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ABSTRACT

In recent work, it was noted that although the subband his-
tograms for standard wavelet coefficients take on a general-
ized Gaussian form, this is no longer true for wavelet packet
bases adapted to a given texture. Instead, three types of sub-
band statistics are observed: Gaussian, generalized Gaussian,
and interestingly, in some subbands, bi- or multi-modal his-
tograms. Motivated by this observation, we provide addi-
tional experimental confirmation of the existence of multi-
modal subbands, and provide a theoretical explanation for
their occurrence. The results reveal the connection of such
subbands with the characteristic structure in a texture, and
thus confirm the importance of such subbands for image mod-
elling and applications.

1. INTRODUCTION

Wavelet and wavelet packet bases have been widely used for
image modelling, and in particular for texture description and
analysis [1]. This is no accident: these bases are well-adapted
to texture description because they can capture spatial depen-
dencies between pixels while remaining localized (unlike the
Fourier basis), and are thus adaptable to regions of different
shapes. Probabilistic models of textures based on wavelet
bases have tended to assume that the wavelets themselves cap-
ture all relevant dependencies, and thus that the wavelet co-
efficients themselves are independent. This has the added ad-
vantage of rendering the models simple and efficient to use in
practice. However, many textures possess long-range depen-
dencies in rather narrow frequency bands, and independent
models of standard wavelet bases are unable to capture such
behaviour. One notable exception to this rule of independence
are Markov and hidden Markov tree models. These capture
dependencies between scales, and are thus well adapted to the
description of edge structures in images, since these produce
large wavelet coefficients at all scales. The presence of a large
wavelet coefficient at one scale thus indicates the likelihood
of large coefficients at the same spatial location but different
scales. This very suitability to the description of edges means,
however, that these models are not well adapted to capturing
the dependencies that exist in many textures.
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In order to get around the limitations of these two types
of model, while retaining the computational tractability asso-
ciated with them, Brady et al. [2] developed models based on
wavelet packet bases adapted to each texture being described.
The coefficients in these bases were assumed independent,
with the difference that the basis itself could adapt to cap-
ture the dependencies present in the texture. Thus long-range
dependencies in a certain frequency band can be captured not
by introducing dependencies between the wavelet coefficients
at different spatial locations, but by using a basis containing a
wavelet packet with large spatial extension supported in that
frequency band. Since the distances between such wavelet
packet basis elements are now much larger, the assumption of
independence makes more sense: dependencies decrease with
distance in most textures.

In [2], the marginal distributions of the wavelet packet co-
efficients were assume to be Gaussian. This requires some
comment, since it is well known that in standard wavelet bases,
the subband histograms of natural images often assume a lep-
tokurtic form, frequently modelled by a generalized Gaussian
or two-component Gaussian mixture with one large and one
small variance [3, 4]. Although there is no reason to expect
this behaviour to survive conditioning on a particular texture
class, in practice the generalized Gaussian model remains ac-
curate even when one examines the histograms derived from
coherent textures. However, the form of such distributions is
not preserved under a change of basis, and thus the distrib-
ution of the adapted bases is not known a priori. Gaussian
distributions then provide the maximum entropy choice in the
absence of further prior information.

While the models used were Gaussian, it was noted briefly
in [5] that the histograms of the resulting adapted subbands
did not necessarily conform to the models. As was to be
expected, the subbands in the adapted bases that were also
standard wavelet subbands (these tended to be at high fre-
quencies/small scales) showed typical leptokurtic behaviour.
Many of the other subbands were mesokurtic, and in fact
very close to Gaussian. Most interestingly, however, some of
the subbands showed a remarkably different behaviour. They
were bi-, and sometimes multi-modal, with maxima at finite
positive and negative values.

The importance of this fact for texture modelling is clear.
In the absence of such phenomena, i.e. if all subband his-



tograms (excluding the scaling coefficient subband) have their
maxima at zero, the most probably image of that texture class
is constant and thus ‘untextured’. This conflicts strongly with
our prior knowledge: the most probably images of raffia [6],
or of forest in a remote sensing image for example, are cer-
tainly not constant. Strikingly, most if not all probabilis-
tic models of texture in the literature possess this unintuitive
property: the most probable image under these models is con-
stant.

These new statistics are very difficult to observe with-
out the use of adaptive models, because they are swamped
by ‘noise’ that is unrelated to the structures that produce the
statistics. The adaptive models act as a microscope, drawing
out the important structures in the texture and enabling the
study of their properties. Motivated by the observation of the
new statistics, and by the efficacy of the adaptive models in
the rendering them observable, the approach used in [2, 5]
was recently extended in [7] to deal with this new behav-
iour. Instead of modelling each subband by a Gaussian, three
possible models were considered for each adaptive subband:
Gaussian, generalized Gaussian, and a constrained mixture
of three Gaussians with one component with mean zero, and
two components with means of equal magnitude but opposite
sign, equal variances (not necessarily the same as that of the
Gaussian centred at zero), and equal mixing probability. As
in [2, 5], a Bayesian methodology was used to compute MAP
estimates for the adaptive basis, for the subband models, and
for the subband model parameters.

The aim of this paper is to present further empirical evi-
dence, garnered through the use of these new models, for the
existence of bi- and multi-modal subbands in both Brodatz
and remote sensing images, and to provide a theoretical ex-
planation, based on simple texture models, of the origins of
this behaviour. Section 2 discusses the empirical evidence,
while section 3 the theory. The theory conforms that the mul-
timodal subbands are closely related to the principal period-
icities present in the texture. Conclusions are drawn in sec-
tion 4.

2. EXPERIMENTAL EVIDENCE FOR
MULTIMODAL SUBBAND HISTOGRAMS

The models used in [7] were trained on a variety of textures.
The resulting models are described by several parameters.
First, the adapted basis, which is given by a dyadic partition
of one quarter of the Fourier domain, which represents the
approximate frequency support of the wavelet packets in the
different subbands. Second, a choice of one of the three mod-
els for each subbands. Subbands for which the constrained
mixture of Gaussians was estimated to be the correct model
are defined as ‘multimodal’. Finally, for each subband, there
are the parameters corresponding to the model chosen for that
subbands: variance for the Gaussian subbands; variance and
shape factor for the generalized Gaussian subbands; and for
the mixture of Gaussians, two variances, one mean, and a
mixing probability.

i

Fig. 1. Textured image, decomposition, and example of mul-
timodal subband (first, second, and third column, respec-
tively). First, second and third row correspond to Raffia, Her-
ring and remote-sensing textures, respectively.

In figure 2, we show the results obtained by training the
model on the Raffia and Herring textures from the Brodatz
album [6], and on a textured patch extracted from a remote
sensing image. Figure 2(b), figure 2(e), and figure 2(h) show
the adaptive decomposition obtained by [7] for the three con-
sidered textures. The white colour denotes multimodal sub-
bands, i.e. those for which the mixture of Gaussians was se-
lected. Examples of histograms from these subbands are shown
in the third column of the figure.

The multimodal subbands are typically those that are “fur-
thest’ from a standard wavelet basis, i.e. they are the most
adapted to the texture at hand. They are also typically narrow
in frequency content. The presence in the subband histograms
of maxima at non-zero coefficient values thus seems to indi-
cate the likely presence of approximate periodicities running
throughout images belonging to that texture class, with fre-
quencies in the support of these subbands. This intuition will
be confirmed by the theoretical models to be discussed in the
next section.

3. THEORETICAL EXPLANATION FOR
MULTIMODAL SUBBAND HISTOGRAMS

The purpose of this section is to show that a number of simple
texture models lead directly to the type of bimodal behaviour
observed in the experiments above. Based on probabilistic
models of images/textures, we will predict the observed his-
tograms of wavelet packet coefficients, and show that they are
bimodal.

In order to predict histograms of wavelet coefficients, we
need an image model, which is to say a probability distrib-



ution Pr(¢) on the space of images ®. (We assume that all
images are functions on a d-dimensional, discrete or continu-
ous torus, of side 7T'.) Given such a model, we can predict the
observed histogram using an estimator, for example the mean
histogram, under this distribution.

Assuming that the images used to compile the histogram
are independent, and using the necessary condition that Pr(¢)
be translation invariant, we find that the mean histogram un-
der a distribution Pr(¢) is given by

H(w) = 2! / Pr(0) 8w, W (6)) |

where w is the value of a wavelet coefficient in the subband
of interest (any one will do, since all the histograms in one
subband are the same by translation invariance), W is the lin-
ear operator that calculates this coefficient from the image ¢,
and Z is a normalization constant, to be dropped hereafter.
Clearly the mean histogram only depends on the marginal
probability of an image in the spatial and frequency support
of the operator W.

We will construct our models in the Fourier domain, in
which case

W(¢) = Z w;w)k = Z O = Z Ay, cos(0y) .

keK keK+ keK+

Here wy, (resp. ¢y) is the Fourier coefficient of W (resp. ¢)
at frequency k, while K (resp. K1) is the frequency support
of the wavelet coefficient (resp. the intersection of this sup-
port with an arbitrarily chosen ‘positive’ half of the Fourier
domain). Ay and 6 are the amplitude and phase of ¢y, re-
spectively, while ér is the real part. In the second and third
equations, we have set all the wy, = 1/2, giving an ideal band-
pass filter. Although wavelet and wavelet packet filters do not
have this behaviour, we do not expect this simplification to
change the statistics greatly.
For the mean histogram, we thus have that

H(w) = / Pr(d) 6w, 3 ) )

ke K+

:/Pr(A,e) 6w, Y Apcos(r) . (@)

keK+

We note that the form of equation 1 means that if the qgk are
all independent, then the full mean histogram is given by the
convolution of their individual mean histograms.

In the following, we derive the mean histogram for a num-
ber of simple models Pr(A, #), showing that this histogram is
multimodal. Two extreme cases can be distinguished, based
on the dependencies between the phases 8. The phases may
be independent, in which case there is no spatial coherence
between the different Fourier components contributing to the
wavelet coefficient, or they may be deterministically related,
in which case the Fourier components have fixed translations
with respect to one another, but may have different ampli-
tudes. If the amplitudes are fixed too, then the distribution
represents all possible translations of a single fixed signal.

a b c

Fig. 2. Histograms corresponding to different image models:
a) one non-zero Fourier coefficient with fixed amplitude and
uniformly distributed phase; b) three non-zero coefficients
with fixed amplitudes of 1, 0.01, and 0.01, and independently
and uniformly distributed phases; c) five non-zero coefficients
of equal amplitude and independently and uniformly distrib-
uted phases.

Subsection 3.1 deals the special case in which all the am-
plitudes Ay, are zeros but one. The two extreme cases of inde-
pendent and deterministically related phases are analysed in
subsections 3.2 and 3.4, respectively.

3.1. Single sinusoid

Let us suppose that all the A, are zero, except for Ay = Ay,
which is equal to a fixed value A, while the 6}, are all uni-
formly distributed on the unit circle:

Pr(A,0) = DADO5(Ag, A) | ]

keK+\ko

where DA = [[,cx+ dAx and DO = [], i+ (dOy/2m).
The set of images thus consists of a sinusoid of fixed fre-
quency and amplitude, but with unknown translation. In this
case, equation (2) is easy to calculate. The result is

Ha(w) = /W % §(w, Acos(6p))
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Figure 2(a) shows a plot of this function. The intuitive reason
for the result is clear: a sinusoid ‘spends more of its time’
near its maximum value than it does near zero.

If we add ‘noise’ by relaxing the constraint on Ay, for
example by replacing the delta function in equation (3) by
a narrow Gaussian (to avoid problems with the positivity of
the Ag), we still find that the mean histogram is bimodal, al-
though the peaks become progressively smoother as the vari-
ance of this Gaussian increases, until eventually bimodality
is lost. We can also use a Gamma distribution for A%, which
again produces a bimodal mean histogram for all values of
the index greater than 3/2. When the index is 3/2, the dis-
tribution for Ay becomes Rayleigh, at which point, as is well
known, the distributions for ¢ and qgk and hence the mean
histogram of w, become zero-mean Gaussians, and bimodal-
ity is lost. Similar gradual loss of bimodality is observed by

—W)TV?2 if—A<w< A
otherwise
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adding complex noise of increasing variance to ¢. Thus, as
might be expected, even with a single sinusoidal signal, too
much uncertainty about the value of its amplitude destroys
the bimodality of the histogram.

The case of a single sinusoid of frequency k( in white
noise is similar. The variance of the noise at frequencies other
than kg but in the support of the wavelet operator W adds to
the variance of the noise at kg itself, so that even if the latter
is not sufficient in itself to destroy bimodality, the cumulative
effect of the other frequencies can easily become large enough
to do so.

3.2. Independent phases

We consider now the case in which more than one of the A,
is non-zero. First, let them all have fixed values Bj,, while the
phases 6y, are all independently and uniformly distributed, as
before:

Pr(A,0) = DA DO (A, B) . )

The Ay, integrals in equation (2) are again trivially performed,
giving

H{Bk}(W):/ [ H Céff] d(w, Z By, cos(6y)) -

keK+ keK+

The resulting mean histogram is therefore the convolution of
a number of mean histograms of the form in equation (3) for
different values of A.

If among the non-zero By, values, one of them has an en-
ergy significantly higher than the others, then the effect of
this convolution is to round the double peak function in equa-
tion (3). An example is shown in figure 2(b). This corre-
sponds to the case where the signal possesses a strong period-
icity in the frequency support of the subband considered, but
some residual noise is present also.

On the other hand, if the By, all have approximately the
same value, then the individual mean histograms are all the
same, and thus, as the number of non-zero By values in-
creases, their convolution tends towards a Gaussian, as guar-
anteed by the central limit theorem. The double peak dis-
appears using only a few values. An example is shown in
figure 2(c). This result clearly holds whenever the qgk are iid.

To validate the above, we carried out the following nu-
merical experiment. The values B were computed from

By, = exp{—(k» — k0)2/202} ,

where {k,, = ko + ndk: n € [-N,..., N]} were a number
of equally spaced frequencies centred on kg, and o, when
it is small enough, effectively controls the number of non-
zero By,. We then sampled, for each k,,, many random phases
6,.i» and computed the histograms of the resulting values of
By, cos(0,, ;). In figure 3, these histograms are plotted against
o. For small o, that is with only a few non-zero By, , and
with By, much larger than By, |, the histograms are strongly
bimodal. As o is increased, the histogram is smoothed, until
for large enough sigma, the bimodality is destroyed and the
histogram becomes unimodal.

Py (y,)

Fig. 3. Histograms of wavelet coefficients for a signal whose
Fourier coefficient amplitudes at neighbouring frequencies
take on a Gaussian shape, plotted against o.

3.3. Comment

The behaviour described at the end of section 3.1 and in the
above is directly relevant to adaptive wavelet packets. In the
above case, even though the values of the amplitudes Ay were
fixed, a number of nearby frequencies with similar amplitudes
but independent and uniformly distributed phases could de-
stroy the bimodality. In the case of section 3.1, it was the
inclusion of nearby noisy frequencies that was responsible.
These factors are of course controlled by the image probabil-
ity distribution, but importantly they are also cut off by the
support of the wavelet operator 1. The point of adaptive
wavelet packets is precisely to narrow the support of W in
an appropriate way in order to exclude such confounding fac-
tors, thus making them more likely to reveal bimodality than
unadapted wavelets or wavelet packets. Indeed the ease with
which bimodality was destroyed in the above makes it un-
likely that this behaviour could be discovered without the use
of adaptive bases. In the next subsection, we illustrate another
factor that supports bimodality: phase coherence.

3.4. Single translated signal

In all the image models considered so far, the ék were in-
dependent. We now consider a case in which the phases are
dependent, while the amplitudes remain fixed. In particular,
we consider a distribution whose support is all translations of
a given signal:

t
Pr(A,0) = DAD6 §(A, B) / df 1T 600k, 6x0 + kt)
T

keK+

As a consequence of the dependence between the phases, the
histogram can no longer be computed as a convolution. It is
not easy to obtain general analytical results, but numerically
it is simple. We proceeded as follows. In order to construct
the Ay, and 0y, o, we chose a finite-length discrete sinusoid for
which the signal length was not a multiple of the period. The
discrete Fourier transform of this signal presents a number of



non-zero coefficients with fixed phase relationships. If these
phase relationships are not preserved, then the structure of
the ‘texture’ is lost. We then created a large number of shifted
versions of the signal by uniformly sampling values of ¢, each
shifted version then being filtered and downsampled (using
an ideal bandpass filter). We then computed the histogram of
the resulting signals.

Figure 4(a) shows the DFT of a discrete sinusoid of length
64 and frequency 0.18. We considered 6400 equally spaced
translations of the signal, obtaining 6400 different values of
the phase for each DFT coefficient. At this point we filtered
the signal, extracting the coefficients with wavenumbers from
9 to 16. The resulting histogram is plotted in figure 4(b). As
one can see, despite considering several non-zero coefficients,
the distribution takes on a bimodal form. The preservation of
the bimodality is due to the relations that exist between the
phases, as can be seen by looking at figure 4(c), which shows
the histogram of a signal whose DFT amplitudes are the same
as before but whose phases were sampled independently. The
histogram is unimodal, in agreement with the results shown
in figure 3.
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Fig. 4. Absolute values of the DFT of a finite-length discrete
sinusoidal signal (a). Histogram obtained when: b) retaining
phase information; c) discarding phase information

4. CONCLUSIONS

In this paper we have provided experimental evidence and a
theoretical explanation for the multimodal statistics of adap-
tive wavelet packet coefficients. In addition to confirming this
behaviour, the theoretical explanation reveals the importance
of such multimodal subbands for texture description. Mul-
timodal distributions, usually occurring in subbands narrow
in frequency content, indicate the likely presence of approx-
imate periodicities running throughout images belonging to
that texture class, with frequencies in the support of these sub-
bands. Multimodal subbands thus represent the characteristic
structure, i.e. the main periodicities, present in images of a
texture class.

The microscope effect of the new models goes beyond
the ability to identify bi- and multimodality. In [8], it was
observed that the joint statistics of adapted wavelet packet
bases also show remarkable new behaviour, and our current
research efforts are focused on modelling these joint statis-
tics.

Such a search for more accurate and more specific image
models, i.e. the untangling of the mixture distributions that

one sees when one looks at images as a whole into separate
components that model well individual entities in an image, is
important because the resulting models are applicable not just
to texture description and segmentation, but to any problem
of image processing. It seems highly likely, for example, that
the multimodal models used in this paper would work well in
denoising problems, since they separate important structure
from noise.
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