
Relaxed Memory Models: an Operational Approach ∗

Gérard Boudol Gustavo Petri
INRIA Sophia Antipolis

{Gerard.Boudol,Gustavo.Petri}@inria.fr

Abstract
Memory models define an interface between programs written in
some language and their implementation, determining which be-
haviour the memory (and thus a program) is allowed to have in
a given model. A minimal guarantee memory models should pro-
vide to the programmer is that well-synchronized, that is, data-race
free code has a standard semantics. Traditionally, memory mod-
els are defined axiomatically, setting constraints on the order in
which memory operations are allowed to occur, and the program-
ming language semantics is implicit as determining some of these
constraints. In this work we propose a new approach to formalizing
a memory model in which the model itself is part of a weak op-
erational semantics for a (possibly concurrent) programming lan-
guage. We formalize in this way a model that allows write opera-
tions to the store to be buffered. This enables us to derive the or-
dering constraints from the weak semantics of programs, and to
prove, at the programming language level, that the weak semantics
implements the usual interleaving semantics for data-race free pro-
grams, hence in particular that it implements the usual semantics
for sequential code.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages; D.3.4 [Pro-
gramming Languages]: Processors - Optimization

General Terms Languages, Theory

1. Introduction
Optimizing the performance of computing systems has always been
a concern for hardware and software technology, and therefore,
given that the latency of memory operations is one of the key
performance factors, it is not surprising that techniques have been
developed very early to minimize the cost of these operations in
program execution. As a typical optimization technique, shared
memory multiprocessors use write buffers and caches [15], thus
benefiting from a parallel architecture where memory operations
run concurrently with other instructions. These techniques, as well
as various optimizations performed by compilers, are naturally
intended to preserve the semantics of sequential code.

However, problems arise when executing concurrent code shar-
ing the memory. In particular, many algorithms designed for syn-

∗Work partially supported by the ANR-SETI-06-010 grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

chronization purposes (mutual exclusion, producer-consumer) fail
to achieve their goal in an optimized implementation setting. A
classical example (see for instance [3]) is with Dekker’s mutual
exclusion algorithm:

flag0 := false ‖ flag1 := false

if flag1 then if flag0 then

critical section0 critical section1

that may fail – that is, there exists an execution where both threads
can enter their critical section –, for various reasons. For instance,
the hardware might allow to reorder independent statements, mak-
ing the assignments flag0 := false and flag1 := false to happen af-
ter, or in parallel with the subsequent conditional branchings. These
assignments could also be delayed in some communication struc-
ture (write buffer or cache) before they actually affect the memory,
there again opening the possibility for the conditional branchings
to read a wrong value from the memory. Another standard example
(again given in [3]) is the one of a producer-consumer algorithm.
Namely, with the program

data := 1 ‖ while not flag do skip

flag := true r := data

one could get a wrong value for r if the assignment data := 1 is
delayed with respect to flag := true, or if r := data is specula-
tively done before while not flag do skip. To compensate for these
failures, the hardware usually offers various synchronization fea-
tures: memory barriers (fence), read-modify-write atomic instruc-
tions (test-and-set, compare-and-swap).

The optimizations implemented in commercial hardware or
software work fine for sequential programs, but the failure of the
standard interleaving semantics prompted researchers to under-
stand which semantics for shared variable concurrency is actually
supported by these optimized hardware architectures and compil-
ers. Then the notion of a weak, or relaxed memory model was in-
troduced [15], to serve as an abstract interface [4] (or a contract, as
we will see) between the programmer and the implementation. (In
the following we shall use “weak” and “relaxed” as synonymous.)
A memory model is intended to specify which values a read, in the
execution of a program, can return, and therefore it defines what
the possible outcomes of a concurrent system are. There are usually
more (possibly unwanted) outcomes for such a system than with
the standard interleaving semantics – which, as a memory model, is
known as Sequential Consistency (SC) [27] –, and memory mod-
els can be compared from this point of view. Numerous relaxed
(w.r.t. SC) memory models have been introduced: Weak Ordering
(WO) [4, 15], Processor Consistency (PC) [21], Release Consis-
tency (RCsc and RCpc) [19], Location Consistency (LC) [17], and
many others (see [2] and [34] for a survey). These models are for-
mulated, quite abstractly, as constraints on the ordering of memory
operations.

The problem of understanding the semantics supported by
shared memory architectures recently regained a lot of interest,

prompted by the fact that some programming languages, e.g. JAVA,
offer a multithreading facility at the application programming level.
Defining an abstract memory model for a high-level programming
language is not an easy task, and, despite considerable efforts have
been made to propose a revision of the original JAVA Memory
Model (JMM, see [29]), this is still a controversial matter [6, 14].
However, a consensus has emerged as regards the rôle of memory
models: a memory model is now generally conceived as a contract
between the (application) programmer and the implementor [4].
The latter should use it as delineating the allowed optimizations,
while the former is ensured that, provided he/she writes “prop-
erly synchronized” programs, he/she will get a semantics which is
equivalent to the usual interleaving semantics. Well-synchronized
programs1 are also data-races free (DRF), and therefore the pro-
grammer’s side of the contract memory models should provide
is also known as the “DRF guarantee.” This DRF guarantee is a
good property to have, because the interleaving semantics pro-
vides a reasonable basis for the formal understanding, analysis and
verification of concurrent programs (and this is also a portability
guarantee).

Memory models are usually defined by means of various par-
tial orders relating actions, or more precisely events in an execu-
tion. This is the way the JMM [29] is (re)defined for instance. A
proof of the DRF guarantee for this model was given in [29], and
later formalized using proof assistants (Isabelle [5] and COQ [25]),
which revealed some subtle problems. Some other proofs of a sim-
ilar result were previously given in [4, 19, 20] using different for-
malisms, but it seems fair to say that all these proofs, including the
most formal ones, only establish a very abstract version of the DRF
guarantee, from which the notion of a program, in the sense of pro-
gramming languages, is actually absent. Our aim here is to give a
proof of the DRF guarantee, that is, a proof of the fact that a relaxed
memory model implements the interleaving semantics for data-race
free programs, at the programming language level. To this end, we
introduce a new way of defining a memory model.

In the approach we propose, the memory model is defined as
part of a weak operational semantics for the programming language
(as opposed to the strong, i.e. interleaving semantics). Our weak
operational semantics is quite concrete: to formalize the memory
access reorderings supported by relaxed memory models, and to
get a model similar to an architecture involving write buffers, we
introduce a construct 〈B〉T to describe (part of) a configuration
involving a write bufferB, which, for some references (or pointers)
p1, . . . , pk, separately records sequences of values to be written in
the memory. That is, B is a mapping

B = {p1 7→ v1
1 · · · v1

n1 , . . . , pk 7→ vk1 · · · vknk
}

where vi1 is the first-in value for pi, and vini
is the last-in value. The

syntax for thread systems with write buffers is given by

T ::= e | 〈B〉T | (T ‖T ′)

where e is any program of the language. We should think of these
as (downwards) trees, with unary nodes labeled by buffers, binary
nodes putting together parallel components, and where each leaf is
a thread, that is a program. The shared memory (or store) should
be seen as sitting over the root of such trees. The buffer B in
〈B〉T collects the write operations issued from the thread system
T , and is shared among all the threads in T . Then in our weak
operational semantics a write instruction (p := v) does not directly
affect the memory, but puts the value v for p in a buffer on the
path to the store. For instance we have, using ML’s notation ! p for

1 We deviate here from the standard terminology, where “well-synchro-
nized” – or “properly labeled” [19] – is often taken as synonymous to “data-
race free.”

dereferencing a pointer:

x := 1 ; r0 := ! y ‖ y := 1 ; r1 := !x
∗→ 〈x 7→ 1〉r0 := ! y ‖ 〈y 7→ 1〉r1 := !x

Then the writes are propagated from the buffers to the store, in an
asynchronous way (the precise semantical rules are given in Section
4). For each pointer, the propagation of values follows the FIFO
order determined by the sequencing of thread instructions, but is
otherwise performed in an interleaved manner, and is asynchronous
with respect to the execution of threads. That is, the propagation
of writes is parallel to the execution of threads. A read operation
! p returns the most recent value for p, as viewed from the thread
issuing this operation, that is, the last-in value for p in the closest
buffer on the path from the thread reading p to the store, if any,
or the value stored for p in the shared memory otherwise. Then,
assuming that the memory initially contains {x 7→ 0, y 7→ 0},
a possible execution, where the buffered writes are delayed with
respect to the execution of the threads, is the following:

x := 1 ; r0 := ! y ‖ y := 1 ; r1 := !x
∗→ 〈x 7→ 1〉r0 := 0 ‖ 〈y 7→ 1〉r1 := 0

That is, we get the outcome {r0 7→ 0, r1 7→ 0}, which we
cannot get by the usual interleaving semantics. (This is similar to
what happens with the mutual exclusion algorithm example given
above.) In our model, there are queues of values to write in the
memory for each reference, and not just sequences of writes. Then
the writes on distinct references issued by a given thread may be
reordered in the propagation process (this is called “jockeying” in
[15]). For instance, consider the following system of threads:

r0 := ! y ; ‖ x := 1 ;

r1 := !x y := 1

Then, starting with {x 7→ 0, y 7→ 0}, a possible outcome is
{r0 7→ 1, r1 7→ 0}, since, representing termination by (), we have:

r0 := ! y ; r1 := !x ‖ x := 1 ; y := 1
∗→ r0 := ! y ; r1 := !x ‖ 〈x 7→ 1, y 7→ 1〉()
→ 〈y 7→ 1〉

`
r0 := ! y ; r1 := !x ‖ 〈x 7→ 1〉()

´
The various relaxations, that is, reorderings of memory operations
that are allowed in our model, are observed from the behaviour
of threads dictated by the rules of the weak operational semantics,
rather than being prescribed a priori in an axiomatic manner. Ac-
cording to the classification of Adve and Gharachorloo’s tutorial
paper [3], we can say that our model implements:
W→R, that is reordering of a read of some reference w.r.t. writes

on distinct references previously issued by the same thread;
W→W, that is reordering of writes issued by a given thread on

distinct references;
Read others’ write early, that is the possibility to read a write is-

sued by another thread, even before this write has affected the
memory;

Read own write early, the same, with respect to the writes issued
by a given thread.

On the other hand, our model does not implement R→RW, that
is, the reordering of reads with respect to subsequent memory
operations in the same thread (this is explained in Section 4). One
can also see that our model maintains “write atomicity” in the sense
of [3].

To the best of our knowledge, with the exception of [33] that
we will comment in Section 6, most of the approaches about mem-
ory models describe such a model using partial orders, prescribing
in an axiomatic way which are the allowed (schemata of) execu-
tions, as sets of events equipped with partial order relations (see

[29, 34] for instance, and [14] for an approach using the more ab-
stract configuration structures). However, this notion of an accept-
able execution is generally not used (with the exception of [13]) to
give a weak semantics to programs. The paper [18] for instance ar-
gues that high-level memory models should be used to support an
end-to-end approach; however, the proposed memory model (LC),
which is based on partial order execution semantics, is not related
to the semantics of some high-level concurrent programming lan-
guage. In our proof of the DRF guarantee, we shall also use a partial
order relation on events, to establish that data-race free programs
are well-synchronized, that is the fact that two conflicting actions
performed concurrently in a computation sequence of a DRF pro-
gram are separated by a synchronization action (more precisely, an
unlock action). However, here we directly extract this partial or-
der from the standard interleaving semantics of threads, using “true
concurrency” techniques [11, 12]. Then both our memory model
and our proof of the DRF guarantee are based on descriptions of
the strong (that is, interleaving) and weak semantics that follow
the standard operational style which, we believe, is easier to un-
derstand, and to formally manipulate (as our proof shows), than an
axiomatic partial order semantics.

To conclude this introduction, we must point out that we do not
claim we are proposing a new relaxed memory model. Our contri-
bution rather is to propose using an operational approach to such
models, as this allows us to give a proof of the DRF guarantee at
the programming language level. Our proof uses arguments that,
we think, could be adapted to other models than the one with write
buffers we are considering here. In particular, it would be interest-
ing to apply similar techniques to more concrete models, closer to
actual hardware designs, possibly with a different geometry than a
tree as regards the interconnection network, and to the weak con-
currency semantics introduced by compiler optimizations for se-
quential code. For such weak semantics one should also prove the
DRF guarantee.

The rest of the paper is organized as follows: in Section 2 we
introduce our language, which is Core ML (without typing) with
some concurrent programming constructs, and we define the refer-
ence (interleaving) semantics of this language – the one a program-
mer is supposed to understand. This section also defines the data-
race freeness property. Then, in Section 3 we use Berry and Lévy’s
equivalence by permutation of computations [7, 28] to show that
DRF programs are properly synchronized. In Section 4 we intro-
duce our main contribution, namely the weak operational seman-
tics of the language, involving write buffering. Then in Section 5,
using the bisimulation method, we show our main result, namely
that the weak semantics does not introduce unwanted outcomes for
DRF programs. In Section 6, we briefly discuss some related work,
and finally conclude, indicating some possible future work.

2. The Language
Our language is basically Core ML (without typing), that is an
imperative call-by-value λ-calculus, enriched with thread creation
and a construct for ensuring mutual exclusion. The syntax is:

e ::= v | (e0e1) expressions
| (ref e) | (! e) | (e0 := e1)

| (thread e) | (with ` do e)

v ::= x | λxe | () values

where ` is a lock, that is a name from a given infinite set Locks .
As usual, λ is a binder for the variable x in λxe, and we shall
consider expressions up to α-conversion, that is up to the renaming
of bound variables. The capture-avoiding substitution of e0 for the
free occurrences of x in e1 is denoted {x 7→e0}e1. We shall use
some standard abbreviations like (let x = e0 in e1) for (λxe1e0),

which is also denoted e0 ; e1 whenever x does not occur free in e1.
We could easily add to the language standard constructs such as
recursion, or conditional branching on boolean values.

To state the operational semantics of the language, we have to
extend it with run-time constructs, in two ways. First, we introduce
references (sometimes also referred to as memory locations, mem-
ory addresses, or pointers) p, q, . . . that are names from a given
infinite setRef (disjoint from Locks). These are (run-time) values.
Then we use the construct (holding ` do e) to hold a lock for e.
As it is standard with languages involving concurrency with shared
variables, we follow a small-step style to describe the operational
semantics, where an atomic transition consists in reducing a redex
(reducible expression) within an evaluation context, while possibly
performing a side effect. The syntax is then extended and enriched
as follows:

p, q . . . ∈ Ref references
v ::= · · · | p run-time values
e ::= · · · | (holding ` do e) run-time expressions

r ::= (λxev) redexes
| (ref v) | (! p) | (p := v)

| (thread e) | (with ` do e) | (holding ` do v)

E ::= [] | (E e) | (vE) evaluation contexts
| (ref E) | (! E) | (E := e) | (v := E)

| (holding ` do E)

As usual, we denote by E[e] the expression resulting from filling
the hole in E by e. Every expression of the (run-time) language is
either a value, or a redex in a position to be reduced, or faulty. More
precisely, let us say that an expression is faulty if it has one of the
following forms:

• (ve) where the value v is not a function λxe′;
• (! v) or v := v′ where the value v is not a reference.

Then we have:

LEMMA 2.1. For any expression e of the run-time language, either
e is a value, or there is a unique evaluation context E and a
unique expression e′ which either is a redex, or is faulty, such that
e = E[e′].

(The proof, by induction on e, is immediate.)
The transitions in the operational semantics go from one con-

figuration to another. A configuration is a triple (S,L, T) where S
is the store, L is the lock context, and T is a thread system. Let us
define these components, and introduce some notations. The store,
also called here the memory, is a mapping from a finite set dom(S)
of references to values. We denote by S[p := v] the store obtained
from S by updating the value of the reference p to v. The lock
context L is a finite set of locks, those that are currently held by
some thread. More concretely, this would be represented by a spe-
cific part of the store, giving to a finite number of locks a value (not
directly accessible from the language) from the set {free, busy}.
However, in the relaxed semantics we will have to maintain this
distinct from the standard store. Finally T is a thread system. This
could be given some structure, like a multiset, or a queue of threads
(that is, expressions), but for our purposes it will be convenient to
have some syntax for that, namely:

T ::= e | (T ‖T ′)

That is, a thread system is a parallel composition of expressions.
This syntax is rigid, in the sense that here parallel composition is
not assumed to be commutative or associative.

(S,L,T[E[(λxev)]]) → (S,L,T[E[{x 7→v}e]])
(S,L,T[E[(ref v)]]) → (S ∪ {p 7→v}, L,T[E[p]]) p 6∈ dom(S)

(S,L,T[E[(! p)]]) → (S,L,T[E[v]]) S(p) = v

(S,L,T[E[(p := v)]]) → (S[p := v], L,T[E[()]])

(S,L,T[E[(thread e)]]) → (S,L,T[(E[()] ‖ e)])
(S,L,T[E[(with ` do e)]]) → (S,L ∪ {`},T[E[(holding ` do e)]]) ` 6∈ L

(S,L,T[E[(holding ` do v)]]) → (S,L− {`},T[E[v]])

Figure 1: the Interleaving Semantics

We shall use the symbol C to denote configurations. These
configurations (S,L, T) will be qualified as strong, or sometimes
standard, in what follows (where there will also be a notion of
weak configuration). As usual, we shall assume we consider only
well-formed configurations, meaning that any reference that occurs
somewhere in the configuration belongs to the domain of the store,
that is, it is bound to a value in the memory – we shall not define
this property, which is preserved in the operational semantics, more
formally. For instance, if e is an expression of the source language,
the initial configuration (∅, ∅, e) is well-formed.

Our last ingredient before defining the operational semantics is
the one of parallel evaluation context, given by

T ::= [] | (T ‖T) | (T ‖T)

The operational semantics of the language is given in Figure 1. As
one can see, this is the usual interleaving semantics. At each step
one non-deterministically chooses a thread of the form E[r] to re-
duce, if any. Reducing a redex is always an atomic, and, apart from
the possible choice we have when creating a new reference, deter-
ministic step. This semantics is intended to serve as the reference
semantics for a programmer writing in our language. Since this se-
mantics is quite standard, we do not further comment it. Let us
just note that (with ` do e) is a structured synchronization con-
struct (which we borrow from [31]), the semantics of which is that
it performs a test-and-set operation on the lock ` and, if this suc-
ceeds, proceeds up to the termination of e, upon which the lock is
released.

As usual, we denote by C ∗→ C′ the reflexive and transitive
closure of the transition relation, and we say that C′ is reachable
from C if C ∗→ C′. Our main result will be established for
configurations that are reachable from an initial configuration of
the form (∅, ∅, e) where e is an expression of the source language.
More generally, we shall consider regular configurations, where at
most one thread can hold a lock, and where a lock held by some
thread is indeed in the lock context. This is defined as follows:

DEFINITION (REGULAR CONFIGURATION) 2.2. A configuration
C = (S,L, T) is regular if and only if it satisfies
(i) if T = T0[E0[(holding ` do e0)]] = T1[E1[(holding ` do e1)]]
then T0 = T1 & E0 = E1 & e0 = e1

(ii) T = T[E[(holding ` do e)]] ⇒ ` ∈ L
For instance, any configuration of the form (∅, ∅, e) where e is an
expression of the source language is regular. The following should
be obvious:

REMARK 2.3. If C is regular and C → C′ then C′ is regular.

Apart from regularity, the only property of programs (that is, ex-
pressions) we shall consider in the following is data-race freeness.
This is a safety property, meaning that one cannot reach a configu-
ration where there are simultaneous accesses to the same reference,
one of them being a write access:

DEFINITION (DRF PROGRAMS) 2.4. A configuration C =
(S,L, T) involves a data-race if T = T[E[r]] = T′[E′[r′]] with
T 6= T′, where r and r′ are both accesses to the same reference
p, that is redexes (! p) or (p := v), at least one of them is a write
(that is, an assignment). A configuration C is data-race free if one
cannot reach from C a configuration that involves a data-race. An
expression e is data-race free if the initial configuration (∅, ∅, e) is
data-race free.
To conclude this section, let us make a comment on the synchro-
nization constructs. We could easily add to the language a construct
new lock, for creating a new lock, which is a run-time value. Then
we would use (with e0 do e1) where e0 is an expression. We could
also use explicit locking (lock e) and unlocking (unlock e) con-
structs, but we think it is a better discipline to use a block-structured
construct as the one proposed here.

It should intuitively be clear that if, in every computation of
a given configuration, two concurrent conflicting accesses to the
same memory location are separated by a synchronization action,
then the configuration is data-race free. The next section is devoted
to establish that the converse is true.

3. Concurrency, Conflict and Event Ordering
To prove our main result regarding DRF programs, we need to in-
troduce a refined presentation of the operational semantics, where
we make explicit where a reduction occurs, and what reduction
occurs. In doing this, we take our inspiration from previous work
on “true concurrency semantics” [11, 12], which in turn relied on
Berry and Lévy’s notion of permutation equivalence of computa-
tions [7, 28]. Our aim here is to be able to define in a rigorous way
the notion of the “happens before” relation [26]. More generally,
we aim at defining, with respect to a given execution sequence of
a program, an ordering meaning that an event in the computation
sequence “intrinsically precedes” another one, that is, we cannot
make the latter occur before the former, whatever reordering we
can make of the sequence, by commuting concurrent, non conflict-
ing steps. In order to define this notion, we have to introduce some
technical definitions. We shall use various kinds of sequences in the
following, which we shall collectively denote by σ, ξ . . . (and later
also γ), and therefore we fix a few notations regarding sequences:
the empty sequence is always denoted ε, and the concatenation of
the sequence σ′ after the sequence σ is denoted σ · σ′. The prefix
ordering is denoted ≤, that is, σ ≤ σ′ if σ′ = σ · σ′′ for some σ′′.
The length of σ is |σ|.

Now, we first need a notion of occurrence, denoting a path
from the root to a node in a binary tree made of expressions put
in parallel. An occurrence is a sequence of symbols �, meaning
“on the left of a parallel composition,” and �, meaning “on the
right.” We denote by Occ the set of occurrences, that is the free
monoid {�, �}∗, and we use occ, or sometimes simply o, to range
overOcc. For each thread system T and occurrence occ, we define
the subsystem (subtree) T/occ of T at occurrence occ – if this is

(S,L,T[E[(λxev)]])
β−−→

@T
(S,L,T[E[{x 7→v}e]])

(S,L,T[E[(ref v)]])
νp−−→
@T

(S ∪ {p 7→v}, L,T[E[p]]) p 6∈ dom(S)

(S,L,T[E[(! p)]])
rdp−−→
@T

(S,L,T[E[v]]) S(p) = v

(S,L,T[E[(p := v)]])
wrp−−→
@T

(S[p := v], L,T[E[()]])

(S,L,T[E[(thread e)]])
spw−−→
@T

(S,L,T[(E[()] ‖ e)])

(S,L,T[E[(with ` do e)]])
y
`−−→

@T
(S,L ∪ {`},T[E[(holding ` do e)]]) ` 6∈ L

(S,L,T[E[(holding ` do v)]])
x
`−−→

@T
(S,L− {`},T[E[v]])

Figure 2: the Decorated Operational Semantics

indeed an occurrence of a subtree –, in the obvious way, that is:

T/ε = T

(T ‖T ′)/ � · occ = T/occ

(T ‖T ′)/ � · occ = T ′/occ

(otherwise undefined), and we define similarly T/occ. The (unique)
occurrence of the hole in a parallel context, that is occ satisfying
T/occ = [], is denoted @T. Whenever occ is an occurrence in T ,
that is T/occ is defined, we denote by T [occ := T ′] the thread
system obtained from T by replacing the subtree T/occ at occur-
rence occ by T ′ (we omit the formal definition, by induction on
occ, which should be obvious).

With the notion of an occurrence, we are able to say where, that
is, in which thread, a reduction occurs: an occurrence is similar to
a thread identifier in a thread system (although in our setting this
identity may dynamically change, upon thread creation). Now to
say what occurs, we introduce the notion of an action. There are
several kinds of actions: performing a β-reduction, creating a new
reference p in the store, reading or writing a reference, spawning
a new thread, and taking or releasing a lock `. Then the syntax of
actions is as follows:

a, b . . . ::= β | νp | rdp | wrp | spw |
y
` |

x
`

We denote by Act the set of actions. We now are in a position
where we can formulate our refined, that is, decorated operational
semantics. This takes the form of transitions

(S,L, T)
a−→
o

(S′, L′, T ′)

where a is the action performed, and o the occurrence where it is
done. This is described in Figure 2. The relation between the two
presentations of the semantics should be obvious:
LEMMA 3.1. For any configuration C, we have C → C′ if and
only if C a−→

o
C′ for some action a and occurrence o.

Two occurrences in a thread system T are concurrent if, intuitively,
they lead to non-overlapping parts of the tree T , or in other words,
they are diverging paths. This is easily formally defined:
DEFINITION (CONCURRENCY) 3.2. Two occurrences o and o′ are
concurrent, in notation o ^ o′, if neither is prefix of the other:
¬(o ≤ o′) & ¬(o′ ≤ o).
It is easy to see for instance that if occurrence o2 follows occurrence
o1 in a sequence of (decorated) transitions, then either o1 ^ o2 or
o1 ≤ o2, that is, o2 cannot be a strict prefix of o1. One can also
observe that a thread system T involves a data-race if there are
concurrent occurrences of accesses to the same reference in T , one
of which is a write. The following should be clear:

REMARK 3.3. If o1 ^ o2, and T/o1 and T/o2 are both defined,
then for any T1 and T2 we have (T [o1 := T1])[o2 := T2] =
(T [o2 := T2])[o1 := T1].
We now define what it means for actions to be conflicting. With the

idea that locking (
y
`) and unlocking (

x
`) are both write actions in a

sense, we have:
DEFINITION (CONFLICT) 3.4. The conflict relation # is the bi-
nary relation on actions given by

=def

S
p∈Ref {(νp, νp), (wrp,wrp), (wrp, rdp), (rdp,wrp)}

∪
S
`∈Locks{

y
` ,

x
` } × {

y
` ,

x
` }

This is a symmetric relation which in particular, says that accesses
to the same reference in the store are conflicting and cannot be re-
ordered, because this would in general result in a different state,
unless, obviously, both accesses are made to read the memory.

We could prove, as in [11, 12], a diamond lemma, which
is a conditional confluence property saying that two concurrent
and non-conflicting transitions from a given configuration can be
“pushed-out” (in the sense of category theory) to close the diagram,
resulting in a common configuration. This was the basis for defin-
ing the equivalence by permutation of computations in the above
mentioned papers. Here we shall use another property, which we
call asynchrony (see [12] for references about this terminology).
This property asserts that two consecutive steps in a computation
can be commuted if the actions are not conflicting, and the occur-
rences where they are performed are disjoint:

LEMMA (ASYNCHRONY) 3.5. If C
a1−→
o1

C1
a2−→
o2

C2 where

¬(a1 # a2) and o1 ^ o2 then there exists a unique configuration
C′1 such that C

a2−→
o2

C′1
a1−→
o1

C2.

PROOF: for this proof we let C = (S,L, T), C1 = (S1, L1, T1)
and C2 = (S2, L2, T2). First we observe that if T = T1[E1[r1]]
with T1 = T1[e1] = T2[E2[r2]], so that o1 = @T1 and o2 =
@T2, with T2 = T2[e2], then we have T/o2 = E2[r2] since o1 ^
o2. Then if a2 can be performed from (S,L, T) at occurrence o2,
which only depends on S and L, with

(S,L, T)
a2−→
o2

(S′1, L
′
1, T

′
1) = C′1

where T ′1 = T [o2 := e2], then T ′1/o1 = E1[r1] and we know by
Remark 3.3 that, if the action a1 can be performed at occurrence
o1 from (S′1, L

′
1, T

′
1) (which only depends on S′1 and L′1), this will

result in a configuration of the form (S′2, L
′
2, T

′
2) where T ′2 = T2.

It remains to check that, thanks to the hypothesis ¬(a1 # a2), the

steps can indeed be permuted, and that S′2 = S2 and L′2 = L2.
Then we proceed by a case analysis on the transitions. Let us just
examine a few cases and sketch the corresponding proof (all the
numerous cases are actually equally easy). In particular, we do not
investigate the cases where one of the actions has no side effect,
that is, one of the actions is β or spw, where it is obvious that the
two actions can be commuted.
• a1 = νp. In this case we cannot have a2 = rdp or a2 = wrp,
since this would imply o1 ≤ o2 (for p does not occur in T , since the
configuration (S,L, T) is well-formed), a contradiction. If a2 = νq
we must have q 6= p since p ∈ dom(S1), and in this case

(S,L, T)
a2−→
o2

(S′1, L, T
′
1)

with dom(S′1) = dom(S) ∪ {q}, and therefore a1 can be per-
formed from the configuration (S′1, L, T

′
1) since p 6∈ dom(S′1),

and performing a1 results in (S2, L2, T2) (where L2 = L). All the
other cases are easy.
• a1 = wrp. In this case we know that a2 is neither wrp nor rdp. If,
for instance, a2 = wrq with q 6= p, then we have S1 = S[p := v1]
and S2 = S1[q := v2] for some values v1 and v2. Then if we let
S′1 = S[q := v2], we clearly have S2 = S′1[p := v1], and we
easily conclude in this case.

• a1 =
y
` . In this case S1 = S and L1 = L ∪ {`} with ` 6∈ L.

The action a2 cannot be neither
y
` nor

x
` , and it is easy to see that

it can be performed from (S, T, L), resulting in (S′1, L, T
′
1), and

therefore a1 can be performed from the latter configuration. The

case where a1 =
x
` is similar.

We can now define the equivalence by permutation of transitions
on computations. A computation is a sequence of (decorated) tran-
sitions

γ = C0
a1−→
o1

C1 · · · Cn−1
an−−→
on

Cn

More formally, γ is a sequence of steps Ci
ai+1−−−→
oi+1

C′i such that

Cj+1 = C′j for any j, but one should notice that, given an ini-
tial configuration C0, the sequence of actions and occurrences is
enough to determine the whole computation (and among the ac-
tions, only the νp’s are actually necessary). Then the equivalence
by permutation is the congruence (with respect to concatenation,
which, on computations, is only partially defined) on such se-
quences generated by the asynchrony property:
DEFINITION (EQUIVALENCE BY PERMUTATION) 3.6. The equi-
valence by permutation of transitions is the least equivalence ' on
computations such that
(i) if C

a1−→
o1

C1
a2−→
o2

C2 where ¬(a1 # a2) and o1 ^ o2 then

C
a1−→
o1

C1
a2−→
o2

C2 ' C
a2−→
o2

C′1
a1−→
o1

C2

where C′1 is determined as in the Asynchrony Lemma;
(ii) γ0 ' γ′0 & γ1 ' γ′1 ⇒ γ0 · γ1 ' γ′0 · γ′1.
It should be clear that if γ ' γ′ then |γ| = |γ′|, and γ and
γ′ perform the same actions at the same occurrences (and in the
same number for each of such pair), possibly in a different order.
The main purpose of this definition is to allow us to formally
define an event ordering relation with respect to a computation
γ. To introduce this last notion, let us first see an example. Let
e0 = (p := v), e′0 = (p := v′) e1 = (λx(λzze′0)()) and
T = (e0 ‖ e1). Then for S satisfying p ∈ dom(S) we have

γ = (S, ∅, T)
wrp−−→
�

(S′, ∅, (() ‖ e1))
β−→
�

(S′, ∅, (() ‖(λzze′0))
wrp−−→
�

(S′′, ∅, (() ‖(λzz())) β−→
�

(S′′, ∅, (() ‖())

This computation is equivalent to the following one:

(S, ∅, T)
β−→
�

(S, ∅, (e0 ‖(λzze′0)))
wrp−−→
�

(S′, ∅, (() ‖(λzze′0))
wrp−−→
�

(S′′, ∅, (() ‖(λzz())) β−→
�

(S′′, ∅, (() ‖())

where we have permuted the first two steps. We cannot go further,
since the second step in this computation is conflicting with the
third, which in turn is not concurrent with the last one (these last
two steps are in “program order” since they are performed from
the same thread). In this example we can say that the first wrp
“inherently precedes” (this will be formally defined below) the
second such action, and also precedes the second β, and that the
first β “inherently precedes” the second wrp and the second β.
This example shows that a given action, say wrp, may have, in a
given computation, like γ, several different relations with another
action, like β. Then the notion of action, even if complemented with
its occurrence, is not the right basis to define the ordering we are
looking for. We have to introduce the notion of an event, as follows:

DEFINITION (EVENTS) 3.7. An event in a computation γ is a
pair (a, o)i decorated by a positive integer i, where the action a
is performed at occurrence o in the computation γ, and i is less
than the number of such pairs (a, o) in γ (that is, (a, o)i is the i-th
occurrence of action a performed at occurrence o in γ). We denote
by Event(γ) the set of events determined by the computation γ.

For instance, for the computation γ above, we have

Event(γ) = {(wrp, �)
1, (wrp, �)

1, (β, �)1, (β, �)2}

For a given computation

γ = C0
a1−→
o1

C1 · · · Cn−1
an−−→
on

Cn

we denote by ∂(γ) the sequence (a1, o1)1 · · · (an, on)k of events
of γ in temporal order, that is, as they appear successively in γ. We
can finally define the event ordering determined by a computation:

DEFINITION (EVENT ORDERING) 3.8. Given a computation
γ, we say that an event (a, o)i ∈ Event(γ) inherently precedes
(a′, o′)j ∈ Event(γ) in γ, in notation (a, o)i ≤γ (a′, o′)j , if and
only if in any γ′ ' γ, the i-th occurrence of (a, o) precedes the
j-th occurrence of (a′, o′).

It should be clear that this is indeed an ordering, that is, a reflexive,
transitive and anti-symmetric relation. Moreover, two conflicting
actions can never be permuted, and therefore if

∂(γ) = σ0 · (a, o)i · σ1 · (a′, o′)j · σ2

with a # a′ then (a, o)i ≤γ (a′, o′)j . For instance, in the compu-
tation γ above, we have

(wrp, �)
1 ≤γ (wrp, �)

1 ≤γ (β, �)2

and

(β, �)1 ≤γ (wrp, �)
1

The event ordering in a computation contains in particular the
“program order,” that relates actions (a, o) and (a′, o′) in temporal
order, such that o ≤ o′ (this ordering also takes into account the
“creation of redexes” identified by Lévy [28] in the λ-calculus).

To conclude this section we prove a property of DRF programs
that will be crucial in establishing our main result. This property
shows in particular that if, in a computation starting from a DRF
configuration, two conflicting actions are performed concurrently,
then in between the two there must be a synchronization, that is an

action
x
` of releasing a lock. Let us define:

DEFINITION (WELL-SYNCHRONIZED) 3.9. A configuration C is
well-synchronized if, for any computation

C = C0
a1−→
o1

C1 · · · Cn−1
an−−→
on

Cn

where ai # aj (with i < j) and oi ^ oj then there exists h such

that i 6 h 6 j, ah =
x
` and oi ≤ oh.

This is similar to the DRF0 property of [4]. To show that DRF pro-
grams are well-synchronized, we first need a lemma, stating that, in
a computation, two events, one of which precedes, in serialization
order, the other one, but not inherently, can be moved to occur in
the reverse temporal order:

LEMMA (TRANSPOSITION) 3.10. Let γ be a computation such
that

∂(γ) = σ0 · (a, o)i · σ1 · (a′, o′)j · σ2

with (a, o)i 6≤γ (a′, o′)j . Then there exists γ′ ' γ such that
∂(γ′) = σ0 · σ′1 · (a′, o′)j · (a, o)i · σ′′1 · σ2.

PROOF: by induction on |σ1|. If σ1 = ε, we have neither o ≤ o′

nor a # a′, since otherwise we would have (a, o)i ≤γ (a′, o′)j ,
and therefore o ^ o′ and ¬(a # a′). Then by definition of
the permutation equivalence we can commute these two steps. If
σ1 = (a′′, o′′)h · ξ there are two cases:

• (a′′, o′′)h 6≤γ (a′, o′)j . In this case we apply twice the induction
hypothesis, to transpose first (a′′, o′′)h and (a′, o′)j , and then the
latter with (a, o)i.

• (a′′, o′′)h ≤γ (a′, o′)j . We do not have o ≤ o′′, since otherwise
we would have (a, o)i ≤γ (a′, o′)j by transitivity, and therefore
o ^ o′′. Similarly, it is impossible that a # a′′, and then by
definition of the permutation equivalence we can transpose (a, o)i

with (a′′, o′′)h, and conclude using the induction hypothesis.

PROPOSITION 3.11. DRF regular configurations are well-syn-
chronized.

PROOF: we show that for any computation γ starting from a DRF
regular configuration C, if

∂(γ) = σ0 · (a, o)i · σ1 · (a′, o′)j · σ2

with (a, o)i ≤γ (a′, o′)j and o ^ o′, then there exist `, o′′, k, ξ0
and ξ1 such that (a, o)i · σ1 · (a′, o′)j = ξ0 · (

x
` , o′′)k · ξ1 with

o ≤ o′′. We proceed by induction on |σ1|.
• σ1 = ε. In this case we must have a # a′, since otherwise
we could commute (a, o)i and (a′, o′)j , contradicting (a, o)i ≤γ
(a′, o′)j . Then we proceed by case on a# a′. It is impossible that
a = νp = a′, because one cannot create twice the same reference
in a given computation. If a, a′ ∈ {wrp, rdp} for some p, where
either a or a′ is wrp, then e is not data-race free, since o ^ o′.

Finally the only possible case is a, a′ ∈ {
y
` ,

x
` } for some `. Since

one cannot acquire twice the same lock consecutively in a compu-

tation, either a or a′ is
x
` . Moreover, since C is a regular configu-

ration, the same holds for the configuration performing (a, o)i, by

Remark 2.3, and therefore either a =
x
` , or a =

y
` , a′ =

x
` and

o′ = o.
• σ1 = (a′′, o′′)h · ξ. We distinguish again two cases.

(1) (a′′, o′′)h ≤γ (a′, o′)j . If o′′ ^ o′ then we use the induction
hypothesis to conclude. Otherwise, we have o′′ ≤ o′, and since
o ^ o′ this implies o′′ ^ o, for it cannot be the case that o′′ < o,
whereas o ≤ o′′ would imply o ≤ o′, contradicting o ^ o′. Now if
a#a′′ we argue as in the base case, and otherwise we can commute
(a, o)i with (a′′, o′′)h, and then apply the induction hypothesis.

(2) (a′′, o′′)h 6≤γ (a′, o′)j . In this case we use the Transposition
Lemma above, and conclude using the induction hypothesis.

4. The Weak Memory Model
In this section we introduce our main contribution, namely an oper-
ational formulation of a “relaxed” memory model. As indicated in
the Introduction, we extend the syntax of thread systems with a se-
mantical ingredient, namely the one of a (write) buffer. Our buffers
are not simply FIFO files recording the memory updates issued by
a thread. We adopt a weaker memory model, where the writes re-
garding each reference are independently buffered. Then a buffer B
is a mapping from a finite set dom(B) of references to sequences
of values. We use the symbol s to denote sequences v1 · · · vn of
values. In such a sequence the head (first-in value v1) is on the left,
and the tail is on the right, so that the last-in value is vn. In particu-
lar {p 7→ v} denotes a buffer which assigns to the single reference
p the sequence made of the single value v. We denote by W(B)
the set of references for which there is indeed some write operation
buffered in B, that is

W(B) =def { p | p ∈ dom(B) & B(p) 6= ε }

In order to formulate the weak semantics, we need some technical
definitions regarding buffers. First, we denote by B[p← v] the
buffer obtained from B by putting the value v at the end of the
queue assigned to this reference in B. If there is no such queue,
that is, if p 6∈ dom(B), this is simply B ∪ {p 7→ v}. Then we
denote by B ↑ p the buffer obtained by removing the first-in value
for p in B. We shall only use this in the case where p ∈ W(B),
and therefore we consider this is not defined otherwise. The thread
systems with write buffers are described as follows:

Θ ::= T | 〈B〉Θ | (Θ ‖Θ)

We extend the notation W to these trees, denoting by W(Θ) the set
of references for which there is a write operation buffered in Θ (the
formal definition, which should be obvious, is omitted). A weak
configuration is a configuration possibly involving write buffers,
that is a triple of the form (S,L,Θ). We still only consider well-
formed (weak) configurations, and this means in particular that if
p is in the domain of a buffer occurring in Θ, then we must have
p ∈ dom(S). We need to generalize the parallel contexts into weak
contexts, as follows:

Θ ::= [] | 〈B〉Θ | (Θ ‖Θ) | (Θ ‖Θ)

As above, W(Θ) denotes the set of references for which there is
a write operation recorded in the context Θ. In the semantics we
will use the most recent value for a reference p along a given path
in a weak configuration. In fact we shall only use this for the path
leading to a read instruction (! p) in a weak context Θ. In order to
define the most recent value for p in Θ, we first define the sequence
buff(p,Θ) of values buffered for p in Θ, as follows:

buff(p, []) = ε

buff(p, 〈B〉Θ) =

(
B(p) · buff(p,Θ) if p ∈W(B)

buff(p,Θ) otherwise

buff(p, (Θ ‖Θ)) = buff(p,Θ)

buff(p, (Θ ‖Θ)) = buff(p,Θ)

Then the most recent value for p in (S,Θ) is defined as follows:
DEFINITION (MOST RECENT VALUE) 4.1. Given a pair (S,Θ)
of a store S and a weak context Θ, for any reference p ∈ dom(S)
the most recent value given to p in (S,Θ), denoted (S,Θ)(p), is
the value v such that buff(p,Θ) = s · v, if such a value exists, and
S(p) otherwise.

(S,L,Θ[E[(λxev)]])
β−−−→

@Θ
→ (S,L,Θ[E[{x 7→v}e]])

(S,L,Θ[E[(ref v)]])
νp−−−→
@Θ
→ (S ∪ {p 7→v}, L,Θ[E[p]]) p 6∈ dom(S)

(S,L,Θ[E[(! p)]])
rdp−−−→
@Θ
→ (S,L,Θ[E[v]]) (S,Θ)(p) = v

(S,L,Θ[E[(p := v)]])
wrp−−−→
@Θ
→ (S,L,Θ[〈{p 7→ v}〉E[()]])

(S,L,Θ[E[(thread e)]])
spw−−−→
@Θ
→ (S,L,Θ[(E[()] ‖ e)])

(S,L,Θ[E[(with ` do e)]])
y
`−−−→

@Θ
→ (S,L ∪ {`},Θ[E[(holding ` do e)]]) ` 6∈ L

(S,L,Θ[E[(holding ` do v)]])
x
`−−−→

@Θ
→ (S,L− {`},Θ[E[v]]) Θ†

(S,L, 〈B〉Θ) −→
ε
→ (S[p := v], L, 〈B ↑ p〉Θ) B(p) = v · s

(S,L,Θ[〈B0〉〈B1〉Θ]) −−−→
@Θ
→ (S,L,Θ[〈B0[p← v]〉〈B1 ↑ p〉Θ]) B1(p) = v · s

(S,L,Θ[(〈B〉Θ ‖Θ′)]) −−−→
@Θ
→ (S,L,Θ[〈{p 7→ v}〉(〈B ↑ p〉Θ ‖Θ′)]) B(p) = v · s

(S,L,Θ[(Θ ‖〈B〉Θ′)]) −−−→
@Θ
→ (S,L,Θ[〈{p 7→ v}〉(Θ ‖〈B ↑ p〉Θ′)]) B(p) = v · s

(S,L,Θ[〈B〉Θ]) −−−→
@Θ
→ (S,L,Θ[Θ]) W(B) = ∅

Figure 3: the Weak Operational Semantics

We denote by Θ† the fact that there is no buffered write (for any
reference) in Θ on the path from the root to the occurrence of the
hole, that is:

Θ† ⇔def ∀p. buff(p,Θ) = ε

One may notice that if Θ†, then for any reference p the most recent
value for p in (S,Θ) is the one in the store S. As a last ingredient
we need in order to define the weak semantics, we extend the notion
of a path, i.e. occurrence, to the weak setting. We add a new symbol
↓ to denote a step through a buffer. Then the notion of subtree
Θ/occ at occurrence occ is redefined in the obvious way, with

〈B〉Θ/↓ · occ = Θ/occ

(the remaining clauses do not change). Similarly, the definition of
the occurrence of the hole in a weak context Θ, still denoted @Θ,
is extended in the obvious way, that is @〈B〉Θ = ↓ · @Θ. We
now have all the technical definitions needed to define the weak
operational semantics, which is described as transitions

(S,L,Θ)
a−→
o
→ (S′, L′,Θ′)

possibly without any action label. This is given in Figure 3. There
are several important differences with the reference semantics:

(1) when performing a read operation (! p), we take the value as the
most recent one for p along the path that leads to this operation.
This value is taken from the store only when there is no write
buffered for p on the path to the store, that is buff(p,Θ) =
ε. We could also adopt this as a condition for performing a
read operation (! p), thus defining a stronger memory model2,
without affecting the correctness result.

(2) a write operation (p := v) issued by a thread is delayed, that
is, the value v is put in a write buffer for p. Such an operation is
therefore asynchronous, that is, non-blocking.

(3) an unlock action now operates as a memory barrier, since one
cannot release a lock unless all the write buffers on the path to
the store are empty. Indeed, in an extended language, one could

2 similar to the IBM 370 model, and the PC model, see [3].

define:

fence =def (let x = new lock in (with x do ()))

Notice that, as usual, the semantics of acquiring or releasing a
lock are still “strong,” that is, these (write) operations are not
delayed, and are atomic.

In addition to that, the weak semantics involves operations to up-
date, in an asynchronous way (but respecting the “program order”
for each reference), the memory. This is done by means of the first
four undecorated transitions, where no action is indicated – we also
call these the silent transitions: the first one pushes a value from a
topmost write buffer into the store, and the other three transfer a
buffered value to an upper level.

With these rules, the write operations issued from a given thread
on different references are made independent, because a buffer
records a distinct queue for each reference, and therefore they may
be “globally performed,” that is, finally reach the store, in any order.
Similarly, the writes issued by different threads may update the
store with no particular order. We let the reader check that, for
instance, a possible outcome of

x := 1 ;
y := 2

‖
` p0 := ! y ;
x := 3

‖ p1 := !x ;
p2 := !x

´
is {p0 7→ 2, p1 7→ 3, p2 7→ 1}. This example is taken from [34], as
well as the following one:

x := 1 ; ‖ p2 := !x ;

p0 := ! y ; x := 2 ;

p1 := !x y := 3

where, a possible outcome is {p0 7→ 3, p1 7→ 1, p2 7→ 1}, as
the reader may check. An execution that is not permitted in our
model, but is allowed in the JAVA memory model for instance
is the following one. Let us assume the store initially contains
{x 7→ 0, y 7→ 0}. Then the outcome {p0 7→ 1, p1 7→ 1} is not
possible in our relaxed model for the program

p0 := ! y ;x := 1 ‖ p1 := !x ; y := 1

because one of the statements p0 := ! y or p1 := !x has to be
issued first, and in our model this means that ! y or !x has to be
evaluated, returning the value 0. That is, as in [15], the value to
store in an assignment is known at the time of issuance of the write
operation, and the relaxation, w.r.t. the strong semantics, concerns
memory operations (redexes) of the form p := v and ! p. In other
words, a feature of a memory model based on write buffers is that
it does not allow the reordering of reads after subsequent memory
operations (R→RW following the terminology of [3]).

The alert reader may have noticed that our semantics is a little
bit too rigid. For instance, with the program

(thread p0 := !x) ;(thread p1 := !x) ;x := 1

and the initial store {x 7→ 0}, the outcome {p0 7→ 1, p1 7→ 0} is
not possible, because the second thread is always informed of the
write x := 1 before the first one. As a remedy to this, we could
adopt a non-deterministic semantics for thread creation, namely

(S,L,T0[T1[E[(thread e)]]])→ (S,L,T0[(T1[E[()]] ‖ e)])

However, the proof of our main result would be more complicated
with this rule, and therefore we do not consider it, since we are
mainly interested in the semantics of DRF programs. (The seman-
tics of programs that run into a data-race is sometimes considered
undefined, see [8, 31] for instance.)

Clearly, by modifying the architecture of the weak configura-
tions, we could describe different memory models. For instance,
the write buffers could be queues of pairs (p, v) meaning that an
update for reference p has been issued, in which case reordering
the writes issued from a given thread is impossible. One could also
assume that there is only one, or a finite number of buffers at the top
of the configuration, thus reflecting static architectures with a fixed
number of processors each with their own write buffers. All these
models are stronger, that is, less relaxed than the one we describe
in Figure 3, and therefore they induce fewer weak behaviours for
programs.

The last rule in Figure 3 allows one to remove empty buffers. In
this way, we may reduce a weak configuration to a standard one. To
see this, let us denote by (S,L,Θ)

∗−→→ (S′, L′,Θ′) the transition
relation inductively defined by the following rules:

C
∗−→→ C

C −→
o
→ C′′

∗−→→ C′

C
∗−→→ C′

and let Θ//occ be the buffer found at node occ in Θ, if any, that is:

〈B〉Θ//ε = B

〈B〉Θ//↓ · occ = Θ//occ

(Θ ‖Θ′)// � · occ = Θ//occ

(Θ ‖Θ′)// � · occ = Θ′//occ

Then we define the size |Θ| of the thread system with buffers Θ as
follows:

|T | = 0

|〈B〉Θ| = 2 + ‖Θ‖+ |B|

|(Θ0 ‖Θ1)| = 2 +
(|Θ0|+ |Θ1|)(|Θ0|+ |Θ1|+ 3)

2

where
|B| =

P
p∈W(B) |B(p)|

‖Θ‖ =
P
{ o|∃B. Θ//o=B } |Θ//o|

Then we have

LEMMA (TERMINATION) 4.2. (S,L,Θ) −→→ (S′, L,Θ′) ⇒
|Θ| > |Θ′|

(The proof is omitted.) One can also check that if |Θ| > 0 then
there is (S′, L,Θ′) such that (S,L,Θ) −→→ (S′, L,Θ′), and there-
fore we have:
COROLLARY 4.3. For any weak configuration (S,L,Θ) there
exists a standard configuration (S′, L, T) such that (S,L,Θ)

∗−→→
(S′, L, T).
As a consequence, we observe that if there is an unlock operation to
perform, one can always clear the buffers to reach a state where the
lock can be released. In other words, there is no deadlock due to an
unlock operation. (There are obviously deadlocked configurations,
where threads are stuck on trying to acquire busy locks.) We shall
use the following notation:

(S,L,Θ) ⇓ (S′, L, T) ⇔def (S,L,Θ)
∗−→→ (S′, L, T)

Notice that, given C = (S,L,Θ), there are in general several dis-
tinct stores S′ such that C ⇓ (S′, L, T), because the writes buffered
at disjoint occurrences, that is, issued by concurrent threads, can be
used to update the memory in any order.

5. Correctness
To establish our correctness property, which says that the weak
semantics agrees with the reference semantics for data-race free
programs, we first introduce a property of weak configurations
that is called coherence, which means that there are no concurrent
buffered writes for the same reference in the configuration (there
may be concurrent writes, but they concern distinct references).
DEFINITION (COHERENCE) 5.1. A thread system with buffers Θ
is coherent if and only if

o ^ o′ ⇒ W(Θ//o) ∩W(Θ//o′) = ∅
for any o, o′ ∈ Occ. We also say that the configuration (S,L,Θ) is
coherent if Θ is coherent.
In other words, Θ is coherent if for any given reference p the set

{ o | p ∈W(Θ//o) }
is totally ordered by the prefix order ≤. This property obviously
holds for any standard configuration (S,L, T), hence in particular
for initial configurations of the form (∅, ∅, e). It should be intu-
itively clear that the relation ⇓ is deterministic for coherent con-
figurations. This is what we now prove. First we observe that the
silent transitions preserve coherence:
LEMMA 5.2. If Θ is coherent and (S,L,Θ) −−→

occ
→ (S′, L′,Θ′)

then Θ′ is coherent.
PROOF: one checks that, for any reference q, if q ∈ W(Θ′//o) ∩
W(Θ′//o′) then o ≤ o′ or o′ ≤ o, by cases on the transition
(S,L,Θ) −−→

occ
→ (S′, L′,Θ′). If Θ = Θ[(〈B〉Θ0 ‖Θ1)] and Θ′ =

Θ[〈{p 7→ v}〉(〈B ↑ p〉Θ0 ‖Θ1)] we only consider the case of
q = p. We see that, since Θ is coherent, if p ∈ W(Θ′//o) then
either o ≤ @Θ, or o = @Θ · ↓ ·o′ with p ∈W(〈B ↑p〉Θ0//o

′, and
therefore the occurrences of writes for p in Θ′ are totally ordered
w.r.t. the prefix ordering. The case where Θ = Θ[(Θ0 ‖〈B〉Θ1)]
and Θ′ = Θ[〈{p 7→ v}〉(Θ0 ‖〈B ↑ p〉Θ1)] is similar, and all the
other cases are immediate.

Next we show that the silent transitions on coherent configurations
are locally confluent:
LEMMA (LOCAL CONFLUENCE) 5.3. If C is a coherent weak
configuration, and C −−→

o0
→ C0 and C −−→

o1
→ C1 then either C0 = C1

or there exists C′ such that C0
∗−→→ C′ and C1

∗−→→ C′.
PROOF: there are many cases to consider, which are all easy, and
therefore we only examine a few of them. For instance, we may

have, if the transitions C −−→
o0
→ C0 and C −−→

o1
→ C1 are performed at

disjoint occurrences, C = (S,L,Θ[(〈B0〉Θ0 ‖〈B1〉Θ1)] and

C0 = (S,L,Θ[〈{p 7→ v}〉(〈B0 ↑ p〉Θ0 ‖〈B1〉Θ1)])

C1 = (S,L,Θ[〈{q 7→ v′}〉(〈B0〉Θ0 ‖〈B1 ↑ q〉Θ1)])

Since C is coherent, we have p 6= q, and in this case we let

C′ = (S,L,Θ[〈{p 7→ v, q 7→ v′}〉(〈B0 ↑ p〉Θ0 ‖〈B1 ↑ q〉Θ1)])

and we have C0
∗−→→ C′ and C1

∗−→→ C′ in three steps.
When the two transitions C −−→

o0
→ C0 and C −−→

o1
→ C1 are

performed at occurrences that are related by the prefix order, we
may have for instance C = (S,L,Θ[〈B0〉〈B1〉〈B2〉Θ]) with

C0 = (S,L,Θ[〈B0[p← v]〉〈B1 ↑ p〉〈B2〉Θ])

C1 = (S,L,Θ[〈B0〉〈B1[q← v′]〉〈B2 ↑ q〉Θ])

(where possibly p = q). In this case we let

C′ = (S,L,Θ[〈B0[p← v]〉〈(B1 ↑ p)[q← v′]〉〈B2 ↑ q〉Θ])

and we have C0
∗−→→ C′ and C1

∗−→→ C′ in one step.

As a consequence of the lemmas 4.2, 5.2 and 5.3, the relation−→→ is
confluent on coherent configurations, and therefore
COROLLARY 5.4. If C is a coherent configuration then

C ⇓ C0 & C ⇓ C1 ⇒ C0 = C1

To establish our main result, we need a technical definition. We
denote by π(o) the projection of the (weak) occurrence o, given as
follows:

π(ε) = ε

π(↓ · o) = π(o)

π(� ·o) = � ·π(o)

π(� ·o) = � ·π(o)

DEFINITION (The BISIMULATION RELATION) 5.5. For any given
(strong) configuration C, we define the relation R(C) between
weak and strong configurations as follows: C′R(C)C′′ if and
only if there exists a sequence of weak transitions

C0 = C
∗−→→ a0−−→

o0
→ C1 · · ·

∗−→→ an−−→
on

→ Cn = C′

such that

C′0 = C
a0−−−→

π(o0)
C′1 · · ·

an−−−−→
π(on)

C′n = C′′

is a valid sequence of (strong) transitions, with Ci ⇓ C′i for all i.
(Notice that since C is a standard configuration, we actually have,
with the notations of the definition,C

a0−−→
o0
→ C1.) We show that, ifC

is a DRF configuration, the relationR(C) is indeed a bisimulation.
First, we observe that the weak semantics simulates the reference
one:
PROPOSITION 5.6. If C′R(C)C′′ and C′′ a−→

o
C′′ then there

exist C′ and o′ such that C′ ∗−→→ a−→
o′
→ C′ with o = π(o′) and

C′R(C)C′′.
PROOF: this is immediate, because if

C0 = C
∗−→→ a0−−→

o0
→ C1 · · ·

∗−→→ an−−→
on

→ Cn = C′

is such that

C
a0−−−→

π(o0)
C′1 · · ·

an−−−−→
π(on)

C′n = C′′

with Ci ⇓ C′i for all i, hence in particular C′ ⇓ C′′, then we have
C′

∗−→→ C′′
a−→
o
→ C′′′, and in all cases except a = wrp we have

C′′′ = C′′, hence obviously C′′′ ⇓ C′′. It is easy to see that
C′′′ ⇓ C′′ also holds in the case where a = wrp, since there is
only one buffered write (on p) in C′′′.

To prove that, conversely, the weak semantics does not deviate from
the reference semantics as regards data-race free programs, we need
the following lemma:

LEMMA 5.7. Let C be a strong regular configuration such that

C = C0
∗−→→ a0−−→

o0
→ C1 · · ·

∗−→→ an−−→
on

→ Cn = (S,L,Θ)

with p ∈ W(Θ//o). Then there exists i such that ai = wrp with
π(o) ≤ π(oi), and for all i < j 6 n if π(oi) ≤ π(oj) then

aj 6=
x
` .

PROOF: by induction on n. First we observe that, due to the hy-
pothesis W(Θ) 6= ∅, we must have n 6= 0, since C is a standard
configurations. If n = 1, then it is easy to see that the only possi-
bility, in order to have W(Θ) 6= ∅, is a1 = wrp with W(Θ) = {p}
(and o = o1).

Otherwise (n > 1), we proceed by cases on an. We notice that

if an =
x
` then o 6≤ on. The lemma is obvious in the case where

an = wrp and o = on. Otherwise, we have Cn−1
∗−→→ an−−→

on

→ Cn,

and if Cn−1 = (S′, L′,Θ′) we have p ∈W(Θ′) with

p ∈W(Θ//o) ⇒ ∃o′. π(o′) ≤ π(o) & p ∈W(Θ′//o′)

and we conclude using the induction hypothesis.

Now we show that, for data-race free regular configurations, the
second half of our bisimulation result holds. Moreover, we show
that in the bisimulation scenario, the coherence property is pre-
served by the weak semantics (not just the silent transitions as in
Lemma 5.2):

PROPOSITION 5.8. IfC is a DRF regular configuration,C′R(C)C′′

where C′ is coherent and C′ ∗−→→ a−→
o
→ C′ then C′ is coherent and

there exists C′′ such that C′′ a−−−→
π(o)

C′′ and C′R(C)C′′.

PROOF: we have

C0 = C
∗−→→ a0−−→

o0
→ C1 · · ·

∗−→→ an−−→
on

→ Cn = C′

and

C
a0−−−→

π(o0)
C′1 · · ·

an−−−−→
π(on)

C′n = C′′

with Ci ⇓ C′i for all i. Let D be such that C′ ∗−→→ D
a−→
o
→ C′. Then

D is coherent by Lemma 5.2. By Lemma 4.3 there exists D such
that D ⇓ D, hence C′ ⇓ D, and therefore D = C′′ by Corollary
5.4. We proceed by induction on the length of the sequence of −→→-
transitions from D to C′′. If this length is 0, that is, D = C′′,
we have π(o) = o since C′′ is a strong configuration, and either
a 6= wrp and D a−→

o
C′, or a = wrp. In the first case, we may let

C′′ = C′. In the second case there obviously exists C′′ such that
D

a−→
o
C′′ and C′ ⇓ C′′. Since there is exactly one write buffered

in C′, this configuration is coherent, and clearly C′R(C)C′′.
Otherwise let D′ be such that D −→

o′
→ D′

∗−→→ C′′. We show

that there exist D and u such that D is coherent and D′ a−→
u
→ D

with π(u) = π(o) (we shall then conclude using the induction
hypothesis regarding D′). We proceed by cases on the transitions
D

a−→
o
→ C′ and D −→

o′
→ D′.

There are many cases to consider, most of which are immediate.
We only examine the ones where a = wrp or rdp, that is D =
(S,L,Θ) with Θ = Θ[E[r]] where r = (p := v) or r = (! p) and
o = @Θ.
• r = (p := v). We haveC′ = (S,L,Θ[〈{p 7→ v}〉E[()]]). If o ^
o′, let us consider the case where Θ = Θ′[Θ0[〈B0〉〈B1〉Θ′] ‖Θ1]
with

D′ = (S,L,Θ′[Θ0[〈B0[q← v′]〉〈B1 ↑ q〉Θ′] ‖Θ1[E[r]]])

and o = @Θ′· � ·@Θ1. Assume that q = p. Then p ∈W(Θ//o′·↓)
with

o′ = @Θ′· � ·@Θ0

and by Lemma 5.7 there exists i such that ai = wrp and π(o′ ·↓) ≤
π(oi), with aj 6=

x
` for i < j 6 n if π(oi) ≤ π(oj). Then

π(oi) ^ π(o), but this contradicts Proposition 3.11 since ai # a
and C is data-race free and regular. Then it must be the case that
q 6= p, and if we let D = (S,L,Θ′′) where

Θ′′ = Θ′[Θ0[〈B0[q← v′]〉〈B1 ↑ q〉Θ′] ‖Θ1[〈{p 7→ v}〉E[()]]]

then we have D′ a−→
o
→ D. It remains to see that D is coherent.

Assume that p ∈ Θ′′//o′′ with o′′ ^ o. Then by Lemma 5.7 there

exists i such that ai = wrp and π(o′′) ≤ π(oi), with aj 6=
x
`

for i < j 6 n if π(oi) ≤ π(oj), but, as above, this contradicts
Proposition 3.11.

Still assuming o ^ o′, let us consider the case where Θ =
Θ′[(〈B〉Θ′ ‖Θ1)] with o = @Θ′· � ·@Θ1 and

D′ = (S,L,Θ′[〈{q 7→ v′}〉(〈B ↑ q〉Θ′ ‖Θ1[E[r]])])

and o′ = @Θ′· �. Since q ∈ W(Θ//o′), we can show, using as in
the previous case Lemma 5.7 and Proposition 3.11, that q 6= p
(since otherwise this would contradict the assumption that C is
DRF). Then we let in this case D = (S,L,Θ′′) where

Θ′′ = Θ′[〈{q 7→ v′}〉(〈B ↑ q〉Θ′ ‖Θ1[〈{p 7→ v}〉E[()]])]

We haveD a−→
u
D where u = @Θ′ ·↓· � ·@Θ1, and we conclude as

in the previous case. All the other cases (with o ^ o′ or o′ ≤ o) are
easy. As indicated above, we conclude the proof of the Proposition
in the case where r = (p := v) using the induction hypothesis
regarding D′.

• r = (! p). We have C′ = (S,L,Θ[E[v]]) where v = (S,Θ)(p).
We only examine the case where Θ = Θ′[(〈B〉Θ′ ‖Θ0)] with
o = @Θ′· � ·@Θ0, o′ = @Θ′· � and

D′ = (S,L,Θ′[〈{q 7→ v′}〉(〈B ↑ q〉Θ′ ‖Θ0[E[r]])]

(all the other cases are easy). Assume that q = p. Then p ∈
W(Θ//o′), and therefore by Lemma 5.7 there exists i such that

ai = wrp with π(o′) ≤ π(oi) and i < j 6 n ⇒ aj 6=
x
` , but

this contradicts Proposition 3.11, since π(oi) ^ π(o) and ai # a.
Then we must have q 6= p in this case, and it is easy to see that we
then have (S,Θ′′)(p) = v = (S,Θ)(p) where

Θ′′ = Θ′[〈{q 7→ v′}〉(〈B ↑ q〉Θ′ ‖Θ0)]

Therefore if we let u = @Θ′′ and D = (S,L,Θ′′[E[v]]) we
have D′ a−→

u
→ D and π(u) = π(o). By Lemma 5.2 D′ is coherent,

hence so isD. We conclude the proof, as above, using the induction
hypothesis for D′.

As an obvious consequence of the propositions 5.6 and 5.8 (and of
Corollary 5.4), we finally obtain the correctness result:

THEOREM (CORRECTNESS) 5.9. The weak memory model im-
plements the reference semantics for data-race free programs. More
precisely, the strong configurations reachable from a (strong) DRF
regular configuration C in the weak semantics coincide with the
configurations reachable from the same configuration C in the ref-
erence semantics.
Notice that in particular the weak semantics correctly implements
sequential programs, that do not use the (thread e) construct.

6. Some Related Work
In the Introduction we briefly surveyed part of the literature on
memory models, where our main source of inspiration was [15].
In this area the work that is the closest to ours is [33], where the
authors introduce a syntactic model for hardware architectures in-
volving buffers (FIFO queues of write requests) and caches, with
rewriting rules which, in effect, define an operational semantics for
the basic memory operations, decomposed using commit/reconcile
steps. The target of this model is hardware design, and therefore
the syntactic structure is static, and the programming language side
(DRF guarantee) is not investigated, but the approach is neverthe-
less similar to ours. For further references about memory models,
especially as regards performance issues, and particular hardware
models, we refer to [2, 3]. In the rest of this section we briefly dis-
cuss some works that are related to ours, though not always dealing
explicitly with relaxed memory models.

A line of work which is related to ours, as regards the method
we use and the kind of result we get, is the one on software
transactional memory (STM). Several recent papers [1, 16, 30]
study this topic from an operational point of view, defining a strong
and weak semantics for a high-level language, and establishing a
correctness result for a particular class of programs. (The notions
of weak and strong transactions, or recoverable and non-interfering
atomic actions, also appear in [9, 10].) So one can see that these
works are similar to ours in spirit. Furthermore, since they are
focusing on synchronization problems arising in STM, which is a
sort of memory model, it would be interesting to see whether more
formal connections could be established. Some research in that
direction has been initiated in [22], where some of the issues arising
from the interaction between atomic blocks and relaxed memory
models, and more specifically the JMM [29], are investigated.

The paper [32] proposes “a theory of memory models.” Al-
though it seems to us that this work is more concerned with com-
piler optimizations than with memory models proper (the two are
quite often mixed), it proposes an approach similar to ours, where
allowed transformations are specified at the syntactic level. A DRF
guarantee, there called “the fundamental property,” is shown, for a
class of programs restricted to “steps,” that is simultaneous asign-
ments similar to p := e, on which transformations are defined
(whereas our model deals with memory operations p := v). This
work adopts an axiomatic style however, where the possible relax-
ations of the strong semantics are determined a priori, relying on
partial orders representing dependencies, and not by considering a
weak semantics. This sounds quite appropriate as regards the kind
of optimizations that the authors consider, and it would be worth
investigating whether the two approaches could be combined. In a
similar vein, let us mention the work [23], the overall aim of which
is to establish and end-to-end approach to concurrent programming
in C−. By this is meant a programming style where properties of
programs are proved by means of separation logic, and where the
semantics under consideration (as regards logical properties in par-
ticular) includes, or more precisely is intended to include compiler
optimizations for sequential code. It seems to us that the use of
separation logic is a way to deal only with well-synchronized pro-
grams, and therefore that a property similar to the DRF guarantee
should hold in this case too.

7. Conclusion and Future Work
We have proposed a new approach to relaxed memory models, by
formalizing such a model by means of a weak operational seman-
tics. This allowed us to prove the correctness of the weak memory
model for data-race free programs. There are several directions in
which this work could be extended. Observing that our model is
less abstract than the ones that use partial orders of events, and
more abstract than particular hardware architectures, we think two
different directions could be explored: first, we could try to extract
a more abstract weak semantics from the operational presentation,
using the same true-concurrency techniques that we used for the
strong case. Indeed, in [12] we built an event structure semantics
(for CCS) in that way. This would allow us to compare our model
with others presented using partial orders, like [14, 29, 34], and
to see which configurations, axiomatically prescribed in a partial
order approach, are allowed or not. Second, in the opposite direc-
tion, we could try to make our model closer to real hardware imple-
mentations. For instance, changing our model to deal with buffers
made of sequences of writes (p, v), thus forbidding the W→W re-
laxation, it seems that we get a model which is very close to the
INTEL 64 architecture [24].

We think it is easy to extend our model with some other syn-
chronization mechanisms, like volatile variables for instance: this
would mean having another way of creating references, vref e,
which in the weak semantics creates a “strong” reference, with
atomic writes, that is, no write buffering. A more ambitious goal
would be, as indicated in the previous section, to deal with atomic
transactions. We could also model the prefetching of reads by al-
lowing the value stored at some pointer to be propagated down-
wards into the read buffers, or simulate the behaviour of a cache by
putting a value read from the store in a buffer close to the thread
that issued the read operation. We think the correctness result still
holds in these cases, but the proof has to be adapted. Finally, as we
suggested in the previous section, it would be interesting to inte-
grate compiler optimizations in our approach.

References
[1] M. ABADI, A. BIRRELL, T. HARRIS, M. ISARD, Semantics of

transactional memory and automatic mutual exclusion, POPL’08
() 63-74.

[2] S. V. ADVE, Designing Memory Consistency Models for Shared-
Memory Multiprocessors, PhD Thesis, Univ. of Wisconsin ().

[3] S. A. ADVE, K. GHARACHORLOO, Shared memory consistency
models: a tutorial, IEEE Computer Vol. 29 No. 12 () 66-76.

[4] S. ADVE, M. D. HILL, Weak ordering – A new definition, ISCA’90
() 2-14.

[5] D. ASPINALL, J. S̆EVC̆ÍK, Formalising Java’s data race free
guarantee, TPHOLs’07, Lecture Notes in Comput. Sci. 4732 ()
22-37.

[6] D. ASPINALL, J. S̆EVC̆ÍK, Java memory model examples: good, bad
and ugly, VAMP’07 ().

[7] G. BERRY, J.-J. LÉVY, Minimal and optimal computations of
recursive programs, J. of ACM 26 () 148-175.

[8] H.-J. BOEHM, S. V. ADVE, Foundations of the C++ concurrency
model, PLDI’08 () 68-78.

[9] C. BLUNDELL, E. C. LEWIS, M. M. K. MARTIN, Subtleties of trans-
actional memory atomicity semantics, IEEE Comput. Architecture
Letters Vol. 5 No. 2 ().

[10] G. BOUDOL, Atomic actions, INRIA Res. Rep. 1026 and EATCS
Bull. 38 () 136-144.

[11] G. BOUDOL, I. CASTELLANI, A non-interleaving semantics for
CCS based on proved transitions, Fundamenta Informaticae XI
() 433-452.

[12] G. BOUDOL, I. CASTELLANI, Flow models of distributed com-
putations: three equivalent semantics for CCS, Information and
Computation Vol. 114 No. 2 () 247-314.

[13] P. CENCIARELLI, A. KNAPP, B. REUS, M. WIRSING, An event-
based structural operational semantics of multi-threaded Java, in
Formal Syntax and Semantics of JAVA, Lecture Notes in Comput.
Sci. 1523 () 157-200.

[14] P. CENCIARELLI, A. KNAPP, E. SIBILIO, The Java memory model:
operationally, denotationally, axiomatically, ESOP’07, Lecture
Notes in Comput. Sci. 4421 () 331-346.

[15] M. DUBOIS, CH. SCHEURICH, F. BRIGGS, Memory access buffer-
ing in multiprocessors, ISCA’86 () 434-442.

[16] L. EFFINGER-DEAN, M. KEHRT, D. GROSSMAN, Transactional
events for ML, ICFP’08 () 103-114.

[17] G. R. GAO, V. SARKAR, Location consistency – a new memory
model and cache consistency protocol, IEEE Trans. on Computers
Vol. 49 No. 8 () 798-813.

[18] G. R. GAO, V. SARKAR, On the importance of an end-to-end view
of memory consistency in future computer systems, ISHPC’97,
Lecture Notes in Comput. Sci. 1336 () 30-41.

[19] K. GHARACHORLOO, D. LENOSKI, J. LAUDON, P. GIBBONS,
A. GUPTA, J. HENNESSY, Memory consistency and event ordering
in scalable shared-memory multiprocessors, ACM SIGARCH
Computer Architecture News Vol. 18 No. 3a () 15-26.

[20] P. B. GIBBONS, M. MERRITT, K. GHARACHORLOO, Proving
sequential consistency of high-performance shared memories, ACM
Symp. on Parallel Algorithms and Architectures () 292-303.

[21] J. R. GOODMAN, Cache consistency and sequential consistency,
Techn. Rep. TR1006, University of Wisconsin ().

[22] D. GROSSMAN, J. MANSON, W. PUGH, What do high-level
memory models mean for transactions?, MSPC’06 () 62-69.

[23] A. HOBOR, A. W. APPEL, F. ZAPPA NARDELLI, Oracle semantics
for concurrent separation logic, ESOP’08, Lecture Notes in Comput.
Sci. 4960 () 353-360.

[24] INTEL CORP., Intel 64 architecture memory ordering white paper,
().

[25] M. HUISMAN, G. PETRI, The Java memory model: a formal
explanation, VAMP’07 ().

[26] L. LAMPORT, Time, clocks, and the ordering of events in a
distributed system, CACM Vol. 21 No. 7 () 558-565.

[27] L. LAMPORT, How to make a multiprocessor computer that cor-
rectly executes multiprocess programs, IEEE Trans. on Computers
Vol. 28 No. 9 () 690-691.

[28] J.-J. LÉVY, Optimal reductions in the lambda calculus, in To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism (J.P. Seldin, J.R. Hindley, Eds), Academic Press ()
159-191.

[29] J. MANSON, W. PUGH, S. A. ADVE, The Java memory model,
POPL’05 () 378-391.

[30] K. F. MOORE, D. GROSSMAN, High-level small-step operational
semantics for transactions, POPL’08 () 51-62.

[31] J. C. REYNOLDS, Toward a grainless semantics for shared-variable
concurrency, FST-TCS’04, Lecture Notes in Comput. Sci. 3328
() 35-48.

[32] V. SARASWAT, R. JAGADEESAN, M. MICHAEL, C. von PRAUN, A
theory of memory models, PPOPP’07 () 161-172.

[33] X. SHEN, ARVIND, L. RUDOLPH, Commit-reconcile & fences
(CRF): a new memory model for architects and compiler writers,
ISCA’99 () 150-161.

[34] R. C. STEINKE, G. J. NUTT, A unified theory of shared memory
consistency, JACM Vol. 51 No. 5 () 800-849.

