main results of the paper as regards Bayesian estimation are the following:

• The metric onΓ should be the pullback by the model function of the natural metric
on every measure space.

• Invariant MAP estimates should be defined using the density of the posterior mea-
sure with respect to the measure derived from this metric.

• Invariant MMSE estimates should be defined by using, in place of the squared
error, the squared geodesic distance based on this metric.

• In conditions of ‘complete ignorance’,i.e.conditions in which the prior probability
measure is Jeffreys’ prior, MAP estimates always reduce to maximum likelihood
(ML) estimates, in contrast to much Bayesian argument and practice.

• The invariant MAP estimate coincides with the MML estimate described by Wal-
lace and Freeman (1987), except that no discretization ofΓ is required and no
approximations are made.

The rest of the paper is structured thus. In section 2, we discuss the failure of invariance
for MAP estimation on manifolds and its causes. In section 3, we describe how both
this problem, and the related failure of invariance for MMSE estimates, can be solved by
endowing the manifold with a metric structure, and we argue that this is the natural solution
to the problem. In section 4, we discuss the choice of metric structure, and use a simple
invariance argument to render this choice unique. In section 5, we discuss the conclusions
of the report and related work.

The material on the differential geometry of measure spaces and its connection to Jef-
freys’ prior may be known to geometrically-minded statisticians. We include it here for
completeness, and to emphasize its coordinate-invariant nature.

2. THE PROBLEM

To illustrate the problem, we examine the maximization of a probability density function
(pdf) on a manifold of dimensionm. Let the manifold beΓ, a point inΓ being denotedγ.
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We are given a probability measureQ onΓ, which we may view as the posterior in a MAP
estimation task, although this is not important at this stage. We are also given two systems
of coordinates onΓ, θ : Γ → Rm andφ : Γ → Rm. (We ignore questions of topology
that might require us to use more than one coordinate patch: the issue is not central to the
discussion here.)

Expressed in terms of the first set of coordinatesθ, and the corresponding measure
dmθ(γ) on Γ, we findQ = Qθ(θ(γ))dmθ(γ), whereQθ(θ(γ)) is a function. We now
separate the functionQθ from the measure and find the argument of its maximum value
θmax ∈ Rm, giving an estimate ofγ, γ̂θ = θ−1(θmax).

We may choose to expressQ in another coordinate system,φ : Γ → Rm. Using the
measure defined by this coordinate system, we find thatQ = Qφ(φ(γ))dmφ(γ). If we
now follow the same procedure as before, and find the argument of the maximum value of
Qφ, φmax, we find another estimate,γ̂φ = φ−1(φmax).

The problem is the following. Suppose that the two coordinate systems are related by
a functionα : Rm → Rm, so thatθ(γ) = α(φ(γ)). In this case, the measures with
respect to the two coordinate systems are related bydmθ(γ) = J [α](φ(γ))dmφ(γ), where
J [α](φ(γ)) is the Jacobian of the coordinate transformation. This in turn means that the
functionsQθ andQφ are related byQφ(φ(γ)) = Qθ(θ(γ))J [α](α−1(θ(γ))).

The consequence is that the estimates obtained by maximizingQθ andQφ are different,
due to the presence of the Jacobian factor. Apparently our estimate ofγ depends upon the
choice of coordinates, or in effect upon the whim of the person making the estimate. This
may seem surprising: one thinks of the question ‘What is the most probable point inΓ?’
and, by analogy with the discrete case, one expects an invariant answer.

The difference between the continuous and the discrete cases means however that the
question being asked in the continuous case is not the previously cited one at all, but a
slightly more complicated version. Given a coordinate system,θ, the question being asked
is ‘What is the infinitesimal volume elementθ−1(dz) in Γ (wheredz is an infinitesimal
coordinate volume inRm) that is most likely to contain the true point inΓ?’. (We use the
notationf−1 both for the inverse of a mapf : A→ B, f−1 : B → A, and for the pullback
f−1 : 2B → 2A : B ⊃ Y  {a ∈ A : f(a) ∈ Y }. Context serves to distinguish the two
usages.) Using a different coordinate system,φ on the other hand, the question is ‘What
is the infinitesimal volume elementφ−1(dz) that is most likely to contain the true point
in Γ?’. In general,θ−1(dz)) 6= φ−1(dz). It is then clear that different answers are to be
expected using different coordinate systems, because the question being asked is different
in each case.

A simple example of the above is provided by a Gaussian measure in two dimensions
with zero mean and covariance the identity. This measure can be expressed in rectangular
or in polar coordinates:

Pr(~x) = dx dy Z−1 e−(x2+y2) = dr dθ Z−1 r e−r
2

In the first case, the maximum density procedure leads tox̂ = ŷ = 0, while in the second
it leads tor̂ = 1/

√
2 and an indeterminate value forθ̂. In this simple case, one can see the

error clearly, but in more complex or less intuitive cases the same phenomenon arises and
passes unnoticed.

From a measure-theoretic point of view, what is happening is clear. The functionsQθ
andQφ are probability density functions. Any pdf is defined with respect to an underlying
measure. The Radon-Nikodym derivative of the probability measure with respect to the
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underlying measure then gives the pdf. In the scenario just described, two different under-
lying measures are being used:dmθ(γ) anddmφ(γ). To expect them to yield the same
results is unreasonable.

If one concentrates on the underlying measure, then there is no problem. In terms of
θ, the underlying measure isdmθ(γ), while in terms ofφ, the same underlying measure is
J [α](φ(γ))dmφ(γ). Integration of either of these over a fixed subset ofΓ will produce the
same result: they are the same measure. Using this fixed measure, the problem disappears:
in terms ofφ, the pdf with respect to the underlying measure isQθ(α(φ(γ))) = Qθ(θ(γ)).
The maxima ofQθ(α(φ(γ))) with respect toφ agree completely with those ofQθ(θ(γ))
with respect toθ, in the sense thatθmax = α(φmax), which implies thatθ−1(θmax) =
φ−1(φmax). The points inΓ that we find are the same. The problem is that, given an
arbitrary coordinate system, we do not know which choice of coordinate is ‘correct’, and
hence what the estimate should be. By effectively focusing on measures onRm, the coor-
dinate space, rather than on underlying measures onΓ, the problem is created. How then
to define, in a coordinate-invariant way, an underlying measure with respect to which to
take the Radon-Nikodym derivative?

A similar situation arises with respect to MMSE estimates, which are also lack invari-
ance under general changes of coordinates. It is equally true that the mean itself has no
coordinate-invariant meaning, and for the same reasons. In calculating both the error and
the mean, one is faced with adding or subtracting certain values. If these operations are
performed on the coordinate values in a particular coordinate system, they will change
with a change of coordinates. Equally, one cannot add or subtract points ofΓ directly:
such operations are not defined unlessΓ possesses an algebraic structure of some kind, for
example, is a vector space.

In practice, what is crucial to the MMSE estimate is the notion of a distance between
two points inΓ. If a global Euclidean coordinate system exists, this is given by the squared
error, but in general this is not the case. If we wish to consider MMSE estimates in general
coordinate systems, we must be able to define distances in a coordinate-invariant manner.

3. COORDINATE-INVARIANT ESTIMATES

If one wishes to discuss measures and distances using an arbitrary set of coordinates,
one must express the mathematics in a way that allows for this eventuality. Not to do
so means that symbols such asdmθ are not defined. The natural way to express both
geometric and measure-theoretic information about manifolds in a way that is manifestly
free of coordinates, but that nevertheless allows the derivation of an expression in terms of
an arbitrary coordinate system with the greatest of ease, is the language of forms. Readers
not familiar with this language may wish to look at appendix A, where we provide a brief
introduction to forms and their uses, or at the book by Choquet-Bruhat et al. (1996).

We are interested in probability measures. These can be integrated overm-chains, for
example the whole manifoldΓ, and as such arem-forms. In addition, they must be positive
and normalized, so that they are probabilitym-forms. The answer to the first of the ques-
tions at the end of the last section is then: define anm-form, since these are, by definition,
coordinate-invariant. The answer to the second question would seem to be: define a dis-
tance function. In practice, the following considerations push us strongly in one direction:
the introduction of a Riemannian metric on the manifoldΓ.

First, the introduction of a metric allows us simultaneously to answer both the questions
posed at the end of the last section. Starting from the metric, we can derive am-form and
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use this as the underlying measure. We can also define a distance function, as the geodesic
distance between two points.

Second, if we are to introduce notions both of ‘volume’ (via an underlying measure),
and of ‘length’ (via a distance function), it is sensible that these notions be compatible.
Otherwise there is no reason to believe that the resulting estimates will bear any relation
to one another. The use of a metric to define both the underlying measure and the distance
function ensures that maps that preserve lengths preserve volumes also, or, even more
intuitively, that the volume of a small cube is given by the product of the lengths of its
sides.

The final consideration is intuition in practice. Manifolds with a measure but no metric
are strange objects. They do not correspond to our intuition of a surface or volume at
all. The space of volume-preserving diffeomorphisms is much larger than the space of
isometries, and allows severe distortions. An example is the mixing of two incompressible
immiscible fluids. The initial ‘drop of oil in water’ may end up smoothly distorted into
dramatically different shapes. The parameter spaces that we consider intuitively possess
‘metric-like’ properties, even if these are not well-defined. For a one-dimensionalΓ, for
example, the numbers that represent different parameter values indicate something more
than the topological, although a precise interpretation may not be available. If we wish
to be able to describe these geometric properties of the manifold as well as its measure-
theoretic properties, a metric is necessary. In addition, it is quite hard to write down an
expression for a measure on a manifold without implicitly assuming a metric. In practice,
this means that metrics appear, albeit disguised, in the expressions for many probability
measures. Gaussian measures are one example, where an inner product is used to define
the exponent. An inner product on a vector space is equivalent to a constant metric, which
allows identification of each tangent space with the vector space itself. In many other
cases, the assumption of an Euclidean metric is made manifest by the appearance of an
orthogonal inner product.

What then is a Riemannian metric and how does it define a measure? A metrich is
the assignment, to each pointγ of Γ, of an inner product on the tangent spaceTγΓ at γ.
This is detailed in appendix A, where it is further explained how the existence of a metric
allows us to map functions tom-forms using the Hodge star. Given a functionf onΓ, we
can thus create anm-form, i.e. a measure,?hf . The choice of functionf is dictated by
compatibility between the measure-theoretic and geometric aspects of the manifold. By
choosingf to beI, the function identically equal to1, the resultingm-form is preserved
by isometries: in other words, maps that preserve length preserve volume also.

Being a form, the quantityUh = ?hI is invariantly defined. This is clear first because
no coordinate system was used in its construction, but it can also be verified in detail. As
described in appendix A, the expression for this form in the coordinate basis of coordinates
θ is

Uh = ?hI = |h|1/2θ dmθ ,

where|h|θ is the determinant of the metric components in theθ coordinate basis, anddmθ
is the coordinate basis element for the space ofm-forms. To see the invariance of this mea-
sure explicitly, note that a change of coordinatesα introduces a factor ofJ [α](φ(γ)) from
dmθ, while the transformation of the determinant of the metric matrix elements from one
basis to another introduces a factor ofJ [α](φ(γ))−1. Thus, expressed in any coordinate
system, the form of the measure is identical:|h|1/2θ dmθ = |h|1/2φ dmφ. To stress the point
once again: the measuredmθ(γ) has no coordinate-invariant meaning. If we try to express
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a measure in a general coordinate system in this way, we literally do not know what we are
talking about.

3.1. Maximum Density Estimates. Given a probabilitym-form Q, and another positive
m-form U, one defines the pdf ofQ with respect toU by division:

Q =
Q
U
.(3.1)

This is the equivalent of the Radon-Nikodym derivative in the language of forms. What
now becomes of maximum density estimation? We simply have to useUh in equation 3.1.
If we choose a particular coordinate systemθ, so thatQ = Qθd

mθ, andUh = |h|1/2θ dmθ
then we have

Q = |h|−1/2
θ Qθ .(3.2)

The left-hand side of this equation is invariant to changes in coordinates. These will pro-
duce equal Jacobian factors in both the numerator and the denominator of equation 3.2,
which will thus cancel out. Note also that this pdf does not result simply from a choice
of coordinates. Although it may be possible to find a system of coordinates in which the
determinant of the metric is constant, this is misleading in two ways. First, what is really
happening is that a metric is being chosen. The naive approach really means choosing a
metric whose determinant is constant in the coordinate system you already have, which is
not a coordinate-invariant procedure. Second, in more than one dimension, although the
determinant of the metric may be constant, it may not be possible to find a system of coor-
dinates in which the metric itself is constant. This would imply that the manifold was flat,
a statement that is coordinate-invariant and may not be true.

3.1.1. Expression in Terms of a Delta Function Loss.Usually the maximum density esti-
mate is regarded as derived from the use of a particular loss function,δ(θ(γ), θ(γ′)) onΓ.
Given a probabilitym-form expressed in terms ofθ, Qθ(θ)dmθ, this leads to the familiar
recipeγ̂θ = θ−1(arg maxθ Qθ(θ)), in apparent contradiction to the previous discussion.
From this point of view, there is no need to define a pdf at all, since we were merely
integrating with respect to the probability measure. What is going on?

The answer of course involves the same concepts as above. The quantityδ(θ(γ), θ(γ′))
is not invariantly defined, since the measure against which to integrate it has not been given.
In our context, the delta function (in fact there are effectivelym of them) is best viewed as
the identity map fromΛpΓ, the space ofp-forms onΓ, to itself. As such, it is ap-form at
its first argument (a point inΓ) and an(m− p)-form at its second argument (another point
in Γ). It can thus be integrated against ap-form to produce anotherp-form. Whenp = 0,
we recover the usual delta function that evaluates a function at its first argument. In our
case however, we wish to integrate the delta function against anm-form, and thusp = m.
The delta function is thus anm-form at its first argument and a0-form, or function, at
its second argument. The result of integrating it against the posterior measure is thus an
m-form, and to create a function that we can maximize, we need to use the Hodge star.
This again introduces the factor of|h|−1/2

θ that we see in equation 3.2 and that is implicit
in equation 3.1.

An alternative point of view is to consider the delta function as a map fromΛpΓ to
Λ(m−p)Γ, making it an(m − p)-form at its first argument and ap-form at its second
argument. In order to integrate this against ap-form, we can use the inner product onΛp

described in equation A.2 of appendix A. In our case, this point of view makes the delta
function a0-form (function) at its first argument and anm-form at its second. The result
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of the integration is thus a function as required for maximization, but now we find that the
use of the inner product has already introduced the factor of|h|−1/2

θ , thus giving the same
result as in the other two methods.

There is thus no conflict between these different ways of speaking.

3.2. MMSE Estimates. Suppose we are given a distance function. That is, we are given a
symmetric mapd : Γ×Γ → R+, obeying the triangle inequality and such thatd(γ, γ) = 0.
Given a pointγ′, we define the function

dγ(γ′) = d(γ, γ′) .

We can now define the coordinate-invariant form of the mean squared error, which we will
call themean squared distance, as

L(γ) =
∫

Γ

(dγ)2Q ,(3.3)

whereQ is as usual a probabilitym-form. In terms of a particular coordinate systemθ on
Γ, one has

L(θ) =
∫
θ(Γ)⊂Rm

dmθ′Qθ(θ′)d2
θ(θ, θ

′) ,

wheredθ is the expression for the length in terms of the given coordinates.
Having defined the mean squared distanceL, we can now define the minimum mean

squared distance (MMSD) estimate as the set of minimizers ofL(γ).
All that remains is to use the metric to define a distance function that we can use in

equation 3.3. Below we recap this material from differential geometry, phrasing it in a
manifestly coordinate-invariant way, and emphasizing the difference between coordinate
invariance and invariance to diffeomorphisms, which is a coordinate-invariant and there-
fore content-full concept. We first define the notion of the length of a path, and then define
the distance between two points as the length of a minimum length path between them.

Let I be an interval of the real line, considered as a manifold (that is, without the
structure of a field). Letp0 andp1 be the elements of its boundary. Letπ : I → Γ be
an embedding ofI in Γ such thatπ(p0) = γ andπ(p1) = γ′. To define the length of the
path (i.e. its volume), we need a1-form onI, or in other words a measure, which we will
then integrate overI. Now however we have an invariance criterion: we must ensure that
the length we calculate depends only on the image ofI in Γ, and not on the precise mapping
of points ofI to points ofΓ. This amounts to saying that replacingπ by πε, whereε is
an arbitrary boundary-preserving diffeomorphism, should not change the resulting length.
Note that unlike coordinate invariance onI, which follows as soon as we integrate over the
coordinates, this condition is a substantive one. As argued in appendix A, the only way to
ensure this is to construct a metric onI by pulling back a metric fromΓ, and then using
this metric in the normal way to construct a1-form. We thus pull back the metrich on Γ
to give a metricπ∗h on I. We then use the Hodge star of this metric to mapI to a1-form
that can be integrated onI. In notation,

l(π) =
∫
I

?π∗hI .(3.4)

To illustrate the ability to derive an expression in an arbitrary coordinate system from
the coordinate-invariant expression 3.4, we introduce a coordinate systemt : I → R on I,
with a corresponding coordinate basis given by∂

∂t (p), and a coordinate systemθ onΓ, with
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a corresponding coordinate basis given by∂∂θi (γ). In these bases, the (single) component
of the pulled back metric can be found to be

(π∗h)p

(
∂

∂t
(p),

∂

∂t
(p)
)

= hπ(p)

(
dπi

dt
(p)

∂

∂θi
(π(p)),

dπj

dt
(p)

∂

∂θj
(π(p))

)
= hπ(p),ij

dπi

dt
(p)

dπj

dt
(p) ,

wherehij are the components of the metrich in theθ coordinate system. Thus the result is
simply the length of the tangent vector to the pathπ in the metrich. Rewriting equation 3.4
in terms of this expression, we find that

l(π) =
∫ b

a

dt

(
hπ(t),ij

dπi

dt
(t)
dπj

dt
(t)
)1/2

,

where we have abused notation by using the same symbolπ for the map fromI to Γ and its
expression in terms of coordinates. The pointsa ∈ R andb ∈ R are the coordinate values
of p0 andp1 respectively.

Given the length of a path, we can now define the distance between two points as

dγ(γ′) = d(γ, γ′) = min
π∈Π(γ,γ′)

l(π) ,

whereΠ(γ, γ′) is the space of paths with endpointsγ andγ′. This distance is coordinate-
invariant, and can be used in equation 3.3. For a general metric it is of course hard to derive
an analytic expression ford.

In the case that the metric is Euclidean,L reduces to the mean squared error, as it should.
The resulting MMSD estimate is then the mean,i.e. the MMSE estimate, and is unique.
In other cases, the MMSD estimate provides a generalized mean, known as the ‘Karcher
mean’, first introduced by Karcher (1977) as the centre of mass on a Riemannian manifold.
It is a set of points inΓ, each of which minimizes the mean squared distance to every other
point of Γ. Note that the set of minimizers may contain more than one point ofΓ. This
does not present a problem as such. It simply means that from the point of view of the
mean squared distance loss function, these points are equivalent.

4. BAYESIAN ESTIMATION AND THE CHOICE OFMETRIC

We have argued that in order to define coordinate-invariant and consistent maximum
density and MMSE estimates, one should use a metric on the manifoldΓ. We now turn to
the question that we have been conspicuously avoiding. How is one to choose a metric on
Γ?

Thus far, we have been dealing solely with a manifoldΓ and a probability measureQ
on this manifold. In this abstract situation, it seems that the above question has no good
answer, which is unsurprising. We turn now however to the case that is usually of interest:
whenQ is a posterior probability measure derived from a model function and a prior using
Bayes’ theorem.

We introduce the data space,X. We assume that this has sufficient structure to allow
the following constructions, and in practice it can be supposed to be either a countable
set or a manifold. OnX, one can define the space of measures,M(X). The space of
probability measures,S(X), is a proper subset of the cone of positive measures. This
set has a complicated boundary even in the case whereX is countable; whenX is not
countable, there are also measures with singular components, which complicate things still



INVARIANT BAYESIAN ESTIMATION 9

further. We avoid these difficulties by assuming that all measures with which we will deal
lie in the interior ofM(X) and, where appropriate, are non-singular.

We are free to choose coordinates onM(X) as on any manifold. One choice is to de-
scribe measures asn-forms, in which case the spaceS(X) becomes the space of probability
n-forms. A model function is a mapΛ : Γ → M(X) associating to each pointγ ∈ Γ a
(probability) measure onX. We will assume that this map is a regular embedding, so that
the image ofΓ with the differentiable structure induced byΛ is a submanifold ofS(X).

4.1. An Invariance Criterion. We now use this extra structure, which is present in any
real estimation problem, to argue for a unique choice of metric onΓ. The argument rests
on one simple idea: that all information about the parameters not contained in the data be
contained in the prior measure, or in other words, that all information that distinguishes one
point of Γ from another should come either from their correspondences with probability
measures onX (condition1) or from the prior measure onΓ (condition2). It is the proba-
bility measures onX alone that determine the relationship between the points inΓ and the
observations represented by points inX, and the way that these measures are parameter-
ized serves to determine the meaning of the points inΓ and not the other way around. Any
other information in addition to the data we have at hand should be described by the prior.
Any metric that we choose onΓ should respect this principle, and not introduce any extra
information about points inΓ. This is the second criterion.

The fact that it is not the identity of individual points inΓ that is important, but merely
their correspondence with probability measures onX, means that it is only the image of
Γ in M(X) that counts. This image is invariant under the replacement ofΛ by Λε, where
ε : Γ → Γ is a diffeomorphism. A model function is thus an equivalence class of maps
{Λε}. The conclusion from condition1 is thus that inference should be invariant under the
replacement ofΛ by Λε, where invariant means that the image of the estimate by the model
function is preserved. This diffeomorphism invariance, although superficially similar to a
change of coordinates, is defined independently of any change of coordinates, and as such
is a substantive restriction.

There are only two ways to achieve this aim. One is to pick a particular representative
of the equivalence class of maps{Λε} and to define a metric on the corresponding copy
of Γ. This metric can then be pulled back to other members of the equivalence class using
the mapsε. Although this will satisfy condition1, the selection of a particular member of
the equivalence class to be endowed with a particular metric implies that we already know
something about the points inΓ independently of their correspondence with probability
measures onX. Otherwise, how could we know to which points ofΓ to assign which
values of the metric? This is exactly the type of information that should be included in the
prior, and thus the procedure described in this paragraph violates condition2.

The second approach is to pull back a metric fromM(X) to each equivalent copy of
Γ usingΛε. (Since an embedding is a full rank immersion, the pulled back metric will be
a proper Riemannian structure onΓ if M(X) is a proper Riemannian manifold.) Such a
metric automatically satisfies the consistency conditions introduced by the mapsε between
members of the equivalence class:Λε∗g = ε∗Λ∗g, whereg is a metric onM(X), and
thus our results will depend solely on the image ofΓ in M(X). In addition, we were
not required to pick a particular member of the classa priori, since each member of the
equivalence class gets its own consistent metric induced by its own model function. Thus
both condition1 and condition2 are satisfied.
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We are thus in a position to define a metric and underlyingm-form onΓ that satisfies
the invariance criterion stated at the beginning of this section by pulling back a metric from
M(X). We lack only one thing: a metric onM(X) to pull back.

4.2. Metrics on M(X). The first thing we must do is to define what we mean by the
tangent space toM(X). Since we are usingn-forms as coordinates onM(X), and since
the space of signed measures is linear, it is easy to see that a tangent vector toM(X) can
be identified with ann-form. If we restrict attention toS(X), thisn-form must integrate
to zero to preserve normalization. Then, at a pointT ∈ M(X), an inner product between
two tangent vectorsv1 andv2 is given by

g(v1,v2) =
∫
X

T
v1

T
v2

T
,

where we have identified the abstract tangent vectorsv with their expression asn-forms.
Note that the divisions are well-defined becauseT is positive. The justifications for this
choice as the only reasonable metric onM(X) are many, and we do not re-iterate them
here. Interested readers can consult, for example, the book by Amari (1985).

4.3. Pullback to Γ. Using the embeddingΛ of Γ in M(X), we can pull the metric on
M(X) back toΓ. The definition of the pullback of the metric acting on two tangent vectors
u andv in TγΓ is as before

hΛ(u, v) = (Λ∗g)γ(u, v) = gΛ(γ)(Λ∗(u)Λ∗(v)) ,

whereΛ∗ : TγΓ → TΛ(γ)M(X) is the tangent (derivative) map. This expression is
coordinate-invariant. If we wish to know the matrix elements ofhΛ = Λ∗g in the ba-
sis determined by a system of coordinates,∂

∂θi , onΓ, we must evaluatehΛ on these basis
elements. The result is

hΛ,γ

(
∂

∂θi
(γ),

∂

∂θj
(γ)
)

=
∫
X

Λθ
1
Λθ

∂Λθ
∂θi

1
Λθ

∂Λθ
∂θj

,

where we denote byΛθ the value of the model function at the pointγ with coordinatesθ.
We thus find the known result that the components of the induced metric form the Fisher
information matrix.

As described in section 3, the coordinate-invariant measure onΓ is then given by

UΛ = ?hΛI = |hΛ|1/2θ dmθ .

4.4. MAP Estimates. MAP estimation is now simply a question of using equation 3.1
with Q equal to the posterior measure from Bayes’ theorem, andU equal toUΛ.

Note that the introduction of a prior probability prevents the estimate from being invari-
ant under replacement ofΛ by Λε. The solution to this problem is the following. The prior
probability is assigned to one member of the equivalence class{Λε} based on knowledge
of the parameters that is independent of current data. It can then be pushed forward to
other copies ofΓ usingε−1. Note that this violates condition2 as it should, but that it does
not violate condition1.

In cases of ‘complete ignorance’ of the value ofγ, Jeffreys’ prior is often used as the
prior probability measure. In this case, the prior measure and the underlying measure can-
cel in the invariant MAP estimate, leaving only the model function. In cases of ‘complete
ignorance’ then, MAP estimation reduces to maximum likelihood estimationregardless
of the nature of Jeffreys’ prior. (Note that the posterior probability measure still contains
Jeffrey’s prior: it is in the MAP estimate itself that it disappears.)
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Thus while traditional MAP estimates of the variance of a Gaussian measure, for exam-
ple, vary with the parameterization, the invariant MAP estimate will produce the maximum
likelihood result in every case. The data space isX = Rn, corresponding ton independent
experiments, and the model function is a Gaussian family of product measures onn, for
the sake of argument with zero mean. The parameter spaceΓ is isomorphic toR+: we use
coordinatesσ ∈ R on this space, whereσ is the standard deviation. The model functionΛ
is then given by

Λσ = dnx (2πσ2)−n/2 exp− (x, x)
2σ2

,

where(·, ·) denotes the Euclidean inner product onRn. Derivation of the Fisher informa-
tion then shows that the inner product between tangent vectorsu andv in TγΓ, where the
pointγ has coordinateσ, is

hΛ(u, v) =
2n
σ2
uσvσ ,(4.1)

where the superscriptσ denotes the component with respect to the coordinate basis∂
∂σ .

The induced measure is thus proportional todσ/σ, the well-known Jeffreys’ prior. Let us
now consider the parameterizationv = σα, for α ∈ N. Jeffreys’ prior is equal todv/v for
all α 6= 0. The traditional MAP estimates derived from these different parameterizations
are

v̂2/α =
(x, x)
n+ α

,

where we have raised the estimate ofv to the power of2/α to make it equivalent to an
estimate ofσ2. The problem of lack of invariance comes sharply into focus in this example.
Which estimate ofσ is to be used?

On the other hand, the invariant MAP estimate is

v̂2/α =
(x, x)
n

for all α.

4.5. MMSD Estimates. In section 3.2, we defined a coordinate-invariant version of the
mean squared error estimate, which we called the MMSD estimate. Having defined a
metric onΓ above, we can now use it to calculate distances inΓ, and hence to define
the MMSD estimate. In general, this is a difficult task that is not tractable analytically,
although approximations may be available. In simple examples however, one can compute
the distance functiond(γ, γ′) analytically. We give an example in the subsection below.

4.5.1. MMSD estimate of variance.Consider the same example as above, of the estima-
tion of the variance of a zero mean Gaussian measure.

From equation 4.1, the infinitesimal distanceds between the points with coordinatesσ
andσ + dσ is given by

ds2 =
2n
σ2
dσ2 .

This is easily integrated to give the distance between two points with coordinatesσ0

andσ1 (assumeσ1 > σ0):

d(σ0, σ1) =
√

2n ln(
σ1

σ0
) .
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The MMSD estimate ofσ is therefore given by considering the following mean loss
under the posterior measureQ for σ:

L(σ) =
√

2n
∫ ∞

0

dσ′Q(σ′)(lnσ − lnσ′)2 .

Differentiation with respect toσ then shows that the minimum squared distance estimate
of σ, σ̂, is given by

σ̂ = expEQ[lnσ] ,

whereEQ[·] indicates expectation using the measureQ. Note thatEQ[lnσ] 6= lnEQ[σ]
in general and that therefore the estimate is not simply the mean ofσ as would have been
obtained by assuming a Euclidean metric.

The mean oflnσ can be calculated in the case that the prior onσ is taken to be Jeffreys’
prior. It is given in terms of coordinates by

EQ[lnσ] =
1
2

[
ln
(

1
2
(x, x)

)
− ψ

(
1
2
n

)]
,

whereψ is the function

ψ(z) =
d

dz
ln Γ(z)

andΓ is the Gamma functionΓ(z) =
∫∞
0
dt tz−1e−t. Thus

σ̂ =

√
(x, x)

2
e−

1
2ψ(n/2) .

For largez, ψ(z) ∼= ln(z), so that the estimate becomes

σ̂cl =

√
(x, x)

2
e−

1
2 ln(n/2) =

√
(x, x)
n

,

the classical result. To the next order,ψ(z) ∼= ln(z) − 1
2z . This introduces corrections to

the classical result:

σ̂ = e
1
2n σ̂cl .

This formula is valid within about10% down ton = 1, at which point the invariant result
is bigger than the classical result by a factor of1.9.

4.5.2. General case in one dimension.The form of the above estimate is quite general in
the one-dimensional case. Consider that we have derived the metric onΓ, h. The distance
between two pointsγ0 andγ1 is then given according to the general discussion in section 3.
In a general coordinate system,θ, this can be written

d(γ, γ′) =
∫ t1

t0

dt

(
h(π(t))

(
dπ

dt
(t)
)2
)1/2

=
∫ θ1

θ0

dθ h1/2(θ) ,

whereπ(t0,1) = γ0,1, θ0,1 = θ(γ0,1) and h is the (single) component of the metric
h in the θ coordinate system. Note that there is no need for a minimization in one di-
mension. All paths with the same endpoints belong to the same equivalence class under
the action of (boundary- and orientation-preserving) diffeomorphisms ofI. Now letH
be the inverse derivative ofh1/2. The (signed) distance between the two points is now
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d(θ1, θ0) = H(θ1)−H(θ0). Including this in equation 3.3, differentiatingL and equating
to zero then gives the result that

H(θ̂) = EQ[H] ,

and thus that

θ̂ = H−1EQ[H] .

In more than one dimension of course the problem is a great deal more complicated,
since there is an infinity of equivalence classes, and the minimization means solving a
partial differential equation for the geodesics.

5. DISCUSSION ANDRELATED WORK

There is a significant amount of work on the geometry of probability measure spaces
from the point of view of classical statistics: Murray and Rice (1993) and Kass and Vos
(1997) provide recent treatments. As interesting as this work is, it has focused on asymp-
totics and other issues of importance to classical statistics, while the Bayesian approach
using prior and posterior probabilities and loss functions has largely been ignored. As a
consequence, it is not directly relevant to the problem posed in this paper. For example,
Murray and Rice (1993) assert that the Riemannian distance is not of statistical signifi-
cance, although they give no arguments, and that the mean in a manifold cannot be calcu-
lated; all that is possible is an analysis of the way in which the value of the mean, calculated
in coordinates, changes with the coordinates. As we have seen however, the Riemannian
metric precisely allows the definition of a natural, coordinate-invariant generalization of
the mean.

The pulled back metric defined in section 4.3 was first introduced by Rao (1945), but it
was the work of Amari (1985) that brought these ideas to prominence. Amari (1985) intro-
duced, in addition to the metric, a family of connections onΓ, one of which was the metric
connection compatible with the metric. The non-metric connections, however, cannot be
used to define the structures necessary for invariant Bayesian estimation as described here.
Efron and Hinkley (1978) and Barndorff-Nielsen (1987) introduce ‘observed’ geometric
structures, but again these do not enable the definition of invariant estimates satisfying the
two criteria in this paper. For example, the observed Fisher information metric of Efron
and Hinkley (1978) is not a tensor, and thus violates the first criterion. In addition, it
requires the definition of an underlying measure on the data spaceX; estimation is not
invariant to this choice. Critchley et al. (1994) develop ‘preferred point geometry’ to try to
ameliorate the lack of naturality they perceive in previous geometric approaches to statis-
tics. The ‘preferred point metric’ they define is, however, not invariant to diffeomorphisms,
precisely because there is a preferred point. It thus violates the second criterion.

There is, from a Bayesian point of view, a more general objection to the asymmetric
or preferred point structures (many of which also violate the triangle inequality) used in
much of the above work. This objection is essentially the same as the original motivation
for introducing them, which is the notion that there is a ‘true distribution’ that must be
treated differently, and related problems,e.g. the worry that this distribution might not
lie in the image ofΓ. This notion does not exist, and indeed does not make sense, in a
Bayesian approach. This can be seen by using, for example, a preferred point metric in the
formula for the posterior density, equation 3.1. The preferred point is undefined, yet if it
is taken to be the argument to the posterior density, seemingly the only reasonable choice,
then the ‘preferred point’ vanishes and we are back to the Riemannian metric described
herein. Thus theraison d’̂etreof these more complex structures disappears.
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From another direction, Pennec (1999) develops some basic statistical tools for Rie-
mannian manifolds, and applies these ideas in various ways to problems in computer vi-
sion. The approach is not Bayesian however, and in particular the choice of a metric and
the relation with estimation problems, including the use of the metric measure as an under-
lying measure for MAP estimation, are not considered.

MML inference was developed by Wallace and Boulton (1968, 1975) and Wallace and
Freeman (1987). A discussion of its relationship with the standard Bayesian approach and
of its invariance properties can be found in the above papers and in the paper by Oliver and
Baxter (1995). The literature on MML inference frequently cites the invariance of MML
estimates as one reason to prefer them to MAP estimates. The above analysis shows that
this is not a special property of MML estimates, or a deep problem with MAP estimates.
Indeed, the issue is not one of MAP estimationper se. Lack of invariance is a consequence
of not describing the quantities of interest inΓ in a coordinate-invariant, and hence mean-
ingful, way. To do this, one must recognize that a metric is lurking in the definition of both
MAP and MMSE estimates, and indeed in any useful discussion ofΓ, and that making it
explicit is a necessary condition for meaningful definitions in arbitrary coordinate systems.
Once done, the definition of coordinate-invariant estimates is an immediate consequence
of the geometry. Although equation 3.1 with the pulled-back metric as underlying measure
is formally the same as that for MML estimates, unlike MML methods, no discretization of
Γ is needed, and no approximations are made. In fact, the above derivation throws light on
the procedure used in deriving MML estimates, which from this point of view appears to
be a roundabout way of defining an underlying measure by first discretizing the manifold
and then considering the volume of each cell.

The fact that we are discussing the geometry ofΓ and not a particular form of estimate
means that the analysis presented here is more general than MML however. By recognizing
the necessity of an explicit metric onΓ for inference, the way is open for the definition
of coordinate-invariant loss functions of many different types. Here we have given the
example of a coordinate-invariant MMSE estimate, the MMSD estimate, but whenever
defining a loss function on a parameter space, the issues described here must be taken into
account.

5.1. Discussion of choice of metric.In section 4, we came to the conclusion that the only
choice of metric that satisfied the two conditions mentioned at the beginning of that section,
was the metric induced by pullback fromM(X). To recap: the metric and its associated
underlying measure should not introduce information aboutΓ. Such information should
be contained in one of two sources: the correspondence between points ofΓ and points
of M(X), and the prior measure. The first leads to the idea that the metric on diffeomor-
phically related copies ofΓ should be related by pullback, while the second eliminates the
possibility of choosing a metric on one fixed copy ofΓ and then pulling it back to the other
copies, since this implies that we must be able to assign a value of the metric to particular
points inΓ a priori, which in turn implies that we must know something about the identity
of these points beyond the information contained in the prior. Hence the result given.

Note that this argument is somewhat different to that normally used for Jeffreys’ prior,
or rather is a clarification and a refinement of that argument, which essentially boils down
to proving that this prior is invariant under ‘reparametrizations’. First, the emphasis is on
the metric as providingΓ with geometry, and not on the measure, which is a derived quan-
tity. Second, coordinate invariance is not an issue: the abstract way in which the geometry
is described does not rely on a particular choice of coordinate system. Equation 3.1, for
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example, is coordinate-invariant for any choice of metric. Instead the emphasis is on dif-
feomorphism invariance: our results should not depend on which copy ofΓ we use, since
this merely ‘shuffles’ the points ofΓ without changing their correspondence with points of
M(X).

The use of the underlying measure of the pulled-back metric does not commit us to
using Jeffreys’ prior as an non-informative prior. Thus the large amount of previous
work (Bernardo, 1979; Kass and Wasserman, 1996) on the choice of such priors, fasci-
nating though it is, is not directly relevant to our discussion here. Note in particular that
the problems associated with Jeffreys’ prior do not appear when we are talking about an
underlying measure. Normalization is not necessary since the underlying measure is not a
probability measure. Second, the procedure advocated here suggests that we should first
eliminate nuisance parameters using whatever prior information we possess, to obtain a
likelihood on the parameter of interest, and only then derive the metric by pullback. Thus
the various ‘paradoxes’ associated with the non-commutativity of the derivation of Jef-
freys’ prior and marginalization do not arise.

Our argument for the metric and underlying measure onΓ does not depend on group-
theoretic considerations. Nevertheless, the metric is compatible with these considerations,
as is Jeffreys’ prior, because of the following simple argument. LetX be a manifold with
metric h, andY be embedded inX by f . Suppose we have two group actionsβX :
G× f(Y ) → f(Y ) andβY : G× Y → Y . Note that the group action onX need only be
defined for the image ofY : it may for example be induced by the group action onY itself.
If we have

Y
f // f(Y )

Y

βY (g)

OO

f
// f(Y )

βX(g)

OO

then, ifG acts by isometries onX, endowingY with the metricf∗h ensures thatf is an
isometry also. Therefore,G must act by isometries onY . If Y isG itself, this ensures that
the underlying measure induced by the metricf∗h is a Haar measure.

Finally, an information-theoretic intuition is interesting. In computing the MAP esti-
mate, it is equivalent to maximize the logarithm of equation 3.2. Naturally the logarithm
consists of the difference of two terms: the logarithm of the posterior density and the log-
arithm of the underlying density. The role of the underlying density is the following. The
information that we possess should presumably be that amount of information that we pos-
sess beyond ‘ignorance’. If our expression for ‘ignorance’ does not possess the value ‘zero’
(i.e. the identity) in the algebra in which we add and subtract information, then the infor-
mation that we possess beyond ‘ignorance’ should be the difference between the algebraic
element representing our knowledge, and the algebraic element representing ‘ignorance’.
In view of the ‘non-informative’ nature of the underlying measure that we are using, the
MAP estimate can thus consistently be thought of as finding that point inΓ with maximum
information.

This intuition, and the invariant nature of the underlying measure, suggest that this
measure should be the reference measure for the maximum entropy approach to generating
prior measures on manifolds. This is a subject for further research.

Acknowledgements.The author would like to thank both referees for their valuable com-
ments on the paper.
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APPENDIX A. FORMS

We provide a short introduction to the language of forms. A good reference is the book
by Choquet-Bruhat et al. (1996). Briefly, differential forms are antisymmetric, multilinear
functionals on products of vector spaces. For manifolds they are defined pointwise on
the tangent space at each point and then required to satisfy smoothness properties. They
also allow a beautiful theory of integration on manifolds, and in this capacity they are
thought of asco-chains, linear functionals on the vector space of chains in a manifold.
Their advantages are great concision and uniformity of notation; independence of basis
or coordinates; manifest invariance to diffeomorphisms and other transformations; and
generality. In bringing together integration and geometry in one notation, they are ideal for
our discussion.

We are given a manifoldΓ. From here, we can define the tangent space at each point,
TγΓ using a number of approaches. The result is intuitively clear however, so we will not
go into detail. We can bring all the tangent spaces together in thetangent bundle, TΓ. This
is another manifold, each point of which can be thought of as a pair: a pointγ in Γ and
a vector inTγΓ. There is a canonical projection fromTΓ to Γ supplied by forgetting the
tangent vector. At each pointγ, the tangent spaceTγΓ has a dual space,T ∗γΓ, the space of
linear maps fromTγΓ to R. These can be combined to form the co-tangent bundle,T ∗Γ.
A vector fieldis asectionof the tangent bundle: a map fromΓ to TΓ whose left inverse is
the canonical projection.

We can also form product bundles, in which the ‘extra space’ at each pointγ is the
product of copies of the tangent space: thus each point inT pΓ can be thought of as a
point γ and an element of⊗pTγΓ. Now at each point, we can define higher dual spaces:
T ∗pγ Γ = ⊗pT ∗γΓ is the space of multilinear functions on×pTγΓ. In particular, we can
restrict attention to the antisymmetric linear functions: those that change sign under the
interchange of any two arguments. These are antisymmetric tensor products of the co-
tangent space, denoted∧pT ∗γΓ. Their combination into a bundle is denoted∧pT ∗Γ. A
section of∧pT ∗Γ defines, for each pointγ, an element of∧pT ∗γΓ. Sections of∧pT ∗Γ
are known asforms, andp is the degreeof the form. We denote the space ofp-forms
ΛpΓ. Forms of degreep andq can be multiplied to give forms of degreep + q. Because
the product of co-tangent spaces is antisymmetric, all forms of degree higher thanm, the
dimensionality of the manifold, are zero.0-forms are functions onΓ.

In order to express vectors and forms more easily, it is convenient to introduce bases for
the various spaces. This is easily done using a coordinate systemθ : Γ → Rm. A basis for
TγΓ is then the set of∂∂θj (γ). The dual basis forT ∗γΓ is then the set ofdθi(γ), which acts
on the basis ofTγΓ as

dθi(γ)(
∂

∂θj
(γ)) = δij .

Taking the collection of these bases all overΓ, we have bases for the spaces of vector
fields and1-forms. Now we can form bases for the various power bundles. For example,
a basis for the space of2-forms is given by the setdθi(γ) ∧ dθj(γ), where∧ denotes
the antisymmetric product. We will denote the basis elementdθ1(γ) ∧ . . . ∧ dθm(γ) of
the space ofm-forms (there is only one - if the indices are not different, antisymmetry
of the product means the result is zero) bydmθ(γ). The sign of this basis element (or in
other words, the order of the factors ofdθi that it contains) defines anorientationon the
manifold, in the sense that a basis for the tangent spaces, when acted upon by the form, will
give either a positive or negative result depending on its orientation in the traditional sense
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of right- and left-handed coordinate systems. Given an orientation in this sense, a basis for
the tangent spaces is eitherorientedor not. Not all manifolds admit a global orientation.
We consider only orientable manifolds.

Given another manifoldY , and a mapΛ : Y → Γ, we define thetangent mapor
derivative mapat a pointy ∈ Y , Λ∗ : TyY → TΛ(y)Γ as follows. A point(y, u) ∈ TY is
taken to(Λ(y),Λ∗u) ∈ TΓ, where, in terms of coordinatesθi onΓ andφα onY , in which
u = uα ∂

∂φα , we have

Λ∗u = (Λ∗u)i
∂

∂θi
= uα

∂Λi

∂φα
∂

∂θi
,

whereΛi = θi(Λ). We also introduce the convention that repeated indices, one up, one
down, are summed over.

Using this map, we can define thepullbackΛ∗A of a formA ∈ ΛpΓ (or in fact of any
member of a power of a co-tangent space, whether antisymmetric or not) as

Λ∗Ay(u, v, . . .) = AΛ(y)(Λ∗u,Λ∗v, . . .) .

Thus the action of a pulled back form on tangent vectors is defined by the action of the
original form on the tangent vectors pushed forward by the tangent map.

As well as antisymmetric products of co-tangent spaces, we can form symmetric prod-
ucts. If at each pointγ, we form the space of symmetric, bilinear functions onTγΓ×TγΓ,
which we will denoteT ∗γΓ ∨ T ∗γΓ, we can again form a product bundleT ∗Γ ∨ T ∗Γ. A
metrich onΓ is a positive (semi-)definite section of this bundle: to each pointγ, it assigns
a positive (semi-)definite element ofT ∗γΓ ∨ T ∗γΓ, or in other words, an inner product on
TγΓ.

In a particular coordinate basis∂∂θi (γ), the metric has components, given by

hγ,ij = hγ(
∂

∂θi
(γ),

∂

∂θj
(γ)) .

The matrix elements of the metric at each pointγ possess a determinant, which we will
write |h|θ(θ(γ)).

Using the metrich, we can define a canonical isomorphism, theHodge star?h, between
ΛpΓ andΛm−pΓ. We show here its action forp = 0 andp = m only, since that is all we
will need. We choose coordinatesθi (nothing will depend on this choice). Letf be a
0-form, andA = Admθ be anm-form (A is a function—the component ofA in the basis
dmθ). Then we have

?hf = |h|1/2fdmθ(A.1)

?hA = |h|−1/2A ,

where we have suppressed arguments and reference to the coordinate system in the defini-
tion of the determinant for clarity.

The Hodge star can be used to define an inner product on eachΛpΓ. Since?hA is an
(m− p)-form if A is ap-form, the quantityA ?h B for two p-forms is am-form, and can
be integrated onΓ:

� A,B � =
∫

Γ

A ?h B .(A.2)

We can definepositivem-forms as those whose action on oriented bases produces a
positive result. It is equivalent to say that their dual under the action of the Hodge star is
a positive function. Aprobabilitym-form is a positivem-form whose integral overΓ is
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equal to1. We can dividem-forms by positivem-forms. For am-form A and a positive
m-form B, the value ofAB is that unique functionf such thatA = fB. This division is
the analogue of the Radon-Nikodym derivative for forms.

On anm-dimensional manifold,m-forms can be integrated in the way that the notation
suggests. For am-form A = Admθ, we have that∫

Ω⊂Γ

A =
∫
θ(Ω)

A(θ)dmθ ,

where we have used the same symbolA for the function and its expression in terms of
coordinates.

To integrate ap-form A over ap-dimensional submanifold embedded inΓ, Y
Λ
� Γ,

one first pulls the form back to the embedded manifold and then integrates:∫
Λ(Y )

A =
∫
Y

Λ∗A .

These definitions highlight the second way of interpreting forms: asco-chains. A p-
chain inΓ is (roughly speaking) a linear combination ofp-dimensional rectangles embed-
ded in the manifold. The space of linear functions on the space ofp-chains (the co-chains)
can be identified withΛpΓ.

We will have cause to integrate a functionf over ap-dimensional submanifoldY
Λ
� Γ

of Γ. This is slightly different from the case of integrating ap-form. One first pulls the
function back toY and then uses a metric onY to convert the function into ap-form that
can be integrated overY : ∫

Λ(Y )

f =
∫
Y

?hΛ∗f ,

where by definition(Λ∗f)(y) = f(Λ(y)), andh is a metric onY .
However, since we are interested in the submanifold inΓ and notY itself, we are really

considering an equivalence class of embeddings{fε}, whereε : Y → Y is a diffeomor-
phism, with the same image. The result of our integration should be independent of the
representative in this equivalence class, and this means that the metric onY must vary
with the representative. If no representative is distinguished, the only way to achieve this
invariance is to pull back a metricg on Γ to Y , and use this metric to define the Hodge
star: ∫

Λ(Y )

f =
∫
Y

?Λ∗gΛ∗f .
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