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Abstract
We propose a formal definition for (valid) speculative computa-
tions, which is independent of any implementation technique. By
speculative computations we mean optimization mechanisms that
rely on relaxing the flow of execution in a given program, and on
guessing the values read from pointers in the memory. Our frame-
work for formalizing these computations is the standard operational
one that is used to describe the semantics of programming lan-
guages. In particular, we introduce speculation contexts, that gen-
eralize classical evaluation contexts, and allow us to deal with out
of order (or parallel) computations. We show that the standard DRF
guarantee, asserting that data race free programs are correctly im-
plemented in a relaxed semantics, fails with speculative computa-
tions, but that a similar guarantee holds for programs that are free
of data races in the speculative semantics. We then introduce a lan-
guage featuring an explicit distinction between shared and private
variables, and show that there is a translation, guided by a type and
effect system, that transforms a program written in this language
into speculatively data race free code, which is therefore robust
against aggressive optimizations.

1. Introduction
Speculative computation [12, 22] is an implementation technique
that aims at speeding up the execution of programs, by computing
pieces of code out of order or in parallel, without being sure that
these computations are actually needed. We shall actually use the
terminology “speculative computation” in a very broad sense here:
we try to capture the optimization techniques that rely on executing
the code as it is, but relaxing the flow of control, not necessarily fol-
lowing the order prescribed by the reference operational semantics.
Some keywords here are: pipelining, instruction level parallelism,
out-of-order execution, branch prediction, thread level speculation,
etc. (we shall not cite any particular paper from the huge literature
on these classical topics). We also include relaxed memory models
[2] into this picture, though not those that try to capture compiler
optimizations, that transform the code on the basis of semantical
reasoning (see [5, 27, 31]).

The idea of optimizing by computing in parallel is quite old,
but the work that has been done so far on this topic is almost ex-
clusively concerned with implementation techniques, either from
the hardware or the software point of view. These implementations
are quite often complex, as speculations are not always correct, and
need to be aborted or undone is some cases. Due to this complexity
perhaps, the notion of a valid speculation does not seem to have
been formally defined anywhere, except in some particular cases
that we will mention below. Nevertheless, the various implemen-
tations of speculative techniques are generally considered correct
as regards the semantics of sequential programs. This is no longer
the case for multithreaded applications running on multicore ar-
chitectures. It is well-known for instance (see the survey [2]) that
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relaxed memory models do not preserve the standard interleaving
semantics – also known as “sequential consistency” [23] in the area
of memory models. We shall see that even worse phenomena arise
from speculative computation, and in particular the failure of the
“DRF guarantee” [3, 17, 27] (see below). Then a formal under-
standing of (valid) speculations would be useful, to guide the in-
tuition of the programmer and help him writing safe multithreaded
code, and to provide a basis for analyzing and verifying concurrent
programs running on optimized multiprocessor architectures.

In this paper we follow and extend the approach presented in
[10], that is, we define, using a pretty standard operational style,
the speculative semantics of an expressive language, namely a call-
by-value λ-calculus with mutable state and threads. Our formaliza-
tion relies on extending the usual notion of an evaluation context
[14], and using value prediction [16, 25] as regards the values read
from the memory. By introducing speculation contexts, we are able
to formalize out of order executions, as in relaxed memory models,
and also branch prediction [33], allowing to compute in the alterna-
tives of a conditional branching construct. A particular case of out
of order computation is provided by the future construct of Mul-
tilisp [20]. Examples of speculations are the following sequences,
where we use ML’s notation ! p for dereferencing a pointer:

r := ! p ; q := tt → r := ! p ;()

→ r := tt ;()

where the write to q is reordered with respect to the read of p, which
“guesses” the value tt , and

(if ! p then q := tt else ()) → (if ! p then () else ())

→ (if tt then () else ())

→ ()

where the assignment in the first branch is done speculatively, and
the value tt is guessed for p. These two speculations are intuitively
correct, but there are also incorrect speculations, such as the one
we get from the expression of the second example, if ! p returns
ff instead of tt : in this case the assignment q := tt should not be
done.

The central definition in this paper is the one of a valid specula-
tive computation. Roughly speaking, a thread’s speculation is valid
if it can be proved equivalent to a normal order computation. The
equivalence we use here is the permutation of transitions equiva-
lence introduced by Berry and Lévy in [6], stating that independent
steps can be performed in any order (or in parallel) without essen-
tially changing the computation. One can see, for instance, that the
two speculations above are valid, by executing the same operations
in normal order (more details below). In an implementation setting
we would say that a speculation is allowed to commit in the case
it is valid, but one should notice that our formulation is fully inde-
pendent from any implementation mechanism. In fact, we shall not
in this paper study the problem of showing that an implementation



is correct in the sense that it allows only valid speculations to be
performed.

To the best of our knowledge, the notion of a (valid) speculation
has not been previously stated in a formal way. In this respect, the
work that is the closest to ours is the one on the mathematical se-
mantics of Multilisp’s future construct, starting with the work [15]
of Flanagan and Felleisen. This was later extended by Moreau in
[29] to deal with mutable state and continuations (extending the
work in [21] as regards the latter). A similar work regarding JAVA
has been done by Jagannathan and colleagues, dealing with muta-
ble state [34] and exceptions [30]. However, all these works on the
future construct aim at preserving the sequential semantics, and
therefore they are not concerned with shared memory concurrency.
Moreover, they do not include branch prediction and value predic-
tion.

Continuing with the two examples above, one can see that with
the thread system

r := ! p ; q := tt ‖ r′ := ! q ; p := tt

and starting with a state where p = ff = q, one can get as an out-
come of a valid speculative computation a state where r = tt = r′.
This cannot be obtained by a standard interleaving execution, but is
allowed in memory models where reads can be reordered with re-
spect to subsequent memory operations, a property symbolically
called R→RW, according to the terminology of [2]. One could
check that most of the allowed behaviors (the so called “litmus
tests”) in weak memory models can also be obtained by speculative
computations, thus suggesting that the latter offers a very relaxed
semantical model, supporting many optimization techniques. Ex-
tending the second example given above, one can see that with the
thread system

p := ff ; ‖ q := ff ;
(if ! p then q := tt else ()) (if ! q then p := tt else ())

one can get the outcome p = tt = q, by speculatively performing,
after the initial assignments, the two assignments q := tt and
p := tt , thus justifying the branch prediction made in the other
thread (see [18] Section 17.4.8, and [7] for similar examples). This
example, though not very interesting from a programming point
of view, shows that the well-known “DRF guarantee” – asserting
that programs free of data races, with respect to the interleaving
semantics, are correctly executed in the optimized semantics –,
does not hold in the case of speculative computations. Let us see
another example, which looks more like a standard idiom, for a
producer-consumer scenario. In this example, we use a construct
(with ` do e) to ensure mutual exclusion, by acquiring a lock `,
computing e and, upon termination, releasing `. Then with the two
threads

data := 1 ; ‖ while not (with ` do ! flag) do skip ;

(with ` do flag := tt) r := ! data

if initially data = 0 and flag = ff , we can speculate that ! data in
the second thread returns 0, and therefore get an unexpected value
for r (the other instructions being processed in the normal way).
This is, according to our definition, a valid speculation, and this
provides another example of the failure of the DRF guarantee in
the speculative semantics.

From the programmer’s viewpoint, a question therefore arises:
for which programs is the speculative semantics correct, not in-
troducing unexpected behaviors? We shall qualify as robust such
programs, and we will see in particular that any purely sequen-
tial program, that does not spawn any thread, is robust. That is,
the speculative semantics is a correct implementation for sequen-
tial programs. As we have seen, data race free concurrent programs
are not necessarily robust. In this paper we show that speculatively
data race free programs are robust – this is our main result. Here

speculatively DRF means that there is no data race occurring in the
speculative semantics, where a data race is, as usual, the possibility
of performing concurrent accesses, one of them being a write, to
the same memory location.

Again from the programmer’s viewpoint, this result is not fully
satisfactory, because he/she should not have to think about specu-
lative execution – only about the reference interleaving semantics.
There are several possible ways out of this. One would be to see
whether type (and effect) systems for data race prevention, such
as [1, 11] for instance, also ensure the speculatively DRF property,
and to adapt them if this is not the case (we conjecture however that
this is indeed the case). In this paper we explore another way. The
idea, which is not totally new (see [19] for instance) and not that
surprising, is to introduce in the programming language an explicit
distinction between shared and unshared variables. At this level,
the programmer does not have to know about locks, but we pro-
vide a synchronization construct for turning a shared variable into
a private one, with a delimited scope. That is, the thread using this
construct temporarily owns the shared variable, having an exclu-
sive access to it for a while, and releases it upon termination of this
construct.

There is a simple translation from this language to a target
language where all the pointers are implicitly shared, and where the
semantics is speculative. In this translation, each access to a shared
variable of the source language is protected with a lock univocally
associated with it. Then a shared variable in our language is similar
to a “volatile” variable [18]. The translation is guided by a novel
type and effect system ([26]; see [13] for a different type system
with similar purposes), which guarantees that a thread does not
access a private memory location that it does not own, that is,
any unshared variable is indeed used by at most one thread, and
cannot be the subject of a data race. Accesses to such private
references can therefore be subject to speculation. Our second main
result is that any typable program in this source language is robust,
its translation being speculatively DRF, and that the translation
preserves the source semantics, that is the standard interleaving
semantics. In [9] we have shown how to give a deadlock-free
semantics to such a language, again relying on a type and effect
system. Our language is therefore a step towards thread safe, or
modular concurrent programming: by writing typable code, the
programmer is guaranteed not to introduce dangerous data races
nor deadlocks, even when his/her code is composed with other
(typable) threads, or uses (typable) modules.

Obviously, this is a proposal that has to be assessed on an exper-
imental ground, and as we said some other ways are likely to exist
to write concurrent programs that are robust against aggressive op-
timizations. Whatever these other ways may be, we think that the
formal definition of (valid) speculative computations we set up in
this paper provides a sound basis for such investigations.

2. The (Target) Language
The intermediate, or target language, supporting speculative com-
putations, is an imperative call-by-value λ-calculus, with boolean
values and conditional branching, enriched with thread creation and
a construct for ensuring mutual exclusion. In this language, all the
references are implicitly shared. We shall later assume that the lan-
guage also contains some record constructs which, for simplicity,
are not yet included. The syntax is:

e ::= v | (e0e1) expressions
| (if e then e0 else e1)

| (ref e) | (! e) | (e0 := e1)

| (thread e) | (with ` do e) | (new ` in e)

v ::= x | λxe | tt | ff | () values



where ` is a lock, that is a name from a given infinite setLocks . The
construct (new ` in e) is a binder for the name ` in e. As usual, λ is a
binder for the variable x in λxe, and we shall consider expressions
up to α-conversion, that is up to the renaming of bound variables.
The capture-avoiding substitution of e0 for the free occurrences
of x in e1 is denoted {x 7→e0}e1. We shall use some standard
abbreviations like (let x = e0 in e1) for (λxe1e0), which is also
denoted e0 ; e1 whenever x does not occur free in e1.

To state the operational semantics of the language, we have to
extend it with run-time constructs, in two ways. First, we introduce
references (sometimes also referred to as memory locations, mem-
ory addresses, or pointers) p, q, . . . that are names from a given
infinite setRef . These are (run-time) values. Then we use the con-
struct (holding ` do e) to hold a lock for e. As it is standard with
languages involving concurrency with shared variables, we follow
a small-step style to describe the operational semantics, where an
atomic transition consists in reducing a redex (reducible expres-
sion) within an evaluation context, while possibly performing a side
effect. The syntax is then extended and enriched as follows:

p, q . . . ∈ Ref references
v ::= · · · | p run-time values
e ::= · · · | (holding ` do e) run-time expressions

u ::= (λxev) redexes
| (if tt then e0 else e1)

| (if ff then e0 else e1)

| (ref v) | (! p) | (p := v)

| (thread e) | (with ` do e)

| (holding ` do v) | (new ` in e)

E ::= [] | E[F] evaluation contexts
F = ([] e) | (v []) frames

| (if [] then e0 else e1)

| (ref []) | (! []) | ([] := e) | (v := [])

| (holding ` do [])

As usual, we denote by E[e] the expression resulting from filling
the hole in E by e. Every expression of the (run-time) language is
either a value, or a redex in a position to be reduced, or faulty. More
precisely, let us say that an expression is faulty if it has one of the
following forms:

• (ve) where the value v is not a function λxe′;

• (if v then e0 else e1) where the value v is not a boolean value, tt
or ff ;
• (! v) or v := v′ where the value v is not a reference.

Then we have:

LEMMA 2.1. For any expression e of the run-time language, either
e is a value, or there is a unique evaluation context E and a
unique expression e′ which either is a redex, or is faulty, such that
e = E[e′].

(The proof, by induction on e, is immediate.)
To define speculative computations, we extend the class of stan-

dard evaluation contexts by introducing speculation contexts, de-
fined as follows:

Σ ::= [] | Σ[Φ] speculation contexts

Φ ::= F speculation frames
| (e []) | (λx[] e)

| (if e then [] else e1) | (if e then e0 else [])

| (e := [])

Let us comment briefly on the speculation contexts. With frames of
the shape (λx[] e), one can for instance compute e1 in the expres-
sion (λxe1e0) – hence in (let x = e0 in e1) and e0 ; e1 in particular
–, whereas in a normal order computation one has to compute e0

first. This is similar to a future expression (let x = future e0 in e1)
[15], where e1 is computed in advance, or in parallel with e0. With
the frames (if e then [] else e1) and (if e then e0 else []), one is al-
lowed to compute in a branch (or in both branches) of a conditional
construct, without knowing the value of the condition, again com-
puting in advance (or in parallel) with respect to the normal order.
This is known as “branch prediction” [33]. Notice that, by contrast,
the construct (with ` do e) acts as a “speculation barrier,” that is,
(with ` do []) is not a speculation frame. Indeed, the purpose of
acquiring a lock is to separate side-effecting operations. We could
allow pure (i.e. without side effect) speculations inside such a con-
struct1, but this would complicate the technical developments, with
no added value, since, as we shall see, we can always speculatively
acquire a lock (but not speculatively release it).

To define the semantics of locking, which allows for reentrant
locks, we shall use the set, denoted dΣe, of locks held in the context
Σ, defined as follows:

d[]e = ∅
dΣ[Φ]e = dΣe ∪ dΦe

where

dΦe =

(
{`} if Φ = (holding ` do [])

∅ otherwise

Speculative computations are defined in two stages: first we define
speculations, that are abstract computations of a given thread – ab-
stract in the sense that the state, made of a memory, a set of busy
locks, and a multiset of threads, is ignored at this stage. We can re-
gard these as attempts to perform some computation, with no real
side effect. Then we shall compose such speculations by interleav-
ing them, now taking at this stage the global state into account. In
order to do so, it is convenient to formalize speculations as labeled
transitions, explicitly indicating what reduction occurs, that is what
is the action performed at each step. There are several kinds of ac-
tions: performing a β-reduction, denoted β, choosing a branch in
a conditional construct (↙ and ↘), creating a new reference p in
the store with some initial value (νp,v), reading (rdp,v) or writing

(wrp,v) a reference, spawning a new thread (spwe), acquiring (
y
` )

or releasing (
x
` ) a lock `, and creating a new lock (ν`). Then the

syntax of actions is as follows:

a ::= β | ↙ | ↘
| νp,v | rdp,v | wrp,v

| µ |
y
` | ν` | b

b := spwe |
x
`

The action µ stands for taking a lock that is already held. We denote
by Act the set of actions, and by B the subset of b actions.

In order to define valid speculations, we shall also need to
explicitly indicate in the semantics where actions are performed.
To this end, we introduce the notion of an occurrence, which is
a sequence over a set of symbols, each associated with a frame,
denoting a path from the root of the expression to the redex that is
evaluated at some step. In the case of a frame (e []), it is convenient
to distinguish the case where this is a “normal” frame, that is, when
e is a value, from the case where this is a true speculation frame.

1 by enriching the conflict relation, see below.



Σ[(λxev)]
β−−→

@Σ
Σ[{x 7→v}e] E[(thread e)]

spwe−−−→
@E

E[()]

Σ[(if tt then e0 else e1)]
↙
−−→
@Σ

Σ[e0] Σ[(with ` do e)]
µ−−→

@Σ
Σ[e] ` ∈ dΣe

Σ[(if ff then e0 else e1)]
↘
−−→
@Σ

Σ[e1] Σ[(with ` do e)]
y
`−−→

@Σ
Σ[(holding ` do e)] ` 6∈ dΣe

Σ[(ref v)]
νp,v−−−→
@Σ

Σ[p] E[(holding ` do v)]
x
`−−→

@E
E[v]

Σ[(! p)]
rdp,v−−−→
@Σ

Σ[v] Σ[(new ` in e)]
ν`′−−→
@Σ

Σ[{` 7→`′}e]

Σ[(p := v)]
wrp,v−−−→
@Σ

Σ[()]

Figure 1: Speculations

Then an occurrence is a sequence o over the set SOcc below:

Occ = {([] ), (• []), (if [] then else ), (ref []), (! []),

([] := ), (v := []), (holding ` do [])}
SOcc = Occ ∪ {( []), (λx[] ), (if then [] else ),

(if then else []), ( := [])}
The occurrences o ∈ Occ∗ are called normal. Notice that we do
not consider λx[] as an occurrence. This corresponds to the fact
that speculating inside a value is forbidden, except in the case of a
function applied to an argument, that is (λxe1e0) where specula-
tively computing e1 is allowed (again we could relax this as regards
pure speculations, but this would involve heavy technical compli-
cations). One then defines the occurrence @Σ, as the sequence of
frames that points to the hole in Σ, that is:

@[] = ε

@Σ[Φ] = @Σ ·@Φ

where
@([] e) = ([] )

@(e []) =

(
(• []) if e ∈ Val

( []) otherwise

@(e := []) =

(
(v := []) if e = v ∈ Val

( := []) otherwise

and so on. We denote by o · o′ the concatenation of the two se-
quences o and o′, and we say that o is a prefix of o′, denoted o ≤ o′,
if o′ = o · o′′ for some o′′. If o 6≤ o′ and o′ 6≤ o then we say that o
and o′ are disjoint occurrences.

We can now define the “local” speculations, for a given (sequen-
tial) thread. This is determined independently of any context (mem-
ory or other threads), and without any real side effect. Speculations
are defined as a small step semantics, namely labeled transitions

e
a−→
o
e′

where a is the action performed at this step and o is the occurrence
at which the action is performed (in the given thread). These are de-
fined in Figure 1. Speculating here means not only computing “in
advance” (or “out-of-order”), but also guessing the values from the
global context (the memory and the lock context). More precisely,
the speculative character of this semantics is twofold. On the one
hand, some computations are allowed to occur in speculation con-
texts Σ, like with future computations or branch prediction. On
the other hand, the value resulting from a dereference operation
(! p), or the status of the lock in the case of a locking construct
(with ` do e), is “guessed”, or “predicted” – as regards loads from

the memory, this is known as value prediction, and was introduced
in [16, 25]. These guessed values may be written by other threads,
which are ignored at this stage. One should notice that the b ac-
tions are only allowed to occur from within an evaluation context,
not a speculation context. However, one should also observe that
an evaluation context can be modified by a speculation, while still
being an evaluation context. This is typically the case of ([] e) and
(λxe []) – hence in particular (let x = [] in e) and [] ; e –, where
one is allowed to speculate the execution of e; this is also the case
with (if [] then e0 else e1) where one can speculate in a branch,
that is in e0 or e1. Then for instance with an expression of the form
(holding ` do e0) ; e1, one can speculatively compute in e1 before
trying to release the lock ` and proceed with e0 (a special case of
this is the so-called “roach motel semantics,” see [4]). The follow-
ing is a standard property:

LEMMA 2.2. If e a−→
o
e′ then {x 7→v}e a−→

o
{x 7→v}e′ for any v.

DEFINITION (SPECULATIONS) 2.3. A speculation from an ex-
pression e to an expression e′ is a (possibly empty) sequence
σ =

`
ei

ai−→
oi

ei+1

´
06i6n

of speculation steps such that e0 = e

and en = e′. This is written σ : e
∗→ e′. The empty speculation

(with e′ = e) is denoted ε. The sequence σ is normal iff for all i the
occurrence oi is normal. The concatenation σ ·σ′ : e

∗→ e′ of σ and
σ′ is only defined (in the obvious way) if σ ends on the expression
e′′ where σ′ originates.
Notice that a normal speculation proceeds in program order, evalu-
ating redexes inside evaluation contexts – not speculation contexts;
still it may involve guessing some values that have to be read from
the memory. Let us see two examples of speculations – omitting
some labels, just mentioning the actions:
EXAMPLE 2.4.

r := ! p ; q := tt
wrq,tt−−−→ r := ! p ;()
rdp,tt−−−→ r := tt ;()
wrr,tt−−−→ () ;()

β−→ ()

Here we speculate in two ways: first, the assignment q := tt ,
which would normally take place after reading p and updating r,
is performed, or rather, issued, out of order; second, we guess a
value read from memory location p.
EXAMPLE 2.5.

(if ! p then q := tt else ())
wrq,tt−−−→ (if ! p then () else ())
rdp,tt−−−→ (if tt then () else ())
↙
−→ ()



e
a−→
o
e′ a 6= spwe′′

(S,L, (t, e) ‖T )
a−−→
t,o

(S′, L′, (t, e′) ‖T )

(∗)
e

spwe′−−−→
o

e′′

(S,L, (t, e) ‖T )
spwe′−−−→
t,o

(S,L, (t, e′′) ‖(t′, e′) ‖T )

t′ 6∈ dom(T ) ∪ {t}

Figure 2: Speculative Computations

Here we speculate by predicting that we will have to compute in
the first branch, while guessing that the value pointed to by p is
tt . Obviously this guessed value may not be the correct one, and
in this case the computation made in the “then” branch has to be
invalidated. We shall define valid speculations in the next section.

The concurrent speculative semantics is again a small step se-
mantics, consisting in transitions between configurations C =
(S,L, T ) where the store S, also called here the memory, is a map-
ping from a finite set dom(S) of references to values, the lock con-
text L is a finite set of locks, those that are currently held by some
thread, and T , the thread system, is a mapping from a finite set
dom(T ) of thread names (or thread identifiers), subset of Names ,
to expressions. If dom(T ) = {t1, . . . , tn} and T (ti) = ei we also
write T as

(t1, e1) ‖ · · · ‖(tn, en)

As usual, we shall assume we consider only well-formed configu-
rations, meaning that any reference that occurs somewhere in the
configuration belongs to the domain of the store, that is, it is bound
to a value in the memory – we shall not define this property, which
is preserved in the operational semantics, more formally. For in-
stance, if e is an expression of the source language, any initial con-
figuration (∅, ∅, (t, e)) is well-formed.

The speculative computations are made of transitions that have
the form

C
a−−→
t,o

C′

indicating the action a that is performed, the thread t that performs
it, and the occurrence o where it is performed in the thread (these
labels are just annotations, introduced for technical convenience,
but they do not entail any constraint on the semantics). At each
step, a speculation attempted by one thread is recorded, provided
that the global state agrees with the action that is issued. That is,
the value guessed by a thread for a pointer must be the value of
that pointer in the memory, and similarly acquiring a lock can only
be done if the lock is free. We distinguish two cases, depending on
whether the action spawns a new thread or not. The corresponding
two rules are given in Figure 2, where

(∗)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

a = β,↙,↘, µ ⇒ S′ = S & L′ = L

a = νp,v ⇒ p 6∈ dom(S) & S′ = S ∪ {p 7→v}
& L′ = L

a = rdp,v ⇒ v = S(p) & S′ = S & L′ = L

a = wrp,v ⇒ S′ = S[p := v] & L′ = L

a =
y
` ⇒ S′ = S & ` 6∈ L & L′ = L ∪ {`}

a =
x
` ⇒ S′ = S & L′ = L− {`}

a = ν` ⇒ S′ = S & L′ = L & ` fresh

DEFINITION (COMPUTATIONS) 2.6. A speculative computation
from a configuration C to a configuration C′ is a (possibly empty)
sequence γ of steps

`
Ci

ai−−−→
ti,oi

Ci+1

´
06i6n

in the speculative

operational semantics such that C0 = C and Cn = C′. This is
written γ : C

∗→ C′. The empty computation is denoted ε. The
concatenation γ · γ′ : C

∗→ C′ is only defined (in the obvious

way) if γ ends on the configuration C′′ where γ′ originates, that is
γ : C

∗→ C′′ and γ′ : C′′
∗→ C′. The computation γ =

`
Ci

ai−−−→
ti,oi

Ci+1

´
06i6n

is normal if for all i the occurrence oi is normal.

One can see that normal computations correspond to computations
in the standard interleaving semantics, that we regard as the refer-
ence semantics from the programmer’s point of view. Even though
our definition of speculative computations ensures that the values
read from the memory are correctly guessed, some speculation se-
quences are still wrong, like – omitting the occurrences

({p 7→ ff }, ∅, (t, (if ! p then p := tt else ())))
wrp,tt−−−→ ({p 7→ tt}, ∅, (t, (if ! p then () else ())))
rdp,tt−−−→ ({p 7→ tt}, ∅, (t, (if tt then () else ())))

Here the normal data-dependency between the read and write on p
is broken, and the branch prediction is therefore wrong. In the next
section we shall define which are the correct speculative computa-
tions. To this end, we shall need the following technical definition,
which formalizes the contribution of each thread to a speculative
computation:
DEFINITION (PROJECTION) 2.7. Given a thread identifier t, the
projection γ|t of a speculative computation γ on thread t is defined
as follows, by induction on γ:

ε|t = ε

(C
a−−→
t′,o

C′ · γ)|t =

8>>><>>>:
e
a−→
o
e′ · (γ|t) if t′ = t &

C = (S,L, (t, e) ‖T ) &

C′ = (S′, L′, (t, e′) ‖T )

γ|t otherwise

It is easy to check that this is indeed well-defined, that is:
REMARK 2.8. For any speculative computation γ and name t, the
projection γ|t is a speculation.

3. Valid Speculations
We shall qualify a speculative computation as valid in the case
where each of its projections is equivalent in some sense to a
normal evaluation. That is, a speculative computation is valid if
it only involves thread speculations that correctly guess the values
read from the memory, and preserves, up to some equivalence, the
normal program order. The equivalence we use is the permutation
of transitions equivalence introduced by Berry and Lévy [6, 24],
that we also used in our previous work on memory models [10].
Intuitively, this equivalence says that permuting independent steps
in a speculation results in “the same” speculation, and that such
independent steps could actually be performed in parallel. It is
clear, for instance, that actions performed at disjoint occurrences
can be done in any order, provided that they are not conflicting
accesses to the same memory location (the conflict relation will be
defined below). This applies for instance to

r := ! p ; q := tt
wrq,tt−−−→ r := ! p ;()
rdp,tt−−−→ r := tt ;()



from Example 2.4. Similarly, we can commute two steps such as

(if tt then q := tt else ())
wrq,tt−−−→ (if tt then () else ())
↙
−→ ()

(see Example 2.5), although in this case we first need to say that the
first step in this sequence is indeed “the same” as the second one in

(if tt then q := tt else ())
↙
−→ q := tt

wrq,tt−−−→ ()

To this end, given a speculation step e a−→
o
e′ and an occurrence o′ in

e, we define the residual of o′ after this step, that is the occurrence,
if any, that points to the same subterm (if any) as o′ pointed to in e.
For instance, if the step is

(if tt then e0 else e1)
↙
−→
ε
e0

then for o′ = ε or o′ = (if [] then else ) there is not residual,
because the occurrence has been consumed in reducing the expres-
sion. The residual of any occurrence pointing into e0, i.e. of the
form (if then [] else ) · o′, is o′, whereas an occurrence of the
form (if then else []) · o′, pointing into e1, has no residual, since
the subexpression e1 is discarded by reducing to the first branch of
the conditional expression. The notion of a residual here is much
simpler than in the λ-calculus (see [24]), because an occurrence is
never duplicated, since we do not compute inside a value (except in
a function applied to an argument). Here the residual of an occur-
rence after a speculation step will be either undefined, whenever it
is discarded by a conditional branching, or a single occurrence. We
actually only need to know the action a that is performed and the
occurrence o where it is performed in order to define the residual
of o′ after such a step. We therefore define o′/(a, o) as follows:

o′/(a, o) =

8>>>>><>>>>>:

o′ if o 6≤ o′

o · o′′ if o′ = o · (λx[] ) · o′′ & a = β

or o′ = o · (if then [] else ) · o′′ & a = ↙

or o′ = o · (if then else []) · o′′ & a = ↘

undefined otherwise

In the following we write o′/(a, o) ≡ o′′ to mean that the residual
of o′ after (a, o) is defined, and is o′′. Notice that if o′/(a, o) ≡ o′′
with o′ ∈ Occ∗ then o′′ = o′ and o 6≤ o′.

Speculation enjoys a partial confluence property, namely that if
an occurrence of an action has a residual after another one, then
one can still perform the action from the resulting expression. This
property is known as the Diamond Lemma.

LEMMA (DIAMOND LEMMA) 3.1. If e
a0−→
o0

e0 and e
a1−→
o1

e1 with

o1/(a0, o0) ≡ o′1 and o0/(a1, o1) ≡ o′0 then there exists e′ such
that e0

a1−→
o′1

e′ and e1
a0−→
o′o

e′.

PROOF SKETCH: by case on the respective positions of o0 and o1.
If neither o0 ≤ o1 nor o1 ≤ o0 (that is, the two occurrences are
disjoint) then o1/(a0, o0) ≡ o1 and o0/(a1, o1) ≡ o0, and it is
easy to see that the two reductions can be done in any order.

Otherwise, let us assume for instance that o0 < o1 (we cannot
have o0 = o1 since o0/(a1, o1) is defined, and the case where
o1 < o0 is symmetric). A case analysis shows that we have either
o1 = o0 ·(λx[] )·o′′1 and a0 = β, or o1 = o0 ·(if then [] else )·o′′1
and a0 = ↙, or else o1 = o0 · (if then else []) · o′′1 and a0 = ↘,
with o′1 = o0 · o′′1 in all these cases.

In the first case we have e = Σ0[(λxe′′v)] with e0 =
Σ0[{x 7→v}e′′] (and @Σ0 = o0), and e = Σ0[(λxe′′v)] with
e′′

a1−−→
o′′1

e′′1 and e1 = Σ0[(λxe′′1v)], and we conclude using Lemma

2.2, with e′ = Σ0[{x 7→v}e′′1 ]. In the case where a0 = ↙ we have
e = Σ0[(if tt then e′0 else e′1)] with e0 = Σ0[e′0], and e′0

a1−−→
o′′1

e′′1 ,

and we conclude with e′ = Σ0[e′′1 ]. The case where a0 = ↘ is
similar.

One should notice that the e′, the existence of which is asserted in
this lemma, is actually unique, up to α-conversion. Let us see an
example: with the expression of Example 2.4, we have – recall that
e0 ; e1 stands for (λxe1e0) where x is not free in e1:

r := ! p ; q := tt
wrq,tt−−−−→

(λx[] )
r := ! p ;()

and

r := ! p ; q := tt
rdp,tt−−−−−−−−→

(•,[])·(r:=[])
r := tt ; q := tt

Then we can close the diagram, ending up with the expression
r := tt ;(). This confluence property is the basis for the defini-
tion of the equivalence by permutation of computing steps: with
the hypotheses of the Diamond Lemma, we shall regard the two
speculations

e
a0−→
o0

e0
a1−→
o′1

e′ and e
a1−→
o1

e1
a0−→
o′0

e′

as equivalent. However, this cannot be so simple, because we have
to ensure that the program order is preserved as regards accesses to
a given memory location (unless these accesses are all reads). For
instance, the speculation – again, omitting the occurrences:

p := tt ; r := ! p
rdp,ff−−−→ p := tt ; r := ff
wrp,tt−−−→ () ; r := ff

should not be considered as valid, because it breaks the data depen-
dency between the write and the read on p. To take this into account,
we introduce the conflict relation between actions, as follows2:
DEFINITION (CONFLICTING ACTIONS) 3.2. The conflict relation
# between actions is given by

# =
[

p∈Ref ,v,w∈Val

˘
(wrp,v,wrp,w), (wrp,v, rdp,w), (rdp,v,wrp,w)

¯
We can now define the permutation equivalence, which is the con-
gruence (with respect to concatenation) on speculations generated
by the conflict-free Diamond property.
DEFINITION (PERMUTATION EQUIVALENCE) 3.3. The equivalen-
ce by permutation of transitions is the least equivalence' on spec-
ulations such that if e

a0−→
o0

e0 and e
a1−→
o1

e1 with o1/(a0, o0) ≡ o′1

and o0/(a1, o1) ≡ o′0 and ¬(a0 # a1) then

σ0 · e
a0−→
o0

e0
a1−→
o′1

e′ · σ1 ' σ0 · e
a1−→
o1

e1
a0−→
o′0

e′ · σ1

where e′ is determined as in the Diamond Lemma.
Notice that two equivalent speculations have the same length. Let
us see some examples. The speculation given in Example 2.4 is
equivalent to the normal speculation

r := ! p ; q := tt
rdp,tt−−−→ r := tt ; q := tt
wrr,tt−−−→ () ; q := tt

β−→ q := tt
wrq,tt−−−→ ()

2 We notice that in some (extremely, or even excessively) relaxed memory
model (such as the one of the Alpha architecture, see [28]) the data depen-
dencies are not maintained. To deal with such models, we would adopt an
empty conflict relation, and a different notion of data race free program (see
below).



Similarly, the speculation given in Example 2.5 is equivalent to the
normal speculation

(if ! p then q := tt else ())
rdp,tt−−−→ (if tt then q := tt else ())
↙
−→ q := tt

wrq,tt−−−→ ()

We are now ready to give the definition that is central to our work,
characterizing what is a valid speculative computation.

DEFINITION (VALID SPECULATIVE COMPUTATION) 3.4. A
speculation is valid if it is equivalent by permutation to a normal
speculation. A speculative computation γ is valid if all its thread
projections γ|t are valid speculations.

It is clear for instance that the speculations given above that do not
preserve the normal data dependencies are not valid. Similarly, one
can see that the following speculation

(if ! p then () else q := tt)
wrq,tt−−−→ (if ! p then () else ())
rdp,tt−−−→ (if tt then () else ())
↙
−→ ()

which is an example of wrong branch prediction, is invalid, since
the occurrence of the first action has no residual after the last one,
and cannot therefore by permuted with it. We have already seen
that the speculations from Examples 2.4 and 2.5 are valid. Then the
reader can observe that from the thread system – where we omit the
thread identifiers

r := ! p ; q := tt ‖ r′ := ! q ; p := tt

and an initial memory S such that S(p) = ff = S(q), we can, by
a valid speculative computation, get as an outcome a state where
the memory S′ is such that S′(r) = tt = S′(r′), something
that cannot be obtained with the standard, non-speculative inter-
leaving semantics. This is typical of a memory model where the
reads can be reordered with respect to subsequent memory opera-
tions – a property symbolically called R→RW, according to the
terminology of [2], that was not captured in our previous work
[10] on write-buffering memory models. We conjecture that our
operational model of speculative computations is more general (for
static thread systems) than the weak memory model of [10], in the
sense that for any configuration, there are more outcomes follow-
ing (valid) speculative computations than with write buffering. We
also believe, although this would have to be more formally stated,
that speculative computations are more general than most hard-
ware memory models, which deal with access memory, but do not
transform programs using some semantical reasoning as optimiz-
ing compilers do. For instance, let us examine the case of the amd6
example (see [32]), that is

p := tt ‖ q := tt ‖ r0 := ! p ; ‖ r2 := ! q ;

r1 := ! q r3 := ! p

If we start from a configuration where the memory S is such that
S(p) = ff = S(q), we may speculate in the third thread that ! q
returns ff (which is indeed the initial value of q), and similarly
in the fourth thread that ! p returns ff , and then proceed with the
assignments p := tt and q := tt , and so on. Then we can reach,
by a valid speculative computation, a state where the memory S′ is
such that S′(r0) = tt = S′(r2) and S′(r1) = ff = S′(r3), an
outcome which cannot be obtained with the interleaving semantics.

Another unusual example is based on Example 2.5. Let us
consider the following system made of two threads

p := ff ; ‖ q := ff ;
(if ! p then q := tt else ()) (if ! q then p := tt else ())

Then by a valid speculative computation we can reach, after having
performed the two initial assignments, a state where S(p) = tt =
S(q). What is unusual with this example, with respect to what
is generally expected from relaxed memory models for instance
[3, 17], is that this is, with respect to the interleaving semantics,
a data race free thread system, which still has an “unwanted”
outcome in the optimizing framework of speculative computations
(see [7] for a similar example). This indicates that we have to
assume a stronger property than DRF (data-race freeness) to ensure
that a program is “robust” with respect to speculations.
DEFINITION (ROBUST PROGRAMS) 3.5. A closed expression e
is robust iff for any t and γ such that γ : (∅, ∅, (t, e)) ∗→ (S,L, T )

there exists a normal computation γ̄ such that γ̄ : (∅, ∅, (t, e)) ∗→
(S,L, T ).
In other words, for a robust expression the speculative and inter-
leaving semantics coincide, or: the robust programs are the ones
for which the speculative semantics is correct (with respect to the
interleaving semantics).

4. Main Result
Our main result is that speculatively data-race free programs are
robust.
DEFINITION (SPECULATIVELY DRF PROGRAM) 4.1. A config-
uration C is speculatively date race free (speculatively DRF) iff for
any configuration C′ reachable from C, that is γ : C

∗→ C′ for
some speculative computation γ, ifC′

a0−−−→
t0,o0

C0 andC′
a1−−−→
t1,o1

C1

we have t0 6= t1 ⇒ ¬(a0 # a1). An expression e is speculatively
DRF iff for any t the configuration (∅, ∅, (t, e)) is speculatively
DRF.
It is obvious that this is a safety property, that is ifC is speculatively
DRF and C ∗→ C′, then C′ is speculatively DRF. We could have
formulated this property directly, without resorting to the conflict
relation, saying that there are no reachable concurrent accesses
to the same location in the memory. In this way we could deal
with optimizing architectures (such as the Alpha memory model,
see [28]) that allow to reorder such accesses, by including the
case where these concurrent accesses can occur (in the speculative
semantics) from within the same thread, like for instance in p :=
ff ; r := ! p. We do not follow this way here, since such a model
requires unnatural synchronizations from the programmer.

In order to establish our result, we need a number of preliminary
lemmas, regarding both speculations and speculative computations.

4.1 Properties of Speculations
We extend the notion of residual by defining o/σ where o is an
occurrence and σ a speculation. This is defined by induction on the
length of σ, where the notation o′ ≡ o/σ means that o/σ is defined
and is o′.

o/ε ≡ o

o/(e
a−→
o′

e′) · σ ≡ (o/(a, o′))/σ

The following lemma states that the residual of a given occur-
rence along equivalent speculations are the same. This property was
called the “cube lemma” in [8].

LEMMA (The CUBE LEMMA) 4.2. Let σ = e
a0−→
o0
· a1−→
o′1

e′ and

σ′ = e
a1−→
o1
· a0−→
o′0

e′ be such that σ ' σ′. Then o/σ ≡ o/σ′ for

any o.
PROOF: straightforward (but tedious) case analysis.

In the following we shall often omit the expressions in a specula-
tion, writing σ0 ·

a−→
o
· σ1 instead of σ0 · (e0

a−→
o
e1) · σ1. Indeed, e0



is determined by σ0, and, given e0, the expression e1 is determined
by the pair (a, o). Now we introduce the notion of a step, called
“redex-with-history” in [6, 24], and of steps being in the same fam-
ily, a property introduced in [6].
DEFINITION (STEPS) 4.3. A step is a pair [σ, (a, o)] of a specula-
tion σ : e

∗→ e′ and an action a at occurrence o such that e′ a−→
o
e′′

for some expression e′′. Given a speculation σ, the set Step(σ) is
the set of steps [ς, (a, o)] such that ς · a−→

o
≤ σ. The binary relation

∼ on steps, meaning that two steps are in the same family, is the
equivalence relation generated by the rule

∃σ′′. σ′ ' σ · σ′′ & o′ ≡ o/σ′′

[σ, (a, o)] ∼ [σ′, (a, o′)]

Equivalent speculations have similar steps:
LEMMA 4.4. If [ς, (a, o)] ∈ Step(σ) and σ′ ' σ then there exists
[ς ′, (a, o′)] ∈ Step(σ′) such that [ς, (a, o)] ∼ [ς ′, (a, o′)].
PROOF: by induction on the definition of σ′ ' σ.

A property that should be intuitively clear is that if a step in a
speculation is in the same family as the initial step of an equivalent
speculation, then it can be commuted with all the steps that precede
it:
LEMMA 4.5. Let σ = σ0 ·

a−→
o
· σ1 be such that σ ' a−→

o′
· ς with

[ε, (a, o′)] ∼ [σ0, (a, o)]. If σ0 = ς0 · (e
ā−→̄
o
e′) · ς1 then there exist

o′′, e′′, ō′ and σ′1 such that ς0 · (e
a−−→
o′′

e′′
ā−→̄
o′

ē) · σ′1 ' σ where

o ≡ o′′/ ā−→̄
o′
· σ′1 and ō′ ≡ ō/(a, o′′).

PROOF SKETCH: by induction on the inference of σ ' a−→
o′
· ς .

This is trivial if σ =
a−→
o′
· ς , that is σ0 = ε, o′ = o and

ς = σ1. Otherwise, there exists σ′ such that σ′ ' a−→
o′
· ς (with

a shorter inference) and σ′ results from σ by a transposition of two
consecutive steps. If this transposition occurs in σ1, or commutes
the last step of σ0 ·

a−→
o

with the first step of σ1, we simply use the
induction hypothesis. If the transposition commutes the last step of
σ0 with the last one of σ0 ·

a−→
o

, we get the lemma in the case where
ς1 = ε, and we use the induction hypothesis for the other cases. If
the transposition commutes two steps in σ0, we use the induction
hypothesis and the Cube Lemma 4.2 to conclude.

LEMMA 4.6. If e
a0−→
o0

e0 and e
a1−→
o1

e1 with o1/(a0, o0) ≡ o′1 and

o0/(a1, o1) ≡ o′0 then o0 ∈ Occ∗ implies o′0 = o0, o1 6≤ o0 and
o1 6∈ Occ∗. Moreover if a0 ∈ B then o0 6< o1, hence o′1 = o1.
PROOF: we already observed that, with the hypothesis of this
lemma, we have o′0 = o0 and o1 6≤ o0. It cannot be the case that
o1 ∈ Occ∗, since otherwise we would have o0 = o1 by Lemma

2.1. If a0 = µ or a0 =
y
` then e = Σ[(with ` do e′)] (with

o0 = @Σ), and therefore o0 6< o1 since there is no frame of the
form (with ` do []). The argument is similar with a0 = spwe. If

a0 =
x
` then e = E[(holding ` do v)] and again o0 6< o1 since

there is no way to compute inside a value (except in the function
part of an application).

This allows us to show that, in a speculation, the unlock actions, and
also spawning a new thread, act as barriers with respect to other
actions that occur in an evaluation context: these actions cannot be
permuted with unlock (or spawn) actions. This is expressed by the
following lemma:

LEMMA 4.7. Let σ = σ0·
a−→
o
·σ1 where a ∈ B, and σ ' σ′ with

σ′ = σ′0·
a−→
o
·σ′1 where [σ0, (a, o)] ∼ [σ′0, (a, o)]. If [ς, (a′, o′)] ∈

Step(σ0) with o′ ∈ Occ∗ then there exist ς ′ and o′′ such that
[ς ′, (a′, o′′)] ∈ Step(σ′0) and [ς, (a′, o′)] ∼ [ς ′, (a′, o′′)].
PROOF: by induction on the definition of σ ' σ′. The lemma is
obvious if σ′ = σ. Otherwise, there exists σ′′ such that σ′′ results
from σ by a transposition of two steps, and σ′′ ' σ′ (with a shorter
proof). There are four cases: if the transposition takes place in σ0 or
σ1, the proof is routine (using the induction hypothesis). Otherwise,
the transposition concerns the step [σ0, (a, o)], and either the last
step of σ0, or the first step of σ1.

If σ0 = σ′0 · (e
a′−→
o′

e0) and e a−→̄
o

ē with o ≡ ō/(a′, o′),

o′′ ≡ o′/(a, ō) and

σ′′ = σ′0 · (e
a−→̄
o
ē) · (ē a′−−→

o′′
e1) · σ1

then ō ∈ Occ∗ by Lemma 4.6, since a ∈ B, and therefore
o′ 6∈ Occ∗ and o′′ = o′. Then we easily conclude using the
induction hypothesis.

The case where σ1 = (e1
a′−→
o′

e) · σ′1 and e0
a′−−→
o′′

ē with

o′ ≡ o′′/(a, o), ō ≡ o/(a′, o′′) and

σ′′ = σ0 · (e0
a′−−→
o′′

ē) · (ē a−→̄
o
e) · σ′1

is similar (notice that it cannot be the case that o′′ ∈ Occ∗).

An immediate consequence of this property is:
COROLLARY 4.8. If σ is a valid speculation, that is σ ' σ̄ for
some normal speculation σ̄, and if σ̄ = σ̄0 ·

a−→
o
· σ̄1 with a ∈ B,

then σ = σ0 ·
a−→
o
· σ1 with [σ0, (a, o)] ∼ [σ̄0, (a, o)], such that

for any step [ς̄ , (a′, o′)] of σ̄0 there exists a step [ς, (a′, o′′)] in the
same family which is in σ0.
This is to say that, in order for a speculation to be valid, all the
operations that normally precede a B action, and in particular
an unlocking action, must be performed before this action in the
speculation.

4.2 Properties of Speculative Computations
From now on, we shall consider regular configurations, where at
most one thread can hold a lock, and where a lock held by some
thread is indeed in the lock context. This is defined as follows:
DEFINITION (REGULAR CONFIGURATION) 4.9. A configuration
C = (S,L, T ) is regular if and only if it satisfies
(i) if T = (ti,Σi[(holding ` do ei)]) ‖Ti for i = 0, 1 then
t0 = t1 & Σ0 = Σ1 & e0 = e1 & T0 = T1

(ii) T = (t,Σ[(holding ` do e)]) ‖T ′ ⇒ ` ∈ L
For instance, any configuration of the form (∅, ∅, (t, e)) where e is
an expression is regular. The following should be obvious:

REMARK 4.10. If C is regular and C a−−→
t,o

C′ then C′ is regular.

The following lemma (for a different notion of computation) was
called the “Asynchrony Lemma” in [10]. There it was used as the
basis to define the equivalence by permutation of computations. We
could also introduce such an equivalence here, generalizing the one
for speculations, but this is actually not necessary.
LEMMA 4.11. Let C be a (well-formed) regular configuration. If

C
a0−−−→
t0,o0

C0
a1−−−→
t1,o1

C′ with t0 6= t1, ¬(a0 # a1) and a0 =
x
` ⇒

a1 6=
y
` , then there exists C1 such that C

a1−−−→
t1,o1

C1
a0−−−→
t0,o0

C′.



PROOF (SKETCH): by a case analysis on the actions a0 and a1.
• If a0 ∈ {β,↙,↘} then this action has no side effect (i.e., it does
not modify the components S, L and [] ‖T of the configuration),
and therefore such an action commutes with any other a1.
• The case where a0 = ν` is similar; one may observe that it can
be commuted with a1 = ν`′ , since in this case we have `′ 6= `.
• If a0 = νp,v then it cannot be the case that a1 is rdp,w or wrp,w,
by the well-formedness of the configurations. Also, a1 6= νp,w, and
it is therefore easy to see that a1 commutes with a0 in this case.
• If a0 = rdp,v then we have a1 6= wrp,w (otherwise a0 # a1) and
a1 6= νp,w by well-formedness. Again it is easy to see that in any
possible case for a1, the two actions commute, producing the same
resulting configuration.
• If a0 = wrp,v then we have a1 6= rdp,w, a1 6= wrp,w and
a1 6= νp,w. As in the previous case, we easily conclude.

• If a0 =
y
` or a = µ then a1 6=

y
` since two different threads

cannot acquire the same lock (we are using the regularity of C

when a0 = µ). Also, a1 6=
x
` because this would mean that C0

is not regular. If a0 =
x
` then a1 6=

x
` , since otherwise C0 would

not be regular, and a1 6=
y
` by hypothesis. Again in these cases it

is easy to conclude that the lemma holds.
• The case where a0 = spwe is immediate.

We have a similar property regarding “local” computations, that
occur in the same thread:
LEMMA 4.12. Let C be a (well-formed) regular configuration.
If C

a0−−→
t,o0

C0
a1−−→
t,o′1

C′ with C = (S,L, (t, e) ‖T ), C0 =

(S0, L0, (t, e0) ‖T0) =, C′ = (S′, L′, (t, e′) ‖T ′) and

e
a0−→
o0

e0
a1−→
o′1

e′ ' e a1−→
o1

e1
a0−→
o′o

e′

then C
a1−−→
t,o1

(S1, L1, (t, e1) ‖T1)
a0−−→
t,o′0

C′ for some S1, L1 and

T1.
PROOF SKETCH: we distinguish three cases, according to the re-
spective position of the occurrences o0 and o1.

• o0 ≤ o1. In this case, we can only have a0 ∈ {β,↙,↘}, and
therefore S0 = S, L0 = L and T0 = T , and it is easy to conclude
with S1 = S′, L1 = L′ and T1 = T ′.

• o1 < o0. Then a1 ∈ {β,↙,↘}, hence S′ = S0, L′ = L0 and
T ′ = T0, and we conclude, as in the previous case, with S1 = S,
L1 = L and T1 = T .

• If o0 and o1 are disjoint, that is o0 6≤ o1 and o1 6≤ o0, we proceed
by case on (a0, o0) and (a1, o1), as in the previous proof. Notice
that {a0, a1} ⊆ B is impossible, by Lemma 2.1, since these actions
must occur in an evaluation context.

We can now prove our main result, stating in particular that specu-
latively race free programs are robust against speculations:
THEOREM (MAIN RESULT) 4.13. Let C be a well-formed regu-
lar configuration that is speculatively race free. If γ : C

∗→ C′ is a
valid speculative computation, then there exists a normal computa-
tion γ̄ from C to C′. In particular, any speculatively data race free
closed expression is robust.
PROOF: by induction on the length of γ. This is trivial if γ = ε.
Otherwise, let γ =

`
Ci

ai−−−→
ti,oi

Ci+1

´
06i6n

with n > 0. Notice

that Ci is well-formed, regular and speculatively DRF for any i.
The set { t | γ|t 6= ε } is non-empty. For any t there exists a
normal speculation σt such that σt ' γ|t. Let j be the first index

(0 6 j < n) such that γ|tj = σ0 ·
aj−→
oj

· σ1 and σtj =
aj−→
o
· σ′

with [ε, (o, aj)] ∼ [σ0, (aj , oj)]. Now we proceed by induction
on j. If j = 0 then o = oj ∈ Occ∗, and we use the induction
hypothesis (on the length n) to conclude. Otherwise, we have
Cj−1

aj−1−−−−−−→
tj−1,oj−1

Cj
aj−−−→
tj ,oj

Cj+1. We distinguish two cases.

• If tj−1 6= tj then we have ¬(aj−1 #aj) since C is speculatively
data-race free. We show that i < j ⇒ ai 6∈ B. Assume the
contrary, that is ai ∈ B for some i < j. Then γ|ti = ς0 ·

ai−→
oi

· ς1,

and by Lemma 4.4 we have σti = ς̄0 ·
ai−→
o′
· ς̄1 with [ς0, (oi, ai)] ∼

[ς̄0, (o
′, ai)]. Then by Corollary 4.8 the first step of ς̄0 ·

ai−→
o′

is in

the family of a step in ς0 ·
ai−→
oi

, contradicting the minimality of j.

We therefore have aj−1 6=
x
` in particular. By Lemma 4.11 we can

commute the two steps
aj−1−−−→
oj−1

and
aj−→
oj

, and we conclude using the

induction hypothesis (on j).

• If tj−1 = tj , we have σ0 = ς0 ·
aj−1−−−→
oj−1

, and by Lemma 4.5

there exist o′, o′′ and σ′1 such that γ|tj ' ς0 ·
aj−→
o′
·
aj−1−−−→
o′′

· σ′1
with o ≡ o′/(aj−1, oj−1). We conclude using Lemma 4.12 and
the induction hypothesis (on j).

Notice that we proved a property that is actually more precise than
stated in the theorem, since the γ̄ that is constructed is equivalent,
by permutations, to γ – but we decided not to introduce explicitly
this equivalence as regards speculative computations. We also ob-
serve that if an expression is purely sequential, that is, it does not
spawn any thread, then it is speculatively data race free, and there-
fore robust, that is, all the valid speculations for it are correct with
respect to its standard semantics.

Our result holds with synchronization mechanisms other than
acquiring and releasing locks. We shall use the mutual exclusion
construct (with ` do e) in the sequel, but we could have consid-
ered simpler memory barrier operations, such as fence. This is a
programming constant (but not a value), the semantics of which is
given by

E[fence]→ E[()]

with no side effect. Performing a fence should be categorized as a
B action, so that the Corollary 4.8 holds for such an action, since
it is only performed from within a normal evaluation context. Then
our Theorem 4.13, which, as far as the B actions are concerned,
relies on this property 4.8, still holds with this construct. However
when speculation is allowed this construct is rather weak, and in
particular it does not help very much in preventing data races, or
even to separate the accesses to the memory from a given thread.
We let the reader check for instance that with the IRIW example
(see [7]), that is

p := tt ‖ q := tt ‖ r0 := ! p ; ‖ r2 := ! q ;

fence ; fence ;

r1 := ! q r3 := ! p

starting from a configuration where the memory S is such that
S(p) = ff = S(q) we may, as with the amd6 example above,
get by a valid speculative computation a state where the memory
S′ is such that S′(r0) = tt = S′(r2) and S′(r1) = ff = S′(r3).
This is because the assignments to r1 and r3 can be speculatively
performed first (after having read pointers p and q), and, in the
projections over their respective threads, be commuted with the
assignments to r0 and r2 (since there is no data dependency), and



(S,Ω, (t,E[(ωxep)]) ‖T ) → (S,Ω, (t,E[{x 7→p}e] ‖T p ∈ dEe
(S,Ω, (t,E[(ωxep)]) ‖T ) → (S,Ω ∪ {p 7→ t}), {(t,E[({x 7→p}e\p)]) ‖T ) p 6∈ dEe ∪ dom(Ω)

(S,Ω, (t,E[(v\p)]) ‖T ) → (S,Ω\p, {(t,E[v]) ‖T )

(S,Ω, (t,E[(ref v)]) ‖T ) → (S ∪ {p 7→ v},Ω ∪ {p 7→ t}), (t,E[p]) ∪ T ) p 6∈ dom(S)

(S,Ω, (t,E[(sref v)]) ‖T ) → (S ∪ {p 7→ v},Ω, (t,E[p]) ‖T ) p 6∈ dom(S)

(S,Ω, (t,E[(! p)]) ‖T ) → (S,Ω, (t,E[v]) ‖T ) (p 6∈ dom(Ω) or Ω(p) = t) and S(p) = v

(S,Ω, (t,E[(p := v)]) ‖T ) → (S[p := v],Ω, (t,E[()]) ‖T ) p 6∈ dom(Ω) or Ω(p) = t

Figure 3: Operational Semantics (Source Language)

the fence, thus checking that local normal order evaluations with
the same actions is possible.

5. Towards Thread Safe Programming
In this section we introduce another language, that we will call the
source language, intended to provide the programmer with a safe
concurrent programming style, where the semantics is guaranteed
to be sequentially consistent3. The differences with the (target) lan-
guage we considered up to now are as follows. We split the refer-
ence creation construct into two: one, which we still denote (ref e),
for creating a private reference, that only one thread can use, and
(sref e) for creating a potentially shared reference. We may say
that a thread owns the private references it creates. We also replace
the locking construct (with ` do e) by a functional construct ωxe,
read “own x in e” that, when applied to a (shared) pointer, acquires
that pointer for exclusive use in e, and releases it upon termination.
Then in this language synchronization is only concerned with ac-
quiring/releasing pointers, not locks. The synchronization construct
ωxe is needed to write atomic operations, such as incrementing an
account a by some amount x, written ωaλx(a := ! a + x). The
syntax is as follows

e ::= v | (e0e1) expressions
| (if e then e0 else e1)

| (ref e) | (sref e) | (! e) | (e0 := e1)

| (thread e)

v ::= x | λxe | ωxe | tt | ff | () values

The variable x is bound in ωxe, exactly as in λxe.
To describe the semantics of this language, we have to intro-

duce, as with the target language, an extension with constructs that
appear at run-time. These are the pointers p, q . . ., as above, and
a construct (e\p), similar to (holding ` do e), meaning that the
pointer p has been acquired, and is currently owned by e. The eval-
uation contexts in the source language, that we still denote by E,
are the same as in the target language, except that we add the frame
(sref []), and that (holding ` do []) is replaced by ([]\p). We reuse
the notation dEe, this time to mean the set of pointers that are
owned in the context E, that is the set of p such that ([]\p) occurs
in E. The semantics is specified as small steps transitions between
configurations of the form (S,Ω, T ) where S and T are respec-
tively the memory and the thread system, as in Section 2 (but built
with expressions of the source language), and Ω is a mapping from
dom(Ω), a subset of dom(S), intoNames . This represents owner-
ship: if the pointer p has been created using ref by a thread named t,
we have Ω(p) = t. A pointer created by means of sref is not owned
by any thread, but it can be temporarily acquired as a private refer-
ence by a thread applying an ωxe function. The private references

3 The semantics may also be guaranteed to be deadlock-free, by using the
“prudent semantics” of [9].

can only be read or written by their owner thread. This is formalized
in Figure 3, where, in order to save some space, we omit the cases of
the redexes (λxev), (if tt then e0 else e1), (if ff then e0 else e1)
and (thread e). In the rule for reducing (v\p), Ω\p means Ω re-
stricted to dom(Ω)− {p}.

One can see in Figure 3 that a thread is blocked when it tries
to acquire, by means of (ωxep), an exclusive access to a reference
p that is currently private – i.e. p ∈ dom(Ω). This is a synchro-
nization operation. By contrast, there is a run-time error when a
thread t tries to access (i.e. read or write) a private reference p that
it does not own, i.e. p ∈ dom(Ω), but the condition Ω(p) = t is
not met in the corresponding rules. We shall design a type and ef-
fect system [26] to prevent such errors. In this system, effects are
finite sets of threads names, that is, if we let ϕ, ψ . . . range over ef-
fects, ϕ ⊆ Names . As we shall see, effects that can be assigned to
expressions in the type system are either empty, or a singleton. The
meaning is that a closed expression has an empty effect whenever
the thread it represents does not access (read or write) any private
reference, whereas the effect {t} is assigned to a thread named t
that uses its own private references. The types are given by

τ, σ, θ . . . ::= unit | bool | θ reft | θ sref | (τ
ϕ−→ σ)

where t is any thread name. As usual, a functional type (τ
ϕ−→ σ)

records the latent effect of a function of that type, that is the effect
the function may have when applied to an argument. The type θ reft
is the type of a reference which is created by a thread named t, and
which contains values of type θ.

The judgements of the type and effect system for the source
language have the form Γ `t e : ϕ, τ where, as usual, Γ is a typing
context, that is a mapping from a finite set of variables to types.
The index t means that e is typed as a part of a thread supposedly
named t. This name is only used to ensure that a thread does not
access private references that it does not create. We shall use the
type system to define a translation e⇒ ē from the source language
to the target language, and we therefore introduce judgements of
the form Γ `t e : ϕ, τ ⇒ ē meaning that, in the context of Γ,
the source expression, as part of a thread named t, has type τ and
effect ϕ, and translates to the expression ē of the target language.
To define this translation, we actually extend the target language
with a record construct {lock = `, val = e}, together with the field
selection operations e.lock and e.val. For lack of space, we do not
give the definition of the operational semantics (which is standard)
for these constructs. The idea of the translation is to transform an
expression of the source language of type θ sref into a very simple
monitor, namely a record where the val field is a reference and
the lock field is a lock protecting the access to the reference. A
private reference, that is an expression of type θ ref, is translated
simply as a reference (hence the use of ref for private references),
without any protection. The accesses to an sref are then translated
into synchronized access, preventing any data race, whereas the



Γ, x : τ `t x : ∅, τ ⇒ x Γ `t tt : ∅, bool ⇒ tt Γ `t ff : ∅, bool ⇒ ff Γ `t () : ∅, unit ⇒ ()

Γ, x : τ `t e : ϕ, σ ⇒ ē

Γ `t λxe : ∅, (τ ψ−→ σ) ⇒ λxē

ϕ ⊆ ψ
Γ, x : θ reft `t e : ϕ′, τ ⇒ ē Γ, x : θ sref `t e : ϕ, σ ⇒ e′

Γ `t ωxe : ∅, (θ sref
ψ−→ σ) ⇒ λy(with y.lock do (λxē y.val))

ϕ ⊆ ψ

Γ `t e0 : ϕ0, (τ
ϕ2−−→ σ) ⇒ ē0 Γ `t e1 : ϕ1, τ ⇒ ē1

Γ `t (e0e1) : ϕ0 ∪ ϕ1 ∪ ϕ2, σ ⇒ (ē0ē1)

Γ `t e0 : ϕ0, bool ⇒ ē0 Γ `t e1 : ϕ1, τ ⇒ ē1 Γ `t e2 : ϕ2, τ ⇒ ē2

Γ `t (if e0 then e1 else e2) : ϕ0 ∪ ϕ1 ∪ ϕ2, τ ⇒ (if ē0 then ē1 else ē2)

Γ `t e : ϕ, θ ⇒ ē

Γ `t (ref e) : ϕ, θ reft ⇒ (ref ē)

Γ `t e : ϕ, θ ⇒ ē

Γ `t (sref e) : ϕ, θ sref ⇒ (new ` in {lock = `, val = (ref ē)})

Γ `t e : ϕ, θ reft ⇒ ē

Γ `t (! e) : ϕ ∪ {t}, θ ⇒ (! ē)

Γ `t e : ϕ, θ sref ⇒ ē

Γ `t (! e) : ϕ, θ ⇒ (let x = ē in (with x.lock do !x.val))

Γ `t e0 : ϕ0, θ reft ⇒ ē0 Γ `t e1 : ϕ1, θ ⇒ ē1

Γ `t (e0 := e1) : ϕ0 ∪ ϕ1 ∪ {t}, unit ⇒ (ē0 := ē1)

Γ `t e : ϕ, unit ⇒ ē

Γ `t′ (thread e) : ∅, unit ⇒ (thread ē)
t 6∈ Γ, ϕ ⊆ {t}

Γ `t e0 : ϕ0, θ sref ⇒ ē0 Γ `t e1 : ϕ1, θ ⇒ ē1

Γ `t (e0 := e1) : ϕ0 ∪ ϕ1, unit ⇒ (let x = ē0 in (let y = ē1 in (with x.lock do x.val := y)))

Figure 4: Type-Directed Translation

accesses to private references are left unprotected, and therefore
subject to speculations.

The rules for inferring the judgements Γ `t e : ϕ, τ ⇒ ē
are given in Figure 4. The type and effect system for the source
language is obtained by omitting the⇒ ē parts. As one can see, an
effect is introduced by reading or updating a private reference: the
name of the thread that owns the reference is added to the effect. At
creation, a reference’s type gets the name of the current thread as
the “region” in which the reference is created. The only constraint
(apart from the standard unification constraints) we have in the
system regards the typing of thread creation: to type (thread e)
one has to assume that the thread only reads and writes the private
references that it has created, which is expressed with ϕ ⊆ {t},
and that it does not import such references from the context, that
is, its name t does not appear in the typing context Γ (i.e. in the
types assigned by this context to variables). In other words, to be
typable, a thread must create (t 6∈ Γ) the references that it is using
(ϕ ⊆ {t}), apart obviously from the shared ones.

In order to prove a type safety result for the source language,
namely that in a typable configuration a thread does not attempt
to access a private reference that it does not own, we need to
extend the typing to configurations. In the extended typing Γ `
(S,Ω, T ), the context Γ not only assigns types to variables, but
also to references. The typing of the memory is as follows:

Γ ` S ⇔def

8><>:
dom(S) ⊆ dom(Γ) & for any p ∈ dom(S)

Γ(p) = θ sref ⇒ ∃t. Γ `t S(p) : ∅, θ
Γ(p) = θ reft ⇒ Γ `t S(p) : ∅, θ

Then for thread systems

Γ ` T ⇔def ∀t ∈ dom(T ) ∃ϕ, τ. ϕ ⊆ {t} & Γ `t T (t) : ϕ, τ

Finally Γ ` (S,Ω, T ) means Γ ` S and Γ ` T .
The following is a standard property of type derivations that will

be needed to prove the safety result for the type system.
REMARK 5.1. For any typable expression Γ `t E[e] : ϕ, θ there
exist ψ, σ and t′ such that Γ `t′ e : ψ, σ.

It is easy to see that values have an empty effect, formalized in
the following remark.
REMARK 5.2. For all v ∈ Val , with Γ `t v : ϕ, θ we have
ϕ = ∅.

The proof of the type safety result follows the classical steps
(see [35]) of type safety proofs. In particular, we show a Subject
Reduction property, using a Substitution and a Replacement lem-
mas.
LEMMA (SUBSTITUTION) 5.3. Let Γ, x : σ `t e : ϕ, τ
be a valid type derivation with ϕ ⊆ {t} and x /∈ Γ. Let also
Γ `t v : ∅, σ be a valid type derivation for some value v, then
Γ `t {x 7→ v}e : ϕ, τ .
PROOF SKETCH: The proof is by induction on the derivation of
Γ, x : σ `t e : ϕ, τ . We only examine some cases:
• e = (! e′). We have Γ, x : σ `t′ e′ : ϕ′, θ for some ϕ′,
t′ and θ. By the typing rules we have two cases according to
the type θ. If θ = τ reft′ we have that t = t′ for t′ ∈ ϕ′

and ϕ′ ⊆ {t}. By the induction hypotheses we have that
Γ `t {x 7→ v}e′ : ϕ′, θ. Thus, by the typing rule for derefer-
encing we obtain Γ `t {x 7→ v}(! e′) : ϕ′ ∪ {t}, τ for (! e′)
has {t} as an immediate effect. The case where θ = τ sref
is similar with ϕ′ = ϕ, disregarding the remark about t = t′.

• e = (e0 := e1). We apply the induction hypothesis directly
for e1 and perform a similar case analysis to that of the case
e = (! e′) for e0. We conclude by applying the typing rule for
assignment.

LEMMA (REPLACEMENT) 5.4. Let Γ `t E[e] : ϕ, τ with
ϕ ⊆ {t}. Let also Γ `t e : ψ, σ and Γ′ `t e′ : ψ′, σ with Γ ⊆ Γ′

and ψ′ ⊆ ψ. We can conclude that there exists ϕ′ such that ϕ′ ⊆ ϕ
and Γ′ `t E[e′] : ϕ′, τ .
PROOF SKETCH: The proof proceeds by induction on the evalua-
tion context E and by cases on the corresponding frame F where
E = E′[F]. We develop only some cases, the others being direct
from the induction hypothesis:



• F = (! []). As in the Lemma 5.3, we have cases according
to the type of σ. If σ = θ reft′ we have that t = t′ by
Γ `t (! e) : ψ ∪{t}, θ and ψ ∪{t′} ⊆ {t}. It follows from the
hypothesis that ψ′ ∪{t} ⊆ ψ ∪{t}, and thus we can conclude
by the induction hypothesis. The case where σ = θ sref is
trivial applying the induction hypothesis.

• F = ([] := e1). By a similar argument to the previous case.

Next we prove a substitution property on thread names that we
will need to prove the Subject Reduction lemma.

LEMMA 5.5. Given a valid typing judgement Γ `t: e : ϕ, τ with
ϕ ⊆ {t} and let t′′ be a thread name that does not occur in Γ nor
τ . We conclude that {t 7→ t′′}(Γ `t e : ϕ, τ) is a valid typing
judgement.

PROOF SKETCH: The proof is by induction on the derivation of
Γ `t e : ϕ, τ . We only examine the case e = (thread e′),
all the other cases being a direct consequence of the induction
hypothesis. By the typing of the thread expression, we have that
Γ `t′ e′ : ϕ, unit. There are two cases to consider: if t′ 6= t′′ the
conclusion is direct by the induction hypothesis; if t′ = t′′ we
have to avoid the capture of t′ by the substitution. Let t̂ be a thread
name that does not appear in the derivation of Γ `t e : ϕ, τ .
We have, by the induction hypothesis, a valid typing judgment
{t′ 7→ t̂}(Γ `t′ e′ : ϕ, unit), and hence we can apply the induction
hypothesis a second time to conclude.

We can now prove a Subject Reduction property that allows to
preserve the typing hypothesis along computations.

LEMMA (SUBJECT REDUCTION) 5.6. If Γ ` (S,Ω, T ) and
(S,Ω, T ) −→ (S′,Ω′, T ′) then Γ′ ` (S′,Ω′, T ′) for some Γ′ with
Γ ⊆ Γ′.

PROOF: By cases on the redex being reduced in the configuration
(S,Ω, T ) with T = ((t,E[r]) ‖ T ′′) and r the redex being
reduced. We only examine some cases:
• r = (λxev). Then we have S = S′, Ω = Ω′ and T ′ =

((t,E[{x 7→ v}e]) ‖ T ′′). We need to prove that if
Γ `t E[(λxev)] : ϕ, τ then Γ ` E[{x 7→ v}e] : ϕ, τ .
By the Remark 5.1 we have that there are ψ and σ such that
Γ `t (λxev) : ψ, σ. By the Substitution Lemma 5.3 we get
that Γ `t {x 7→ v}e : ψ, σ, and we conclude the case applying
the Replacement Lemma 5.4.

• r = (ref e). By Remark 5.1 we have Γ `t (ref e) : ϕ, θ reft
for some θ and ϕ = ∅. By the semantics we have that (ref e)
evaluates to p for some p ∈ Ref with p /∈ dom(S); with
S′ = S ∪ {p 7→ v} and Ω′ = (Ω ∪ {p 7→ t}). Clearly by
typing we have Γ `t v : θ and therefore Γ, p : θ reft ` S′

with S′ = S ∪ {p 7→ v}. Hence we have Γ, p : θ reft `t p :
∅, θ reft. We conclude applying Lemma 5.4.

• r = (! p). Notice first that S′ = S and Ω′ = Ω. There are two
cases depending on the type σ in Γ `t p : ∅, σ: if σ = θ sref
we conclude by Lemma 5.4 observing that if v is the value read
by the store typing we have Γ `t v : ∅, θ; if σ = θ reft′ we
have t′ = t for t′ ∈ ϕ by typing and ϕ ⊆ {t} by the typing of
configurations. Finally, by typing of the store we have that if v
is the value read from S we have Γ `t v : ∅, θ, and we reach
the conclusion by Lemma 5.4.
Notice that the case r = (p := w) is similar to this one, with
S′ = S[p := w] and the store typing is preserved by the typing
in the expression.

• r = (thread e). We have that Γ `t′ e : ϕ, unit with ϕ ⊆ {t′}
by Remark 5.1 and the typing of the thread expression. The
conclusion is immediate once we see by Lemma 5.5 that {t′ 7→
t′′}(Γ `t′ e : ϕ, unit) with t′′ a fresh thread name not present

in Γ nor the type or effect of any of the other threads in T ′′ (i.e.
t′′ does not occur in Γ ` (S,Ω, T )).

Finally we can prove that non-shared references can only be
used by a single thread, in particular, the one that creates it.
PROPOSITION 5.7. Let e be a typable closed expression of the
source language, with Γ `t e : ϕ, τ where ϕ ⊆ {t}. Let
(Ci → Ci+1)06i6n be a sequence of transitionsCi = (Si,Ωi, Ti)
with S0 = ∅ = Ω0 and T0 = {(t, e)}, where the pointer p has
been created as a ref. If Tn(t′) = E[(! p)] or Tn(t′) = E[(p := v)]
then Ωn(p) = t′.
PROOF: By the hypothesis the reference p has been created as a
ref. Let Cj with 0 ≤ j ≤ n, be the first configuration in which p
appears. Notice that if p is created as ref for all j ≤ i ≤ n we have
Ωj(p) = Ωi(p) for the semantics has no means to change Ω for
pointers created by ref. By the Subject Reduction Lemma 5.6 we
have that there is a typing Γn ` Cn and thus Γn `t′ E[(! p)] : ϕ, τ
with ϕ ⊆ {t′}. Then by Remark 5.1 we have Γn `t′ (! p) : ϕ′, σ
for some ϕ′ and σ. Suppose that Γ(p) = θ reft′′ , then we have
that t′′ = t′, for t′′ ∈ ϕ′ and ϕ′ ⊆ ϕ ⊆ {t′}. This allows us
to conclude that the reference p has been created by thread t′, and
hence Ωn(p) = t′. The case E[(p := v)] is similar.

To prove the correctness of the translation we show an opera-
tional correspondence between the semantics of an expression of
the source language and the interleaving – non speculative – se-
mantics of its translation. Later we will prove that typable trans-
lated expressions are speculatively data race free, hence proving the
correspondence between the source language semantics and valid
speculative executions of the target semantics.

To relate source language run-time expressions with their target
semantic counterparts we will extend the translation to run-time
expressions. Notice that shared references in the source language
semantics are mapped to records containing a unique lock and a ref-
erence in the target semantics. Therefore we parameterize our run-
time compiles-to relation with the lock assignment chosen by the
semantics so far. We will denote by £ such injection from the set of
referencesRef to the set of locks Locks . The run-time compiles-to
relation is almost identical to that of Figure 4, except for the addi-
tion of references (both shared and private) and the translation of
shared variable accesses. An excerpt, including the translation of
private and shared references as well as the assignment expression,
is given in Figure 5; dereferencing a shared reference is similar to
its mutation. The translation is guided by typing, which is justified
by Lemma 5.6.

The compiles-to relation can now be extended to the store and
to configurations (with C = (S,Ω, T ) and C̄ = (S̄, L, T̄ )):

S
£⇒ S̄ ⇐⇒

(
dom(S) = dom(S̄) &

S(p) = S̄(p) for all p ∈ dom(S)

T
£⇒ T̄ ⇐⇒

(
dom(T ) = dom(T̄ ) &

T (t) = T̄ (t) for all t ∈ dom(T )

C
£⇒ C̄ ⇐⇒

8><>:
S

£⇒ S̄ &

L = {£(p) | p ∈ dom(£) ∩ dom(Ω)} &

T
£⇒ T̄

Now we introduce a relation between configurations of the
source language and configurations of the target language to prove
their operational correspondence. The relation is parameterized by
an initial typable expression e:

CReC̄ ⇐⇒

8>>><>>>:
`t e : ϕ, τ with ϕ ⊆ {t} &

(∅, ∅, (t, e)) ∗−→ C &

(∅, ∅, (t, ē)) ∗−→ C̄ &

C
£⇒ C̄ for some £



Γ, p : θ reft′ `t p : ∅, θ reft′
£⇒ p Γ, p : θ sref `t p : ∅, θ sref

£⇒ {lock = £(p), val = p}
p ∈ dom(£)

Γ `t e0 : ϕ0, θ sref
£⇒ ē0 Γ `t e1 : ϕ1, θ

£⇒ ē1

Γ `t (e0 := e1) : ϕ0 ∪ ϕ1, unit
£⇒ (let x = ē0 in (let y = ē1 in (with x.lock do x.val := y)))

Γ `t p : ∅, θ sref
£⇒ p̄ Γ `t e1 : ϕ1, θ

£⇒ ē1

Γ `t (p := e1) : ϕ1, unit
£⇒ (let y = ē1 in (with p̄.lock do p̄.val := y))

p ∈ Val

Γ `t p : ∅, θ sref
£⇒ p̄ Γ `t v : ∅, θ £⇒ w̄

Γ `t (p := v) : ∅, unit
£⇒ (with p̄.lock do p̄.val := w̄)

p, v ∈ Val

Figure 5: Run-time compiles-to relation (excerpt)

LEMMA 5.8. If CReC̄ and C −→ C′, then there is C̄′ such that
C̄
∗−→ C̄′ with C′ReC̄′.

(The proof is routine by cases on the redex being reduced in the
source language semantics.)

In what follows we shall use the notation C̄ to mean C
£⇒

C̄ where the lock assignment £ is implicit when clear from the
context.

To prove the simulation of the target language semantics by
the source language we shall use the following result stating that
there are no data races in normal executions of translated typable
expressions:

REMARK 5.9. If `t e : ϕ, τ withϕ ⊆ {t}, and (∅, ∅, (t, ē)) ∗−→ Ĉ

is a normal execution, then Ĉ contains no races.

PROOF: The result is a consequence of the Lemma 5.7 for refer-
ences created by ref, and it is enforced by the compilation for ref-
erences created by sref.

Notice that the translation introduces redexes to the target
language computation that are not present at the source level.
To refer to these steps we introduce the administrative steps
relation. This relation inductively pairs a source configuration
C to a target configuration Ĉ (denoted C ⇑ Ĉ) if whenever
C = (S,Ω, T ) −→ (S′,Ω′, T ′) by reducing a redex in thread t in
the source semantics we have
• if C̄ −→ Ĉ by reducing t in the target, then T ′(t) 6= T̂ (t), and
• if C ⇑ Ĉ0 and Ĉ0 −→ Ĉ by reducing t then T ′(t) 6= T̂ (t).

Thus, a target configuration is administratively related to a
source configuration if in the latter there is one or more threads
performing administrative steps corresponding to redexes that can
immediately be reduced in the source configuration.

To prove the operational correspondence from the target seman-
tics to the source semantics we first prove that if CReC̄, then con-
figurations reachable from C̄ are administratively related to some
configuration reachable from C in the source semantics. Next we
prove that administratively related configurations converge to con-
figurations related by Re, concluding our operational correctness
result.

LEMMA 5.10. If CReC̄ and C̄
∗−→ Ĉ we have one of the

following:
i) C ⇑ Ĉ, or

ii) exists C′ a source configuration with C ∗−→ C′ and C′ ⇑ Ĉ, or
iii) exists C′ a source configuration with C ∗−→ C′ and C̄′ = Ĉ.

PROOF SKETCH: The proof is by induction on the number of steps
required to reach Ĉ from C̄. We only examine the inductive case:
Suppose Ĉ0 −→ Ĉ by reducing the thread t. If the step is just
another administrative step we obtain the conclusion (i). If, on the
contrary, C ⇑ Ĉ does not hold, we have that thread t finished
performing its administrative steps. The proof proceeds by case
analysis on the next redex to be reduced by thread t in the source
configuration C (i.e. r if C = (S,Ω, T ′ ‖ (t,E[r]))). We only
examine some cases:
• r = (sref v). If the thread t is the only one performing ad-

ministrative steps in Ĉ0 we have that Ĉ = C̄′ (as it has been
proved in Lemma 5.8), thus obtaining conclusion (iii). Other-
wise, if there are other threads performing administrative steps
in Ĉ0 we have that C′ ⇑ Ĉ, for threads other than t remain
unchanged. Hence we obtain the conclusion (ii).

• r = (! p). The only case to consider is when p ∈ dom(£), else
the configuration would not be administratively related. Notice
that since it is the last administrative step, the thread t held
the lock £(p) and by Remark 5.9 no other thread could have
modified the store for the reference p; which implies the read
value is exactly S(p) if C = (S,Ω, T ). We use the same case
analysis as in the previous case to obtain conclusions (iii) or
(ii). Then we use a similar argument for the case r = (p := w)
with p ∈ dom(£).

LEMMA 5.11. If C ⇑ Ĉ, then there exists C′, a source semantics
configuration, with C ∗−→ C′ in the source semantics and Ĉ ∗−→ C̄′

in the target semantics.

PROOF SKETCH: The proof is by induction on the number of steps
required to reach Ĉ from C̄. We only examine the inductive case;
suppose Ĉ0 −→ Ĉ by reducing the thread t. We proceed by case
analysis on the next redex to be reduced in thread t (i.e. r if
C = (S,Ω, T ′ ‖ (t,E[r]))) in the source configuration C (we
only examine some cases):
• r = (! p). Then we have that p ∈ dom(£). By the translation

we have E[((! p))] = Ē[(with p̄.lock do (! p̄.val))]. Notice
that the first action of t (i.e. reducing p̄.lock to £(p)) is non-
conflicting with any other action, therefore we can perform
exactly the steps given by the induction hypothesis for the
other threads, and finally reduce Ē[(with £(p) do (! p̄.val))]
reaching a configuration C′′ related by Re with C′′, where C′′

results from C′0 (the resulting configuration from the induction
hypotheses) by reducing the thread t.



Γ `t e0 : ϕ0, lock Γ `t e1 : ϕ1, θ sref

Γ `t {lock = e0, val = e1} : ϕ0 ∪ ϕ1, {lock : lock, val : θ}

Γ `t e : ϕ, {lock : lock, val : θ}

Γ `t e.val : ϕ, θ sref

Γ `t e0 : ϕ0, lock Γ `t e1 : ϕ1, τ

Γ `t (with e0 do e1) : ϕ0 ∪ ϕ1, τ

Γ, ` : lock `t e : ϕ, τ

Γ `t (new ` in e) : ϕ, τ

Γ `t e : ϕ, θ

Γ `t (ref e) : ϕ, θ reft

Γ `t e : ϕ, θ

Γ `t (refs e) : ϕ, θ sref

Figure 6: Type and effect system for the target language (excerpt)

If the step taken is not the first of Ē[(with p̄.lock do (! p̄.val))],
the thread t acquires (or holds already) the lock £(p) in which
case we can reduce it until we reach Ē[S(p)] and then perform
the exact steps given by the induction hypothesis for the other
threads. This procedure reaches a configuration C′′ where C′′

is obtained from C by reducing first the thread t and then
performing the steps in C ∗−→ C′0, other than those by thread
t, to that configuration.

LEMMA 5.12. If CReC̄ and C̄ ∗−→ Ĉ, then there is C′, a source
language configuration, such that C ∗−→ C′ in the source semantics
and Ĉ ∗−→ C̄′ in the target semantics.

(The proof is a direct consequence of Lemmas 5.10 and 5.11.)

THEOREM (OPERATIONAL CORRESPONDENCE) 5.13. Let e be a
closed typable expression of the source language. If (∅, ∅, (t, e)) ∗→
C is a valid computation of the source language semantics, then
there exist normal computation of the target language semantics
(∅, ∅, (t, ē)) ∗→ C̄ such that CReC̄. Conversely, if (∅, ∅, (t, ē)) ∗→
Ĉ is a normal computation of the target language semantics, then
there exists C′ a configuration of the source language semantics
such that Ĉ ∗→ C̄′ in the target language semantics, C ∗→ C′ in the
source language semantics and C′ReC̄′.

(The proof is direct by Lemmas 5.8 and 5.12.)
In the rest of the section we prove the correspondence between

computations of the source language semantics and valid specula-
tive computations of the target language semantics.

We now prove that translations of typable source language ex-
pressions are speculatively data race free. To prove that private ref-
erences in the source language are not shared in valid speculative
computations we introduce a type and effect system that mimics
the one of Figure 4 in the target language. To simplify the type sys-
tem we will assume that the translation of the sref construct anno-
tates the ref expression as (refs) to differentiate shared and private
references in the target language. Thus, the translation of (sref e)
becomes ((new ` in {lock = `, val = (refs ē)})), where the anno-
tation s in refs has no semantical meaning whatsoever. The typing
rules that differ from those of Figure 4 are given in Figure 6.

We can easily extend the type and effect system of Figure 6 to
run-time expressions, by adding references and locks to the typing
context as we did before. Moreover, we can extend the typing to
the store and target language semantics configurations as we did
for the source language type system. Also, the Subject Reduction
result of the source language (Lemma 5.6) can be easily reproduced
for the type system of Figure 6, where we modify the Replacement
Lemma 5.4 to account for speculative contexts (Σ).

LEMMA (REPLACEMENT - SPECULATIONS) 5.14. Let Γ `t
Σ[e] : ϕ, τ with ϕ ⊆ {t}. Let also Γ `t e : ψ, σ and Γ′ `t
e′ : ψ′, σ with Γ ⊆ Γ′ and ψ′ ⊆ ψ. We can conclude that there
exists ϕ′ such that ϕ′ ⊆ ϕ and Γ′ `t Σ[e′] : ϕ′, τ .

(The proof is a simple extension to that of Lemma 5.4.)

LEMMA (SUBJECT REDUCTION – TARGET) 5.15. If Γ `
(S,L, T ) and (S,L, T )

∗→ (S′, L′, T ′), by reducing a redex in
a speculative context, then Γ′ ` (S′, L′, T ′) for some Γ′ with
Γ ⊆ Γ′.
(The proof is a simple extension to that Lemma 5.6.)

One can easily see that references in the target language that
correspond to private references of the source semantics are never
shared.
LEMMA 5.16. Let e be a typable closed expression of the source
language with Γ `t e : ϕ, τ ⇒ ē and ϕ ⊆ {t}. Let (∅, ∅, ē) ∗→
C be a valid speculative computation, with Γ′ ` C and C =
(S,L, T ′ ‖ (t,Σ[(! p)]). If Γ′(p) = θ reft′ for some θ and t′,
then t = t′.
PROOF SKETCH: By the typing of configurations we have that
Γ′ `t Σ[(! p)] : ψ, σ for some σ and ψ with ψ ⊆ {t}. Moreover if
Γ′(p) = θ reft′ we have that t′ ∈ ψ and therefore t′ = t.

Now we have the property that typable source expressions are
translated into robust programs. This is our second main result.
THEOREM 5.17. For any closed typable expression e of the source
language, with Γ `t e : ϕ, τ where ϕ ⊆ {t}, the translation ē of e
is speculatively data race free.
(The proof is a simple consequence of the translation of shared
references which instruments synchronization, and the Lemma 5.16
for private references of the source language.)

Finally we can show that there is an operational correspondence
between the typable expressions of the source language and valid
speculative computations of the target language.
THEOREM 5.18. Let e be a closed typable expression of the source
language. If (∅, ∅, (t, e)) ∗→ (S,Ω, T ) then there exist S̄, T̄ , L and
a valid speculative computation γ : (∅, ∅, (t, ē)) ∗→ (S̄, L, T̄ ) such
that dom(S̄) = dom(S) and S̄(p) = S(p) for any p. Conversely, if
γ : (∅, ∅, (t, ē)) ∗→ (S′, L′, T ′) is a valid speculative computation,
then there exists (S,Ω, T ) such that (S′, L′, T ′)

∗→ (S̄, L, T̄ ) for
some L and (∅, ∅, (t, e)) ∗→ (S,Ω, T ) with dom(S) = dom(S̄)

and S̄(p) = S(p) for any p.
PROOF SKETCH: The result is a direct consequence of Theorems
5.13, 4.13 and 5.17.

6. Conclusion
We have given a formal definition for speculative computations
which, we believe, is quite general. We have, in particular, checked
the classical “litmus tests” that are considered when dealing with
memory models, and we have seen that most of these are correctly
described in our setting (except in the cases relying on code trans-
formations). This means that our semantics is quite permissive as
regards the allowed optimizations, while being correct for sequen-
tial programs, but also that it is very easy to use for justifying that a
particular outcome is allowed or forbidden. This is clearly a benefit
from using a standard operational style. We think that our model
of speculative computation could be used to justify implementation



techniques, and to design formal analysis and verification methods
for checking concurrent programs, as well as developing, as we did
in the last section, programming styles for safe multithreading.
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