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ABSTRACT

The subband histograms of wavelet packet bases adapted to in-
dividual texture classes often fail to display the leptokurtotic be-
haviour shown by the standard wavelet coefficients of ‘natural’
images. While many subband histograms remain leptokurtotic
in adaptive bases, some subbands are Gaussian. Most interest-
ingly, however, some subbands show multimodal behaviour, with
no mode at zero. In this paper, we provide evidence for the exis-
tence of these multimodal subbands and show that they correspond
to narrow frequency bands running throughout images of the tex-
ture. They are thus closely linked to the texture’s structure. As
such, they seem likely to possess superior descriptive and discrim-
inative power as compared to unimodal subbands. We demonstrate
this using both Brodatz and remote sensing images.

1. INTRODUCTION

The analysis of the statistics of wavelet coefficients has for
the most part focused on ‘natural images’ and standard wave-
lets [1, 2, 3, 4, 5]. Such statistics are necessarily mixtures
from a variety of sources, both because ‘natural images’
consist of regions corresponding to many different entities,
and because standard wavelets mix frequency bands that
may have very different behaviours individually. The statis-
tics of coherent sets of images analysed with bases other
than standard wavelet bases may therefore be very different
from the leptokurtotic histograms found in such mixtures.

The subband histograms of wavelet packet bases adapted
to coherent classes of texture [6, 7, 8] confirm this intu-
ition. Brady et al. [6] use Gaussian models in which the co-
variance is assumed diagonal in at least one wavelet packet
basis. This basis is learned from examples, and adapts to
each texture modelled. Spatial dependencies are captured
by the basis itself rather than explicitly as in hidden Markov
tree models [4, 5]. The resulting subband histograms fall
into three classes. Many subbands still show leptokurtotic
behaviour. Others, usually those with a smaller frequency
range, show Gaussian behaviour. Most interestingly, some
of the subbands with the narrowest frequency content are
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multimodal, with no mode at zero. Intuitively, the presence
of a mode at zero indicates that the wavelet representation
is sparse. This is true of ‘natural’ images, in which there are
large regions that are relatively flat compared to the edges
present, but it is no longer true when a phenomenon occur-
ring throughout the images of a given class is focused on by
a particular subband.

Although the multimodal subbands were discovered us-
ing Gaussian models, these are clearly unsuitable given the
observed statistics. In [7, 8], a new model was developed in-
corporating the multimodal behaviour. This model is briefly
described in section 2. It confirms and refines the results of
the Gaussian models, and provides hints of even more com-
plex and structured behaviour [7].

The aim of this paper is to demonstrate the existence
and discriminatory power of multimodal subbands. First, in
section 3, we provide theoretical and empirical evidence for
the existence of multimodality and show that multimodality
is strictly related to the main periodicities characterizing the
texture’s structure. Then, in section 4, we demonstrate the
discriminatory power of multimodality using both Brodatz
textures and textures taken from remote sensing imagery.
We summarize in section 5.

2. MODEL FOR MULTIMODAL SUBBANDS

In [8], a model was developed to include the newly ob-
served multimodal subbands. In this model, each subband is
modelled by one of three distributions: Gaussian (G); gen-
eralized Gaussian (GG); or a constrained mixture of three
Gaussians (MoG). The full model is parameterized by the
following data: a dyadic partition of one quadrant of the
Fourier domain, T , which, given a mother wavelet, defines
a wavelet packet basis; a map µ from T to a set M of three
models, {G, GG, MoG}, giving the model used in each sub-
band; a map θ from T to the space of model parameters for
each subband. The subbands in T are assumed independent.

The G and GG subband models are familiar. The MoG
subband model is a mixture of three Gaussians indexed by
j ∈ {0, 1, 2}, with means µα,j , variances σ2

α,j , and mixing
probabilities pα,j . (α is the subband index.) These satisfy
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Fig. 1. An example of the MoG model used to model mul-
timodal subbands.

the constraints: µα,0 = 0; µα,1 = −µα,2; σ2

α,1 = σ2

α,2; and
pα,1 = pα,2. These ensure that the mean of the distribution
is zero. A example is shown in figure 1.

In [8], we describe how to find exact MAP estimates
of T , µ, and θ from training data for a texture class, us-
ing an efficient depth-first search algorithm on the space of
dyadic partitions. The resulting models capture the differ-
ent statistics of the adaptive subbands, and in particular the
multimodal statistics. Examples will be shown in section 4.

Note that the model is not limited to textures that shown
multimodality: it is perfectly capable of modelling textures
without them. When they are present however, it is in a posi-
tion to take advantage of the extra information they provide.

3. EXISTENCE OF MULTIMODAL SUBBANDS

3.1. Theory

Multimodal subband histograms, or more precisely, sub-
band histograms with no mode at zero, are closely con-
nected to the presence of structures running throughout the
images of a texture class. The basic cause can be indicated
very briefly, with an idealized model.

Suppose that a (1d) texture class consists of all transla-
tions of a sinusoid with fixed frequency k0 and amplitude
B. The mean histogram of a subband under a translation
invariant distribution is equal to the marginal distribution of
any wavelet packet coefficient from that subband. We will
suppose, wlog, that the Fourier amplitude of such a wavelet
packet coefficient at frequency k0 is one. Then it is easy to
see that the distribution of this coefficient takes the bimodal
form

H(ω) =

{

1

π (B2 − ω2)−1/2 if −B ≤ ω ≤ B

0 otherwise
. (1)

Intuitively this arises from the fact that in a sinusoid of am-
plitude B, the values ±B occur ‘more often’ that other val-
ues (including zero).
As is demonstrated in [7], more complex models, involving
several sinusoids with noise added to the amplitudes, blur
but do not destroy the bimodality. These models demon-
strate how periodicities in the texture can produce multi-
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Fig. 2. Some textures, their optimal decompositions (dark
grey = GG, light grey = G, white = MoG), and examples
of multimodal subband histograms and the models fitted to
them.

modal subband histograms if the wavelet packet basis is suf-
ficiently focused on the frequencies involved.

3.2. Experiment

Figure 2 shows the results of training the model on four tex-
tures, two from the Brodatz album, and two from aerial re-
mote sensing images. The second row shows T and µ in
graphical form, the lines indicating the dyadic partition, and
the colours in each subband indicating the model assigned
to that subband, dark grey being GG, light grey G, and white
MoG. As can be seen, the multimodal subbands are closely
connected to the periodicities present in the textures. The
third row shows the histogram of a selected multimodal sub-
band (blue/full line) and the model fitted to it (red/dashed).
The double peaks are not as clear in the remote sensing im-
ages. This is partly due to the patches in the two images
where there are no trees. If training is performed on sam-
ples without these ‘holes’, a more pronounced bimodality is
found.

Further experiments show the existence of multimodal
subbands in many Brodatz textures, and in remote sensing
textures such as ploughed fields, planted forests, and certain
configurations of buildings.

4. DISCRIMINATION AND DESCRIPTION

In all the experiments reported below, the following proce-
dure was used. First, a model was trained for each of the
two classes involved. Second, a subband was selected from
one of the models, according to criteria that will be detailed
in a moment. Call this subband S. A new model of subband
S was then trained for the second class. Third, the undeci-
mated wavelet packet coefficients in S were calculated for
the test image. Fourth, for each pixel p, class probabilities



Fig. 3. On the left is a mosaic formed of the Herring and
Raffia Brodatz textures. On the right, the result of classifica-
tion using one subband multimodal for Raffia, but unimodal
for Herring.

were computed from the models of subband S only, using
the coefficients in S belonging to a patch centred on p, of
size equal to the subband filter size of S. Thus only the
data lying in S was used to compute the probabilities. The
differences of the log probabilities of each class form the
‘probability map’.

Note that these experiments are not designed to pro-
duce the best possible classification results. The full model
(i.e. using all the subbands) always produces a better result.
What is remarkable is that the results of the above proce-
dure using a subband that is multimodal for one texture but
not for the other are often very good—indeed for Brodatz
textures they approach the performance of the full model—
whereas the results using a subband that is unimodal for
both textures are very poor.

Figure 3 shows a mosaic made of the Herring and Raffia
textures from the Brodatz album. On the right is the re-
sult of applying the above procedure using a subband mul-
timodal for Raffia, but unimodal for Herring. Similar re-
sults were obtained for other multimodal subbands. The
same procedure was then repeated using several subbands
of the same size, but unimodal for both textures. The results
were all very poor, bearing very little if any connection to
the mosaic. Indeed, in many cases the whole image was
classified as belonging to one class. The average misclas-
sification rates were as follows. Using Raffia multimodal
subbands, the average pixel misclassification rate of Raf-
fia was 14.9%, and of Herring was 0.7%. Using Herring
multimodal subbands, Raffia was misclassified 5.1%, and
Herring at 17.7%. Using unimodal subbands, the misclassi-
fication rate for Herring was 80% and for Raffia 6.5%. The
last number is low for the reason that has already been men-
tioned: most of the unimodal results classified most of the
image as Raffia.

Figure 4 shows reconstructions of the mosaic in figure 3
using one of the unimodal subbands (on the left) and one
of the multimodal subbands (on the right). The left-hand
image shows almost no trace of the mosaic structure, which
accounts for the poor classification result. In contrast, the

Fig. 4. On the left, the reconstruction of the mosaic in fig-
ure 3 using a single unimodal subband. On the right, the
reconstruction of the mosaic using a single multimodal sub-
band.

Fig. 5. On the left, a remote sensing image. On the right,
the probability map resulting from the use of one subband
multimodal for the ‘ploughed field’ texture, but unimodal
for the ‘unploughed field’ texture.

image reconstructed from the multimodal subband clearly
shows the mosaic structure, the amplitude of the periodicity
being much larger in Raffia than in Herring.

Figure 5 shows a remote sensing image. Models were
trained on ‘ploughed field’ using the upper part of the im-
age, and on ‘unploughed field’ using the lower part. The
above procedure was then followed for a subband multi-
modal for ‘ploughed field’ but unimodal for ‘unploughed
field’. The resulting probability map is shown on the right.
The map indicates the ability of the multimodal subband to
provide important information for discriminating between
the two textures, and in particular to assign a consistently
low probability to ‘unploughed field’.

Figure 6 shows a second remote sensing image. Models
were trained on the ‘forest’ texture in the lower part of the
image, and on a ‘background’ class consisting of the top-
left hand corner. On the right of the figure is shown the
result of reconstructing the image using just the multimodal
subband in the ‘forest’ texture. Note how the tree struc-
ture of the ‘forest’ texture has been captured, and how this
same structure captures the presence of other trees in the
image, while other areas show small response (the image
has been linearly stretched for visualization). An exception
is the bottom left-hand corner, where the arrangement and
size of the buildings represents roughly the same periodicity



Fig. 6. On the left, a remote sensing image. On the right, the
reconstruction using a subband multimodal for the ‘forest’
texture in the lower part of the image.

Fig. 7. On the left, a remote sensing image. On the right,
the probability map resulting from the use of one subband
multimodal for the ‘poplar stand’ texture on the right and
unimodal for the ‘forest’ texture on the left.

as the forest. Note that the subband used here is a standard
wavelet subband. Analyzed using a Gaussian or general-
ized Gaussian model, this subband is not at all remarkable.
Nevertheless, the new model was able to detect the multi-
modality in this subband, and hence capture the structure.

Figure 7 shows another remote sensing image. The classes
were ‘poplar stand’, on the right of the image, and ‘forest’
on the left. On the right is shown the probability map re-
sulting from the use of a subband multimodal for ‘poplar
stand’, but unimodal for ‘forest’. Note again the consis-
tent assignment of a very low value to ‘forest’, and a much
higher value generally to ‘poplar stand’.

5. CONCLUSION

In this paper, we have provided evidence for the existence of
multimodal wavelet packet subbands in textures, and have
demonstrated their link to the characteristic structure of a
texture. We have also demonstrated the descriptive and dis-
criminative power of the model of these multimodal sub-
bands developed in [8]. The new multimodal statistics are
only revealed when attention is shifted away from the uni-
versal behaviour displayed by the standard wavelet coef-
ficients of whole images, which are necessarily mixtures
of many components, towards the behaviour shown by the

coefficients of bases adapted to individual components of
these mixtures.

Practically speaking, while the classification maps ob-
tained for real remote sensing images are not as accurate
as for synthetic images, the probability maps provide useful
information. For example, in cases where the classes are
spectrally overlapped or otherwise poorly separable, a com-
plex classification system could jointly exploit multispectral
information and the information contained in this probabil-
ity map to obtain a more accurate classification result.

References
[1] S. Mallat, “A theory for multiresolution signal decom-

position: The wavelet representation,” IEEE Trans.
Patt. Anal. Mach. Intell., vol. 11, pp. 674–693, 1989.

[2] E. P. Simoncelli and E. H. Adelson, “Noise removal via
Bayesian wavelet coring,” in Proc. IEEE ICIP, Lau-
sanne, Switzerland, September 1996, pp. 379–382.

[3] P. Moulin and J. Liu, “Analysis of multiresolution im-
age denoising schemes using generalized-Gaussian and
complexity priors,” IEEE Trans. Info. Th., vol. 45, no.
3, pp. 909–919, 1999.

[4] M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-
based statistical signal processing using hidden markov
models,” IEEE Trans. Signal Processing, vol. 46, no. 4,
pp. 886–902, 1998.

[5] M. J. Wainwright and E. P. Simoncelli, “Scale mixtures
of Gaussians and the statistics of natural images,” in Ad-
vances in Neural Information Processing Systems, S. A.
Solla, T. K. Leen, and K.-R. Müller, Eds., Cambridge,
MA, 2000, vol. 12, pp. 855–861, MIT Press.

[6] K. Brady, I. H. Jermyn, and J. Zerubia, “Adaptive prob-
abilistic models of wavelet packets for the analysis and
segmentation of textured remote sensing images,” in
Proc. Brit. Mach. Vis. Conf., Norwich, U. K., Septem-
ber 2003.

[7] R. Cossu, I. H. Jermyn, K. Brady, and J. Zerubia, “Prob-
abilistic models of the unimodal and multimodal statis-
tics of adaptive wavelet packet coefficients,” Research
report, INRIA, February 2003, To appear.

[8] R. Cossu, I. H. Jermyn, and J. Zerubia, “Texture anal-
ysis using probabilistic models of the unimodal and
multimodal statistics of adaptive wavelet packet coef-
ficients,” in Proc. IEEE ICASSP, Montreal, Canada,
May 2004.


