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ABSTRACT:

Satellite  image  classification  has  been  a  major  research  field  for  many  years  with  its  varied  applications  in  the  field  of  
Geography,  Geology,  Archaeology,  Environmental  Sciences  and  Military  purposes.  Many  different  techniques  have  been 
proposed to classify  satellite  images with color,  shape and texture  features.  Complex indices  like  Vegetation index (NDVI), 
Brightness index (BI) or Urban index (ISU) are used for multi-spectral or hyper-spectral satellite images. In this paper we will 
show the  efficiency  of  structural  features  describing  man-made  objects  in  mid-resolution  satellite  images  to  describe image 
content.  We will  then show the state-of-the-art  to classify large satellite images with structural  features computed from road 
networks and urban regions extracted on small image patches cut in the large image. Fisher Linear Discriminant (FLD) analysis is  
used for feature selection and a one-vs-rest probabilistic Gaussian kernel Support Vector Machines (SVM) classification method 
is used to classify  the images.  The classification probabilities  associated with each subimage of the  large image provide an 
estimate of the geographical class coverage.

1.INTRODUCTION

The  growth  of  large  image  databases  during  the  last  few 
decades  with  the  advancement  in  image  acquisition 
technologies have attracted researchers from different fields to 
work  in  the  domain  of  image  information  mining  systems. 
These  images  coming  from  various  sources  must  be 
systematically  analyzed  to  render  important  information 
which  are  often  less  relevant  to  human  perception.  The 
technologically advanced satellite sensors and the new storage 
systems  have  made  image  data  too  vast  and  complex.  The 
manual annotation to describe a complex image completely is 
not  feasible.  Indexing  and  retrieval  from  remote  sensing 
image  databases  relies  on  the  extraction  of  appropriate 
information  from  the  data  about  the  entity  of  interest 
(Daschiel and Datcu, 2005). Indexing satellite images (Maitre, 
2007)  depends  on  the  choice  of  features  which  in  turn  are 
dependent  on  the  type  and  resolution  of  the  sensors.  For 
instance SIFT descriptors  are  widely used in the  domain of 
multimedia  (Lowe,  2004).  Complex  indices  like  Vegetation 
index (NDVI), Brightness index (BI) or Urban index (ISU) are 
used  for  multi-spectral  or  hyper-spectral  images.  Texture 
features  are  known  to  be  highly  discriminative  for  low 
resolution  panchromatic  images  (Schroeder  et  al.,  1998). 
Structural  features  describing  man-made  objects  in  mid-
resolution images are most efficient to describe image content 
(Bhattacharya et al., 2007). The road network contained in an 
image is one example. The properties of road networks vary 
considerably from one geographical  environment  to another. 
The structural features computed from them can therefore be 
used to classify and retrieve such environments (Bhattacharya 
et al., 2007). In order to compute the structural features of the 
road network, we first need to extract the road network from 
the  image  and  then  convert  the  output  to  an  appropriate 
representation.  This  representation  must  be  absolutely 
independent  of  any  extraction  method.  The  road  extraction 
methods are in general resolution dependent. An optimal road 
network  extraction  algorithm  to  accurately  delineate  road 
structures  for  all  practical  purposes  is very hard to achieve. 

The methods used in our study are robust on many such road 
characteristics but they often failed to extract the narrow and 
finely structured road networks  which are  almost  hidden in 
small urban areas. This failure of the extraction methods and 
hence  the  features  computed  from  road  networks  poorly 
classify images containing such areas. In order to obtain some 
meaningful  information  from  these  regions,  we  need  to 
segment  such  areas  occurring  in  the  images.  A new set  of 
structural  features  computed  on  segmented  urban  areas 
combined with the existing road network features provided an 
improved classification of the geographical environments.

In images, pixels provide the most basic level of information. 
The pixel values are the measurements of the satellite sensors 
of a region on the Earth surface. The information from these 
pixels are at  a level  far below the semantic meaning of the 
desired object or region. The classification of images based on 
the pixel values is tedious and expensive and hence is not an 
efficient  strategy.  In  this  paper  we  present  a  novel 
methodology to classify large satellite images with patches of 
images extracted from them. This is a novel idea in the sense 
that the patches considered contain a significant coverage of a 
particular  type  of  geographical  class.  A  one-vs-rest 
probabilistic Gaussian kernel Support Vector Machines (SVM) 
classification  method  is  used  to  classify  the  images.  In  the 
work presented in this paper we have defined 7 such classes. 
These classes can be categorized as follows: 2 urban classes 
consisting  of  “Urban  USA”  and  “Urban  Europe”;  3  rural 
classes consisting of “Villages”,  “Mountains” and Fields;  an 
“Airports”  class  and  a  “Common”  class  (this  can  be 
considered as a rejection class indicating in particular images 
from seas).

2.STRUCTURAL ATTRIBUTES

In  this  section  we  present  four  road  network  extraction 
methods, two of which were used in this work. A method is 
proposed to represent the extracted road networks as graphs. A 
morphological  segmentation method is  proposed to  segment 



the  urban  areas  in  an  image.  Finally  we  describe  the  road 
network  and  urban  region  structural  features  used  for  the 
classification and indexing of satellite images.

2.1Road Network and Urban Region Extraction

In  order  to  compute  the  structural  features  of  the  road 
network,  we first  need to extract  the road network from the 
image,  and  then  convert  the  output  to  an  appropriate 
representation.  This representation should be independent  of 
the output of the extraction algorithm, since we do not want to 
be committed to any single such method. In the preliminary 
studies reported in (Bhattacharya et al., 2006) we considered 
two  network  extraction  methods  (Rochery  et  al.,  2003, 
Lacoste et al., 2005). The method of (Rochery et al., 2003) is 
based on Higher-Order Active Contours (HOACs) which are a 
generalization  of  standard  active  contours.  The  method  of 
(Lacoste  et  al.,  2005)  models  the  line network as  an object 
process, where the objects are interacting line segments. The 
output  is  a  set  of  line  segments  of  varying  lengths, 
orientations,  and  positions.  In  spite  of  producing  good 
extraction results,  these methods were not used in this work 
due to the fact that they were not adapted for an optimization 
on large image databases, since manual expertise is needed to 
set  the  parameters  in  the  algorithms  according  to  image 
complexities. 

In  the  work  reported  in  this  paper  we  considered  the  two 
network extraction methods reported in (Fischler et al., 1981, 
Desolneux et al., 2000). These methods were rather easier to 
handle and could easily be adapted to large image database. 
The parameters  once  set  in  the  algorithms  works well  with 
images  of  certain  resolution.  The  output  of  the  method 
described in (Fischler et  al.,  1981) is a binary image, which 
after a distance function computation can serve directly as an 
input  to  our  method.  Figure  1(b)  shows  examples  of  the 
extracted  network.  The  output  of  the  method  described  in 
(Desolneux et al., 2000) is a list of multiply aligned segments. 
In order to have a suitable input for our method, we convert 
the output of this method into a binary image, and use some 
image  processing  techniques  to  obtain  single  connected 
segments.  Figure  1(d)  shows  examples  of  the  extracted 
network. We then compute a distance function which then acts 
as  an  input  to  our  method.  The  distance  function  resulting 
from these methods is converted to a graph representation of 
the road network for feature computation purposes. The graph 
itself  captures  the  network  topology,  while  the  network 
geometry is encoded by decorating the vertices and edges with 
geometrical  information.  The  conversion  is  performed  by 
computing the shock locus of the distance function using the 
method  of  (Dimitrov  et  al.,  2000,  Siddiqi  et  al.,  2002), 
extended  to  deal  with  multiple  and  multiply  connected 
components  with  the  depth-first  search  (DFS)  algorithm 
(Cormen et al., 2001). The method identifies the shock points 
by finding out the limiting behavior of the average outward 
flux of the distance function as the region enclosing the shock 
point  shrinks  to  zero.  A suitable  thresholding  on  this  flux 
yields  an  approximation  to  the  shock  locus.  The  graph  is 
constructed by taking triple (or, exceptionally, higher degree) 
points and end points as vertices, corresponding to junctions 
and  terminals,  while  the  edges  are  composed  of  all  other 
points,  and  correspond  to  road  segments  between  junctions 
and  terminals.  Figure  2  shows  an  example  of  the 
representation  graph.  The road  network,  Figure  2(b)  is  first 
extracted from the input image Figure 2(a). 

  
   (a) Original image © CNES             (b) Extraction results    

  
   (c) Original image © CNES             (d) Extraction results

Figure 1:  Extraction results with 2 methods.  Example (b) is 
with the method of (Fischler et al., 1981) and example (d) is 
with themethod of (Desolneux et al., 2000)

  
   (a) Original image © CNES        (b) Extracted road network

  
(c) Shock locus of road network      (d) Graph representation

Figure 2: An example of the graph representation.

The methods cited in our study are robust on many such road 
characteristics but they often failed to extract the narrow and 
finely structured road networks  which are  almost  hidden in 
small urban areas. This failure of the extraction methods and 
hence  the  features  computed  from  road  networks  poorly 
classify images containing such areas. In order to obtain some 
meaningful  information  from  these  regions,  we  need  to 
segment such areas occurring in the images.



The  heterogeneity  and  the  geometrical  complexity  of  urban 
structures in low radiometric and mid-resolution (2m or 5m) 
images show textural effects for objects with few pixel width. 
In our study we use the work of (Roux,  1992) developed to 
extract  the  urban  regions  from  SPOT  images.  In  SPOT 
images, the urban zones appear to be strongly textured and the 
problem of extraction of the regions is essentially a problem 
of differentiation of textures. The method used here is inspired 
from the works of (Serendero, 1989) and (Khatir, 1989). The 
principle idea is to extract  the zone of high density of light 
and  dark  peaks.  The  techniques  used  are  of  mathematical 
morphology  operations  of  opening  and  closing.  The 
segmented compact urban regions in the images are shown in 
Figure 3(b) and Figure 3(d).

  
   (a) Original image © CNES            (b) Segmented region

  
   (c) Original image © CNES           (d) Segmented region

Figure  3:  Images  containing  small  urban  areas  and  their 
segmentations.

2.2Road Network Features

In this section we focus on 16 features summarized in table 1. 
These  features  can  be  categorized  into  six  groups:  six 
measures  of  ‘density’,  four  measures  of  ‘curviness’,  two 
measures  of  ‘homogeneity’,  one  measure  of  ‘length’,  two 
measures of ‘distribution’ and one measure of ‘entropy’. We 
will now define the road network features.

Let v be a vertex and e be an edge. Let le be the length of the 
road segment corresponding to e, and let de  be the length of e, 
that is the Euclidean distance between its two vertices. Let mv 

be  the  number  of  edges  at  a  vertex.  Then 
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2vm vJ mE is the number of junction edges. Let Ω 

be the  area  of  the  image in pixels.  We define the  ‘junction 

density’  to  be  JJ NN 1~ −Ω= and  ‘density  of  junction 

edges’ to be  JJ EE 1~ −Ω= . These are intuitively a useful 

measure  to separate urban and rural  areas:  we expect  urban 
areas  to  have  a  higher  value  of  ÑJ and  ẼJ than  rural  areas. 

Similarly,  we  define  the  ‘network  length’  ∑=
e elL and 

the  ‘length  density’ to  be LL 1~ −Ω= . Again,  we  expect 

urban areas to have a higher  value of  L
~  than rural  areas. 

Note than one can have a high value of L
~ and a low value of 

ÑJ if junctions are complex and the road segments are ‘space-
filling’. We also compute the network area  ΩL as the number 
of  pixels  corresponding  to  the  network  from  the  extracted 
binary image and define the ‘network area density’ as   Ã = Ω-

1  ΩL.  As can be seen in  figure  2,  many junction points  are 
clustered around a small area in the network. To obtain a local 
characteristic  of  the  junction  density,  we  define  a  measure 

called  ‘local  junction’: ∑ >Ω∈
−Ω=
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,
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This  is  the  density  of  junction  points  falling  in  a  circular 
region  of  radius  r  centered  at  junction  point  j.  We  then 
compute the mean and the variance of these junction densities 
over  all  junction  points,  mean(Ñr,j)  and  var(Ñr,j).  A  high 
var(Ñr,j), indicates the sparse structure of road junctions. Rural 
network  structures  will  show  such  a  characteristic.  A low 
value indicates that junction points are clustered close to many 
other junction points, which is a prominent measure of urban 
network structure. The mean(Ñr,j) is also used as a measure of 
density.

Let  pe  =  le /  de,  and dsscurvlk
e

ee ∫−= )(1 ,  i.e., 

the  absolute  curvature  per  unit  length  of  the  road  segment 
corresponding to the edge e. Although it may seem natural to 
characterize the network using the average values per edge of 
these quantities, in practice we have found that the variances 
of these quantities are equally useful. We thus define the ‘ratio 
of lengths variance’ and the ‘ratio of lengths mean’ to be the 
variance and mean of  pe over edges, var(p) and mean(p), and 
the ‘average curvature variance’ and ‘average curvature mean’ 
to  be  the  variance  and  mean  of  ke over  edges,  var(k)  and 
mean(k). Note that it is quite possible to have a large value of 
pe for an edge while having a small  value of  ke if  the road 
segment  is  composed  of  long  straight  segments,  and  vice-
versa,  if  the  road  ‘wiggles’ rapidly  around the  straight  line 
joining the two vertices in the edge. We expect rural areas to 
have high values of one of these two quantities, while urban 
areas  will  probably  have  low  values,  although  this  is  less 
obvious than for the density measures.
To measure network homogeneity, we divide each image into 
four  quadrants,  labelled  a.  Subscript  a indicates  quantities 
evaluated  for  quadrant  a  rather  than  the  whole  image.  Let 

∑ >∈
=

2,, mav vaJ mM  be  the  number  of  edges 

emanating from junctions in quadrant  a.  This is very nearly 
twice the number of edges in a, but it is convenient to restrict 
ourselves  to  junctions  to avoid  spurious  termini  at  the 

boundary  of  the  image.  Let  aJaJ MM ,
1

,
~ −Ω=  be  the 

density  of  such  edges  in  quadrant  a.  Then  we define  the 

‘network inhomogeneity’ to be the variance of aJM ,
~

 over 

quadrants,  var( JM
~

).  We  also  include  mean( JM
~

)  as  a 

feature.

In order to distinguish between the two urban classes (USA 
and  Europe),  the  entropy  of  the  histogram  of  angles  at 
junctions,  Hβ,  where  βj is the vector of angles between road 
segments at junction j, is a good measure. As is evident from 
the physical characteristics of these road network structures, 
roads  in  USA  tend  to  be  parallel  and  cross  each  other 



orthogonally  forming  T-junctions  or  crossroads,  whereas 
European roads tend to wiggle and meet or cross each other at 
roundabouts.  Thus  it  seems  natural  that Hβ ≤  2  bits  are 
necessary  to  encode  information  about  road  segments  at 
junctions  for  road  networks  in  the  USA,  whereas  for  road 
networks  in  Europe,  Hβ ≥ 2  bits  are  necessary.  The  same 
measure can also be used to distinguish between Mountains 
and  Fields,  while  the  ‘density’  features  distinguish  rural 
networks from urban networks.

A ‘distribution’ measure of edges at a vertex provides us with 
information as to how the edges at a vertex are distributed in 
the network. Let ED,i be the proportion of junction points with i  
edges at  them.  We use mean(ED,i)  and var(ED,i)  as features. 
The variance of the edge distribution is lower in the case of 
networks in urban areas as opposed to rural,  and it  is lower 
also in the case of urban networks in the USA as opposed to in 
Europe.

Notation Description
ÑJ Junction density
L Network length

L
~ Length density

Ã Network area density
pe Ratio of length
var(p) Ratio of lengths variance
mean(p) Ratio of lengths mean
ke Average curvature 
var(k) Average curvature variance
mean(k) Average curvature mean
ED,i Number of junction with mv=i
var(ED,i) Edge distribution variance
mean(ED,i) Edge distribution mean
EJ Number of junction edges

JE
~ Junction edges density

aJM ,
~ Density of junction edges per quadrant

var( JM
~

) Junction edges density variance

mean( JM
~

)

Junction edges density mean

Ñr,j Local junction density
var(Ñr,j) Variance of the local junction densities 
mean(Ñr,j) Mean of the local junction densities
βj Vectors  of  angles  between  segments  at 

junction j
Hβ Entropy of road segment orientation

Table  1:  Summary  of  the  features  computed  from  road 
networks

2.3Urban Region Features

We focus on the last four features in Table 2. These features 
enable  us  to  distinguish between rural  classes  (Villages  and 
Fields)  and  urban  class  (Europe),  which  otherwise  were 
misclassified due to the lack of extracted network information 
from the small compact urban regions in the images, shown in 
Figure 3(a) and Figure 3(c). Let Ω and ΩR be the area of the 
image and the area of the extracted regions respectively and 
Lψ and ΓR be the network length in Ψ = Ω - ΩR  and perimeter 
of the extracted regions respectively. 
We  define  two descriptors,  RA,  the  extracted  region  density 
and  CfA =  ΩR

-1ΓR
2 the  extracted  region  compactness  factor. 

These two features  help us  to  distinguish the  Villages  class 

from the rest  of the classes:  for example,  RA ≈ 1 for Urban 
classes and RA ≈ 0 for Mountains and Fields classes.
The number of urban regions in an image, the feature  Rv,  is 
used to distinguish between complete Urban, Villages, Fields 
and  Mountains.  A complete  Urban  (USA and  Europe)  will 
have Rv = 1, whereas, a Villages will have Rv >1, and Fields 
and Mountains will  have  Rv  = 0. Another feature  ΔΩ  = ΩR / 
Lψ, the inverse fractional length density, is also computed to 
separate  the  Village  class  from  Urban  and  Mountains  and 
Fields. For complete Urban classes (USA and Europe), Lψ = 
0,  and  for  Mountains  and  Field  classes  Ψ  = Ω.  Hence  for 
Mountains  and  Fields  classes,  ΔΩ  =  0,  while  for  complete 
Urban classes,  ΔΩ  = ∞, and for the Village class  0 < ΔΩ   < 
∞.We augment these urban region features with the features 
computed from the graph representation of the road network 
as  described  earlier  to  improve  the  classification  of  the 
geographical  environments  which  otherwise  were 
misclassified due to the loss of information from small dense 
urban regions.

Notation Description

Ω Area of image

ΩR Area of extracted regions

LΨ Network length in Ψ =  Ω - ΩR 

ΓR Perimeter of extracted regions

RA Region area density : ΩR / Ω

CfA Region compactness factor  ГR
2 / ΩR

Rv Number of regions : # R

ΔΩ Inverse fractional length density :  ΩR / LΨ

Table 2: Summary of features computed for urban areas. 

3.CLASSIFICATION

The  32  features  (16  features  for  each  network  extraction 
method)  described  in  section  2.2  were  computed  for  a 
database  of  497  SPOT5,  5m resolution  images.  To  provide 
ground truth, these images were manually classified into the 7 
classes  described in section  1 representing various kinds  of 
urban  and  rural  environments. Machine  classification  was 
done  with a  five-fold  cross validation on  the  data  set,  with 
80% of data for training and the remaining 20% for testing in 
each  fold.  We  performed  feature selection  using  a  Fisher 
Linear  Discriminant  (FLD)  analysis (Duda  et  al.,  2000), 
followed by a SVM linear kernel classification on the selected 
feature set. The result of the classification is shown in Table 3. 
The SVM linear  kernel  classification on the 30-dimensional 
feature  space  selected  by  the  FLD shows  a  mean error  of 
24.5% with a standard deviation of 2.92%. As can be clearly 
seen  in  the  confusion  matrix  Table  3,  the  Villages  class  is 
confused  with  the  Fields  class  and  also  there  is  a  slight 
confusion between the Urban USA and Urban Europe classes. 
These  confusions arise  because,  as  stated  above,  the  road 
extraction  methods fail  to  detect  the  fine  and  densely 
structured roads present  in some images.  Table  4 shows the 
results  of  classification  of  the  same  set of  images  with  20 
selected feature out of 36 features (32 road network features 
plus the 4 features computed from the segmented urban areas). 
As  can  be  seen,  there  is  an  improvement  in  the  confusion 
matrix.  The  Villages  class  is  less  confused  with  the  Fields 
class than before. The SVM linear kernel classification error is 
drastically  reduced  from  24.5%,  with  only  road  network 



features to  12.9%,  with  the  combined  feature  set  with  a 
standard deviation of 3.29%. This is due to the fact, that the 
loss of information from the urban areas is well captured with 
the structural features described in section 2.3.

Table 3: Confusion matrix of a SVM linear kernel 
classification
on 497 images with 7 classes with 30 out of 32 features 
selected
by FLD.

Table 4: Confusion matrix of a SVM linear kernel 
classification
on 497 images with 7 classes with 20 out of 36 features 
selected
by FLD.

4.INDEXING OF LARGE SPOT5 IMAGES

An image is  indexed by a  set  of  keywords representing the 
content  of  an image.  These keywords are  usually limited in 
numbers  and  are  dependent  on  application  scenarios. 
Classification  is  often  used  as  a  pre-processing  step  for 
indexing.  A careful  indexing  of  an  image  database  assists 
efficient  retrieval  of  image  content.  The  workflow  of  our 
indexing method is divided into three steps as follows.

4.1Step 1: The Database

The  image  database  can  be  viewed  as  two  sets  disjointly 
partitioned to contain images or segmented images in one set 
and  features  extracted  from images  in  another  set.  We  will 
indicate the image set as SI, and the feature set as SF. A pointer 
is used between SI and SF to address a image to its associated 
feature  set.  The information extracted in  terms of  structural 
features from the large image archive of 497 images, each of 
size 512x512 pixels, categorized into 7 classes are kept in a 
data file. The off-line process of this data file creation is done 
only  once,  and  in  case  of  a  new  entry,  the  information 
extracted from this image is augmented with the existing data 
file. The pointer is appropriately assigned the address of this 
new entry. This will be used as the “training” set later in the 
classification task.

4.2Step 2: The Feature File

The  off-line  process  for  the  user  given  a  large  image  is  as 
follows:  the  large  image  of  size  5120x5120  pixels  is 
automatically  divided  into  non-overlapping  image  patches 
each  of  size  512x512  pixels.  During  this  process  an 
association  pointer  is  asserted  from  the  image  patches, 
defining  its  spatial  position  in  the  large  image.  The  road 
network extraction, its graph representation and the urban area 

segmentation methods are applied in parallel on the image set 
(100  images).  The  structural  features  from  the  graph 
representation and  the urban  areas  are  stored in  a  file.  The 
images are  a priori  randomly labelled with classes from 1 to 
7. This will be later used as a “testing” test against the above 
defined “training” set in the classification task.

4.3Step 3: The Classification

In  many  satellite  image  classification  works,  the  a  priori  
information  about  the  class  label  configuration  is  available 
and it is very essential and crucial to combine this information 
into  the  classification  process  to  obtain  a  reliable  answer. 
Standard  SVM  do  not  provide  any  estimation  of  the 
classification  confidence  and  thus  do  not  allow  us  to 
comprehend  any  a  priori  information.  Probabilistic  SVM 
provides  us  with  a  solution  as  to  construct  a  classifier  to 
produce a posterior probability P(class = c|input) which allows 
us  to  take  a  quantitative  decision  about  the  classification 
(Platt,  1999).  In  this  work  we  used  a  one-vs-rest  Gaussian 
SVM  classifier  with  σ=10.  The  choice  of  the  Gaussian 
standard deviation, σ, which controls the width of the kernel is 
hard  to  assert  in  practical  situations.  In  this  study  we 
considered the kernel  value which gave us the least  training 
error. 
The results of the probabilistic SVM output can be interpreted 
as  follows:  the  classifier  output  should  be  a  calibrated 
posterior  probability.  First  the  SVM is  trained and then the 
parameters A and B of an sigmoid function (see Equation 1) 
are estimated from the training set (fi, yi) to map the output of 
the SVM into probabilities. The predicted label of an image is 
the one with the largest  probability value. The large SPOT5, 
5m  resolution  image,  Figure  4(a)  of  Los  Angeles  is  well 
classified with a classification accuracy of about 85%.
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The  classification  image  resulting  from  the  probabilistic 
SVM, Figure 4(b),  shows that certain areas are classified as 
Europe urban. This can be explained from the fact that either 
the classification probabilities are low or they are comparable 
with the neighbouring classes. The other reason for this is the 
fact that the network structures in these areas are similar to the 
one  found  in  many  European  urban  structures.  The 
superimposed  image  in  Figure  4(c)  validates  the  classified 
regions with ground truths from Figure 4(d).

5.CONCLUSION

Classification of large satellite images with patches of images 
extracted  from  them  is  a  novel  idea  in  the  sense  that  the 
patches considered contain significant coverage of a particular 
type  of  geographical  environment.  Probabilistic  SVM 
provides us with a quantitative analysis of the classification. 
This method provides a basis  for  more complex analysis  of 
large  satellite  images.  The effect  of  overlapping  patches on 
classification is not reported. This may be an interesting study, 
as it can help to better classify the images. Moreover, image 
patches  of  different  sizes  can  also  be  used  to  improve  the 
classification  performance.  Our  indexing  method  with  the 
above  mentioned  perspectives  can  be  adapted  with  existing 
and future image information mining systems for EO archives.

Class1 Class2 Class3 Class4 Class5 Class6 Class7
Villages 0.55 0.09 0.22 0.05 0.13 0.00 0.00
Mountains 0.10 0.81 0.00 0.00 0.05 0.00 0.02
Fields 0.19 0.05 0.64 0.05 0.18 0.00 0.00
USA 0.06 0.00 0.04 0.82 0.05 0.00 0.02
Europe 0.09 0.05 0.11 0.07 0.60 0.03 0.05
Airports 0.00 0.00 0.00 0.01 0.00 0.97 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.91

Class1 Class2 Class3 Class4 Class5 Class6 Class7
Villages 0.83 0.00 0.15 0.00 0.05 0.02 0.03
Mountains 0.04 0.83 0.01 0.00 0.00 0.00 0.00
Fields 0.04 0.08 0.82 0.01 0.00 0.00 0.01
USA 0.01 0.00 0.00 0.92 0.12 0.02 0.01
Europe 0.08 0.04 0.02 0.07 0.84 0.02 0.02
Airports 0.00 0.05 0.00 0.00 0.00 0.96 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.93



       
          (a) Original image ©CNES                                 (b) Sub-image classification                         (c) Ground truth  ©Google 
Maps

Figure 4 : Large image indexing
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