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On teaching mathematics 

by V.I. Arnold 

This is an extended text of the address at the discussion on teaching of mathematics in Palais de Découverte in Paris on 7 
March 1997. 

Mathematics is a part of physics. Physics is an experimental science, a part of natural science. 
Mathematics is the part of physics where experiments are cheap.  

The Jacobi identity (which forces the heights of a triangle to cross at one point) is an experimental 
fact in the same way as that the Earth is round (that is, homeomorphic to a ball). But it can be 
discovered with less expense.  

In the middle of the twentieth century it was attempted to divide physics and mathematics. The 
consequences turned out to be catastrophic. Whole generations of mathematicians grew up without 
knowing half of their science and, of course, in total ignorance of any other sciences. They first 
began teaching their ugly scholastic pseudo-mathematics to their students, then to schoolchildren 
(forgetting Hardy's warning that ugly mathematics has no permanent place under the Sun).  

Since scholastic mathematics that is cut off from physics is fit neither for teaching nor for application 
in any other science, the result was the universal hate towards mathematicians - both on the part of 
the poor schoolchildren (some of whom in the meantime became ministers) and of the users.  

The ugly building, built by undereducated mathematicians who were exhausted by their inferiority 
complex and who were unable to make themselves familiar with physics, reminds one of the 
rigorous axiomatic theory of odd numbers. Obviously, it is possible to create such a theory and make 
pupils admire the perfection and internal consistency of the resulting structure (in which, for 
example, the sum of an odd number of terms and the product of any number of factors are defined). 
From this sectarian point of view, even numbers could either be declared a heresy or, with passage of 
time, be introduced into the theory supplemented with a few "ideal" objects (in order to comply with 
the needs of physics and the real world).  

Unfortunately, it was an ugly twisted construction of mathematics like the one above which 
predominated in the teaching of mathematics for decades. Having originated in France, this 
pervertedness quickly spread to teaching of foundations of mathematics, first to university students, 
then to school pupils of all lines (first in France, then in other countries, including Russia).  

To the question "what is 2 + 3" a French primary school pupil replied: "3 + 2, since addition is 
commutative". He did not know what the sum was equal to and could not even understand what he 
was asked about!  

Another French pupil (quite rational, in my opinion) defined mathematics as follows: "there is a 
square, but that still has to be proved".  

Judging by my teaching experience in France, the university students' idea of mathematics (even of 
those taught mathematics at the École Normale Supérieure - I feel sorry most of all for these 
obviously intelligent but deformed kids) is as poor as that of this pupil.  
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For example, these students have never seen a paraboloid and a question on the form of the surface 
given by the equation xy = z^2 puts the mathematicians studying at ENS into a stupor. Drawing a 
curve given by parametric equations (like x = t^3 - 3t, y = t^4 - 2t^2) on a plane is a totally 
impossible problem for students (and, probably, even for most French professors of mathematics).  

Beginning with l'Hospital's first textbook on calculus ("calculus for understanding of curved lines") 
and roughly until Goursat's textbook, the ability to solve such problems was considered to be (along 
with the knowledge of the times table) a necessary part of the craft of every mathematician.  

Mentally challenged zealots of "abstract mathematics" threw all the geometry (through which 
connection with physics and reality most often takes place in mathematics) out of teaching. Calculus 
textbooks by Goursat, Hermite, Picard were recently dumped by the student library of the 
Universities Paris 6 and 7 (Jussieu) as obsolete and, therefore, harmful (they were only rescued by 
my intervention).  

ENS students who have sat through courses on differential and algebraic geometry (read by 
respected mathematicians) turned out be acquainted neither with the Riemann surface of an elliptic 
curve y^2 = x^3 + ax + b nor, in fact, with the topological classification of surfaces (not even 
mentioning elliptic integrals of first kind and the group property of an elliptic curve, that is, the 
Euler-Abel addition theorem). They were only taught Hodge structures and Jacobi varieties!  

How could this happen in France, which gave the world Lagrange and Laplace, Cauchy and 
Poincaré, Leray and Thom? It seems to me that a reasonable explanation was given by I.G. 
Petrovskii, who taught me in 1966: genuine mathematicians do not gang up, but the weak need gangs 
in order to survive. They can unite on various grounds (it could be super-abstractness, anti-Semitism 
or "applied and industrial" problems), but the essence is always a solution of the social problem - 
survival in conditions of more literate surroundings.  

By the way, I shall remind you of a warning of L. Pasteur: there never have been and never will be 
any "applied sciences", there are only applications of sciences (quite useful ones!).  

In those times I was treating Petrovskii's words with some doubt, but now I am being more and more 
convinced of how right he was. A considerable part of the super-abstract activity comes down simply 
to industrialising shameless grabbing of discoveries from discoverers and then systematically 
assigning them to epigons-generalizers. Similarly to the fact that America does not carry Columbus's 
name, mathematical results are almost never called by the names of their discoverers.  

In order to avoid being misquoted, I have to note that my own achievements were for some unknown 
reason never expropriated in this way, although it always happened to both my teachers 
(Kolmogorov, Petrovskii, Pontryagin, Rokhlin) and my pupils. Prof. M. Berry once formulated the 
following two principles:  

The Arnold Principle. If a notion bears a personal name, then this name is not the name of the 
discoverer.  

The Berry Principle. The Arnold Principle is applicable to itself.  

Let's return, however, to teaching of mathematics in France.  

When I was a first-year student at the Faculty of Mechanics and Mathematics of the Moscow State 
University, the lectures on calculus were read by the set-theoretic topologist L.A. Tumarkin, who 
conscientiously retold the old classical calculus course of French type in the Goursat version. He told 
us that integrals of rational functions along an algebraic curve can be taken if the corresponding 
Riemann surface is a sphere and, generally speaking, cannot be taken if its genus is higher, and that 
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for the sphericity it is enough to have a sufficiently large number of double points on the curve of a 
given degree (which forces the curve to be unicursal: it is possible to draw its real points on the 
projective plane with one stroke of a pen).  

These facts capture the imagination so much that (even given without any proofs) they give a better 
and more correct idea of modern mathematics than whole volumes of the Bourbaki treatise. Indeed, 
here we find out about the existence of a wonderful connection between things which seem to be 
completely different: on the one hand, the existence of an explicit expression for the integrals and the 
topology of the corresponding Riemann surface and, on the other hand, between the number of 
double points and genus of the corresponding Riemann surface, which also exhibits itself in the real 
domain as the unicursality.  

Jacobi noted, as mathematics' most fascinating property, that in it one and the same function controls 
both the presentations of a whole number as a sum of four squares and the real movement of a 
pendulum.  

These discoveries of connections between heterogeneous mathematical objects can be compared 
with the discovery of the connection between electricity and magnetism in physics or with the 
discovery of the similarity between the east coast of America and the west coast of Africa in 
geology.  

The emotional significance of such discoveries for teaching is difficult to overestimate. It is they 
who teach us to search and find such wonderful phenomena of harmony of the Universe.  

The de-geometrisation of mathematical education and the divorce from physics sever these ties. For 
example, not only students but also modern algebro-geometers on the whole do not know about the 
Jacobi fact mentioned here: an elliptic integral of first kind expresses the time of motion along an 
elliptic phase curve in the corresponding Hamiltonian system.  

Rephrasing the famous words on the electron and atom, it can be said that a hypocycloid is as 
inexhaustible as an ideal in a polynomial ring. But teaching ideals to students who have never seen a 
hypocycloid is as ridiculous as teaching addition of fractions to children who have never cut (at least 
mentally) a cake or an apple into equal parts. No wonder that the children will prefer to add a 
numerator to a numerator and a denominator to a denominator.  

From my French friends I heard that the tendency towards super-abstract generalizations is their 
traditional national trait. I do not entirely disagree that this might be a question of a hereditary 
disease, but I would like to underline the fact that I borrowed the cake-and-apple example from 
Poincaré.  

The scheme of construction of a mathematical theory is exactly the same as that in any other natural 
science. First we consider some objects and make some observations in special cases. Then we try 
and find the limits of application of our observations, look for counter-examples which would 
prevent unjustified extension of our observations onto a too wide range of events (example: the 
number of partitions of consecutive odd numbers 1, 3, 5, 7, 9 into an odd number of natural 
summands gives the sequence 1, 2, 4, 8, 16, but then comes 29).  

As a result we formulate the empirical discovery that we made (for example, the Fermat conjecture 
or Poincaré conjecture) as clearly as possible. After this there comes the difficult period of checking 
as to how reliable are the conclusions .  

At this point a special technique has been developed in mathematics. This technique, when applied 
to the real world, is sometimes useful, but can sometimes also lead to self-deception. This technique 
is called modelling. When constructing a model, the following idealisation is made: certain facts 
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which are only known with a certain degree of probability or with a certain degree of accuracy, are 
considered to be "absolutely" correct and are accepted as "axioms". The sense of this "absoluteness" 
lies precisely in the fact that we allow ourselves to use these "facts" according to the rules of formal 
logic, in the process declaring as "theorems" all that we can derive from them.  

It is obvious that in any real-life activity it is impossible to wholly rely on such deductions. The 
reason is at least that the parameters of the studied phenomena are never known absolutely exactly 
and a small change in parameters (for example, the initial conditions of a process) can totally change 
the result. Say, for this reason a reliable long-term weather forecast is impossible and will remain 
impossible, no matter how much we develop computers and devices which record initial conditions.  

In exactly the same way a small change in axioms (of which we cannot be completely sure) is 
capable, generally speaking, of leading to completely different conclusions than those that are 
obtained from theorems which have been deduced from the accepted axioms. The longer and fancier 
is the chain of deductions ("proofs"), the less reliable is the final result.  

Complex models are rarely useful (unless for those writing their dissertations).  

The mathematical technique of modelling consists of ignoring this trouble and speaking about your 
deductive model in such a way as if it coincided with reality. The fact that this path, which is 
obviously incorrect from the point of view of natural science, often leads to useful results in physics 
is called "the inconceivable effectiveness of mathematics in natural sciences" (or "the Wigner 
principle").  

Here we can add a remark by I.M. Gel'fand: there exists yet another phenomenon which is 
comparable in its inconceivability with the inconceivable effectiveness of mathematics in physics 
noted by Wigner - this is the equally inconceivable ineffectiveness of mathematics in biology.  

"The subtle poison of mathematical education" (in F. Klein's words) for a physicist consists precisely 
in that the absolutised model separates from the reality and is no longer compared with it. Here is a 
simple example: mathematics teaches us that the solution of the Malthus equation dx/dt = x is 
uniquely defined by the initial conditions (that is that the corresponding integral curves in the (t,x)-
plane do not intersect each other). This conclusion of the mathematical model bears little relevance 
to the reality. A computer experiment shows that all these integral curves have common points on 
the negative t-semi-axis. Indeed, say, curves with the initial conditions x(0) = 0 and x(0) = 1 
practically intersect at t = -10 and at t = -100 you cannot fit in an atom between them. Properties of 
the space at such small distances are not described at all by Euclidean geometry. Application of the 
uniqueness theorem in this situation obviously exceeds the accuracy of the model. This has to be 
respected in practical application of the model, otherwise one might find oneself faced with serious 
troubles.  

I would like to note, however, that the same uniqueness theorem explains why the closing stage of 
mooring of a ship to the quay is carried out manually: on steering, if the velocity of approach would 
have been defined as a smooth (linear) function of the distance, the process of mooring would have 
required an infinitely long period of time. An alternative is an impact with the quay (which is 
damped by suitable non-ideally elastic bodies). By the way, this problem had to be seriously 
confronted on landing the first descending apparata on the Moon and Mars and also on docking with 
space stations - here the uniqueness theorem is working against us.  

Unfortunately, neither such examples, nor discussing the danger of fetishising theorems are to be met 
in modern mathematical textbooks, even in the better ones. I even got the impression that scholastic 
mathematicians (who have little knowledge of physics) believe in the principal difference of the 
axiomatic mathematics from modelling which is common in natural science and which always 
requires the subsequent control of deductions by an experiment.  
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Not even mentioning the relative character of initial axioms, one cannot forget about the inevitability 
of logical mistakes in long arguments (say, in the form of a computer breakdown caused by cosmic 
rays or quantum oscillations). Every working mathematician knows that if one does not control 
oneself (best of all by examples), then after some ten pages half of all the signs in formulae will be 
wrong and twos will find their way from denominators into numerators.  

The technology of combatting such errors is the same external control by experiments or 
observations as in any experimental science and it should be taught from the very beginning to all 
juniors in schools.  

Attempts to create "pure" deductive-axiomatic mathematics have led to the rejection of the scheme 
used in physics (observation - model - investigation of the model - conclusions - testing by 
observations) and its substitution by the scheme: definition - theorem - proof. It is impossible to 
understand an unmotivated definition but this does not stop the criminal algebraists-axiomatisators. 
For example, they would readily define the product of natural numbers by means of the long 
multiplication rule. With this the commutativity of multiplication becomes difficult to prove but it is 
still possible to deduce it as a theorem from the axioms. It is then possible to force poor students to 
learn this theorem and its proof (with the aim of raising the standing of both the science and the 
persons teaching it). It is obvious that such definitions and such proofs can only harm the teaching 
and practical work.  

It is only possible to understand the commutativity of multiplication by counting and re-counting 
soldiers by ranks and files or by calculating the area of a rectangle in the two ways. Any attempt to 
do without this interference by physics and reality into mathematics is sectarianism and isolationism 
which destroy the image of mathematics as a useful human activity in the eyes of all sensible people. 

I shall open a few more such secrets (in the interest of poor students).  

The determinant of a matrix is an (oriented) volume of the parallelepiped whose edges are its 
columns. If the students are told this secret (which is carefully hidden in the purified algebraic 
education), then the whole theory of determinants becomes a clear chapter of the theory of poly-
linear forms. If determinants are defined otherwise, then any sensible person will forever hate all the 
determinants, Jacobians and the implicit function theorem.  

What is a group? Algebraists teach that this is supposedly a set with two operations that satisfy a 
load of easily-forgettable axioms. This definition provokes a natural protest: why would any sensible 
person need such pairs of operations? "Oh, curse this maths" - concludes the student (who, possibly, 
becomes the Minister for Science in the future).  

We get a totally different situation if we start off not with the group but with the concept of a 
transformation (a one-to-one mapping of a set onto itself) as it was historically. A collection of 
transformations of a set is called a group if along with any two transformations it contains the result 
of their consecutive application and an inverse transformation along with every transformation.  

This is all the definition there is. The so-called "axioms" are in fact just (obvious) properties of 
groups of transformations. What axiomatisators call "abstract groups" are just groups of 
transformations of various sets considered up to isomorphisms (which are one-to-one mappings 
preserving the operations). As Cayley proved, there are no "more abstract" groups in the world. So 
why do the algebraists keep on tormenting students with the abstract definition?  

By the way, in the 1960s I taught group theory to Moscow schoolchildren. Avoiding all the 
axiomatics and staying as close as possible to physics, in half a year I got to the Abel theorem on the 
unsolvability of a general equation of degree five in radicals (having on the way taught the pupils 
complex numbers, Riemann surfaces, fundamental groups and monodromy groups of algebraic 
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functions). This course was later published by one of the audience, V. Alekseev, as the book The 
Abel theorem in problems.  

What is a smooth manifold? In a recent American book I read that Poincaré was not acquainted with 
this (introduced by himself) notion and that the "modern" definition was only given by Veblen in the 
late 1920s: a manifold is a topological space which satisfies a long series of axioms.  

For what sins must students try and find their way through all these twists and turns? Actually, in 
Poincaré's Analysis Situs there is an absolutely clear definition of a smooth manifold which is much 
more useful than the "abstract" one.  

A smooth k-dimensional submanifold of the Euclidean space R^N is its subset which in a 
neighbourhood of its every point is a graph of a smooth mapping of R^k into R^(N - k) (where R^k 
and R^(N - k) are coordinate subspaces). This is a straightforward generalization of most common 
smooth curves on the plane (say, of the circle x^2 + y^2 = 1) or curves and surfaces in the three-
dimensional space.  

Between smooth manifolds smooth mappings are naturally defined. Diffeomorphisms are mappings 
which are smooth, together with their inverses.  

An "abstract" smooth manifold is a smooth submanifold of a Euclidean space considered up to a 
diffeomorphism. There are no "more abstract" finite-dimensional smooth manifolds in the world 
(Whitney's theorem). Why do we keep on tormenting students with the abstract definition? Would it 
not be better to prove them the theorem about the explicit classification of closed two-dimensional 
manifolds (surfaces)?  

It is this wonderful theorem (which states, for example, that any compact connected oriented surface 
is a sphere with a number of handles) that gives a correct impression of what modern mathematics is 
and not the super-abstract generalizations of naive submanifolds of a Euclidean space which in fact 
do not give anything new and are presented as achievements by the axiomatisators.  

The theorem of classification of surfaces is a top-class mathematical achievement, comparable with 
the discovery of America or X-rays. This is a genuine discovery of mathematical natural science and 
it is even difficult to say whether the fact itself is more attributable to physics or to mathematics. In 
its significance for both the applications and the development of correct Weltanschauung it by far 
surpasses such "achievements" of mathematics as the proof of Fermat's last theorem or the proof of 
the fact that any sufficiently large whole number can be represented as a sum of three prime 
numbers.  

For the sake of publicity modern mathematicians sometimes present such sporting achievements as 
the last word in their science. Understandably this not only does not contribute to the society's 
appreciation of mathematics but, on the contrary, causes a healthy distrust of the necessity of wasting 
energy on (rock-climbing-type) exercises with these exotic questions needed and wanted by no one.  

The theorem of classification of surfaces should have been included in high school mathematics 
courses (probably, without the proof) but for some reason is not included even in university 
mathematics courses (from which in France, by the way, all the geometry has been banished over the 
last few decades).  

The return of mathematical teaching at all levels from the scholastic chatter to presenting the 
important domain of natural science is an espessially hot problem for France. I was astonished that 
all the best and most important in methodical approach mathematical books are almost unknown to 
students here (and, seems to me, have not been translated into French). Among these are Numbers 
and figures by Rademacher and Töplitz, Geometry and the imagination by Hilbert and Cohn-
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Vossen, What is mathematics? by Courant and Robbins, How to solve it and Mathematics and 
plausible reasoning by Polya, Development of mathematics in the 19th century by F. Klein.  

I remember well what a strong impression the calculus course by Hermite (which does exist in a 
Russian translation!) made on me in my school years.  

Riemann surfaces appeared in it, I think, in one of the first lectures (all the analysis was, of course, 
complex, as it should be). Asymptotics of integrals were investigated by means of path deformations 
on Riemann surfaces under the motion of branching points (nowadays, we would have called this the 
Picard-Lefschetz theory; Picard, by the way, was Hermite's son-in-law - mathematical abilities are 
often transferred by sons-in-law: the dynasty Hadamard - P. Levy - L. Schwarz - U. Frisch is yet 
another famous example in the Paris Academy of Sciences).  

The "obsolete" course by Hermite of one hundred years ago (probably, now thrown away from 
student libraries of French universities) was much more modern than those most boring calculus 
textbooks with which students are nowadays tormented.  

If mathematicians do not come to their senses, then the consumers who preserved a need in a 
modern, in the best meaning of the word, mathematical theory as well as the immunity 
(characteristic of any sensible person) to the useless axiomatic chatter will in the end turn down the 
services of the undereducated scholastics in both the schools and the universities.  

A teacher of mathematics, who has not got to grips with at least some of the volumes of the course 
by Landau and Lifshitz, will then become a relict like the one nowadays who does not know the 
difference between an open and a closed set.  

V.I. Arnold  

Translated by A.V. GORYUNOV  
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